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A Generic Human-Machine Annotation Framework
Based on Dynamic Cooperative Learning

Yue Zhang, Andrea Michi, Johannes Wagner, Elisabeth André, Björn Schuller, Felix Weninger

Abstract—The task of obtaining meaningful annotations is a
tedious work, incurring considerable costs and time consumption.
Dynamic active learning and cooperative learning are recently
proposed approaches to reducing human effort of annotating
data with subjective phenomena. In this work, we introduce a
novel generic annotation framework, with the aim to achieve the
optimal trade-off between label reliability and cost reduction by
making efficient use of human and machine work force. To this
end, we use dropout to assess model uncertainty and thereby
to decide which instances can be automatically labelled by the
machine and which ones require human inspection. Additionally,
we propose an early stopping criterion based on inter-rater
agreement in order to focus human resources on those ambiguous
instances that are difficult to label. In contrast to the existing
algorithms, the new confidence measures are not only applicable
to binary classification tasks, but also regression problems. The
proposed method is evaluated on the benchmark datasets for non-
native English prosody estimation, provided in the INTERSPEECH
Computational Paralinguistics Challenge. In the result, the novel
dynamic cooperative learning algorithm yields .424 Spearman’s
correlation coefficient compared to .413 with passive learning,
while reducing the amount of human annotations by 74 %.

Index Terms—Human-Machine Systems, Active Learning,
Semi-supervised Learning, Confidence Measures, Inter-rater
Agreement

I. INTRODUCTION

W ITHIN the research fields intersecting with machine
learning, it is widely acknowledged that “there is no

data like more data” (Bob Mercer, 1985). Deep learning has
achieved new state-of-the-art performances on a vast array
of recognition tasks. However, these gains are often difficult
to translate into real-world settings as they require large
hand-labelled training sets. With the massive growth of data
created every instant, manual annotation has become the major
bottleneck of data processing due to prohibitive costs and high
time consumption. Thus, in recent years, much research effort
has been undertaken to minimise human labelling effort while
ensuring label quality.

To leverage the massive amounts of unlabelled data, various
machine learning techniques have been devised, including
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semi-supervised learning (SSL) [1], Active Learning (AL) [2]
and various combinations thereof [3], [4], [5]. The general
principle behind these methods is to iteratively train a model
by adding new (machine or human) labelled instances to the
training set. Dispensing with the need for human annotation,
SSL techniques (e. g., self-training [6]) adopt the machine-
predicted labels with high model confidence. Complementary
to SSL, AL query strategies (e. g., uncertainty sampling [7])
select the most informative instances, e. g., those with low
model confidence, to be inspected by humans. Cooperative
learning is a technique that distributes the work among human
and machine labellers [5]. It is easy to see that in all the
above mentioned approaches, an accurate uncertainty measure
is key to model performance and cost efficiency. For (binary)
classification tasks, model confidence can be assessed based
on posterior probabilities of support vector machines (SVMs)
or other classifiers [5]. However, this confidence measure is
limited to binary classification and cannot be generalised to
multi-class or regression problems in a straightforward way.

Label subjectivity, as with most affective and paralinguistic
phenomena, poses a particular challenge for data annotation
due to the necessity for laborious inter-rater agreement proce-
dures. To approximate the “gold standard” (pseudo-truth) from
a collection of possibly noisy annotations, majority voting
(for nominal class labels) or measures of central tendency
such as median or mean (for ordinal/ interval label scales)
are usually used. However, the set of assumptions underlying
these standard settings do not necessarily apply to real-world
problems, namely that the instances are equally ambiguous
and thus require the same number of queries. The drawback of
majority voting among a fixed number of annotators has been
addressed in the recent works [8], [9], introducing dynamic
active learning (DAL) as a novel approach to fine-tuning the
number of human annotations on a per instance level. The core
idea is to allocate increased human resources to controversial
instances while making less queries if a consensus can be
easily reached. To this end, an early-stopping criterion has
been introduced, setting a minimum number of votes for either
category (referred to as agreement level in the work [10]).
However, again, this is only applicable to discrete categories.

Thus, in this work, we introduce a novel human-machine
annotation framework that can handle both classification and
regression problems. The main contributions of this work lie
in four aspects:

• We propose a novel dynamic cooperative learning (DCL)
algorithm, which combines dynamic active learning [8]
with cooperative learning [5] to minimise the amount of
human annotations.
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• We generalise the DAL algorithm to regression problems,
using dropout training to capture model uncertainty [11]
and a variance-based within-group agreement index [12].

• We introduce a generic human-machine annotation frame-
work, which incorporates the state-of-the-art learning
algorithms (e. g., passive learning, active learning, semi-
supervised learning), as instances of the DCL algorithm.

• We compare the different learning schemes in terms of
model accuracy and cost reduction on a subjective task.

The remainder of the paper is organised as follows: Sec-
tion II reviews the literature on methods to assess prediction
uncertainty and label reliability. Section III elaborates on the
human-machine annotation framework. Section IV evaluates
the new method on the task of non-native English prosody
recognition. Section V concludes the work with an outlook on
future research.

II. RELATED WORK

Prediction uncertainty and inter-rater agreement play a key
role in the two-tier decision process as outlined in Section I.
First, one needs to decide whether machine or human should
label an instance. Second, one needs to know if sufficient
annotations have been obtained to determine the gold standard.

A. Prediction Uncertainty

Capturing prediction uncertainty to estimate generalisation
error is crucial in probabilistic machine learning [13], [14]. In
classification models such as SVMs and deep neural networks
(DNNs), pseudo-posteriors output by softmax or maximum
entropy functions ([15], [16]) are often interpreted as model
uncertainty, which is, however, erroneous in the general case
[11].

Regression models output a single vector that regresses to
the mean of the training data, but does not directly capture
model uncertainty [11]. To represent uncertainty in deep learn-
ing without sacrificing either computational complexity or test
accuracy, Gal and Ghahramani [17] propose to utilise dropout
training in DNNs as a Bayesian approximation of a deep
Gaussian process [18], [19]. As demonstrated in their work,
the dropout technique achieves considerable improvement in
terms of predictive log-likelihood and root mean square error
(RMSE) compared to other uncertainty measurement methods
such as probabilistic back-propagation [20] and variational
inference [21]. An approach similar to dropout employs neural
network ensembles in active learning settings for regression
[22]. Based on the principle of query by committee [23], [24],
the variation of the output of ensemble members is used to
select new training data. A major drawback of the ensemble
method is, however, the high computational cost.

It is also noteworthy that the model confidence does not
necessarily reflect model uncertainty (if an out-of-distribution
example is extrapolated far from the decision hyperplane,
the logistic regression model would have an unjustified high
confidence [25]). For ease of exposition though, we use the
term confidence to refer to traditional confidence measures as
well as model certainty.

B. Label Quality

The annotation procedures are often evaluated by means
of interrater agreement indices, signifying the absolute rater
consensus based on the within-group rating dispersion [12].
In comparison, interrater reliability refers to the relative rater
consistency via correlation coefficients1 [26]. In the study [27],
the system performance is modelled as a function of the
number of annotators, as well as various parameters (e. g.,
the difficulty of an annotation task). For the recognition of
non-native English prosody, the authors have devised a rule
of thumb: The gain in label quality is the highest from
one to five labellers, and still noticeable from six to some
ten [27]. Although this rule cannot be generalised to other
subjective tasks, their study provides evidence that the number
of annotators is a key variable for striking a balance between
system performance and costs.

Besides the quantity of annotations, the quality of gold-
standard assessment heavily depends on the rater reliability.
This is amplified by the emergence of crowd-sourcing [28],
which induces a shift from small-scale, expensive expert
coding towards large-scale, low-cost labelling by clickworkers,
who usually have no formal training at the task at hand. Sheng
et al. [29] proposed to revise the annotation for some data
points in the case of noisy labelling. Their study shows that
re-labelling can be conducive to quality control especially
with crowdsourcing. Raykar et al. [30], [31] proposed a
maximum likelihood estimator that jointly learns the classifier,
the experts’ performance, and the actual true label. Donmez
et al. [32] proposed an algorithm for estimating the reliability
of multiple labellers and filtering out the best one(s) for active
learning.

The dynamic active learning algorithm differs from the
previous body of research in augmenting active learning with
adaptive query strategies based on inter-rater agreement and
reliability. Depending on the agreement level, it successively
acquires new labels to compute the gold-standard, thereby
systematically adjusting the amount of annotations for each
individual instance. Moreover, it gives precedence to the most
reliable annotators, whose reliability is appraised on a held-
out dataset. In this work, we posit that there is an hitherto
unexploited potential for labelling efficiency in combining
cooperative learning and dynamic active learning to dynamic
cooperative learning.

III. PROPOSED FRAMEWORK

While dynamic active learning targets the human annotation
part, cooperative learning aims to efficiently distribute the
work among human and machine. This section describes the
generic human-machine annotation framework, which can be
configured to perform different learning algorithms within the
following degrees of freedom: 1) Human-machine arbitration
based on confidence measure; 2) Enabling early stopping
based on inter-rater agreement; 3) Sorting the annotators by
reliability.

1Note that the words “annotator”, “rater” and “labeller” are used inter-
changeably in this paper.
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Fig. 1. Flowchart of the human-machine annotation framework with support for various learning paradigms including semi-supervised learning (SSL),
active learning (AL), dynamic active learning (DAL), cooperative learning (CL), and dynamic cooperative learning (DCL); the instances predicted with high
confidence (hc) are automatically labelled by machine, whereas the instances with medium confidence (mc) are subject to human inspection.

A. Dynamic Cooperative Learning

The functional diagram of the proposed framework is shown
in Fig. 1. The learning cycle starts with training a model h
on a small labelled training set L. Next, h is applied to a
large unlabelled dataset U . According to the model confidence
C, the instances are ranked into quantiles. In the human-
machine arbitration step, the learner has the choice to adopt the
predictions of h with high confidence (SSL, self-training), or
to ask human annotators to inspect the uncertain regions (AL,
uncertainty sampling), or to do both (cooperative learning).
The rationale for medium certainty sampling is that it helps
avoid selecting noisy data points [5], [10]. The main difference
to the previous work [5] is the usage of a probabilistic
confidence measure (dropout) instead of a confidence measure
based on logistic regression (cf. Section I). In each iteration,
the new labelled instances are added to the training set L
and removed from U . Then, the model h is re-trained and
tested on a speaker-disjunctive test set T . Finally, the learning
process finishes by producing a model hend when all data from
U are annotated if not otherwise specified. Considering the
fact that model performance usually starts to deteriorate at
some point, the learning process can be stopped after having
reached the best accuracy on a validation set, or if the number
of remaining data points in U falls below a threshold Umin.
The DCL algorithm is described in Fig. 2.

B. Generic Learning Algorithm

Table I represents the existing learning algorithms as in-
stantiations of the generic DCL algorithm (cf. Fig. 2). The
configuration is done via human-machine arbitration based
on model confidence, and the minimum required number of
queries Qmin per instance. SSL employs automatic machine
labelling with high model confidence, thus reducing the human

effort to zero (JH = ∅). On the contrary, AL only relies on
human annotation, enlisting all the available raters in R, while
the machine predictions are unused (JM = ∅). As described
in Section II, the difference between AL and DAL is that the
number of queries per instance can be less than the number
of available annotators R, hence Qmin < R. CL employs
both machine and human labels based on model confidence,
however, requires the same number of annotators for each
instance Qmin = R. On top, the proposed DCL algorithm
enables early-stopping if a certain level of agreement has been
reached. In addition, we compare to passive learning (PL) that
randomly samples instances for manual labelling.

C. Deep Rectifier Neural Networks

In this study, we employ deep rectifier neural networks as
learning models. Mathematically, an H-layer DNN with output
y = N(x,w) is defined as a composition of multiple non-
linear transformations of an input feature vector x

N(x,w) = H(WHh) = H(WHG(WH−1(· · · G(W1x)))),
(1)

with per-layer weight matrices W1, . . . ,WH stacked into a
column vector w, an output layer activation function H and
a hidden layer activation function G. In case of deep rectifier
neural networks, G is defined as

G(x) = max(0, x). (2)

The parameters w are optimised by means of error back-
propagation and stochastic gradient descent (SGD) on a set
of training vectors X with the corresponding ground-truth
labels Y . The rectified linear activation function is biologi-
cally inspired [33] and, on a practical level, it mitigates the
vanishing gradient problem in DNN training, thus allowing for
dispensing with pre-training [34].
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Algorithm: Generic Form of the DCL Algorithm

Input: Original training set L = {(xi, yi) | yi 6= ⊥}
Unlabelled set U = {(xi, yi) | yi = ⊥}
Pool of raters R
Min. number of queries Qmin

Max. number of queries Qmax ≤ |R|
Agreement level α for early stopping
Min. number of unlabelled instances Umin

Output: Labelled data {(xj , yj) | xj ∈ U}
Final model hend

Do:
U := {xj | yj = ⊥}
L := {xi | yi 6= ⊥}
h := Train(L)
Ỹ, C := Predict(h,U) // Prediction + confidence measure
JM ,JH := Select(U , C) // Arbitration + instance selection
For j ∈ JM : // Machine labelling
yj = ỹj

For j ∈ JH : // Human labelling
Do:
r ∈ Randomise(R) // Optional: sort R by reliability
yj,r = Query(r, xj) // Ask rater r about instance xj

Yj := Yj ∪ {yj,r} // Set of human labels
If (Agreement(α,Yj) ∧ |Yj | ≥ Qmin): Break

While (|Yj | < Qmax)
yj := Gold-standard(Yj) // e. g., mean, majority vote

While |U| > Umin

hend := h

Fig. 2. Pseudo-code description of the generic Dynamic Cooperative Learning
(DCL) algorithm, which combines Semi-Supervised Learning (SSL) and
Dynamic Active Learning (DAL) by means of human-machine collaboration.

D. Generic Confidence Measure

To capture prediction uncertainty of DNN models, we use
the dropout based technique proposed by Gal and Ghahra-
mani [17]. Dropout is a widely used regularisation technique
for reducing overfitting during training. It randomly drops
units (along with their connections) from the neural network,
thereby preventing units from co-adapting too much [35]. At
test time, dropout can also be used to measure the prediction
uncertainty as the output variance across T forward passes,
each within a different “thinned” network.

Mathematically, we compute the Monte Carlo estimates of
the mean and variance of the distribution

p(y|x,X ,Y) =

∫
p(y|x,w)p(w|X ,Y)dw. (3)

For the reason that p(w|X ,Y) can be generally interpreted, it
is estimated by a distribution q(w) over weight matrices with
randomly applied dropout. It has been shown in the study [17]
that this is a reasonable approximation: In fact, neural network
training with dropout and L2 regularisation is equivalent to
minimising the Kullback-Leibler (KL) divergence between q
and a deep Gaussian process p(w|X ,Y) (marginalised over its
finite rank covariance function parameters) [17]. Sampling T

TABLE I
INSTANTIATIONS OF THE GENERIC LEARNING FRAMEWORK. JM AND JH

ARE THE SETS OF DATA POINTS LABELLED BY MACHINE OR HUMAN;
Qmin DENOTES THE MINIMUM NUMBER OF QUERIES PER INSTANCE.

R = |R| IS THE NUMBER OF AVAILABLE ANNOTATORS.

Algorithm JM JH Qmin

PL ∅ Random Sampling = R
SSL High conf. ∅ N/A
AL ∅ Medium/ Low Confidence = R
DAL ∅ Medium/ Low Confidence < R
CL (AL + SSL) High Conf. Medium/ Low Confidence = R
DCL (DAL + SSL) High Conf. Medium/ Low Confidence < R

sets of weight vectors w(1), . . . ,w(T ) from q(w), the Monte
Carlo estimate of the mean y is obtained by

y =
1

T

T∑
t=1

N(x,w(t)). (4)

In practice, the sampling from q(w) is implemented as T
forward passes using random dropout masks for the weights.
The optimal number of T passes mainly depends on the size
of the model, the data provided, and the percentage of dropout.
A small value for T speeds up the computation, however,
it can affect the accuracy of the results and the merit of
the uncertainty measure. In analogy, the covariance Σŷŷ is
estimated as

ΣNN = ζ +
1

T

T∑
t=1

N(x,w(t))N(x,w(t))ᵀ − yyᵀ, (5)

where ζ is a constant that depends on the model precision
(uncertainty of the output). Within the context of DAL, the
automatically predicted label ỹj is equivalent to y. In the case
of regression, high variances are directly interpretable as high
uncertainty (low confidence of the DNN in its prediction).
This is convenient since only the rank of the instances w.r.t.
the confidence measure is important, whereas the value of ζ, as
well as the actual range of the variances – which depend on the
data – is irrelevant in our context. An advantage of the dropout
method is that it can be applied for any network topologies,
and in particular, for both regression and classification output
layers. For multi-class problems, the methods presented in the
work [17] such as predictive entropy [36] can be applied to
extract uncertainty information from the softmax output layer.

E. Generic Early Stopping Criterion

The crux of the dynamic query strategy is early stopping,
which depends on the labelling scheme, i. e., nominal level or
ordinal/ interval scale. For binary tasks, the agreement level α
is defined as the minimum number of votes to be obtained for
either category. Given the number R of available annotators,
meaningful values for α range from 2, . . . , bR+1

2 c, where the
upper limit of the interval is rounded down if R is an even
number. Since regression labels are computed as the mean of
all ratings, there does not exist such a deterministic condition
since the resulting value can still change. Nevertheless, the
concept of agreement levels can be generalised by using the
inter-rater agreement indices as detailed in the following.
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As a generic measure of label reliability, we use the within-
group agreement index rwg [37] defined as

rwg = 1− σ2
Y

σ2
E

, (6)

where σ2
Y is the sample variance of the ratings and σ2

E is
the expected variance of the random ratings drawn from a
null distribution, which is generally assumed to be a uniform
distribution [12]. The early stopping is triggered if the value of
rwg rises above a threshold value of α (cf. Fig. 2). This bears
some similarity to the early stopping technique sometimes
used in neural network training, where the training procedure
is interrupted once the generalisation capability of the network
is deemed to stagnate. Just as its deep learning analogy, our
early stopping of the rating procedure remains a heuristic
– there is no guaranteed convergence of rwg . Hence, the
convergence of rwg requires that the label subjectivity is
limited to a certain extent, say, the agreement-based procedure
is not suitable for overly ambiguous phenomena such as
perceived voice likeability [38]. For example, the degree of
nativeness, speech emotion, and interest recognition represent
mildly subjective tasks [25]. It remains to mention that in the
sequential annotation process, whether an annotator is asked
or not depends on the previous outcomes. In practice, this be
realised by managing queries in a queue-like system.

IV. EMPIRICAL EVALUATION

In the experiments, we apply the different instantiations of
the generic learning framework to a typical regression problem
in computational paralinguistics. In the “Degree of Nativeness”
task, the non-native prosody of English L2 speakers is to be
recognised on a continuous scale. Located on the word level
and above, prosodic speech phenomena encompass word ac-
cent position, syntactic-prosodic boundaries, sentence melody
and rhythm [39].

To evaluate the proposed framework in realistic settings,
we perform cross-corpus experiments, using data resources
drawn from different acoustic settings, recording equipments,
sound environment, and speech material. To simulate the
small labelled set, the large unlabelled set, and the speaker-
independent test set, we use the datasets provided in the IN-
TERSPEECH Computational Paralinguistics Challenge (Com-
ParE) [40]. It is noted that the sets of annotators are disjoint
on these datasets, which further fosters realism.

A. Datasets

The Nativeness Corpus (NC) [41] serves as the small
labelled set L for the first training iteration. It contains voice
recordings from 54 non-native English speakers with varying
degree of spoken language proficiency (gender: 28 female,
26 male; age: 31.3 ± 9.0; native languages: 22 German, 13
Chinese, 4 Arabic, and 15 other). Each speaker read aloud a set
of 11 sentences taken from two standard stories in phonetics
written in English (“The North Wind and the Sun” and “The
Rainbow”). The dataset has 594 speech files, totalling 1.4
hours of speech. For the purpose of annotation, perceptive
experiments were conducted using the web tool PEAKS [42].

A group of 27 native English speakers were instructed to
rate the prosody on a 5-point Likert scale (1 – normal; 2 –
acceptable; 3 – slightly unusual; 4 – unusual; and 5 – very
unusual). The obtained labels range from 1.1 to 5.0, with an
average of 2.9 and a standard deviation of 0.7.

To simulate the large unlabelled data pool U , we use the
automatic web-based learner-feedback (AUWL) corpus [43].
In AUWL, L2 learners of English practised pre-scripted dia-
logues by using a standard web-based dialogue training tool,
but their own recording hardware, which resulted in different
sound qualities. In total, 5.5 hours of speech were obtained
from 31 speakers (gender: 13 female, 18 male; age: 36.5 ±
15.3 years; native languages: 16 German, 4 Italian, 3 Chinese,
3 Japanese, and 5 other). Similar to the annotation scheme as
described above, five phoneticians rated the sentence prosody
for each of the 3 732 speech files. The reference prosody scores
are derived by computing the arithmetic mean of the ratings,
with an average of 1.7 and a standard deviation of 0.5 (range
1.0–3.8) [44].

As in the Challenge, the computer-assisted pronunciation
and dialogue training (C-AuDiT) corpus [43] is used as the
test set. It comprises 2.7 hours of read speech recorded with
standard headphones in a quiet office environment. The 999
speech files contain sentences in English targeting different
phonetic patterns such as intonation of phrase accent and
tongue twisters. These were read aloud by 58 speakers (gender:
31 female, 27 male, native languages: 26 German, 10 French,
10 Spanish, 10 Italian, and 2 Hindi). The recordings were
annotated by 21 native English speakers on three-point scales
from 0 for ‘good’ to 2 for ‘bad’ (0.5 ± 0.3, range 0.0–1.6).
Although this scale differs from the one used for the training
set, it is still valid for evaluation (on a common set of 290
sentences, the association between the two scales corresponds
to a Spearman’s rank correlation coefficient (CC) of ρ = 0.73).

Fig. 3 depicts the distribution of the prosody scores in
the data partitions (training set, unlabelled set, and test set).
It can be observed that the ratings in the NC database are
approximately normally distributed, while the distributions of
ratings in both the AUWL and the C-AuDiT databases are
positively skewed, i. e., imbalanced towards ‘good’ scores.
This shows a typical training/test data mismatch encountered
in cross-corpus settings.

In our evaluation, the number of queries per instance only
varies on the AUWL database, which represents the unlabelled
set U . In particular, for the evaluation on the test set, the gold
standard label, serving as a reference for the predictions, is
fixed, i. e., it does not depend on the number of raters requested
during iterative training, thus allowing for a fair comparison of
the methods employing static or dynamic numbers of queries.

B. Acoustic Features for Prosody Prediction

The ComParE set of supra-segmental acoustic features [45],
[46] serves as the standard feature set for paralinguistic
analysis. It contains 6 373 static features obtained from the
computation of various functionals over low-level descriptor
(LLD) contours. For its extraction, we used openSMILE in its
2.1 release [45]. Important subgroups of the ComParE feature
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Fig. 3. Distribution of prosody scores in the NC (training set L), AUWL (unlabelled set U ), and C-AuDiT (test set T ) datasets.

set comprise prosodic, Mel Frequency Cepstral Coefficients
(MFCCs), spectral, and voice quality features. Of particular
importance for assessing the sentence melody and rhythm
are the prosodic features based on loudness, energy, pitch,
and pauses. Besides, MFCC features are among the most
common speech features for automatic speech recognition and
paralinguistic recognition tasks. A detailed analysis of the
relevance of these feature groups for prosody prediction can
be found in our previous work [47].

For dimensionality reduction, we use the correlation-based
feature selection (CFS) [48] to eliminate redundant features
in the ComParE set. The CFS algorithm searches for features
which are highly correlated with the target label, yet uncorre-
lated with each other. Typically, CFS discards well over half of
the features without sacrificing performance [48]. According to
the BestFirst algorithm [49], feature subsets S are constructed
in a forward search starting from an empty set by greedy
hillclimbing augmented with backtracking. The merit M of
a feature subset S with k features is given by

M(S) =
k CCcf√

k + k(k − 1)CCff
. (7)

The backtracking level (number of iterations without improve-
ment of M ) is set to five. Feature selection is based only on
the labelled data L, resulting in 1 084 acoustic features. While
using the reduced feature set did not improve performance
in our experiments compared to the full feature set, it does
decrease the number of parameters in the rectifier DNN and
thereby accelerates the training and evaluation process.

C. Experimental Setup

The deep rectifier network consists of four hidden layers
with 1 000, 750, 500, and 150 units as well as an output layer
with a single neuron. This topology was determined by cross-
validation on the training set. The loss function is given by
the mean squared error. Optimisation is done via SGD with a
constant learning rate of 10−4 and a batch size of 64 samples.
The initial network is trained for 200 epochs on the labelled
set L. The features of the training set and the unlabelled set are
jointly standardised to zero mean and unit variance; the test set
is standardised using the same scales and offsets. Re-training
after each labelling step is done for 30 epochs. To enable the
comparison of the different instantiations of the framework,
we save and reuse the initial model (i. e., its architecture and

weight parameters). In this way, we ensure that the learning
curves all start at the same point and that the experiments
are reproducible. The dropout rate is set to 20 % both in the
training and prediction stage. T = 500 forward passes with
random dropout are used to obtain prosody estimates and
confidences on the unlabelled set U . The network topology
as well as the training hyper-parameters were determined by
a cross-validation experiment on the labelled set L.

In each labelling iteration, 200 instances are labelled by
using the proposed framework; in the case of cooperative
learning, 100 instances with high confidence are machine-
labelled and 100 instances with medium confidence are
human-labelled. For early stopping, we set the agreement
threshold α to 0.75, representing high agreement as the rwg

coefficient is bounded by 1, and Qmin to 2 (the smallest
number for which rwg is meaningful). These numbers were
validated in a preliminary experiment on the AUWL database.
The variance of the null distribution σ2

E in Eq. (6), which is
a discrete uniform distribution on {1, 2, 3, 4, 5}, is ((5 − 1 +
1)2 − 1)/12 = 2. Furthermore, Umin is set so as to label a
maximum of 2 000 instances from the AUWL database, i. e.,
Umin = 3 732− 2 000 = 1 732.

D. Implementation

Our implementation of the DAL method is written in the
Python language. As input data format, our software uses
the common Pandas DataFrame representation, which has a
two-dimensional tabular structure with the rows corresponding
to the name of audio files and the columns indicating the
audio and label attributes. For DNN training and computing of
uncertainty measures, the choice fell on Keras [50], an open
source deep learning library built on top of Theano [51] and
TensorFlow [52]. The simulations reported on in this paper
use the TensorFlow CPU backend of Keras.

E. Results

For the purpose of this study, we retain the same evaluation
metric as in the 2015 ComParE Degree of Nativeness task,
i. e., the Spearman’s rank correlation coefficient (CC). In this
section, we analyse the results obtained by using the proposed
confidence measures and the different learning algorithms (cf.
Table I). As is evident from Table I, the DCL algorithm
has the following features: usage of a generic confidence
measure, selection of instances for machine labelling and/ or



IEEE TRANSACTIONS ON CYBERNETICS 7

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ● ●●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●●

●●

●

●

●
●

●

● ●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●● ●
●

●

●

●

●
● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●● ●

●

●
● ● ●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●
●
●●

● ●

●
●● ●

●

● ●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
● ●

●

● ●
●

●

●

●

●

● ●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

● ● ●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

● ●●

● ●

●

●
●

●

●●

●

●
●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

● ●

●
●

●

●
●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●●

●
●● ●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●
●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ● ●

●

●

●
●

●

●
●●

●

●

●

● ●

●

●
● ●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●●

● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

● ●

●

●

●

●

●
● ●

●

● ●
●

● ●

●

●● ●●

●

●
●

●●
●

● ●
●●

●
●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●●
●

●
●

●

●●

●
●

●

● ●

●

●

●

●●

●

●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

● ●

●●

●

●●●

●

●
●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●●
● ●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

● ●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ● ●

●

●

●
●
●● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●
●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
● ●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
● ●

●●

●

●
●

●

●
●

●

●

● ●
●

● ●

●

●

●
●

●

●

●
● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

● ●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●
●● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●● ●

●

●

●

●

●

●

●

●

● ●
●●

●●

●

●

●

●

●

● ●●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
● ●

●

●●

●

● ●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

● ●

●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

0 1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Absolute error

U
nc

er
ta

in
ty

Fig. 4. Scatter diagram representing the correlation between the absolute
prediction error and the estimated model uncertainty on the unlabelled set U
(Spearman’s CC = .658).

human annotation, and dynamically stopping the annotation
procedure. We perform an ablation study where we disable
one or several of these features, and thereby show that the
utmost annotation efficiency can only be obtained if the full-
fledged version of the DCL algorithm is used. For instance,
by comparing DCL against CL or DAL against AL, we can
prove the importance of the agreement-based early stopping,
and by comparing PL with AL, we can provide evidence for
the effectiveness of the confidence measure.

As described in Section III-A, the key module in the generic
framework in order to achieve the best accuracy and efficiency
is the confidence-based arbitration. For instance, in SSL, if
the model is confident in the case of erroneous predictions, it
will train itself with incorrect label predictions, thus gradually
deteriorate in performance due to error accumulation. There-
fore, it is of crucial importance that the value of uncertainty
reflects the magnitude of prediction errors. To substantiate the
uncertainty measure, we train a DNN of the above-mentioned
topology for 200 epochs on the NC and validate its predictions
and uncertainties against the gold standard (from all raters)
on the AUWL database. The corresponding scatter diagram
in Fig. 4 depicts the positive correlation between the absolute
prediction error and the estimated model uncertainty. The CC
of the two variables is .658, which is sufficient for the purpose
of uncertainty measure. The rationale is that in each iteration
a subset of instances is selected based on their uncertainty
quantiles (high, medium or low) and hence the exact order is
less relevant for the purpose of sampling.

In Fig. 6, we compare the learning curves of the standard
techniques (i. e., without the dynamic query adaptation) by
plotting the Spearman’s CC as a function of the total number
of labelled instances. As a common feature, the sequential
addition of labelled instances into the training set L (200 per
iteration) leads to continuous improvement in the recognition
accuracy. Here, the superior performance is achieved by AL
with the MC strategy, markedly outperforming PL, SSL, and
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Fig. 5. Cumulative distribution function of rwg measured on the ratings of
the instances in the AUWL database.

AL with the LC strategy in terms of accuracy and smoothness
of curves. The relatively deficient performance (slow rise and
unstable curve progression) of SSL can be explained by the
fact that prosody recognition is considered to represent an
appraisal-based subjective task; thus, involving the human in
the loop naturally enhances the system performance.

Next, we investigate the early stopping based on the agree-
ment level α, which essentially affects the label reliability
and the annotation cost for each sample. First, we examine
the functional relationship between a given agreement level
α and the percentage of rating sequences that would trigger
early stopping at this threshold, which can be approximated
as

Pr(rwg > α) = 1− Pr(rwg ≤ α) = 1− Frwg (α), (8)

where Frwg is the cumulative distribution function (CDF) of
the rwg measure (6). The monotonically increasing shape of
the discrete CDF estimated on the instances of the AUWL
database (each associated with five ratings on the 5-point
Likert scale) is illustrated in Fig. 5. According to Eq. (8), we
can estimate the probability of early stopping at 45 % for the
threshold α = 0.75. It is noted that this is an approximation,
as not all rating combinations with a certain rwg value could
be encountered in an actual run of the DAL/ DCL algorithm.
For instance, the sequence (3, 3, 4, 5, 3) would not occur at
Qmin = 2 since early stopping would be initiated already after
the first two queries.

Taking the AL (MC) method as a baseline, we now evaluate
our advanced techniques to reduce human labelling work.
Note that this is a strong baseline, as it already employs
state-of-the-art AL based on Bayesian approximation similar
to the method proposed in [11]. As can be seen in Fig. 7,
CL, with joint human and machine effort, converges faster
to a performance competitive with AL (MC). This is in
accordance with the findings in [5]. Augmenting AL and
CL with the dynamic query strategy based on early stopping
(i. e., using DAL and DCL) further reduces the amount of
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human annotation effort required to reach similar performance.
All the AL based methods shown in this graph increase the
performance monotonically with the amount of human labels.

Table II allows interpreting the trade-off between the re-
gression performance (Spearman’s CC) and the number of
queries to human annotators, i. e., annotation cost, in more
detail. Comparing the numbers achieved by (D)AL and (D)CL,
it can be seen that the proposed technique to dynamically
adjust the number of raters based on agreement level pro-
vides an annotation cost reduction (CR) by roughly 1/2 at
similar performance. In particular, the method is found to
be complementary to the approach of CL, which reduces the
human effort by combining AL with self-training. In the result,
the proposed DCL algorithm is capable of a CR of almost
3/4, suggesting a multiplicative efficiency gain by combining
CL with the dynamic query strategy. Finally, it is noteworthy
that the empirically found cost reduction by 1/2 is reasonably
close to the 45 % probability of early stopping, which was
approximated a priori based on the consideration of the rwg

cumulative distribution (Fig. 5).

TABLE II
EFFICIENCY OF THE ITERATIVE LEARNING METHODS WITH STATIC AND

DYNAMIC NUMBER OF ANNOTATORS, IN TERMS OF COST REDUCTION
(CR) VS SPEARMAN’S CC ON THE C-AUDIT TEST SET AFTER 10

ITERATIONS, I. E., 2 000 LABELLED TRAINING INSTANCES FROM THE
AUWL DATABASE.

CC # Queries CR [%]
Static # of annotators per instance

PL .413 10 000 0
AL .433 10 000 0
CL [5] .428 5 000 50
Dynamic # of annotators per instance

DAL .434 5 143 49
DCL .424 2 630 74

V. CONCLUSION

We presented a novel algorithmic framework for iterative
human-machine annotation of large databases in subjective
dimensions. As a highlight, the generic framework using the
proposed dynamic cooperative learning technique is able to
fully automatically distribute the annotation workload between
humans and machines, combining uncertainty sampling (AL)
and self-training (SSL). For arbitration, the model confidence
is assessed by applying dropout to DNNs, which is suitable
for nominal level and ordinal/ interval scale annotation tasks.

In realistic cross-corpus experiments, the empirical results
on the INTERSPEECH ComParE task of scoring the language
proficiency of non-native English speakers substantiate our
proposition that DCL allows for considerably reducing the
human annotation effort for ‘mildly’ subjective or ambiguous
tasks, for which a consensus among raters can be presumed
in a majority of cases. Comparing the performance of our
DNN regressors on the C-AuDiT test set with the Challenge
baseline (CC = .415), we find them to be competitive, despite
them being trained with considerably less human intervention.

In the future, we plan on evaluating the learning paradigms
on a wide range of computational paralinguistic tasks as
well as pattern recognition tasks beyond the speech modality,
extending the algorithm to integrate multi-modal learning
methods such as [53]. In the same vein, our generic framework
allows for integrating semi-supervised learning methods (cf.,
e. g., [54]) to provide more reliable machine labels, which
is complementary to improving human-machine collabora-
tion. Moreover, we will explore multi-task shared-hidden-
layer DNNs for assigning multiple labels of interest at once.
Finally, the DCL method will be implemented in state-of-the-
art toolkits for the annotation of subjective tasks such as NOVA
(NOnVerbal behavior Analyser) [55], which is designed for
automated analysis of non-verbal signals in social interactions.
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