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Abstract

We investigate the transition to a Landau–Levich–Derjaguin film in forced
dewetting using a quadtree adaptive solution to the Navier–Stokes equations
with surface tension. We use a discretization of the capillary forces near the
receding contact line that yields an equilibrium for a specified contact angle θ∆

called the numerical contact angle. Despite the well-known contact line singular-
ity, dynamic simulations can proceed without any explicit additional numerical
procedure. We investigate angles from 15◦ to 110◦ and capillary numbers from
0.00085 to 0.2 where the mesh size ∆ is varied in the range of 0.0035 to 0.06
of the capillary length lc. To interpret the results, we use Cox’s theory which
involves a microscopic distance rm and a microscopic angle θe. In the numerical
case, the equivalent of θe is the angle θ∆ and we find that Cox’s theory also
applies. We introduce the scaling factor or gauge function φ so that rm = ∆/φ
and estimate this gauge function by comparing our numerics to Cox’s theory.
The comparison provides a direct assessment of the agreement of the numerics
with Cox’s theory and reveals a critical feature of the numerical treatment of
contact line dynamics: agreement is poor at small angles while it is better at
large angles. This scaling factor is shown to depend only on θ∆ and the viscosity
ratio q. In the case of small θe, we use the prediction by Eggers [Phys. Rev.
Lett., vol. 93, pp 094502, 2004] of the critical capillary number for the Landau–
Levich–Derjaguin forced dewetting transition. We generalize this prediction to
large θe and arbitrary q and express the critical capillary number as a function
of θe and rm. This implies also a prediction of the critical capillary number for
the numerical case as a function of θ∆ and φ. The theory involves a logarithmi-
cally small parameter ε = 1/ ln(lc/rm) and is thus of moderate accuracy. The
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numerical results are however in approximate agreement in the general case,
while good agreement is reached in the small θ∆ and q case. An analogy can be
drawn between the numerical contact angle condition and a regularization of the
Navier–Stokes equation by a partial Navier-slip model. The analogy leads to a
value for the numerical length scale rm proportional to the slip length. Thus the
microscopic length found in the simulations is a kind of numerical slip length in
the vicinity of the contact line. The knowledge of this microscopic length scale
and the associated gauge function can be used to realize grid-independent sim-
ulations that could be matched to microscopic physics in the region of validity
of Cox’s theory. This version of the paper includes the corrections indicated in
[1].

Keywords: Dynamic contact line, Contact angle, Contact line stress
singularity, Slip boundary condition, Landau–Levich–Derjaguin film, Forced
dewetting, Wetting failure, Cox-Voinov model, Volume-Of-Fluid (VOF),
Gerris, Slip length, Navier slip, Partial slip.

1. Introduction

Wetting of solids by liquids, in which a liquid displaces another fluid on a
solid substrate, is an ubiquitous phenomenon with applications ranging from
coating [2] and tear films on the cornea [3] to micro-layer formation in wall
boiling [4, 5] and CO2 sequestration [6]. However, despite the abundance of
applications, the precise mechanism of wetting is only partially understood.
From the numerical modeling point of view, difficulties arise due to the highly
multiscale nature of the problem (length scales extending from the macroscopic
to the molecular sizes). Another major challenge in numerical simulations is
the so-called contact line singularity that arises when a continuum description
of moving contact lines is used in combination with a no-slip boundary con-
dition at the liquid-solid interface. Because of this singularity, the continuum
description is untenable below a certain scale. Thus a transition to a different,
nonsingular physics must occur as the scale is reduced. The most obvious such
transition is the appearance of molecular effects at nanometer scales. How-
ever a variety of other “microscopic” contact line physics, some of which would
“kick-in” at scales much larger than the nanometer, have been considered in the
literature. It is difficult to be exhaustive but these involve precursor film models
[7], diffuse-interface models [8, 9, 10, 11] and the related issue of evaporation
[12], interface formation models [13, 14], and surface roughness [15]. The reader
may find references to other mechanisms in review papers [16, 17, 18, 19]. Slip
of the contact line is of particular interest as a possible physical mechanism
to allow motion of the contact line on the microscopic scale, mostly because
it conveniently does not require to change the Navier–Stokes equations, see
e.g. [20, 21, 22, 23, 24, 25, 26, 27, 28]. However, numerical simulations involving
slip-length modeling are unfeasible in most physical problems since the true slip
should be related to molecular interactions between the liquid and the solid sub-
strate [16], which based on experimental measurements lies in the nanometer
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range [29, 30]. Thus a regularization of the numerics based on the slip length
leads to computationally inconvenient large ratios of scales. On the other hand,
if no regularization is performed or if the slip length is dependent on grid spac-
ing, the moving contact line solutions become themselves dependent on grid
spacing (see e.g. [27, 31, 32]).

This paper pursues several goals. One is to describe the method used in the
numerical framework, Gerris [33] to impose the contact angle and the related
“banded” advection of the Volume-Of-Fluid method. (Although the contact
angle in a version of Gerris has been described in [34, 35], the exact method
used in the mainline distribution of the Gerris code has not been described
before.) Another goal is to attempt to extend numerically the theory of Eggers
and his coworkers [36, 37, 38] for the dewetting transition to the case of finite
microscopic angles. One consequence of this analysis applied to the numerical
case is a precise description of the behavior of any numerical method in the
vicinity of the contact line. Another consequence is to aid models such as those
in [27, 39] or [40] that are used to perform grid-independent models.

In this paper we do not attempt to implement a sophisticated dynamic con-
tact angle model, but instead take an existing, simple numerical method already
documented in [34, 35] for static cases and apply it “as is” for dynamic simu-
lations. This is a kind of “implicit modeling” approach similar to the implicit
subgrid scale modeling frequent in Large Eddy Simulations of turbulence. This
approach has the merit of simplicity, and it then remains to assess how this
“numerical boundary condition” affects the flow.

We study a specific, complex physical problem: the dewetting transition. In
a number of applications, the interface is forced to move along a solid in a manner
that can result either in a receding contact line or in the formation of a thin film
on the solid. One example of such a flow is the withdrawing-tape experiment
whose geometry is illustrated on Fig. 1. A solid substrate is withdrawn on the
left from a viscous liquid pool of quiescent liquid. The interface may either
sustain a stationary state meniscus, if below a critical capillary number, Cacr,
or continue to move up the substrate until depositing a thin film to arbitrary
heights. The latter is called a Landau–Levich–Derjaguin (LLD) film [41, 42].
This transition can be understood in terms of the imbalance between the surface
tension, gravity and viscous forces that leads to the vanishing of the contact
line. The analysis of the transition process on a partially wetting substrate is
however complicated due to the singularity of the moving contact line. On one
hand, Eggers and his coworkers, in a series of papers [36, 37, 38], provided a
hydrodynamic prediction, based on the lubrication approximation theory, of the
critical capillary number Cacr. Cox [23] and Voinov [43] described, on the other
hand, how the singularity drove a peculiar curved form of the fluid wedge at
small Ca. We use these theories to predict the numerically observed transition.
We shall show that 1) the microscopic length rm is entirely described by a gauge
function depending only on the equilibrium contact angle imposed numerically
and 2) that the knowledge of this numerical gauge function can be used to
mimic the effect of actual subgrid scale microscopic physics. This second point
is related to the notion of grid-independent simulations in [27, 39].
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Figure 1: Schematic illustrating the contact angles θe and θ(r), corresponding to length scales
λ and r, respectively. hCL represents the contact line height and h0 is the unperturbed initial
interface profile. ζ = hCL − y is the vertical distance of the interface at y from the contact
line. η(y) is the horizontal distance of the interface from the solid substrate.

The rest of this paper is organized as follows. In Sec. 2, we describe the
physical problem and explain our choice of parameters. In Sec. 3, we describe
the computational setup and the numerical method for the implementation of
the contact angle. In Sec. 4, we report the results of our simulations including
the method for determining the critical capillary number Cacr. In Sec. 5, we
introduce the main new theoretical concept of this paper, the gauge function
φ. We discuss the general theoretical features of the transition and study it in
two cases, the small angle, small viscosity ratio case, free-surface case, where
Eggers’s results can be applied directly and the more general case where the use
of matched asymptotics and Airy functions is replaced by heuristic arguments.
In Sec. 6, we discuss the connection with theories where the microscopic angle
varies with the capillary number as in the Molecular Kinetic Theory [44]. In
Sec. 7, we apply the concepts developed above to describe an improved procedure
for obtaining grid-independent computations of problems with dynamic contact
lines. Finally, we draw our conclusions in Sec. 8.

2. Problem setup: forced dewetting

We consider a solid plate being withdrawn from a liquid reservoir with a
constant velocity Vs > 0. The computational domain is 0 ≤ x, y ≤ L, with
fluid 1 occupying y < h0 and fluid 2 occupying y > h0 at t = 0 (see Fig. 1). The
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viscosity and density of fluid i = 1, 2 are µi and ρi, respectively. The capillary
number is defined as

Ca = µ1Vs/σ,

where µi is the viscosity of fluid i and σ the surface tension. We set L ≈ 9 lc,
where lc is the capillary length lc =

√
σ/[(ρ1 − ρ2)g] with g the gravitational

acceleration. The Reynolds number is then defined based on the capillary length
as Re = ρ1Vslc/µ1. Thus Re = Ca Mo−1/2 where the Morton number is

Mo =
(ρ1 − ρ2) gµ4

1

ρ2
1σ

3
.

We define a “gravity-wave-damping” number as

NG =
ρ2

1V
3
s

µ1(ρ1 − ρ2) g
.

Indeed, the wavelength of gravity waves traveling at the same speed as the
withdrawing tape is Lgw = ρ1V

2
s /[(ρ1 − ρ2)g] and it can be connected to NG

through NG = ρ1LgwVs/µ1. Thus NG is also the Reynolds number based on
the wavelength of gravity waves. It is related to the capillary length Reynolds
number by

Re = N
1/2
G Ca−1/2. (1)

We use several setups for the simulations, presented in Tab. 1. In Setups A
and B, for relatively more efficient computations, we set the ratios of physical
properties to moderate values with the viscosity ratio µ1/µ2 = 1 and the density
ratio ρ1/ρ2 = 5. The other parameters are chosen in the following way. In
Setup A, the number NG is arbitrarily set to NG = 25/64. (It is the value
corresponding to the arbitrary choices of ρ1 = 5, ρ2 = 1, g = 16, µ1 = 1, Vs = 1.)
Thus from Eq. (1) the Reynolds number based on lc varies as

Re =
5

8
Ca−1/2. (2)

As a result the Reynolds number based on lc increases as the capillary number
decreases. Varying the Reynolds number between 0 (Stokes approximation) and
Re = 3 has no effect on the results, however increasing Re beyond this value
introduces significant inertial effects and interface oscillations that modify the
conclusions of our investigations. At small Ca, we therefore switch to Setup
B, where NG is free to vary and the Reynolds number based on lc is fixed to
Re = 1. In a final set of simulations (Setup C), we keep ρ1/ρ2 = 5 and Re = 1
but let µ1/µ2 = 50. This allows to bring the simulations somewhat closer to
air/water conditions without encountering the numerical problems arising with
very large density ratios.

We begin the simulations by considering a flat interface between the two flu-
ids initially at the height h0 ≈ 3.1 lc. A no-slip boundary condition is prescribed
at the substrate (x = 0). Symmetry boundary conditions are imposed on the
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Setup NG = ρ2
1V

3
s /(µ1 (ρ1 − ρ2) g) Re = ρ1Vslc/µ1 1/q = µ1/µ2 ρ1/ρ2

A 25/64 - 1 5
B - 1 1 5
C - 1 50 5

Table 1: Summary of the simulation Setups. When no value is indicated, the corresponding
number is computed from the other numbers using Eq. (1).

right (x = L), top (y = L), and bottom (y = 0) boundaries of the domain. We
note that we have checked that the results are insensitive to the computational
domain size.

In the neighborhood of the contact line, no specific choice of parameters
is required except the equilibrium or static contact angle that is specified in
the numerical model. It is also expected that the numerical model leads to
a solution varying continuously with the withdrawing tape velocity, so that
the contact angle tends to the static contact angle as Ca tends to zero. How
simulations with a contact angle are performed is described in the next section.

3. Numerical model

We use Gerris [33, 45, 46] to numerically solve the Navier–Stokes, continuity
and density equations,

ρ (∂tu + u · ∇u) = −∇p+∇ ·
[
µ
(
∇u +∇u>

)]
+ σκδsn + ρg, (3)

∇ · u = 0, (4)

∂tρ+ u · ∇ρ = 0, (5)

respectively. Here, u is the velocity field, p the pressure, ρ = ρ1χ + ρ2(1 − χ),
µ = µ1χ+ µ2(1−χ), κ is the interface curvature, n the normal to the interface
(pointing from fluid 1 to fluid 2), δs the delta function centered at the interface,
ρg = −ρgŷ the body force due to gravity and ŷ the unit vector in the y-
direction, and χ (= 1 in fluid 1 and 0 in fluid 2) the characteristic function,
where δsn = ∇χ. Note that Eq. (5) is equivalent to

∂tχ+ u · ∇χ = 0, (6)

which is solved using the Volume-Of-Fluid (VOF) interface capturing method
[46, 47, 34, 48]. The Continuous Surface Force (CSF) method is used for the sur-
face tension force with curvature computed using the Height-Function method
[46, 48]. Viscous forces are implemented using a partially implicit method de-
scribed in [49].

It is useful to describe the procedure used near the contact line in the main
distribution of the Gerris code, which we used in the computations reported
below. First, without giving the full details that can be found in the references,
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i−1/2,j i+1/2,juu

i,j i,j i+1,j

Figure 2: Advection of the interface along the x-direction: standard “Lagrangian Ex-
plicit” or “CIAM” method with the cell centered at grid point i, j being advected and ex-
panded/compressed by the flow, in this case it is compressed since ∂u/∂x < 0; before advection
(left) and after advection (right).

let us outline the procedure used away from the contact line. There, the VOF
discretization of Eq. (6) consists in the definition of a variable Ci,j on each grid
point i, j that is equal to the volume fraction of the reference fluid, fluid “1”,
in the cell. The VOF method proceeds in two steps, first the reconstruction of
the interface followed by its advection. In the first part of the reconstruction
step, the interface normal n = (nx, ny) in cell i, j is determined from the values
Ci,j in neighboring cells, using the “Height-Function” method described below
(see e.g. [34, 46]) or the “mixed Youngs-centered” (MYC) method (see e.g. [50]),
if the former method fails. In the second part of the reconstruction step, the
position of a linear segment representing the interface in the cell is determined
using elementary geometry (see [50]) from the knowledge of n and Ci,j . Thus
the equation of the segment is written

nxx+ nyy = α, (7)

where the scalar α characterizes the position of the interface. The knowledge of
n and α is then used in turn in the second, advection step, where the interface
is displaced by the fluid velocity field. On Fig. 2, the standard “Lagrangian-
Explicit” (see [50]) advection step is represented. It is useful to describe the
advection process in some detail. The collocated velocities ui,j , vi,j , defined
on cell centers, are used to compute an auxiliary set of velocities ui+1/2,j and
vi,j+1/2 on different cell face centers using a projection method. The determi-
nation of the motion of the piece of interface shown on Fig. 2 is identical to
the “Lagrangian Explicit” or “CIAM” method [46, 50]. However a recent im-
plementation in Gerris uses a “banded” advection. In this approach, the cell is
subdivided in m equal bands, the default being m = 4 as on Fig. 3, and the
advection is performed separately in each band. After that, the bands in the
cells are aggregated to produce the final volume fraction. This ensures a better
representation of shearing or rotating velocity fields, while volume conservation
is enforced by the requirement that the average of the horizontal velocity in the
bands, for example, on the right side of the cell in Fig. 3 (left panel) to be equal
to the face center velocity ui+1/2,j .

We next present a test case to clearly illustrate the improvement when using
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Figure 3: Advection of the interface along the x-direction with the cell subdivided in m = 4
equal bands: with “banding” the effect of shearing, that is a ∂u/∂y derivative, is taken
into account more accurately than in the standard method; before advection (left) and after
advection (right).

the “banded” advection [51]. In this test case, a straight interface is advected
by a pure shear flow, at a shear rate of 1, in a 1 × 1 computational domain.
The exact solution is simply a rotation of the interface around the center of the
domain. We note that both the interface and the velocity field are described
exactly by a second-order method. Fig. 4 illustrates the rotation of the straight
interface under the shear flow. The green segments are the VOF reconstructed
interfaces obtained with m = 1 and the red segments are when using a “banded”
advection method with m = 4 bands. Fig. 5 illustrates the evolution of the error
with time. For t = 1, the interface is at 45 degrees and the errors in fluxes cancel
out exactly.

In order to compute capillary forces, we use the Height-Function method, in
which the local height of the interface is computed from summing over a column
of cells with

hi =

j2∑
j=j1

Ci,j

where j1 is the index of the bottom cell in the column and j2 the index of the top
cell. When the bottom cell is full (Ci,j1 = 1) and the top cell is empty (Ci,j2 =
0), and there is a single interface in the column, the height hi approaches the
exact interface height to second order [52]. Using finite differences of the local
Height-Function then provides the curvature, as well as the interface normals,
used to compute the surface tension force by the CSF method (see [46, 48]).

The numerical method given in this paper has often been tested only for
regular grids. For example tests of the curvature estimation by the height
function method were performed only on circles or spheres where the curvature is
uniform. A uniform curvature is naturally associated in these tests to a uniform
grid. However, there are some indirect tests, where near a singularity, a range of
scales of curvature appear, such as the pinching thread test in [46]. The contact
line flow is another such case where the singular flow near the dynamic contact
line forces a wide range of curvature. Tests of more complex flows as performed
in this paper are also useful to assess the accuracy of capillary force modeling
on non-uniform quadtree grids.

Near the contact line, we consider a cell i, j containing the contact line C
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(a) (b)

(c) (d)

Figure 4: Evolution of the VOF interface in a shear flow at a shear rate of 1. (a) t = 0, (b)
t = 1, (c) t = 2, and (d) t = 5; for m = 1 ( ) and m = 4 ( ). Note that in (d), the VOF
reconstructions for m = 1 ( ) in the center of the domain become identical to the black lines
of the grid and hidden by them.
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as shown on Fig. 6(a). The solid-fluid boundary is located exactly on the lower
boundary of this cell. (Other locations for the solid boundary have not been
explored by the authors.) For such a computational cell, the normal vector
is recovered trivially from the specified contact angle θ∆ as nx = − sin(θ∆),
ny = cos(θ∆). The value of α in Eq. (7) is then obtained using elementary
geometry. The interface can then be linearly extended into the solid cell i, j− 1
as shown by the dashed line on Fig. 6(b). It is assumed there is no other
contact line in the immediate neighborhood. The computation of the normal in
cell i+ 1, j is not immediately possible but this difficulty is easily circumvented
by assigning “ghost” Ci,j values to the cells in the first solid layer j − 1.

Then as shown on Fig. 6(c), the heights hi and hi+1 can be reconstructed
in columns i and i + 1. To construct the height hi−1 in the column beyond
the contact line a first-order extrapolation of the form hi−1 = hi − tan(θ∆)∆ is
used, where ∆ is the local grid size.

The heights over the three columns i− 1, i, i+ 1 can be used to compute the
curvature in the cell containing the contact line C. This is a good approximation
when both the interface slope and its curvature are small enough. Alternatively,
it is possible to fit a parabolic approximation of the interface through the two
heights hi and hi+1 and the contact point C of Fig. 6(a) computed from Eq. (7).

For vertical interfaces one uses “widths” wj instead, as shown on Fig. 6(d).
Finally when neither heights nor widths are available, several other strategies
are used to compute the curvature, as outlined by Popinet [46], using either a
mixture of heights and widths (the so-called mixed-heights method) or if the
mixed-heights method fails, a polynomial fit to the mid points of the segments
in each cell. These alternative strategies can be adapted to the vicinity of the
contact line, provided extrapolations of the volume fraction Ci,j and slope in
cells i − 1, j − 1 and i, j − 1 are used. It is important to remark that the
Height-Function method for curvature (without mixed heights) always provides
a curvature for κ∆ small enough. The critical value of κ∆ was estimated in-
dependently by one of the authors through tests on a large number of random
circles showing that the minimum value of κ∆ at which the Height-Function
always works is about 0.06.

Once the interface positions and the curvature are computed, there is no
special difficulty in computing the velocity field using the standard methods.
No special provision is made for the discontinuity of velocities or the divergence
of viscous stresses and pressures, which are computed as elsewhere in the domain
using finite volumes and finite differences.

We note however that the Gerris code uses the staggered (face) velocities to
advect interface pieces, and therefore, in the contact line cell C on Fig. 6, the
tangential (face) velocities used for advecting the interface in that cell will not
be equal to the solid velocity, since they are defined half-a-cell above the solid
boundary which is at j−1/2 on Fig. 6. Intuitively, this allows a kind of effective
slip. However the amount of slip is reduced by the banding method described
above and shown in Fig. 3.

It is interesting to note that at the scale ∆ of the cell i, j the interface and
the velocity field are represented in a coarsely averaged manner that is very far
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(a) (b)

(c) (d)

Figure 6: Reconstruction of the interface and height functions in the vicinity of the contact
line. (a) Reconstruction in cell i, j. (b) Linear extension to cell i, j − 1. (c) Standard Height-
Function method in columns i and i+ 1 together with extrapolation of the height to cell i−1.
(d) Same as (c) but with widths in horizontal segments j − 1, j and j + 1.
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from capturing the flow reversal expected inside the fluid 1 wedge (although
on scales larger than ∆ this flow is well captured). Whether it is possible or
desirable to have a more sophisticated discretization approach near the contact
line is beyond the scope of this paper.

4. Results: transition to film formation in forced dewetting

We focus on the problem of a partially wetting substrate withdrawn from a
liquid reservoir. We find two parameter ranges: first, the stationary regime, for
which the contact line motion along the substrate can evolve to a steady state,
as τ → ∞, where the nondimensional time is τ = Vst/lc; second, the unsteady
regime for which a steady state solution cannot be found and the contact line
height continues to increase, covering the substrate by a film. All the results
presented in this section are for Setup A, unless stated otherwise. We begin
by presenting various scenarios characterized by different nondimensional grid
sizes, ∆/lc, and the imposed contact angle, θ

∆
. Fig. 7 shows the instantaneous

contact line height, hCL, from the reference height, h0, nondimensionalized by
lc. Fig. 7 shows that depending on ∆/lc, different equilibrium configurations
can be obtained. Also, it shows that when the contact angle is decreased, the
contact line is raised to a new equilibrium height for the large grid sizes while a
stationary meniscus cannot be achieved for the smallest grid size. Here we take
0.007 < ∆/lc < 0.057. We note that for the capillary numbers that we consider
(from 0.001 to 0.1), it is very difficult to have a larger range of grid sizes since
one needs to satisfy ∆� `� lc � L, where ` is the thickness of the film at the
transition, of the order ` = Ca2/3lc. We however note that the Gerris code uses
quadtree grids (or octree in 3D), that allow to refine the grid where necessary.
This is a very useful feature for dynamical contact line problems as it allows to
use a very small grid size ∆ in the immediate neighborhood of the contact line
and a larger grid size elsewhere.

Next, we elaborate on the stationary state results in detail. Figs. 8(a)-(d)
show the nondimensional stationary contact line height (h∞ − h0)/lc, where
h∞ = hCL(τ → ∞), as a function of the nondimensional mesh size, ∆/lc, for
various capillary numbers and for various contact angles, 50◦ ≤ θ

∆
≤ 90◦. The

results show the grid sizes, ∆/lc, where a stationary meniscus forms and no film
is deposited on the substrate, for the range of considered θ∆ .

More importantly, the results show that the computed height of the contact
line is a function of ∆/lc and that for small enough θ∆ no steady state menisci
can be attained when ∆/lc ≤ 0.014. This lower limit of θ∆, for which steady
state contact lines can be achieved, gets larger as Ca is increased. The results
clearly depend on the chosen value for the smaller mesh size near the contact
line, an effect that is expected and will be explained below. This dependence
of the results with mesh refinement becomes more marked as Ca is increased or
θ∆ is decreased.

Next we present the results, for which the contact line continues to move
upward and a liquid film is then deposited on the substrate. We can understand
the onset of film deposition, i.e. the forced dewetting transition, as when the
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various ∆/lc. For ∆/lc = 0.014 and θ∆ = 60◦, the contact line elevation continues increasing
as τ increases. In this figure, Ca = 0.03.

balance between the surface tension and viscous forces close to the contact line
region can no longer hold, resulting in wetting failure. (We note that gravity
is only involved, asymptotically, in the outermost region.) At the transition,
however, we will need to allow the computations to run for a very long time in
order to determine when the contact line motion along the wall cannot reach
a stationary state. For efficient and accurate determination of the numerical
values of the transition Cacr, we propose a procedure as follows. Fig. 9(a) shows
contact line heights as a function of time for various values of Ca, when θ∆ = 90◦

and ∆/lc = 0.007. As shown, for sufficiently small Ca, a stationary meniscus
can be reached while for large Ca, the contact line height keeps increasing. We
then use the information in Fig. 9(a) to obtain Fig. 9(b). We then pick the
transition capillary number, for which the relative velocity of the contact line,
|d(hCL/lc)/dτ |, does not go to zero as a function of τ . This critical capillary
number Cacr is depicted in red in Figs. 9(a) and (b). Using the procedure
above, we can therefore determine Cacr with a very good precision. Figs. 10(a)-
(b) show the contact line height, (hCL−h0)/lc, as a function of nondimensional
time, τ , for two mesh sizes, ∆/lc, when varying the wall contact angle θ∆, for a
fixed Ca. As shown, the transition from a stationary meniscus not only depends
on θ∆, but also on ∆/lc. As illustrated, the transition occurs at a larger θ∆ for
smaller ∆/lc. This observation begs a further exploration of how the critical
capillary number depends on the contact angle and the grid size. We study
these effects in what follows.

To shed more light on the transition mechanism, we analyze the flow, for both
when a stationary meniscus forms and when a steady state contact line cannot
be attained. Fig. 11(a) provides an example of a stationary meniscus for Ca =
0.043, θ∆ = 90◦, and ∆/lc = 0.014 (for this set of parameters, Cacr = 0.52).
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Figure 8: Nondimensional stationary contact line height, (h∞ − h0)/lc, as a function of the
nondimensional mesh size, ∆/lc, for (a) Ca = 0.01, (b) Ca = 0.02, (c) Ca = 0.03, and (d)
Ca = 0.04, for various contact angles, θ∆; the contact angle difference between each set is 2◦.
For (Ca,θ∆)=(0.02,54◦), (0.03,66◦), and (0.04,78◦), no steady state menisci can be attained
when ∆/lc ≤ 0.014.
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Figure 9: (a) Contact line height as function of time. The increment in Ca is 0.01 and the red
line indicates the critical capillary number Cacr = 0.045. (b) Contact line velocity relative
to the substrate velocity as a function of time At the critical capillary number Cacr = 0.045,
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Figure 10: Contact line height as function of time for 50◦ ≤ θ∆ ≤ 80◦ and (a) ∆/lc = 0.028
and (b) ∆/lc = 0.014; the increment in θ∆ is 2◦. Ca = 0.03
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(a) (b)

Figure 11: (a) A stationary meniscus forms when Ca < Cacr as τ →∞. The inset shows the
magnified flow field and the pressure distribution. Ca = 0.043, θ∆ = 90◦, and ∆/lc = 0.014.
(b) A magnified view of the contact line region and the computational mesh; The fine structure
of the flow field and the pressure distribution in the contact line region are illustrated. The
pressure colors show the maximum (dark red) and minimum (dark blue) of the pressure
distribution.

The inset shows the magnified flow field and the pressure distribution. Fig. 11(b)
shows a magnified view of the contact line region and the computational mesh.
The fine structure of the flow field and the pressure distribution in the contact
line region are illustrated. As shown, large gradients of velocity and pressure
necessitate a high mesh resolution around the contact line region. As illustrated,
the interface is highly curved close to the contact line, leading to an intensified
pressure gradient around that region, while the pressure gradient remains weak
outside the vicinity of the contact line, leading to gentle bending of the interface
away from the contact line.

Fig. 12 shows an example of when the contact line cannot attain a steady
state, leading to the formation of a film deposited on the substrate, for Ca =
0.048, θ∆ = 60◦, and ∆/lc = 0.014 (for this set of parameters, Cacr = 0.024).
The figure shows a typical evolution of the interface and the transition to the
film. Figs. 12(d)-(f) also show the sagging of the interface behind the contact line
after the film formation. The insets of Figs. 12(a)-(c) show the magnified flow
field and the pressure distribution. Figs. 12(a)-(c) also show a further magnified
view of the contact line region and the flow streamlines. The fine structure of the
flow field and the pressure distribution in the contact line region are illustrated.
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The results reveal the strong pressure gradients close to the contact line region;
when capillary forces can no longer balance this strong pressure gradient, the
consequence is the wetting failure.

We now turn our attention to computing the critical capillary number, Cacr,
of the dewetting transition, as a function of ∆, θ∆, and q. We carry out a series
of simulations when incrementing the capillary number, holding ∆ and θ∆ fixed,
until we find Cacr. We repeat the procedure for Setups A, B, and C in Tab. 1.
We note that the smallest mesh size we choose here is ∆/lc ≈ 0.004; such
an unprecedented fine grid is only made possible owing to the adaptive mesh
refinement capability of the Gerris code, that allows focusing the grid refinement
at around the interface and in particular the contact line region while the grid
size is free to adapt elsewhere. Fig. 13 presents Cacr as a function of ∆/lc
for a range of θ∆ for Setups A, B, and C. The symbols are direct simulation
results and the solid lines are drawn to guide the eye through a set of points
corresponding to the same θ∆. The error bars represent the increment in the
capillary number in the procedure of finding Cacr. These results illustrate the
logarithmic dependence of the dewetting transition on the mesh size for all
the ranges of the contact angles that are considered here for various Setups.
Moreover, as expected, for large capillary numbers, Setup A and B behave
more or less the same. In addition, we show the effect of the viscosity ratio
on computed Cacr; in general, lowering the viscosity of fluid 2 results in an
increase in Cacr compared to when the viscosity of both fluids is matched, with
this effect being more prominent at large contact angles. As shown, a decrease
in contact angle promotes the dewetting transition. In the next section, we will
develop an improved understanding of the onset of this dewetting transition.
We study the effects of the contact angle and the grid size on Cacr and give the
scaling of it with ∆/lc.

5. Hydrodynamic theories of the dynamic contact line and the dewet-
ting transition

5.1. Generalities about the asymptotic description

To interpret our numerical results, we will use a theoretical framework that
extends the work in [36, 38]. The theory in [36, 38] is valid for small capillary
number and equilibrium contact angles, large viscosity and density ratios, and
several specific slip length models. Since our numerical approach is not based on
a slip length model, we cannot apply this theory directly. However, as we shall
see, it is straightforward to replace the slip length analysis, by an asymptotic
matching, with the small length scale behavior, using the theory of Cox [23]. In
the general physical case, it is also assumed that any microscopic physics with
a sufficiently small length scale can be represented in Cox’s theory.

In the small Ca limit, the problem is analyzed by asymptotic matching of
three or four different regions:

1) A region I near the contact line, where microscopic effects dominate in
the physical reality and numerical effects dominate in our simulations. The size

17



(a)

(b)

(c)

18



(d)

(e)

(f)

Figure 12: Time evolution of the interface for Ca > Cacr at τ = 4 (a), 4.8 (b), 5.9 (c), 6.8 (d),
7.9 (e), 8.7 (f). The insets show the magnified flow field and the pressure distribution. (a)-(c)
Right panels show a magnified view of the contact line region and the computational mesh;
The fine structure of the flow field and the pressure distribution in the contact line region are
illustrated. Ca = 0.048, θ∆ = 60◦, and ∆/lc = 0.014. The pressure colors show the maximum
(dark red) and minimum (dark blue) of the pressure distribution.
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Figure 13: Cacr as a function of ∆/lc for a range of θ∆ for Setups A (a), B (b), and C (c).
Symbols present the numerical results and the solid lines are drawn to guide the eye. The
error bars represent the increment in the capillary number in the procedure of finding Cacr.
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of that region is the microscopic scale λ. We make no assumptions about region
I except that it is limited in length scales to a microscopic scale λ that remains
much smaller than all other relevant length scales.

2) A region II at length scales large enough that continuum mechanics and
the no-slip condition on the wall hold, but close enough to the contact line that
a special logarithmically-scaling solution holds, as discussed by Cox in [23]. This

region starts at lengths `� λ and ends at lengths `� Ca1/3lc. In that region,
capillary forces are balanced by viscous drag forces. The interface thus bends,
and as shown below, it has a curvature proportional to Ca/r where r is the
distance to the contact line.

3) An outer region III, where viscous effects are negligible and surface tension
balances gravity. This region scales like the capillary length lc. The solution in
region III is the famous static meniscus solution [53]. We define the “apparent
contact angle” θa as the angle seen in meniscus variables that is on scales such
that y ∼ lc. The meniscus solution quadrature gives the curvature

κIII = l−1
c

√
2− 2 sin θa (8)

The general properties of the solution can be seen as follows at small capillary
numbers. At the overlap of region I and region II the angle is the microscopic
angle noted θe. It is often assumed that it is the equilibrium contact angle, but
this is true only if the microscopic physics in region I are close to equilibrium.
It is quite possible to assume that θe differs from the equilibrium angle in a
manner determined by experiments, or by microscopic theories of the physics
beyond the scope of this paper. For small capillary numbers, the bending in
region II is sufficiently small that the angle changes little from region I to region
III and thus θa = θe. This condition closes the problem and gives in particular
the height of the contact line hcl = lc

√
2− 2 sin θe. As the capillary number

increases, the curvature and the bending increase in region II. The apparent
contact angle decreases below θe while the height of the contact line increases.

It can thus be hypothesized that the critical condition for dewetting can be
expressed as the condition of vanishing apparent contact angle. For a vertical
plate, this means that the inner solution in region II matches into the outer
solution in the meniscus region III with a vertical slope or yet that at the
inflection point, the slope vanishes. Thus a region IV, overlapping regions II
and III is found in which the slope is small. This hypothesis is implicit in the
works of Derjaguin [42] and Landau and Levich [41] since their assumption of
a lubrication theory implies a near-vertical slope in the matching region, the
existence of region IV and a zero apparent contact angle. Moreover Landau and
Levich [41] have shown that in region IV and at small capillary number, the

film thickness behaves as h ∼ Ca2/3lc, the famed Landau-Levich film thickness.
This hypothesis of transition at zero apparent contact angle has been consid-

ered by Eggers in the small angle case [36, 38], but has not yet been investigated
for large angles or when the free-surface model has to be replaced by an inter-
facial model at non-vanishing viscosity ratio q.

The matched asymptotics allowing to connect the regions defined above are
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valid upon the hypothesis that a parameter ε is small enough. This parameter
is not simply Ca as the Landau-Levich film scaling would seem to imply, but
ε ∼ Ca/G(θe) where G(θe) is the function introduced in [23] and defined below.
It can also be shown that at the transition, an equivalent estimate of the small
parameter is ε ∼ 1/ ln(lc/rm). This value of ε is not exceedingly small, which
has consequences which will be spelled out below.

5.2. The theory of Cox

We thus focus on the analysis of region II. In this region, the wedge solution
of Huh & Scriven is assumed [20]. It is then possible to use it as done by Cox
[23] to obtain the variation of pressure in the wedge and thus by Laplace’s law
the variation of curvature. After integration, one may obtain the variation of
slope. Cox’s solution in his “intermediate region” identified with our region II,
from his Eqs. (7.13) and (7.18) is

G[θ(r)] = G(θe)− Ca ln(r/λc)− Ca
Qi

f(θe, q)
+ o(Ca), (9)

where λc is a characteristic scale for microscopic effects, θe is the equilibrium
angle in agreement with our assumption above for the Ca → 0 limit, f and G
are defined below, and q = µ2/µ1 is the viscosity ratio. Qi is an integration
constant that is obtained by matching with region I and thus depends on region
I characteristics. Since we actually write the first order of an expansion in small
Ca, higher-order terms exist whose form is however unknown to the authors.

Finally the functions f and G are given by

G(θ) =

∫ θ

0

dθ′

f(θ′, q)
, (10)

and

f(θ, q) =
2 sin θ{q2(θ2 − sin2 θ) + 2q[θ(π − θ) + sin2 θ] + [(π − θ)2 − sin2 θ]}

q(θ2 − sin2 θ)[(π − θ) + cos θ sin θ] + [(π − θ)2 − sin2 θ](θ − cos θ sin θ)
.

In some specific asymptotic limits, special forms of G(θ) can be used. For θ � 1
and q = 0 as in thin liquid film in air situations, it can be shown that

G(θ) ≈ θ3/9. (11)

Also, Sheng and Zhou [54] show that G(θ)−G(θe) ≈ (cos θe− cos θ)/5.63 when
q = 1 and | cos θ| < 0.6. In this work, we account for G(θ) using Eq. (10)
directly.

A more convenient notation is to introduce a “microscopic length scale”

rm = λc exp[f(θe, q)/Qi], , (12)

as in Voinov [43, 55] so that in the general case

G(θ) = G(θe)− Ca ln(r/rm), (13)
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The microscopic length scale rm encompasses the properties of the microscopic
region. Thus the effect of the corresponding small scales can be summarized
with two parameters θe and rm.

Eq. (9) is very attractive because it provides a universal description giving
the dependence of θ(r) on Ca, to the leading order, without any specification of
the microscopic physics or any necessity to calculate the details of the macro-
scopic flow in the outer region. In this paper, we also claim that it is valid
when the concept of “microscopic physics” is replaced by “numerical scheme”;
the numerical scheme introducing deviations from the continuum equations at
scales of order λc ∼ ∆.

The microscopic length rm can be obtained in a number of special cases, or
by dimensional analysis. Eggers [36] has assumed several slip length models.
For the Navier-slip model, and using our notations above,

v|x=0 − Vs = λ
∂v

∂x

∣∣∣∣
x=0

, (14)

where λ is the slip length. Using lubrication theory valid for small slopes or
angles, one obtains the equation [56]

η
′′′

=
3Ca

η2 + 3λη
, (15)

where we introduced a variable ζ that measures distance away from the contact
line along the direction of the solid surface. We also note that η(ζ) is the local
thickness of the film and we use the notation η′ = dη/dζ, η′′ = d2η/dζ2, etc..
A solution of Eq. (15) can be obtained [57] in the form

η′(ζ) ∼ θe −
3Ca

θ2
e

ln

(
ζ

rm

)
, (16)

where

rm =
3λ

e θe
+O(Ca). (17)

(Notice that equation (33) of [57] misses the above factor of e because of an
incorrect derivation from equation (32) of [57]). This can be compared to the
solution obtained by Cox in [23]. From Eq. (11) and Eq. (13), using the fact
that for small angles r ∼ ζ = hCL − y and θ ∼ η′(ζ), one obtains

η′(ζ)3 ∼ θ3
e − 9Ca ln(ζ/rm). (18)

For Ca� θ3
e , the above yields again Eq. (16). Thus the length scale rm can be

written as
rm = λ/φ, (19)

where φ is a gauge function depending on θe equal, at first order, to

φ(θe) =
e θe
3
. (20)
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Different slip-length models give different gauge functions φ. Moreover, alter-
nate models of the microscopic physics beyond slip length, such as Van der Waals
forces or phase field, would still result in an expression of the form Eq. (13),
with φ having a dependence on θe and other microscopic model parameters to
be determined.

In the numerical case, the equivalent expression for the microscopic length
scale in region II is

rm = ∆/φnum, (21)

where the gauge function φnum may depend on q, θe and the details of the
numerical implementation such as the number of shear bands n, any specific
numerical slip etc. In what follows, for simplicity, we shall drop the “num” sub-
script and leave the dependence of φ on the viscosity ratio q implicit. Comparing
expressions (19) and (21) leads to the relation

λ = φ∆/φnum, (22)

which shows that the numerical model can be interpreted as having an effec-
tive slip. Using the definition of the numerical gauge function Eq. (21), Cox’s
solution (Eq. (9)) can be rewritten in the form

G(θe)−G[θ(r)] = Ca ln(r/∆) + Ca lnφ. (23)

This form is verified numerically in the next Section.

5.3. Numerical verification of Cox’s theory and matched asymptotics

We next present the numerical results of computed curvature and interface
shapes, for all the three Setups A, B, and C, and compare the results with the
theoretical predictions presented in previous section. We consider 15◦ ≤ θ∆ ≤
110◦ and 0.004 ≤ ∆/lc ≤ 0.016. In what follows, we show that in general, the
curvature is negative and higher close to the contact line and it decreases away
from the contact to zero, where it then turns and becomes positive to assume
the curvature of the meniscus and eventually approaches the zero curvature of
the flat film far away from the wall. This means that the curvature effects
are more prominent close to the contact line, and that there always exists an
inflection point. We show that interface bending becomes significant as we
increase the contact angle and/or decrease the mesh size. The divergence of
the curvature near the contact line is as expected and discussed in the previous
section. We also present the interface apparent slope along with the curvature to
enlighten the connection of the interface apparent zero slope with the presence
of an inflection point. Indeed, we notice that the angle is near zero at inflection
point when the curvature vanishes, as assumed in Sec. 5.1. The interface slope
results also confirm that we approach the imposed numerical contact angle, θ∆,
as we approach the contact line. We nondimensionalize the curvature by lc and
present the results as a function of the vertical height from the contact line,
i.e. ζ/lc = (hCL − y)/lc, (see Fig. 1 for the illustration of the distance ζ).
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 0.64 (Setup A),
(c) 0.85 (Setup B), and (e) 0.77 (Setup C) (black solid line). The fit is performed three to four
grid points away from the contact line to minimize the inaccuracies amplified in our numerical
method at the grid scale near the contact line. Right panel: Nondimensional curvature (black
symbols) and the slope that the interface makes with the substrate (red symbols), as a function
of the nondimensional vertical distance of the interface from the contact line, ζ/lc. θ∆ = 15◦

and ∆/lc = 0.0035 (Setup A) and 0.004 (Setup B and C), at Ca = 0.0009, τ = 1.52 (Setup
A), Ca = 0.0009, τ = 1.2 (Setup B), and Ca = 0.00095, τ = 1.52 (Setup C).
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(a) (b)

(c) (d)

Figure 15: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 2.15 (Setup
B) and (c) 1.51 (Setup C) (black solid line). The fit is performed three to four grid points
away from the contact line to minimize the inaccuracies amplified in our numerical method at
the grid scale near the contact line. Right panel: Nondimensional curvature (black symbols)
and the slope that the interface makes with the substrate (red symbols), as a function of the
nondimensional vertical distance of the interface from the contact line, ζ/lc. θ∆ = 30◦ and
∆/lc = 0.004 (Setup B and C), at Ca = 0.004, τ = 5.37 (Setup B) and Ca = 0.0049, τ = 5.95
(Setup C).
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 2.71 (Setup A),
(c) 2.01 (Setup B), and (e) 1.47 (Setup C) (black solid line). The fit is performed three to four
grid points away from the contact line to minimize the inaccuracies amplified in our numerical
method at the grid scale near the contact line. Right panel: Nondimensional curvature (black
symbols) and the slope that the interface makes with the substrate (red symbols), as a function
of the nondimensional vertical distance of the interface from the contact line, ζ/lc. θ∆ = 30◦

and ∆/lc = 0.007 (Setup A) and 0.008 (Setup B and C), at Ca = 0.004, τ = 1.52 (Setup A),
Ca = 0.005, τ = 3.18 (Setup B), and Ca = 0.0065, τ = 3.04 (Setup C).
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(a) (b)

(c) (d)
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Figure 17: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 3.08 (Setup A),
(c) 2.42 (Setup B), and (e) 1.52 (Setup C) (black solid line). The fit is performed three to four
grid points away from the contact line to minimize the inaccuracies amplified in our numerical
method at the grid scale near the contact line. Right panel: Nondimensional curvature (black
symbols) and the slope that the interface makes with the substrate (red symbols), as a function
of the nondimensional vertical distance of the interface from the contact line, ζ/lc. θ∆ = 40◦

and ∆/lc = 0.007 (Setup A) and 0.008 (Setup B and C), at Ca = 0.008, τ = 5.55 (Setup A),
Ca = 0.009, τ = 5.52 (Setup B), and Ca = 0.013, τ = 6.27 (Setup C).
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Figure 18: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 3.14 (Setup
A), (c) 2.42 (Setup B), (e) 2.78 (Setup B)(black solid line). The fit is performed three to
four grid points away from the contact line to minimize the inaccuracies amplified in our
numerical method at the grid scale near the contact line. Right panel: Nondimensional
curvature (black symbols) and the slope that the interface makes with the substrate (red
symbols), as a function of the nondimensional vertical distance of the interface from the
contact line, ζ/lc. θ∆ = 60◦ and ∆/lc = 0.014 (a-b) (Setup A), 0.016 (c-d) (Setup B), and
0.008 (e-f) (Setup B) at Ca = 0.024, τ = 8.85 (a-b) (Setup A), Ca = 0.024, τ = 10.48 (c-d)
(Setup B), and Ca = 0.022, τ = 11.12 (e-f) (Setup B).
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(a) (b)
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Figure 19: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 2.91, (c) 3.05,
(e) 2.72 (black solid line). The fit is performed three to four grid points away from the contact
line to minimize the inaccuracies amplified in our numerical method at the grid scale near the
contact line. Right panel: Nondimensional curvature (black symbols) and the slope that the
interface makes with the substrate (red symbols), as a function of the nondimensional vertical
distance of the interface from the contact line, ζ/lc. Setup B, θ∆ = 90◦ and ∆/lc = 0.004
(a-b), 0.008 (c-d), and 0.016 (e-f) at Ca = 0.042, τ = 17.41 (a-b), Ca = 0.047, τ = 22.76
(c-d), and Ca = 0.055, τ = 22.28 (e-f).
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(a) (b)

(c) (d)

(e) (f)

Figure 20: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 3.42, (c) 3.79,
(e) 3.67 (black solid line). The fit is performed three to four grid points away from the contact
line to minimize the inaccuracies amplified in our numerical method at the grid scale near the
contact line. Right panel: Nondimensional curvature (black symbols) and the slope that the
interface makes with the substrate (red symbols), as a function of the nondimensional vertical
distance of the interface from the contact line, ζ/lc. Setup C, θ∆ = 90◦ and ∆/lc = 0.004
(a-b), 0.008 (c-d), and 0.016 (e-f) at Ca = 0.082, τ = 15.79 (a-b), Ca = 0.09, τ = 22.5 (c-d),
and Ca = 0.1, τ = 39.52 (e-f).
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(a) (b)

(c) (d)

(e) (f)

Figure 21: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 2.94, (c) 3.22,
(e) 3.37 (black solid line). The fit is performed three to four grid points away from the contact
line to minimize the inaccuracies amplified in our numerical method at the grid scale near the
contact line. Right panel: Nondimensional curvature (black symbols) and the slope that the
interface makes with the substrate (red symbols), as a function of the nondimensional vertical
distance of the interface from the contact line, ζ/lc. Setup B, θ∆ = 110◦ and ∆/lc = 0.004
(a-b), 0.008 (c-d), and 0.016 (e-f) at Ca = 0.058, τ = 21.67 (a-b), Ca = 0.064, τ = 32.88
(c-d), and Ca = 0.074, τ = 29.92 (e-f).
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(a) (b)

(c) (d)

(e) (f)

Figure 22: Left panel: Comparison of the computed (black symbols) G(θe = θ∆) − G[θ(r)]
versus Ca ln(r/∆) with the prediction of Eq. (23) with the best φ value of (a) 5.05, (c) 6.37,
(e) 6.08 (black solid line). The fit is performed three to four grid points away from the contact
line to minimize the inaccuracies amplified in our numerical method at the grid scale near the
contact line. Right panel: Nondimensional curvature (black symbols) and the slope that the
interface makes with the substrate (red symbols), as a function of the nondimensional vertical
distance of the interface from the contact line, ζ/lc. Setup C, θ∆ = 110◦ and ∆/lc = 0.004
(a-b), 0.008 (c-d), and 0.016 (e-f) at Ca = 0.125, τ = 30.05 (a-b), Ca = 0.135, τ = 47.76
(c-d), and Ca = 0.155, τ = 35.43 (e-f).
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Figs. 14 to 22 depict the curvature plots (black symbols) along with the
angle (red symbols) θa = θ(ζ/lc) that the interface makes with the substrate
as a function of ζ/lc. We find that the maximum curvature is obtained at
the contact line and that this maximum curvature increases with decreasing
the mesh size. As shown, there is a substantial bending of the interface for
θ∆ = 110◦; for example, for ∆ = 0.004, curvature is tending to zero around
−0.75lc. However, the maximum curvature does not reach the asymptotic value
of
√

2l−1
c when the asymptotic parameter ε = Ca/G(θe) is not small enough. As

shown, for small angles, where the smallness of ε is guaranteed, the maximum
curvature approaches

√
2l−1
c . Figs. 14 to Figs. 22 also show that the angle is

indeed near zero at inflection point when the curvature vanishes as assumed in
Sec. 5.1.

We also compare the computed interface slope close to the contact line region
with the prediction of the Cox’s theory by plotting relation (23) on Figs. 14 to 22.
We plot the computed (black symbols) G(θe = θ∆)−G[θ(r)] versus Ca ln(r/∆),
using the computed interface slope, θ(r), at the distance r =

√
x2
i + y2

i , where
xi and yi are the x and y coordinates of the cell center of an interfacial cell
relative to the contact line coordinates. Figs. 14 to 22 also show the comparison
of the computed (black symbols) G(θe = θ∆)−G[θ(r)] versus Ca ln(r/∆) with
the prediction of Eq. (23) using the best fitted value of φ (solid lines). However,
we also find three to four aberrant grid points at the smallest values of r corre-
sponding probably to the limited accuracy of our numerical method at the grid
scale near the contact line. Moreover, if the relation (23) from the Cox-Voinov
theory were exact, the slope of G(θe = θ∆)−G[θ(r)] versus Ca ln(r/∆) should
be unity. In fact, there is a deviation from unity which is largest at small angles
(15◦ and 30◦) and smallest at large angles. This is particularly significant since
at small angles and small q the theory has a simple derivation from lubrica-
tion theory and the assumption of a parabolic flow in the thin liquid wedge. A
possible explanation is that this theoretical flow is not well approximated by
the numerical method. Indeed, for a small angle, there is a large region where
there are very few grid points across the thin liquid wedge, with the boundary
conditions on the solid and the free surface being imperfectly approximated by
the finite volume method and the interpolations used for viscous stresses. This
type of fit thus appears to be a good test of the accuracy of the method in the
vicinity of the contact line.

The fitting also yields a best value for φ in the range where Cox’s theory
is expected to be asymptotically valid ∆ � r � rmax. The expected up-
per limit rmax = Ca1/3lc will be derived below. We consider the results for
0.004 ≤ ∆/lc ≤ 0.016 and show that the fitted values of φ are similar and
thus approximately independent of ∆ when Ca is maintained at criticality. We
extend the discussion on these results next.

Figs. 23 illustrate the interface profiles corresponding to examples in Figs. 14
to 22. The results show the interface shapes, close to the contact line where
r � rmax, for various cases, demonstrating how the interface profiles vary at
the transition. The background mesh depicts the adaptive mesh refinement that
is utilized for the simulations. The results show the monotonically increasing
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 23: Interface profiles and the background adaptive mesh refinement for (a) Setup A,
θ∆ = 15◦, ∆/lc = 0.003, Ca = 0.0009, τ = 1.52, (b) Setup C, θ∆ = 30◦, ∆/lc = 0.004,
Ca = 0.004, τ = 5.37, (c) Setup A, θ∆ = 40◦, ∆/lc = 0.007, Ca = 0.008, τ = 5.55, (d) Setup
B, θ∆ = 60◦, ∆/lc = 0.016, Ca = 0.022, τ = 11.12, (e) Setup B, θ∆ = 90◦, ∆/lc = 0.004,
Ca = 0.042, τ = 17.41, (f) Setup C, θ∆ = 90◦, ∆/lc = 0.004, Ca = 0.082, τ = 15.79, (g)Setup
B, θ∆ = 110◦, ∆/lc = 0.004, Ca = 0.058, τ = 21.67, (h) Setup C, θ∆ = 110◦, ∆/lc = 0.004,
Ca = 0.125, τ = 30.05, and (i) Setup C, θ∆ = 110◦, ∆/lc = 0.008, Ca = 0.135, τ = 47.76.
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film thickness that connects to the flat region of the interface, corresponding
to the zero apparent interface angle, that is in turn connected to the static
liquid reservoir meniscus (only the film near the contact line is shown here).
For θ∆ = 110◦, there is a significant bending of the interface, more markedly
close to the contact line. This bending of the interface close to the contact line
is better captured at higher mesh resolutions. As shown, for θ∆ ≤ 30◦, even
the smallest grid size appears to be just sufficient, illustrating the challenging
computations at smaller angles.

5.4. General case

In the arbitrary angle case or when q does not vanish, one cannot use lubri-
cation theory as done in [36]. However we can proceed by assuming a vanishing
apparent contact angle at the transition. For a vertical plate, this means that
at the inflection point the slope vanishes (η′ = 0 when η′′ = 0). We have in-
deed confirmed this observation by our numerical results. As shown in Figs. 14
to 22 (b,d,f), for the range of contact angles and mesh sizes considered here,
15◦ ≤ θ∆ ≤ 110◦ and 0.004 ≤ ∆/lc ≤ 0.016, the vanishing slope of the interface
coincides with the inflection point at the transition, confirming the criteria for
the dewetting transition.

Thus there is a region IV of small slope overlapping with region II and III in
which the lubrication approximation is valid. However because the slope is not
small everywhere in region II the lubrication approximation does not apply there
and asymptotic matching is less obvious than in the literature. One possibility
would be to use a generalized differential equation also valid for large slopes as
done in [58]. A mapping from the equation valid for large slopes in [58] to the
lubrication approximation for small slopes has been performed in [59], allowing
to reuse the result in [36]; however, for several reasons explained below, we
prefer to perform directly a matching from Cox’s theory valid from region II to
region IV.

In what follows, we first perform a heuristic derivation of the central relation
of our theory, that gives the critical value of the capillary number Cacr implicitly
as function of the other parameters of the problem. We then compare these
results to those of lubrication theory obtained for small angles, and to our
numerics for small angles.

The heuristic description starts by determining the scale of Ca and the thick-
ness of the liquid in region III near the inflexion point. Using the Cox-Voinov
analysis, the slope is given by Eq. (13) and we write the condition that it van-
ishes in region IV. Let the inflection point occur at ζ ∼ ζI with ζI � rm. The
bending occurs over a large distance ηI and the “final phase” of the bending
where the slope and the curvature are small occupies almost all of region II. Thus
region II “looks like” a very thin wedge seen at scale ηI (paralell to the wall) and
ζI (perpendicular to the wall). The meaning of all the geometrical quantities
s, r, η, ζ, θ and θe is summarized on Fig. 24. As a result of the thinness, we can
approximate r ∼ ζ in that region. Writing the small slope assumption θ = 0 at
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Figure 24: The geometry of the wedge. The case of a large θe angle at the microscopic scale
is illustrated. The various geometrical quantities s, r, η, ζ, θ and θe are discussed in the text.
The figure emphasizes the important fact that our theory is also valid for θe > π/2 but that
despite this fact we have r/s ζ/s 1 at large r.

r = ζI in Eq. (13) gives

Cacr =
G(θe)

ln(ζI/rm)
, (24)

and Cacr is small if 1/ ln(ζI/rm) is small. The small parameter in the expansion
is

ε = 1/ ln(ζI/rm) = Cacr/G(θe). (25)

This determines the scale of Ca and we now turn to determining the thickness
ηI of the liquid in region III near the inflection point. This is not as trivial as
it may seem since in addition to the ηI ∼ Ca2/3lc solutions near the inflection
point that match the meniscus, there are also solutions with an asymptotically
flat interface, η → η∞ as ζ → ∞. These solutions have η∞ ∼ Ca1/2lc and
involve a balance of gravity and viscosity instead of a balance of surface tension
and viscosity. A solution may be found trivially by letting η = Constant in the
generalized lubrication equation or in the large slope equation in [58]. It is thus
a fixed point solution. The following serves to show that one matches to the
correct inflection point solution, not to the fixed point solution. Recalling that
Ca is small, it is possible to deduce that the curvature is still small in most of
region II thus ds/dr ∼ 1 where s is the curvilinear abscissa along the interface.
Then

ηI ∼
∫ ζI

rm

sin

{
G−1

[
G(θe)− εG(θe) ln

(
r

rm

)]}
dr, (26)

where we have used the fact that rI ∼ ζI , dη/ds = sin θ(s) and Ca ' Cacr.
After some work it can be shown that this integral behaves as

ηI ∼ ε1/3G(θe)
1/3 exp

(
1

ε

)
rm, (27)
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while by definition

ζI ∼ exp

(
1

ε

)
rm. (28)

We thus have ηI ∼ Ca1/3ζI as expected for the inflection point in the thin film
dewetting transition. In region IV, the length scales are thus ηI across the film
and ζI parallel to the film. The curvature thus scales as

η′′ ∼ ηI/ζ2
I ∼ ε1/3G(θe)

1/3 exp

(
−1

ε

)
r−1
m . (29)

To match region IV and region III, one should have the curvature η′′ of same
order as the curvature l−1

c of the static meniscus. Writing η′′ ∼ l−1
c one obtains

ε1/3G(θe)
1/3 exp

(
−1

ε

)
lc
rm
∼ 1. (30)

Identifying ε as above

C(q)Ca1/3
cr lc

rm
exp

[
−G(θe)

Cacr

]
= 1, (31)

where we have introduced a constant C(q) = O(1).
In the free surface case when q = 0, we may match region III with region IV

in a manner similar to the one in [36], as shown in Appendix A, to obtain

C(0) =
31/32−1/3

πeAi2(smax)κ∞lc
. (32)

Or equivalently (see A.8)

31/32−1/3Ca1/3
cr

πeAi2(smax)rmκ∞
exp

[
−G(θe)

Cacr

]
= 1. (33)

It is possible that C(q) does not differ very much from C(0) if in region IV
the outer fluid stress is negligible. Indeed in the thin layer the stress scales as
µ1Vs/η(y) while the stress in the outer fluid scales as the much smaller µ2Vs/y,
realizing an approximation of the free surface condition.

We note that expression (33) is equivalent at small angles θe to the one
obtained in [36]. It is also equivalent to the expression obtained in [59] at all
angles apart for the fact that we make no hypothesis on the behavior of rm at
large angles, unlike [59] and [58]. Moreover, as we wrote above, we prefer not
to obtain our expression through a generalized lubrication equation, but rather
through asymptotic matching. We believe that the effect of some models of the
microscopic physics, such as the slip length model, in region I, cannot be found
for large angles by asymptotic analysis but would require a full solution of the
Stokes equation analogous to that of Huh and Scriven [20], but for different
boundary conditions.
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We also note that at the transition the condition (30) yields ηI ∼ Ca2/3lc,
and that we used essentially the same matching argument as Derjaguin [42] and
Landau and Levich [41]. This can also be compared to the prediction of Voinov
[55] which is similar but with a constant C(0) differing from that obtained by
asymptotic matching.

Considering now the numerical case, we substitute the numerical expression
(21) for the microscopic length scale rm in the critical matching expression (33)
to obtain the central relation of our theory

C(q)φ(θ∆, q)Ca1/3
cr lc

∆
exp

[
−G(θ∆)

Cacr

]
= 1, (34)

where we identified θ∆ with θe.
It is interesting to investigate explicit expressions for Cacr obtained by an

asymptotic analysis of Eq. (34). To perform this analysis, we let δ = 1/ ln(lc/∆).
This small parameter is of the same order as ε above but unlike ε is explicitly
defined using the parameters of the problem. To give an order of magnitude
for δ and ε, if we use, as in the above simulation, a grid size ∆/lc = 1/28,
we obtain δ ≈ 0.18. Thus our small parameters is small but not exceed-
ingly so. It is useful to introduce the auxiliary parameter µ̂ defined as µ̂ =
−1/ ln[C(q)φ(θ∆, q)G(θ∆, q)]. The parameter µ̂ will be small for transcenden-
tally small θ∆. Otherwise if µ̂ is considered order 1, solutions of Eq. (34) expand
as

Cacr = δG(θ∆, q)
[
1− δ ln δ − δµ̂−1 +O(δ2 ln δ) +O(δ2µ̂−2)

]
. (35)

At small angles, with the expected scaling φ(θ∆) ∼ θ∆, one gets µ̂ ∼ −1/(4 ln θ∆).
Moreover the higher order terms in Eq. (35) are small if µ̂� δ which is verified
even for the smallest θ∆ and typical values of lc/∆ in our calculations. For Setup
B, with θ∆ = 110◦,∆/lc = 1/28, q = 1, and using the best fit estimate φ ' 3, the
first order of expansion of Eq. (35) gives Cacr ' Gδ ' 0.0558, using all the terms
in expansion (35) gives Cacr ' 0.0626, while a full iterative solution of Eq. (34)
yields Cacr ' 0.0637. For Setup C, in the case θ∆ = 110◦,∆/lc = 1/28, q = 0.02,
and using the best fit estimate φ ' 3.5, the first order gives Cacr ' Gδ ' 0.127,
using all the terms in expansion (35) gives Cacr ' 0.169, while a full iterative
solution of Eq. (34) yields Cacr ' 0.132. Thus in a wide range of parameters,
the approximation

Cacr =
G(θ∆, q)

ln(lc/∆)
, (36)

is correct within 15% accuracy.

5.5. Comparison with numerics

In our simulations, we measure Cacr and specify ∆ and θ∆. For the two
special cases described above, we compare the value of Cacr from full simulations
to the solutions of the central relation, Eq. (34). The simulations values are
in remarkable agreement with the above solutions. For setup B, with θ∆ =
110◦,∆/lc = 1/28, q = 1, we find numerically Cacr = 0.0555 compared to the
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theoretical value 0.0637. For setup C, in the case θ∆ = 110◦,∆/lc = 1/28, q =
0.02, we find numerically Cacr = 0.12125 compared to the theoretical value
0.132.

Alternately, to perform the comparison, Eq. (34) can be inverted to provide
an estimate of φ̃ = C(q)/C(0)φ given the numerical estimate of Cacr. The
estimate is

φ̃(θ∆, q) =
πeAi2(smax)

31/32−5/6

∆

Ca1/3
cr lc

exp

[
G(θ∆, q)

Cacr

]
. (37)

If our theory is valid, the right hand side should not depend on ∆. Moreover
if lubrication theory can be used in region IV, as is possibly the case even for
q > 0, the above expression should yield the gauge function φ defined in relation
with Cox’s analysis and estimated numerically above.

In Fig. 25, we plot the values of the RHS of Eq. (37) for Setups A, B and
C, along with the computed values from the best fit of φ presented in Sec. 5.3
(see Figs. 14 to 22). In the near-free-surface Setup C (q = 1/50), a very clean
estimate of the gauge function φ is obtained at small angles and we find φ(θ∆) '
θ∆. Numerical results from the direct comparison with Eq. (23) are also in
reasonable agreement with the predictions at small angles. Eq. (22) therefore
suggests an effective slip length λ ' ∆. Thus our numerical model may be
viewed as having an effective slip of the order of a grid cell.

In Setups A and B, the plot is more scattered indicating deviations from our
theory, which is not surprising given the not-so-small value of the asymptotic
parameter. However, a rough proportionality to the angle θ∆ is observed at
small angles. Moreover, for all the Setups, large contact angle data do not
follow the linear proportionality to the angle θ∆, with the viscosity ratio having
a more prominent effect on this deviation at large angles. To shed more light
on the behavior of φ as a function of the mesh size, as well as exemplifying
the errors in the computation of φ, in Fig. 26, we plot φ(θ∆) versus ∆/lc. The
results show some small variations; this is however expected because the error in
estimating φ also depends on ∆, while decreasing the mesh size does not reduce
the transition capillary by much.

6. Dynamic inner contact angle

A possible reinterpretation of Cox’s theory is to consider that the inner
region angle is not the equilibrium angle but an angle θin depending on the
contact line velocity so that

θin = fθ(Ca, q), (38)

where dependence on the fluids and solid material properties is implicit. Then
Eq. (9) must be rewritten as

G[θ(r)] = G(θin)− Ca ln(r/λ)− Ca
Qi

f(θin, q)
+ o(Ca), (39)

and we can proceed as before. We note however that there are two possibilities.
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Figure 25: The gauge function φ plotted using expression (37) above, for Setups A (×), B
(×), and C (×), compared to the computed values from the best fit of φ for Setups A (•),
B (•), and C (•). The solid line is the prediction from lubrication theory φ = eθ∆/3. For a
given angle θ∆, the various values of φ correspond to the various values of the grid size ∆ for
each Setup.
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Figure 26: φ(θ∆) as a function of ∆/lc for (a) Setup A, (c) Setup B, and (d) Setup C, and
exemplifying the errors in the computation of φ for (b) Setup A, (d) Setup B, and (f) Setup
C.
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1) The microscopic angle is discontinuous, that is there are two angles, the
advancing angle θa and the receding angle θr, so that θr < θe < θa and that
for small Ca, θin ∼ θa for an advancing contact line and θin ∼ θr for a receding
contact line. The conclusion is that the asymptotic analysis is unchanged with
θe replaced by either θr or θa.

2) The microscopic angle is continuous so that at first order

θin ∼ θe + Caf ′Ca, (40)

with f ′Ca a constant. In this case, and the small Ca assumption, Eq. (39) can
be rewritten at first order in Ca in the form of Eq. (9)

G[θ(r)] = G(θe)− Ca ln(r/λ)− Ca
Q′i

f(θe, q)
+ o(Ca) (41)

the change in microscopic angle with Ca being absorbed into the new integration
constant Q′i. We note that the relation (40) is in agreement with the Molecular
Kinetics Theory (MKT) of Blake and Haynes [44], which states that the contact
line is displaced by small random molecular jumps at the surface of the solid due
to thermal fluctuations. The average size of these small jumps is determined
by the intermolecular interactions between the liquid and solid. The frequency
of these random molecular jumps and the average distance of each jump can
either be determined empirically or by direct comparison to molecular dynam-
ics simulations. This model postulates that there is an out-of-balance surface
tension force, of non-hydrodynamic origin, as a result of the contact line moving
on a solid surface. The model then relates the contact line speed to this driving
force, resulting in a dynamic contact angle.

The idea of advancing and receding angles is related to the idea of physical
roughness of the surface. This may connect to the idea of a discontinuity in the
global numerical solution itself. We have conducted tests of the numerical model
for advancing menisci for Ca down to 10−6, although the dewetting transition
itself was studied only for Ca > 10−4. For very small Ca, the contact line evolves
in an irregular manner, with intermittent spikes in velocity akin to the motion
on a rough surface. These spikes have a time periodicity of T = ∆/Vs as if the
interface was pinned with spatial periodicity equal to the grid size ∆. However,
no such irregularity is observed for Ca = 10−4. Thus we may infer that at least
in the range of parameters used in this study 10−3 . Ca . 0.1, the numerical
solution is a continuous function of the contact line position.

7. Consequences for dynamic contact line computations in general

How to conduct realistic simulations of flows including a moving contact
line in practice is a difficult problem that has elicited significant research efforts
(See [39] for a systematic comparison of some models.) Here we only discuss
how our Cox type analysis of numerical models connects with other work on
mesh independent simulations. In the computation of a number of problems
involving dynamic contact lines, such as droplet spreading, drop impact or drop
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sliding on inclined plates, the result typically varies with grid resolution because
of hydrodynamic effects. One already-suggested approach [39] is to specify
numerically the angle

G(θ∆) = G(θin)− Ca ln(∆/rm) (42)

for some θin that may be function of the capillary number as in Eq. (38), and
for some microscopic length rm. We remind the reader that θ∆ is the numeri-
cally imposed contact angle while θin is an experimentally measured or deter-
mined quantity whose meaning is the contact angle at the microscopic scale
rm. Since rm and ∆ are not necessary equal and not even of the same order of
magnitude, we distinguish these two quantities. The loose rationale for expres-
sion (42) is that if θ∆ is the interface angle at distance ∆, then the Cox theory,
i.e. Eq. (13), reduces to Eq. (42). A more systematic approach amounts to note
that if Eq. (42) is used then in region II of our asymptotic analysis, we have
from Eqs. (42) and (21)

G(θ) = G(θin)− Ca ln

[
rφ(θ∆)

rm

]
. (43)

The above equation predicts in region II an angle independent of the grid size.
If the simulation is sufficiently well resolved and grid independent in the other
regions of the domain, then via asymptotic matching of the outer scales with
region II, the simulation should also be mesh-independent globally. This most
systematic approach differs from the naive interpretation that θ∆ is the angle
at scale ∆ by a factor lnφ(θ∆) = −f(θ∆, q)/Qi.

The approach in the previous publication by two of the authors [27] is iden-
tical to the above one except for an approximation where

G(θ)−G(θin) ' [cos θ − cos θin]/5.63 (44)

valid only in the range defined by Sheng and Zhou [54], that is q = 1 and
| cos θ| < 0.6. The approach embodied in Eq. (42) is more general, and can be
used to define a procedure to perform mesh-independent simulations of realistic
problems. (However, predictive simulations of moving contact lines are not
possible if a physical model at the microscopic scale, beyond the Navier-Stokes
equations, is not available.)

In such a procedure, one of the main issues is whether contact line physics
are obtained by experiment or by a reduction to a microscopic theory such as
molecular dynamics or phase field.

To develop a strategy for realistic simulations where experiments would be
used, the first step would be to perform a series of simulations at varying ∆ and
for the conditions of the experiments. Obviously, simulations and experiments
are not performed near the critical Ca but below it. Comparing the angles
observed in the region where the theory is still valid (region II) would cross-
validate the numerics, the Cox’s theory, and the experimental reality. This
would in turn fix the parameters θin and rm that could be used in simulations.
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This approach is of course made difficult by the fact that there is no evidence so
far that a single pair θin, rm could predict experiments over a range of different
flow configurations. Actually the authors of [9] state that “In the literature we
have not found a single pair of experiments in different geometries using precisely
the same materials.”. This highlights the difficulty of a predictive simulation
approach based on experiments. Moreover, it should be noted that the authors
of references [60] and [61] claim precisely the opposite, that no inner angle θin,
even a dynamical one depending on the capillary number, can predict the whole
range of experiments they have performed or simulated.

Another approach could be based on mesoscale or nanoscale physics, using
molecular dynamics or phase field simulations to predict interface shapes, and
again attempting to fit the predicted shapes to those predicted by Navier-Stokes
simulations performed using Eq. (42) and a pair θin, rm. The models would have
to be simulated up to scales much larger than the nanoscale or the mesoscale
so the Cox asymptotics become observable. This could be difficult since in
particular the phase field models involve an intrinsic length scale ld (in the
notations of ref. [9]) that may be large enough to preclude the appearance of a
“Cox region” such as region II inserted between the mesoscale model scale ld
and the larger scales of the simulation such as the capillary length lc.

All the above considerations must be subject to the proviso that the Cox
region II is really observable. There are several circumstances when that cannot
be the case. For both withdrawing or advancing contact angles, above a critical
Ca number, a transition occurs to a liquid film or air film solutions, marking the
disappearance of region II. These transitions fix an upper limit on Ca for moving
contact lines to simply exist. A lower limit for our approach to be applicable
is obtained at small capillary numbers. Indeed, the Cox solution is valid only
if region II exists, which may be very narrow for small Ca. Indeed region II
transitions directly to region III at small Ca for viscous forces of the same
order than the hydrostatic pressure gradient µU/`2 ∼ ρg which is equivalent to

` ∼ lcCa−1/2 where the capillary length appears. For Ca = 10−6 and the classic
capillary length lc = 2.110−3m we find ηI ∼ 2.1µm. This distance may become
so small that simulations at this scale are not practical and it is preferable to set
the grid size at larger scales at which the contact angle is simply the apparent
contact angle or the angle of the meniscus solution.

8. Conclusions

We focus on the problem of forced dewetting transition of a partially wetting
plate withdrawn from a reservoir using direct numerical simulations.

We compare numerical solutions in the vicinity of the contact line with the
theory of Cox and Voinov and point out the existence of a gauge function φ
that corresponds to one of the integration constants in these theories. We find
that Cox-Voinov theory is not well verified at small angles pointing to necessary
improvements in the numerical treatment of the dynamic contact line. These
improvements may be related to the treatment of boundary conditions or to the
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treatment of viscosity in mixed cells. They should be the focus of future studies
on this topic.

Using the gauge function φ, we provide a numerically-validated approximate
correlation for the critical capillary number, Cacr, at which the dewetting tran-
sition occurs, as a function of the mesh size, ∆, and the numerically-imposed
equilibrium contact angle, θ∆.

Using the asymptotic hydrodynamic theory of the vicinity of the contact
line and matching it to the static theory of menisci, we generalize the hydrody-
namic theory of the dewetting transition. We use it to derive an equation for
the effect of ∆ and θ∆ on the larger-scale regions of the simulation. The crit-
ical capillary number is then predicted by an implicit equation for Cacr. This
equation contains the unknown gauge function φ that characterizes the contact
line dynamics and is akin to a coefficient that determines the amount of slip.
This gauge function is specific to the numerical model used. Our numerical
simulations allow to quantify this “numerical slip” and confirm that it varies
linearly with the grid size ∆. Of particular interest is the work of Snoeijer
in [58] which generalizes the lubrication theory to large angles. The numerical
verification of the lubrication equation developed in [58] is topic of our future
work.

We suggest a manner in which simulations can be made convergent upon grid
refinement, despite the singularity at the contact line. This involves adjusting
the numerical contact angle as a function of the grid size. This adaptation
of the contact angle involves the numerical gauge function φ and improves in
several ways over the model proposed in [27]. Indeed, it is valid for arbitrary
angles and viscosity ratios. However, the microscopic parameters and even more
generally the microscopic physics are not known, except for the case treated in
this paper of a postulated Navier-slip model. Thus the applicability of the
grid-independent model may be limited.

The perspectives of this work are a systematic determination of the gauge
function φ for a range of numerical or physical contact line models used in
practice and the verification of the procedure for grid-independent computations
in a number of flows. Such grid independent simulations should be performed
in conjunction with experiments on contact line dynamics.
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Appendix A. Matching procedure in the small angle, free-surface
case

In the small θe case, lubrication theory can be used following ref. [36]. We
already expressed the first step of that theory when we obtained the slope in
the vicinity of the contact line. It was seen that lubrication theory can be used
when θe � Ca1/3. The range of validity of the theory is estimated in ref. [57]
and for the advancing case to be Ca/θ3

e < 0.05. This is equivalent for small
angles to Ca/G(θe) ∼ δ < 0.5 which is not too small but larger than the value
in the numerical case above.

In region IV, the lubrication equation is well known to be the Airy equation
[56]

η
′′′

= 3Ca/η2, (A.1)

and we assume the scaling

η(ζ) = 31/3Ca2/3H(ζCa−1/3), (A.2)

so that the thickness of the film is Ca2/3 much smaller than its horizontal extent
Ca1/3. Eq. (A.1) can be solved using Airy functions. The analysis given in [56]

is reproduced in Appendix B. One finds that for ζ � Ca1/3lc

η′(ζ) ∼ {9Ca ln[π/(22/3β2eζ)]}1/3 +O
[
| ln(β2ζ)|−5/3

]
(A.3)

where β is a parameter characterizing the Airy function solution of Eq. (A.1).
Matching Eq. (A.3) with the Cox’s solution Eq. (18) gives

β2 ∼ π

22/3erm
exp

[
− θ3

e

9Ca

]
. (A.4)

The matching is performed for ζ small in region IV variables but large in region
II variables, rm � ζ � Ca1/3lc. This is consistent with an upper bound rmax =
Ca1/3lc on the validity of the Cox’s solution Eq. (13). At the upper end of region

IV, for Ca1/3lc � ζ � lc, one can find the curvature as shown in Appendix B

κIV
∞ ∼ (3Ca)1/3

[
21/6β

πAi(s1)

]2

. (A.5)

Eq. (A.5) is obtained from the Airy function solution, which is parameterized
by both β and s1. The determination of s1 is more subtle [36, 38]. It is seen
that expression (A.5) predicts a range of possible curvatures depending on the
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value of s1. The smallest possible curvature obtains when the Airy function
assumes its global maximum Ai(smax) ' 0.53 for s1 = smax ' −1.0. Thus for a
given Ca and β, a minimum curvature is given by

κIV,min = (3Ca)1/3

[
21/6β

πAi(smax)

]2

. (A.6)

Indeed if the curvature determined at the lower limit of region III is larger, that
is κIII > κIV,min, it is always possible to match with a solution parameterized by
some s1 such that Ai(s1) < Ai(smax) and Ai(smax) is small enough. However,
if curvature κIII < κIV,min, the matching is impossible. Thus the critical Ca is
given by κIII,max = κIV,min

(3Cacr)
1/3

[
21/6β

πAi(smax)

]2

= κIII,max. (A.7)

We now eliminate β between Eq. (A.4) and Eq. (A.7) and use the notation
κIII,max = κ∞,

31/32−1/3

πAi2(smax)

Ca1/3
cr

erm
exp

(
− θ3

e

9Cacr

)
= κ∞. (A.8)

In the slip-length model case, with rm given by Eq. (19) and φ given by Eq. (20),
we obtain

θe

181/3πAi2(smax)

Ca1/3
cr

λ
exp

(
− θ3

e

9Cacr

)
= κ∞ (A.9)

This is in agreement with Eggers’s result in [36]. Eggers considers the case of
a plate inclined with a small slope θp above the horizontal, while we consider a
vertical plate. This does not change the nature of the asymptotics and as already
pointed out in ref. [36], the theory transposes as well to the case of a vertical
plate (although the full numerical solution is then more difficult to obtain).
In the small plate angle case θp is equal to the curvature κ∞ of the meniscus
solution, while in our case the curvature is given by Eq. (8). There is agreement
between Eq. (A.9) and Eq. (9) of [36] if we take note of the use of dimensionless
variables in [36], while we use dimensional variables, and substitute κ∞ for θ
(using ref. [36] notation for θp).

Appendix B. Analysis of the Airy equation

We first outline the Airy function solution of Eq. (A.1) given in [56]. With
the transformation η = (3Ca)1/3H, Eq. A.1 becomes

H
′′′

(ζ) =
1

H2(ζ)
. (B.1)

This equation can be turned into Airy’s equation for a new variable z(s), that
is z

′′
= sz, upon the substitutions

H(ζ) = z−2(s),
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and
dζ

ds
= −21/3z−2(s),

whose solution is
z(s) = αAi(s) + βBi(s), (B.2)

which implies

H =
1

[αAi(s) + βBi(s)]2
, (B.3)

where α and β are two arbitrary constants, while ζ(s) is an antiderivative of
−21/3z−2(s). After integrating explicitly for ζ(s), Duffy and Wilson [56] con-
clude that for β > 0 and any given α, there is a single branch that behaves as
desired for the contact line problem, that it grows monotonically from H = 0
for ζ = 0 and for s→∞ and has H →∞ for s→ s1 and ζ →∞ where s1 is a
root of

αAi(s1) + βBi(s1) = 0. (B.4)

That single branch cannot go to infinity inside s ∈ [s1,∞), which implies that
s1 is the largest among the countably infinite set of roots of Eq. (B.4). Thus
the solution can be characterized either 1) by the arbitrary pair α, β (β > 0) or
2) by β (β > 0) and s1 chosen arbitrarily with α given by α = −βBi(s1)/Ai(s1)
provided there is no larger root of Eq. (B.4). In what follows, we use the second
characterization. It can be verified that

ζ = 21/3π
Ai(s)

β[αAi(s) + βBi(s)]
, (B.5)

is an antiderivative of −21/3z−2(s) and that it satisfies ζ = 0 for s→∞. Thus
the solution given parametrically by Eqs. (B.3) and (B.5) starts at H = 0 for
ζ = 0 and grows monotonically with H → ∞ for ζ → ∞. Expanding the
solution for s� 1, Duffy and Wilson [56] find that

H(ζ) ∼ ζ[−3(ln ζ + c)]1/3, (B.6)

where c = ln[π/(22/3β2)]. Differentiating, and returning to the original variable
η, leads to

η′(ζ) ∼ {9Ca ln[π/(22/3β2eζ)]}1/3 +O
[
| ln(β2ζ)|−5/3

]
(B.7)

For ζ � 1, Eq. (B.3) reduces to

H(ζ) =
1

2

[
21/6β

πAi(s1)

]2

ζ2 − 22/3Ai
′
(s1)

Ai(s1)
ζ +O(1). (B.8)

Differentiating twice, one obtains the second derivative. As discussed in Sec. 5, it
is possible to equate the curvature with the second derivative since 1) Ai′(s1) =
0, and 2) the curvature is of the order of l−1

c and the matching is performed at
distances small in the region III variables thus over distances ζ � lc. Over such
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distances, the curvature of the parabola (Eq. (B.8)) is close to the curvature at
its apex. Reverting to the original variable η, we obtain the curvature κ∞ '
η′′(ζ) in the asymptotic range Ca−1/3lc � ζ � lc as

κ∞ ∼ (3Ca)1/3

[
21/6β

πAi(s1)

]2

. (B.9)
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