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Abstract

This thesis examines the possibility of implementing a router chip in programmable
logic to allow quick and easy modifications of the hardware design. A design was
adapted from PaRC, a packet switched routing chip designed for the Monsoon parallel
processing dataflow computer. A functional description of the router chip was written
in the Verilog hardware description language, which can be compiled into a gate-
level model using hardware synthesis tools. In this first attempt, the design used
nearly eight times more space than is available on a Xilinx 4010 FPGA. A more
intelligent synthesis tool could have reduced the required size roughly 50%. With
further modifications of the design, it appears promising that a simple router could

be fit on a single 4010 FPGA.
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Chapter 1

Introduction

Parallel processing as a technique for improving the performnance of computers is
becoming increasingly widespread. Massively parallel designs that make use of thou-
sands of processing nodes are considered the most promising technology for achieving
teraflops performance and beyond in the near future. The work involved in a com-
putation is divided into separate parts. These parts can be computed in parallel,
allowing the overall computation to complete in a short time|8].

Each node may consist of a processor, local memory, and other devices. Because
they do not share memory, the nodes must be interconnected in a way that allows
them to communicate. A simple machine with few nodes might connect them using a
shared bus, but this scheme only provides enough bandwidth for a few nodes at best.
Typically the nodes in a parallel computer are connected by a network, a collection
of switches and communication channels that allows the nodes to send messages to
one another. The switches, or routers, control the path a message takes through the
channels as it travels from the source node to the destination node. The use of a
network increases the communication bandwidth of the parallel computer since many

messages can be sent simultaneously using different channels.
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Figure 1-1: Data Flow in a Typical Network

1.1 The Role of Routers

The design of the network and the routers that direct the flow of messages through
it is an essential part of the design of a parallel computer since it controls how the
nodes send messages to one another. A typical network is shown in figure 1-1. A
collection of nodes is connected by a neiwork of communication channels. Routers at
the junction of channels control the paths packets take through the network, allowing
any node to communicate with any other node.

Messages are typically broken up into packets before they are transmitted. Each
packet contains routing and sequencing information in its header, and may be a fixed
or variable length depending on the design. The packets make their way from the
source to destination nodes through stages of routers. A router receives a packet on
one of its input ports and sends it out of one of its output ports. The choice of output
port is based upon the packet’s destination, contained in the header. In some cases,
the choice may also be influenced by the network load. If there is more than one path
from the router to the destination node, the router may attempt to send the packet
along the path with the least traffic.

The total latency of the message is the sum of the start-up overhead, communica-
tion latency, and blocking time. The start-up overhead is the time needed to handle

the packet at the source and destination nodes. It is mainly a factor of the system



software design and the node/network interface. The communication latency is the
time between when the head of the packet enters the network and the tail of the
packet leaves the network. It depends on the router switching technique (discussed
in section 2.1.3), latency of the routers, and to a lesser extent on the latency of the
communication channels.! The blocking time is the sum of all delays the packet en-
counters due to contention for shared resources. It may be high if there is a lot of

network traffic.

1.1.1 Router Requirements

The latency of the network affects the performance of the computer, as the time
needed to move data from one node to another must be kept small in order to achieve
fine grain parallelism. If a node sends a message and has no other work to do while it
awaits a reply, the latency of the message directly effects the length of time it takes
to perform the computation. A two-phase protocol can be used to prefetch data be-
fore it is needed, masking reasonable latencies. However, as the latency increases the
processor will eventually run out of useful work to do while waiting. The network
latency is a function of the network configuration, the amount of traffic in the net-
work, and the latency of the router. Thus a good router must facilitate low-latency
communication through the network.

Additionally, the network needs to provide high bandwidth communication be-
tween the nodes. Since most of the time the nodes will be working cooperatively on a
complex computation, a large amount of messages will usually need to be exchanged
to coordinate their efforts. The router needs to provide sufficient bandwidth through
the network to assure that typical computations are not limited by the available

communication bandwidth.

1Because the router latency is typically much greater than the channel latency, the latter is
usually ignored when computing overall communication latency.



1.2 Router Design

Routers are usually manufactured using a lengthy and expensive ASIC process similar
to that used for CPUs and other VLSI designs. However, in order to perform network
research it would be useful to be able to put together a “quick and dirty” router for
testing purposes without having to pay the time and cost penalties involved in making
a new custom ASIC design. For small research computers it may be difficult to justify
the costs involved in a new router design, yet existing routers may not provide some
necessary functionality for the new computer design.

It may also be useful to be able to modify a router’s design after it has been in
use for a period of time. A change in the computer’s network architecture, system
software, typical network load, the discovery of some new routing algorithm, or the
appearance of a bug may make it desirable to make minor modifications to the router
design and then replace the modified routers in the computer. With a traditional

ASIC design this is difficult and expensive.

1.2.1 Implementing a Router on an FPGA

Field-Programmable Gate Arrays (FPGAs) are designed to provide exactly these
sorts of capabilities[15]. They are intended to provide the benefits of custom CMOS
VLSI design while avoiding the associated design overhead time, initial engineering
cost, and inherent risk. Because they can be reprogrammed an unlimited number
of times, they can be used in designs where the hardware is changed dynamically or
where it must adapt to different applications.

The low initial cost and high adaptability of an FPGA make it a natural candidate
for implementing a router for small research computers, computers that are likely to
undergo large amount of modification, and the other cases mentioned above. However,
until recently it wasn’t practical to attempt implementing a router on an FPGA. The
best FPGAs had only the equivalent of a few thousand gates, were limited in their
maximum possible clock rates, and were relatively expensive. However, given recent

improvements in FPGA technology, designers are now exploring the possibility of



implementing a simple router on a field-programmable gate array, allowing them to
benefit from all the advantages of FPGAs. For example, Autonet [11, 9] uses an

FPGA to implement part of its router switch mechanism.

1.3 Overview

The Xilinx XC4000 family of FPGAs[14] introduced in 1992 is a significant improve-
ment in speed and density over pr~7ious FPGA designs. It supports programmable
designs using up to approximately 20,000 transistors, running at speeds of up to 40
to 50 MHz. The remainder of this document explores the design and implementation
of a simple router intended to be programmed onto a Xilinx XC4000 family FPGA.
A router design was adapted from PaRC[5], a packet switched routing chip designed
for the Monsoon parallel processing dataflow computer[10]. Chapter 2 provides an
overview of the router design, including an explanation of some design decisions and
a description the chip’s basic behavior. Chapter 3 describes the implementation of
each of the router’s subunits in Verilog, a hardware description language which can
be compiled into a gate-level model using synthesis tools. The synthesis process is
described in chapter 4. The router design was compiled using the Synopsys hardware
synthesis tool[12], resulting in a gate-level model which used nearly eight times more
space than is available on a Xilinx 4010 FPGA. Finally, chapter 5 assesses the success
of the design and makes some suggestions for future work which shows the possibility

of allowing a simple router to fit on a single FPGA.



Chapter 2

Router Design

2.1 Design Decisions

Before work could begin on the implementation of the router, several basic design
decisions about the router and its desired behavior had to be made. These decisions
included whether to make the router switch blocking or non-blocking, how many
inputs and outputs the router should have, and what switching technique to use.
Table 2.1 compares the choices that were possible in terms of their cost iz area (gate
usage), and effect on latency and performance. The router design that was chosen
was a 3x3 non-blocking switch using virtual cut-through switching. The reasoning

behind these choices is explained below.

2.1.1 Blocking vs. Non-Blocking Switches

An N input, N output switch can be conceptualized as the junction of 2N unidirec-
tional communication channels. If we connect the input and output channels with
some constant number of connection channels K, any input channel can be connected
to any output channel by closing the appropriate switches from among the 2KN total
switches (figure 2-1). Up to K pairs of input and output channels may be connected
simultaneously with this arrangement. However, with this design it is possible that

an incoming packet on one of the input channels might not be able to be transmitted



Table 2.1: Design Decision Tradeoffs

l parameter | gate countj network latency | performance
blocking switch low normal poor
non-blocking switch | high normal good
2x2 switch low high normal
3x3 switch medium medium normal
4x4 switch high low normal
circuit switching low normal poor
packet switching high high normal
virtual cut-through | high low good
wormbhole routing low low normal

N
N
K

Figure 2-1: A Blocking Switch

to its output channel even if the output were available, if all of the K available con-
nection channels were already in use. Therefore this type of switch design is called a
blocking switch. The size of a blocking switch grows linearly with N.

In contrast, a non-blocking switch (figure 2-2) connects the input and output
channels in such a way that any input can always be connected to any output, so
that a packet is never blocked if its output is available. However, in this arrangement
N? switches are needed to connect the inputs and outputs, hence the size of a non-
blocking switch grows with the square of N.

Because the size advantage of blocking switches is significant only for larger values
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N

Figure 2-2: A Non-Blocking Switch

of N and the router being designed was to havea small N, a non-blocking switch design
was used to prevent the potential addition of unnecessary delays to the message

latency due to blocking inside the switch.

2.1.2 Router Size

The number of inputs and outputs the router would have was another significant
design decision. Because chip space was very limited the number could not be large.
A 4x4 switch was the biggest that could reasonably be considered. Since a 1x1 switch
has no useful functionality and a symmetric switch was desired, the choices were
narrowed to 2x2, 3x3, and 4x4. Each input and output port added to the pin count
and gate count of the router. Finally, a rather unconventional 3x3 design was chosen
as a compromise between space and performance. This choice does not limit the
potential functionality, as it is always possible to build a larger switch out of several
smaller ones, although this composite switch will exhibit poorer performance. Figure
9.3 shows how a 9x9 switch can be built from 2 stages of the 3x3 switches described

in this document.
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Figure 2-3: A 9x9 Switch Built from 3x3 Switches

2.1.3 Switching Techniques

The most important and fundamental design issue that had to be resolved was what
switching technique to use. The switching technique is the mechanism that controls
how data is moved from an input channel to an output channel. For example, data
might be buffered at the input and later transmitted from the output, or they might
be passed directly from input to output. Depending on what switching technique is
used by the routers, the network latency can vary greatly. Circuit switching, packet
switching, virtual cut-through, and wormhole routing were considered as possible
switching techniques for the router.

Circuit switching works by setting up a complete, unblocked path from the source
to the destination and then transmitting the packet over this path all at once, much
like the way a circuit is set up to connect two parties through a telephone network.
Once the packet has been transmitted, the path from source to destination is torn
down. If a second packet attempts to set up a path that uses one of the communication
channels already in use by the first packet’s path, it will be blocked and no progress
can be made sending the second packet until the first packet has been sent and its
path is torn down. For this reason, circuit switching does not generally make effective

use of the communication channel bandwidth when the amount of traffic is high, as



many channels will be unused. However, circuit switching can be effective even under
these conditions if the packet size is very large.

In contrast to circuit switching, packet switching buffers packets in the interme-
diate routers as they make their way from the source to the destination node. Each
router contains buffering space for holding packets. Incoming packets are stored in
these packet buffers upon their arrival at the input port. A flow control mechanicm is
used to ensure that packets do not arrive when no buffering space is available. Since
the packet is buffered in the router, the channel the packet arrived on is now free
to be used by other packets. Once the entire packet is received and buffered, it can
be transmitted to the appropriate output channel as soon as it is available. In this
way the packet hops from one router in the path to the next until it arrives at its
destination. Packet switching makes better use of the available bandwidth because
if a packet’s path is blocked, it sends it as far along the path as it can go, utilizing
bandwidth that circuit switching wastes.

Virtual cut-through[6] works identically to packet switching, with one important
exception. Whereas packets are always buffered in packet switching, they are only
buffered in virtual cut-through if their output ports are blocked. Otherwise the router
can begin transmitting the packet as soon as it determines which output port it should
go to. The router does not need to wait for the entire packet to be received; it may
actually be transmitting the packet on an output port and receiving it on an input
port simultaneously. The packet may “cut through” several stages of routers if none
of the needed outputs are blocked, so that it is possible for the head of a packet to
reach the destination before the tail has left the source.

Wormbhole routing[3, 8] works in a fashion similar to virtual cut-through. Packets
are further subdivided into units called flits. When there is no network contention,
flits pass through from input to output without being buffered, similar to virtual cut-
through. As the header flit makes its way from source to destination, the remaining
flits in the packet follow the same route in pipeline fashion. When the header flit is
blocked, it and the flits behind it are buffered in flit buffers in the routers comprising

the path from source to destination. However, these flit buffers need only be very

10



small.

Virtual cut-through routing was chosen for the router design because of its high
bandwidth, lower latency, and relative simplicity compared to the other switching
techniques. In addition, a virtual cut-through router design in [5] was already avail-
able as a starting point for the new design, reducing the amount of initial engineering
work needed. The main disadvantage of virtual cut-through is that since a packet may
be sent out before it is fully received, it is difficult to do error checking in the router.
If an error is detected in the tail of a packet, its head may have already been sent out,
making it too late to throw the packet away and signal an error condition. Instead,
the packet with the error propagates through the network. To compensate for this,
end to end error checking of all packets must be done. This can be accomplished in

software, reducing the amount of hardware necessary in the router.

2.2 Overview of Functionality

The design of the router to be programmed into the FPGA was adapted from the
design of the PaRC packet switched routing chip[5]. The few changes that were made
were mostly simplifications of the PaRC design. Since it was anticipated that space
on the Xilinx FPGA would be extremely limited, a number of PaR(C’s features were
omitted in an attempt to make the router as small as possible. Specifically, the control
port, statistics gathering features, and most of the error-checking capabilities were
omitted. The ability to route packets using several different algorithms was scrapped
in favor of a fixed routing algorithm. Lastly, while PaRC has 4 input channels and 4
output channels, the new router design has only 3 of each to conserve chip space and
pin count.

A top level diagram of the router is shown if figure 2-4. Packets enter the router
through one of the three input ports and are stored in the packet buffers. The input
port determines which of the output ports the packet should be sent to and makes a
request to the output port’s scheduler, giving the location of the packet. When the

packet buffers in the input port are full, it must signal the sender not to send any

11
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Figure 2-4: Router Top Level View

more packets.

The scheduler in each output port keeps track of the buffered packets waiting to
be transmitted from the port. When the output port becomes free, the scheduler
chooses which packet should be sent next. The transmitter gets the location of the
packet from the scheduler, reads the packet out of its buffer, and transmits it to the

next stage of the network.

2.3 External Interface

Each communication channel consists of 16 bits of data, an accompanying clock, and
a wire for flow control signals (figure 2-5). The clock is aligned with the data such
that its rising edge occurs while the data is stable. This clock is necessary because

each router in the network operates asynchronously, so the router needs a means of
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Figure 2-5: A Communication Channel

synchronizing to the incoming data from the routers in the previous stage. The flow
control line is used to signal the sender to stop sending packets when all of the packet
buffers are full.

The packets are fixed length, twelve words each, for a total packet size of 192
bits. The first word of the packet is the header word. It contains the information
that determines how the packet should be routed. This information is placed at the
beginning of the packet so that the packet can be transmitted as soon as possible after
it arrives. The remaining eleven words of the packet can be used for any purpose.
They may all be used to carry data, or some of them may be reserved for carrying a
CRC. If some words are used as a CRC, they will not be treated differently by the
router, but the receiving node can use the CRC to check the packet for errors when
it arrives.

To indicate the start of a new packet, the most significant bit (bit 15) of the
header word is used as a start-of-packet (SOP) bit. The remaining 15 bits of the
header word, bits [14..0], determine how the packet will be routed (see section 2.7).
The SOP bit is a 1 during the first word of a new packet. When no packet is being
transmitted on a channel, the data bits may take on any values as long as bit 15 is

a 0!. When the input port sees that bit 15 has changed to a 1, it reads and stores

1The use of specific idle patterns (all of which have a 0 in the SOP bit) can allow channel
transmission errors to be detected even while no packets are being sent.

13



that word and the following eleven words. Bit 15 only has a special meaning in the
header word; in the data words it is treated the same as any other data bit. Once
the entire packet has been read, the input port returns to looking at the SOP bit to
find the start of the next packet. Idle words between packets are not necessary; the
next packet may begin on the word after the last word of the previous packet.

An alternative to this scheme would be to have a separate frame bit for each
channel that is 1 during the words of the packet and 0 at all other times. Although
this would make it easier to support variable length packets, it adds an extra wire to
each channel and wastes twelve bits of bandwidth per packet, whereas the SOP bit

wastes only one bit per packet.

2.4 Buffering

The organization of the packet buffers in the input port has a large effect on the
router’s performance. A simple scheme would have been to organize the packet buffers
as a fifo. However, this is inefficient because if the packet at the head of the fifo is
blocked, all of the packets behind it become blocked, even if the outputs they need are
available. Hence an output channel may sit idle even while there is a packet waiting
to be sent out it.

The buffer organization adapted from PaRC uses four buffers in each input port,
each one big enough to hold one twelve-word packet. Instead of organizing the buffers
as a fifo, they are arranged so that a packet can be read out of any of the buffers at any
time. Thus a packet will never be blocked solely because another packet in a different
buffer is blocked. In addition, each packet buffer has its own output circuitry, so that
different packet buffers within the same input port can be read simultaneously. This
allows packets destined to different output ports but buffered at the same input port
to be transmitted at the same time.

The organization of the buffers results in behavior which is similar to virtual
channel flow control[2]. Its effect is to make effective use of the available bandwidth

by utilizing the communication channels to the maximum possible extent. However,
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not using a fifo to buffer the packets makes the job of the scheduler more difficult,
since it must still ensure that packets traveling between the same input and output

are sent in the order that they are received.

2.5 Scheduling

Each output port has its own local scheduler which keeps track of the packe’s which
need to go to the output. Each input port has a request line to each scheduler. When
a new packet arrives at the input port, the request line to the output port the packet
should go to is raised. The location of the buffer within the input port that the
packet is stored in is also sent to the scheduler. The scheduler stores the request
information in a fifo. Each time the output port is ready to transmit a new packet,
the next request record is read from the fifo and the corresponding packet is read
from the packet buffer and transmitted. Since the request records are written to the
fifo in the order in which the packets are received, this ensures that packets traveling
between the same input and output will not be reordered. It also provides first-come,
first-served scheduling for packets arriving on different input channels.

One drawback to this scheduling scheme is that every output port must have
enough fifo space to hold a request record from every packet buffer in every input
port. This much space is needed in each output port in case the router is completely
filled with packets that all need to be transmitted from that output. However, since
there are three output ports on the router, this means that at most one-third of the
router’s fifo buffering space for request records will be in use at any time. Fortunately
this is not a great problem, as the size of these fifos is small compared to the other

components.

2.6 Flow Control

Flow control between each input port and the corresponding output port on the

previous router ensures that the input port does not receive more packets than it has
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space to buffer. The mechanism used is a simple start/stop signaling mechanism.
When the last of the free buffers in an input port begins to be filled by an incoming
packet, the input port raises the WAIT line, signaling the previous router not to send
any further packets. When buffering space is freed by transmitting stored packets
through one of the output ports, the input port lowers the WAIT signal, allowing the
previous router to begin sending packets again. This scheme assures that an input
port will never receive more packets than it can buffer as long as the time it takes the
WALIT signal to reach the previous router is less than the time it takes that router to

finish transmitting the packet it is currently sending.

2.7 Routing Algorithm

The router must decide which of the three output ports an incoming packet should
be directed to based upon 15 bits of routing data from the header word of the packet.
The way in which this routing is done determines what network topologies the router
can be used in. The routing algorithm that was implemented is suitable for use in a
butterfly or fat tree network.

Each router has an input that is used to select two bits from among the 15 bits of
routing data in the header. These two bits are used to select one of the three output
ports to send the packet two. By providing the proper input to each router in the
various stages of the network, the destination address can be used as the routing data
(figure 2-6). Each pair of bits allows the packet to choose between three outputs, and
the last (fifteenth) bit allows a choice between two. Therefore this router can be used

in networks having up to (2)3” = 4374 nodes.
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Chapter 3

Router Implementation

3.1 Verilog

The router design was written and simulated using the Verilog hardware description
language[13]. The use of a hardware description language (HDL) allowed the design
to be implemented at a functional level, with the actual gate level implementation
done by logic synthesis tools. It is analogous to writing a computer program in a
high level language and then using a compiler to convert it into machine code versus
writing the program in assembly code. With an HDL it is also much easier to make
modifications to the design that might require changes to be made to thousands of
gates.

Hardware is defined in Verilog in terms of modules. Each module has a specified
set of inputs and outputs. Verilog code within the module determines how the outputs
behave for given input values. Modules may be instantiated within other modules, so
that complex hierarchical designs can be made. The top-level module in the router
design is called EZROUTER. It instantiates 3 input ports and three output ports,
and specifies how they are connected. In addition, the EZROUTER module specifies
the input and output connections of the entire router and how they are connected to

the input and output ports.
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Figure 3-1: Input Port Overview

3.2 Input Port Components

An overview of the input port is shown in figure 3-1. The input port design and the
descriptions of its components are based upon those found in [5], which describes the

PaRC routing chip. For the most part, the design described here is a subset of the

design presented in that report.

Each of the components in the input port is described in turn below. All of the

components in the input port are clocked using the external clock provided with the

incoming data (XCLK).
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3.2.1 Pacstart

The PACSTART component detects the start of a new packet. It raises the FIRST
signal high during the header word of a new packet. This signal is used by other
modules to control their operation. PACSTART watiches the SOP bit, waiting for
it to turn to 1. When it does, it raises FIRST for a single clock cycle, then counts
out the remaining words of the packet. After the last word of the packet is received,

PACSTART resumes checking the SOP bit to find the start of the next packet.

3.2.2 RData

Temporary buffering of the incoming data words is provided by The RDATA compo-
nent. While a packet is being received, the two most recently received words are made
available to the other modules at the d0 and d1 outputs. Whenever an even-numbered
word is received it replaces the value at d0, and odd-numbered words similarly replace
the value at d1. Thus each data word is available for two cycles, one right after it
is received and one after the following word is received. This is necessary to allow

proper operation of the FMEM component described in section 3.2.5.

3.2.3 SelPort

The SELPORT component makes the decision where to send the incoming packet. It
uses the eight-bit RINF (routing information) signal supplied from a source external
to the router to choose two bits from the packet header. Bits [3..0] of RINF are used to
choose one of the bits from the header to use as the LSB of the output port to send the
packet to, and bits {7..4] are used to chose the MSB. Once SELPORT determines what
output port to send the packet to, the request line to that port’s scheduler is raised.
SELPORT holds the request line high until it receives an acknowledgment signal
from the scheduler, indicating that the request record has been stored. SELPORT
will not make a request to the scheduler if there is no buffering space to store the
incoming packet, although the flow-control mechanism should prevent this from ever

happening.
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3.2.4 AvailB

The AVAILB component keeps track of which of the packet buffers are available, and
determines which of the four buffers in the input port an incoming packet will be
stored in. It generates the WAIT flow control signal for the input port whenever all
four of the buffers are in use. It also generates a ROOMERR error if a packet arrives
when all the buffers are full.

When a new packet arrives, AVAILB chooses an empty packet buffer to store it iz
and puts that buffer’s number on the PLOC output. This information is used by the
output port scheduler to keep track of the packet so that it may later be read out of
the buffer and transmitted. AVAILB also raises the select lines of the proper registers
within the FMEM component (described in 3.2.5) so that the incoming packet will
be stored in the chosen buffer. The words of the incoming packet are counted, and
the WRITE lines to the packet buffer are raised in order as each word arrives. The
select lines are held high until the last word of the packet is written into the buffer.
AVAILB then waits for another packet to arrive.

3.2.5 FMem

A diagram of the FMEM component is shown in figure 3-2. It consists of the four
packet buffers and three 4-to-1 multiplexors, one for each output port. The output
ports directly control the muxes so that they can chose which of the four packet
buffers they want to draw data from.

The internal structure of a packet buffer is shown in figure 3-3. Each packet buffer
is implemented as a single PACKBUFF module in the Verilog codz. Two banks of
six 16-bit latches serve as the buffer’s storage. These latches are implemented in the
WORDREG module. Data is written to a latch whenever its select and write lines
are both high. Each latch also has a READ input. The latch drives its output when
READ is high, otherwise the output is left floating. When the PACKBUFF receives
a START signal from one of the output ports, output counting circuitry asserts the
READs one at a time and controls the mux so that the words of the packet appear

21



2
i
T
é

Packet
(2 Buffer

dout

Packet
¢ Buffer

dout ©

?— Packet ¢-
Buffer

dout

Packet
Buffer

dout

= P

Figure 3-2: FMem Structure

22



6 1;
WRITE H
|_ K y DOUT
1
) 1 J
ATA ’4— m STAR glltllllt e MAKEAVAIL
' ontrol
- 6 y read 1}
WRITE H 1 7
[ _$/
6/ /
-+~

Figure 3-3: Packet Buffer Structure

sequentially at DOUT. The process of reading data out of the PACKBUFF is done
using the router’s internal clock (ICLK) since that is the clock that the output ports
use.

The output counting/control circuitry also keeps track of the availability status of
the buffer. Whenever SELECT and WRITE are both high, indicating that the buffer
is being written to, MAKEAVAIL is cleared to show that the buffer is no longer
available. When the data is read out of the packet buffer in response to a START
signal, MAKEAVAIL is set as the last word is read out to show that the buffer is
once again empty.

The buffering space in the PACKBUFF is interleaved using the two six-word banks
of latches. DO and SELOQ are the inputs to the first bank, while D1 and SEL1 serve
the same purpose in the second. The memory was interleaved in this fashion to make
it easier to write the packet data into the buffers. Because there was no simple way
to generate control signals that change at times other than the positive clock edge,

the WRITE signal to a latch must last a full clock cycle. Since the data must be held
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valid for a time after WRITE is deasserted to assure that the correct data is written

to the latch, a write to a latch must take two clock cycles. If the memory were not

interleaved, it would not be able to keep up with incoming data as a new word arrives

every clock cycle. Interleaving the memory allows the beginning of a two-cycle write

to one bank to be overlapped with the end of a two-cycle write to the other bank. In

this way the PACKBUFTF is able to store a new word every clock cycle.

3.3 Output Port Components

A diagram of the output port is shown in figure 3-4. The output ports are all clocked

using the router’s internal clock, ICLK. Each of the components of the output port

are described below. Again, these descriptions are based upon the design presented

in [5].
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3.3.1 SelReq

The SELREQ component receives the requests from the input ports. There is one
request line input to SELREQ for each of the input ports. If more than one input
port makes a request at the same time, SELREQ chooses among them using a fixed
priority scheme. SELREQ acknowledges the request, sets the mux inputs in the
SELDATA component to read in the PLOC info from the chosen input port, and
increments the counter in COUNTIN so that the next request record will be written

to the next location in the SFIFO.

3.3.2 SelData

The PLOC data from the input port is combined with the input port number to form
the request record in the SELDATA component. The input port number is provided
from SELREQ and is also used to select the PLOC data from the proper input port.
The request record is then provided as input to the SFIFO.

3.3.3 SFifo

The request records for packets that need to be transmitted from the output port
are stored in the SFIFO. Every clock cycle, the output of SELDATA is written into
the the SFIFO location pointed to by COUNTIN. Most of the time this will not be
a meaningful request record, but the data will be overwritten on the next cycle so
it does no harm to write it into the SFIFO. When a meaningful request record is
written, SELREQ will also increment COUNTIN so that the request record will not
be overwritten. The output of the SFIFO, corresponding to the request record for
the packet that is to be transmitted next, is controlled by the COUNTOUT counter.

Because the SFIFO is written to on every clock cycle, an extra location is needed
to avoid overwriting needed data when the SFIFO is full. The SFIFO is therefore im-
plemented as 13 latches, enough to hold a request for every packet buffer on the router
plus the extra location. Each four-bit latch is implemented as an SREG module. The
SREG is identical to the WORDREG in all aspects but its size.
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3.3.4 ReqCount

The REQCOUNT component keeps a count of the number of packets that are waiting
to be transmitted from the output port. It is incremented when COUNTIN is incre-
mented, and decremented when COUNTOUT is incremented. If the count is greater
than zero, REQCOUNT asserts MORE. This signal is used by the TCONTROLLER

to determine if it has work to do.

3.3.5 TController

The TCONTROLLER component is responsible for actually reading the packets out
of the buffers and transmitting them off the router into the network. If no packet
is currently being sent, MORE is high, and the next router in the network is not
asserting WAIT, a new packet can be transmitted. The TCONTROLLER gets the
request record for the packet to be sent from the SFIFO and asserts NEXT ts5 in-
crement COUNTOUT. The FMEM mux in the input port that holds the packet is
set to select the data from the right packet buffer, and a START signal is sent to
that buffer. Another mux within the TCONTROLLER is set to send the data com-
ing from the appropriate input port to the output channel. The TCONTROLLER
counts the words in the packet as they are sent out, and when the packet is finished
being transmitted it waits until it can send out a new packet. When no packet is
being sent out, the TCONTROLLER drives the data bits of the output channel with

Z€ros.
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Chapter 4

Putting the Router on an FPGA

4.1 Xilinx

The router design was intended to be programmed onto a Xilinx XC4010 FPGA,
a member of the XC4000 family[15). The FPGA is electrically programmable by
loading configuration data into its internal memory cells. It can be reprogrammed
an unlimited number of times, allowing the design in the FPGA to be modified or
replaced with an entirely new design.

The XC4010 consists of a regular matrix of configurable logic blocks (CLBs).
These CLBs are the functional elements that are used to construct the user’s logic.
They are connected by programmable interconnect paths. A customized configuration
can be created by programming the internal static memory cells that determine the
logic functions and interconnections implemented in the FPGA.

Each CLB consists of a pair of independent four-input function generators and
a pair of edge-triggered D-type flip-flops. There is also a third three-input function
generator that can implement any Boolean function of the outputs of the first two
function generators and a third input which comes from outside the CLB. The outputs
of the three function generators can be connected to the outputs of the CLB, or they
can be clocked into the flip-flops, whose outputs are then available outside the CLB. A
simplified diagram of a XC4000 family CLB is shown in figure 4-1. The XC4010 FPGA
contains a 20 by 20 matrix of 400 CLBs, so the router design must be capable of being
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Figure 4-1: XC4000 Configurable Logic Block

implemented using at most this number of CLBs (neglecting routing constraints) if

it is to fit on the chip.

4.2 Synopsys Compilation

Once the entire router design was written in Verilog and simulated to make sure
there were no obvious design errors, it was synthesized into a gate-level model using
the Synopsys hardware synthesis tool[12]. Each module was synthesized in turn.
Synopsys works by reading a library file that defines the gates and other macros that
are available in the hardware technology being used, then reading the Verilog code
that defines the module and compiling it into a collection of these gates and macros.
It also provides technical information about the compiled design such as the amount

of area it consumes and timing information.
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Table 4.1: Sizes of Modules Compiled By Synopsys

module I CLB_s_J

wordreg .5
availb 52.0
packbuff | 141.5
fmem 644.0
paccent 23.5
pacstart 10.5
rdata 41.5
sync 1.0
selport 29.0
iport 805.0
sreg 2.0
sfifo 26.0
countin 28.5
countout 28.5
reqcount 11.5
seldata 4.0
selreq 14.5
tcontroller 87.0
oport 197.5
ezrouter | 3007.5

4.2.1 Area

The modules of the router design were compiled in Synopsys with the optimizer set
to produce hardware designs with minimal area. The sizes of the compiled modules
are shown in table 4.1. The entire router uses slightly more than 3000 CLBs, seven
and a half times the number of CLBs available on the XC4010. However, this size is
misleading because it does not make efficient use of the Xilinx library’s macros[15].
When Synopsys compiles the Verilog code and converts it into gates, it uses algo-
rithms designed to convert the code into fast, small blocks of hardware. Unfortunately,
just as a C compiler may fail to produce the most efficient machine code, the Syn-
opsys compiler does not always do an efficient job of converting the Verilog code to
hardware. For example, a section of Verilog code might be written that implements

a four-bit counter, but Synopsys does not interpret it as such. Instead it sees it as
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a register whose value changes according to some set of rules. It then designs the
counter as a register with some added combinational logic that causes it to be loaded
with the right values at the right times. This can be considerably more wasteful than
using a predefined counter macro which might have special support in the CLBs.

It is possible to specify the use of macros like the counter macro directly in the
Verilog code, assuring that they are used in the hardware generated by Synopsys.
However, since these macros are not part of the Verilog language, designs that ref-
erence them cannot be simulated in Verilog. This makes it very inconvenient to use
them in Verilog designs. Still, it is important to know how much space the design
would consume if efficient use was made of the Xilinx macros.

The module that makes the most inefficient use of space is the PACKBUFF mod-
ule. Rather than using twelve 16-bit latches to provide the memory for packet storage,
two 16x8 RAMs could be used with some performance loss. An optional mode for
each CLB allows the memory look-up tables in the function gencrators to be used as
a 16x2 or 32x1 bit array of memory cells. A 16x8 RAM can be implemented in four
CLBs using the Xilinx macro, so two 16x8 RAMs, enough to store an entire packet,
would use only eight CLBs. The remaining circuitry in PACKBUFF uses roughly 40
CLBs!, so a PACKBUFF could be implemented in 48 CLBs. A 16x4 RAM consuming
only two CLBs could also be used to replace the SFIFO.

The COUNTIN and COUNTOUT modules can be replaced by eight bit counter
macros. With the addition ot the extra logic needed in these mocules beyond the
counters, each module can be implemented in twelve CLBs. Similarly, the other mod-
ules which contain counters can have them replaced by appropriately-sized counter
macros, saving further CLBs. Table 4.2 shows the approximate sizes of the modules
after considering the addition of these macros. This reduces the area that the router

design requires to approximately 1572 CLBs, a savings of roughly 50%.

1The other circuitry in PACKBUFF will actually use fewer than 40 CLBs if RAMs are used
instead of latches, as the control logic will be simplified.
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Table 4.2: Estimated Sizes of Modules Using Xilinx Macros

| module | CLBsI

wordreg -
availb 48.5
packbuff’ 47.5
fmem 268.0
paccnt 5.0
pacsiart 7.0
rdata 25.0
sync 1.0
selport 29.0
iport 387.0
sreg -
sfifo 2.0
countin 12.0
countout 12.0
reqcount 11.5
seldata 4.0
selreq 14.5
tcontroller 83.5
oport 137.0
ezrouter | 1572.0
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Table 4.3: Maximum Delay Paths

| module I max delay path [ delay |

wordreg | datareg[15] to dout[15] 7.4 ns
availb avail3 to roomerr 12.0 ns
packbuff | readred([6] to fout[15] 19.8 ns
fmem packbuff2:readreg[0] to dout0[15] 31.8 ns
paccnt | write_reg[11] to write[11] 12.0 ns
pacstart | wordreg._reg[1] to first 24.0 ns
rdata dout0_reg[15] to dout0[15] 5.0 ns
sync dout_reg to dout 5.0 ns
selport sync2:dout_reg to request|2] 5.0 ns
iport fmem:packbuff2:readreg|0] to dout0[15] [ 31.8 ns
steg the_data_reg[3] to dout|3 7.4 ns
sfifo sreg6:the_data_reg[3] to dout(3] 7.4 ns
countin | fwrite_reg[12] to fwrite[12] 12.0 ns
countout | fread_reg[12] to fread[12] 12.0 ns
reqcount | mycount_reg[l] to more 24.0 ns
seldata | ldout_reg([3] to 1dout[3] 6.0ns
selreq ackregs_reg[2] to ackreqs(2] 12.0 ns
tcontroller | wordreg_reg[1] to dout[15] 36.0 ns
oport tcontroller:wordreg_reg[0] to dout[15] | 36.0 ns

4.2.2 Technical Details

Synopsys also provides approximate timing data about the compiled design. It iden-
tifies the path with the maximum delay in each module. This data is limited in its
usefulness, however, since it does not take in to account any information about the
placement of the CLBs on the FPGA, the times are merely based on the number of
gates a signal must propagate through. Table 4.3 shows the path with the maximum
delay for each module.

Unfortunately, it is difficult to get an estimate of the maximum possible clock
speed using this data. For example, if the clock period were 20 ns, it would still be all
right to have a delay of 24 ns between the counter and MORE in the REQCOUNT
module. The only effect would be that when the request count went from zero to one,
it would take an extra clock cycle for the TCONTROLLER to recognize that a new
packet was waiting to be transmitted, due to the long delay of MORE. Similarly, the
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36 ns delay between wordreg and dout in TCONTROLLER is not a limiting factor
because it only means that the data will enter the network slightly later than it might
have otherwise.

A much better way of determining the maximum clock speed would be to incorpo-
rate the timing information provided by Synopsys into the Verilog code. The design
could then be simulated in Verilog using different clock speeds to find the maximum
speed at which the router still works properly. Software exists to perform exactly this
task, but unfortunately it was not available at the time this design was done. Thus it
is difficult to make any guess as to the router’s maximum clock speed, beyond noting
that it is bounded by the 50MHz limit imposed by the underlying Xilinx XC4000
technology.
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Chapter 5

Conclusions

Even with optimistic estimates of the space savings that could be achieved by making
better use of the macros in the Xilinx library, the router design does not even come
close to fitting on a Xilinx XC4010 FPGA. At best it still uses more than 4 times the
number of available CLBs. Thus the router design as presented fails in its attempt
to provide the functionality of a router that can fit on an FPGA. However, this does
not mean that the work done here is useless and that the idea of using an FPGA in
a router design is unsound.

Continuing improvements in FPGA technology will soon make it possible to fit
this router design on an FPGA. The most powerful member of the XC4000 family, the
X(C4020, has a matrix of 900 CLBs, more than twice the number in the XC4010 and
roughly half the number needed for the router design. Undoubtedly, future models
of FPGAs will have even greater numbers of CLBs, allowing them to be configured
for more complex designs. Improvements in the synthesis tools would also help to
fit the design onto an FPGA. Future versions of Synopsys and other synthesis tools
will likely be more intelligent and better able to make efficient use of the gates and
macros available in the technology being used, allowing the same design to be fit in
a smaller space.

There are a number of possible ways that FPGAs could be used for this router
design or other designs without waiting for technology improvements, however. If

waiting for the FPGA and synthesis tools is not practical, the design can be changed
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instead. An obvious modification to save space would be to reduce the amount of
buffering space in each input port. However, this would also degrade the performance
of the router. Packets that otherwise might have been able to pass through the router
will instead be blocked if the number of buffers is reduced. For example, if the number
of buffers is reduced from four to three, and the three buffers all contain packets that
want to go to an output port that is blocked, a fourth packet in a router in a previous
network stage that wants to go to one of the unblocked oviputs will not be able to
make any progress. It will be prevented from being sent to the router by the WAIT
flow control signal. If instead there were four packet buffers, the fourth packet could
use that buffer and be sent out the unblocked output port, passing the three blocked
packets.

Another alternative is to eliminate some of the input and output ports. Instead
of using a 3x3 router design, a 2x2 design could be used, reducing the size of the
router by one-third. This would also add to the typical latency of a packet through
the network, however. Since smaller switches would be used, more of them would be
needed to connect the same number of nodes, hence a typical packet would have to
travel through more routers on its trip from the source to the destination node.

Another option would be to use a different routing technique that required less
buffering space, such as circuit switching or wormhole routing. Again, however, the
performance of the router using the new switching technique would need to be care-
fully analyzed to make sure it was adequate for the conditions in which it would
typically be used.

The design could also potentially be fit on several FPGAs if it could be partitioned
so that part of the design fit on each FPGA. Unfortunately, breaking the design up
across many FPGAs is likely to be difficult. The more FPGAs that are used and
the more complicated the partitioning of the design across them becomes, the more
cumbersome and time consuming it will be to change the design if modifications are
needed. Thus, having many FPGAs to deal with instead of just one also negates
much of the original advantage of using an FPGA.

One alternative used by the creators of Autonet[11} is to use an FPGA to imple-
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ment part of the router design, and implement the rest in conventional hardware. The
Autonet router has its scheduler implemented in a Xilinx FPGA, but the rest of the
design is done in CMOS. By placing only part of the router on the FPGA it can easily
be made to fit. In addition, if the designer knows ahead of time which portions of the
design are likely to be modified in the future and which are not, those components
that are likely to be modified can be placed on an FPGA. This still allows changes

to easily be made to the components that are most likely to need them.
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Appendix A

Verilog Code

A.1 availb.v

// Available buffer tracker

// Revised: March 9, 1993

// Author:  Steve Chamberlin
#include "thesis.h"

module availb (

availd, // (1 bit) buffer 0 is available
availl, // (1 bit) buffer 1 is available
avail2, // (1 bit) buffer 2 is available
availd, // (1 bit) buffer 3 is available

first, // (1 bit) high during first word of a new packet

xclk, // (1 bit) clock for this input port
reset, // (1 bit) resets when high

roomerr, // (1 bit) high if no room for a new packet
ploc, // (2 bits) buffer packet is being placed into

selram, // (8 bits) select lines for buffers

mywait  // (1 bit) flow control bit, senders should wait when high

);

// port inputs and outputs
input avail0;

input availl;

input avail2;

input avail3;

input first;

input xclk;

input reset;

output roomerr;

output [1:0] ploc; reg [1:0] ploc;
output [7:0] selram; reg [7:0] selram;
output mywait;
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// internal variables
reg [3:0] wordreg;
reg writing;

wire startwrite;

assign startwrite = first & “mywait;
assign mywait = ~avail0 & "availl & "avail2 & “avail3;
assign roomerr = mywait & first;

always @(reset) begin
if (reset) begin
wordreg = 4°h0;

writing = 0;

ploc = 2°h0;
selram = 8°h00;
end

end

always @(posedge xclk) begin
if (startwrite) begin
#1 writing = 1;
wordreg = 4°h0;
end
end

always @(posedge xclk) begin
if (writing && wordreg != PACKSIZE-1)
#1 wordreg = wordreg + 1;
else if (wordreg == PACKSIZE—1) begin
#1 wordreg = 4’°h0;
writing = 0;
selram = 8°h00;
end
end

always @(posedge xclk) begin
if (avail0 && startwrite) begin
#1 ploc = 2?b00;
selram = 3;
end
else if (availl && startwrite) begin
#1 ploc = 2°b01;
selram = 12;
end
else if (avail2 && startwrite) begin
#1 ploc = 2’b10;
selram = 48;
end
else if (avail3 && startwrite) begin
#1 ploc = 2’bll;
selram = 192;
end
end
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endmodule

A.2 countin.v

// Pointer for writing to FIFO
// Revised: April 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module countin (
iclk, // (1 bit) internal chip clock
reset, // (1 bit) resets when high
inc, // (1 bit) increments counter when high
fwrite // (BUFFERS*INPORTS+1 bits) writes for FIFO

);

// port inputs and outputs

input iclk;

input reset;

input inc;

output [INPORTS*BUFFERS:0] fwrite; reg[INPORTS*BUFFERS:0] fwrite;

//internal variables

always @(reset) begin
if (reset)
fwrite = 1;
end

always @(posedge iclk) begin
if (inc)
if (fwrite != 13751000000000000)
//4x4 change to: if (fwrite != 17°b10000000000000000)
#1 fwrite = fwrite << 1;
else
#1 fwrite = 1;
end

endmodule
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A.3 countout.v

// Pointer for reading from FIFO
// Revised: April 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"
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module countout (
iclk, // (1 bit) internal chip clock
reset, // (1 bit) resets when high
next, // (1 bit) increments counter when high
fread // (BUFFERS*INPORTS+1 bits) writes for FIFO

);

// port inputs and outputs

input iclk;

input reset;

input next;

output [INPCRTS*BUFFERS:0] fread; reg[INPORTS*BUFFERS:0] fread;

//internal variables

always @(reset) begin
if (reset)
fread = 1;
end

always @(posedge iclk) begin
if (next)
if (fread != 13'51000000000000)
//4x4 chenge to: if (fread !'= 17’b10000000000000000)
#1 fread = fread << 1;
else
#1 fread = 1;
end

endmodule
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A.4 ezrouter.v

// Simple 3—in 3—out router
// Revised: April 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module ezrcuter
iclk, // (1 bit) internal chip clock
reset, // (1 bit) resets when high
din0, // (16 bits) data input for input port 9
xclk0, // (1 bit) clock synced with data on din0
waitout0, // (1 bit) wait output for input port 0
dinl, // (16 bits) data input for input port 1
xclkl, // (1 bit) clock synced with data on dinl
waitoutl, // (1 bit) wait output for input port 1
din2, // (16 bits) data input for input port 2
xclk2, // (1 bit) clock synced with data on din2
waitout2, // (1 bit) wait output for input port 2
//4x4 add these lines:
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//din3,

//xclk3,

/ /waitout3,

rinf, // (8 bits) routing control information
clkoutd, // (1 bit) output clock to be used with dout0
clkoutl, // (1 bit) output clock to be used with doutl
clkout2, // (1 bit) output clock to be used with dout2
//4x4 add these lines:

//clkout3,

dout0, // (16 bits) data output for output port 0
waitin0, // (1 bit) wait input for output port 0
doutl, // (16 bits) data output for output port 1
waitinl, // (1 bit) wait input for output port 1
dout2, // (16 bits) data output for output port 2
waitin2, // (1 bit) wait input for output port 2

//4x4 add these lines:

//dout3,

/ /waitin3,

roomerr  // (1 bit) pulses high when there is no room for a new packet

);

// uses 119 i/o pins for 3x3, 155 i/o pins for 4x4.
// if clkout pins are shared, uses 117 pins for 3x3, 152 pins for 4x4.

// port inputs and outputs

input iclk;
input reset;

input [15:0] din0;

input xclko0;

output waitouto0;
input [15:0] din1;

input xclkl;

output waitoutl;
input [15:0] din2;

input xclk2;

output waitout?2;
//4x4 add these lines:
//input [15:0] din3;
//input xclk3;
//output waitout3;
input [7:0] rinf;
output [15:0] dout0;
input waitin0;

output [15:0] doutl;
input waitinl;

output [15:0] dout2;
input waitin2;

//4x4 add these lines:
//output [15:0] dout3;
//input waitin3;
output roomerr;
output clkouto;
output clkoutl;
output clkout2;
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//4x4 add these lines:
//output clkout3;

// internal variables
wire rme0;

wire rmel;

wire rme2;

//4x4 add these lines:
/ /wire rme3;

wire [INPORTS*4-1:0] bstart0;
wire [INPORTS*4—1:0] bstartl;
wire [INPORTS*4-1:0] bstart2;
//4x4 add these lines:
//wite [INPORTS*4—1:0] bstart3;
wire [3:0] start0;

wire [3:0] startl;

wire [3:0] start2;
//4x4 add these lines:
//wite [3:0] start3;
wire [1:0] fmsel0;
wire [1:0] fmsell;
wire [1:0] fmsel2;
//4x4 add these lines:
//wire [1:0] fmsel3;
wire areq00;

wire areq01;

wire areq02;

//4x4 add these lines:
//wire areq03;

wire areq10;

wire areqll;

wire areql2;

//4x4 add these lines:
//wire areq13;

wire areq20;

wire areq21;

wire areq22;

//4x4 add these lines:
//wire areq23;

//wire areq30;

//wire areq31;

//wire areq32;

//wire areq33;

wire req00;

wire req01;

wire req02;

//4x4 add these lines:
/[ wire req03;

wire reql0;

wire reqll;

wire reql2;

//4x4 add these lines:
//wire req13;

wire req20;
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wire req2l1;
wire req22;
//4x4 add these lines: 130
//wire req23;
/ [ wire req30;
/[ wire req31;
/ /[ wire req32;
/[ wire req33;
wire [1:0] plocO;
wire [1:0] plocl;
wire [1:0] ploc2;
//4x4 add these lLines:
//wire [1:0] ploc3; 140
wire [15:0] dout00;
wire [15:0] dout01;
wire [15:0] dout02;
//4x4 add these lines:
//wire [15:0] dout03;
wire [15:0] dout10;
wire [15:0] doutll;
wire [15:0] dout12;
//4x4 add these lines:
//wire [15:0] dout13; 150
wire [15:0] dout20;
wire [15:0] dout21;
wire [15:0] dout22;
//4x4 add these lines:
//wire [15:0] dout23;
//wire [15:0] dout30;
//wite [15:0] dout31;
//wire [15:0] dout32;
//wire [15:0] dout33;
160
assign roomerr = rme0 | rmel | rme2;
//4x4 change to: assign roomerr = rme0 | rmel | rme2 | rme3;
assign start0 = bstart0[3:0] | bstart1[3:0] | bstart2[3:0];
//4x4 change to: assign start0 = bstart0[3:0] | bstart1[3:0] | bstart2[3:0] | bstart3[3:0];
assign startl = bstart0[7:4] | bstart1[7:4] | bstart2[7:4];
//4x4 change to: assign startl = bstart0[7:4] | bstart1[7:4] | bstart2[7:4] | bstart3[7:4];
assign start2 = bstart0[11:8] | bstart1[11:8] | bstart2[11:8];
//4x4 change to: assign start2 = bstart0[11:8] | bstart1[11:8] | bstart2[11:8] | bstart3[11:8);
//4x4 add these lines:
//assign start3 = bstart0[15:12] | bstart1[15:12] | bstart2[15:12] | bstart3[15:12]; 170

iport u0 (din0,start0,{fmsel2,fmsell,fmsel0},rinf,areq00,areq10,areq20,xclk0,iclk,reset,rme0, waitout0,req00,req01,rec
//4x4 change to:
//iport u0 (din0,start0,{fmsel3,fmsel2,fmsell,fmsel0},rinf,areq00,areq10,areq20,areq30,xclk0,iclk,reset,rme0, waitout:

iport ul (dinl,startl,{fmsel2,fmsell,fmsel0},rinf,areq01,areql1,areq21,xclk1,iclk,reset,rmei,waitoutl,req10,reql1,rec
//4x4 change to:
//iport ul (dinl,startl,{fmsel3,fmsel2,fmsell,fmsel0},rinf,areq01,areqll,areq21,areq31,xclk1,iclk,reset,rmel, waitout
iport u2 (din2,start2,{fmsel2,fmsell,fmsel0}, rinf,areq02,areq12,areq22,xclk2,iclk,reset,rme2,waitoud®,req20,req21,rec
//4x4 change to:
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//iport u2 (din2,start2,{fmsel3,fmsel2,fmsell,fmsel0},rinf,areq02,areq12,areq22,areq32,xclk2,iclk,reset,rme2, waitout’

//4x4 add these lines:
//iport ul0 (din3,start3,{fmsel3,fmsel2,finsell,fmsel0},rinf,areq03,areq13,areq23,areq33,xclk3,iclk,reset,rme3, waitou

oport u3 (iclk,reset,w: itin0,req00,req10,req20,areq00,areq01,areq02,ploc0,plocl,ploc2,dout00,dout10,dout20,fmsel0,}

//4x4 change to:

//oport u3 (iclk,reset,waitin0,req00,req10,req20,req30,areq00,areq01,areq02,areq03,ploc0,plocl,ploc2,ploc3,dout00,d
190

oport v4 (iclk,reset,waitinl,req01,req11,req21,areq10,areql1,areq12,ploc0,plocl,ploc2,dout01,dout11,dout21,fmsell,l

//4x4 change to:

//oport u4 (iclk,reset,waitinl,req01,reql1,req21,req31,areql0,areql1,areql2,areql13,ploc0,ploci,ploc2,ploc3,dout01,d

oport u5 (iclk,reset,waitin2,req02,reql2,req22,areq20,areq21,areq22,ploc0,ploci,ploc2,dout02,dout12,dout22,fmsel2,1
//4x4 change to:
//oport u5 (iclk,reset,waitin2,req02,req12,req22,req32,areq20,areq21,areq22,areq23,ploc0,plocl,ploc2,ploc3,dout02,d

//4x4 add these lines:
//oport ull (iclk,reset,waitin3,req03,req13,req23,req33,areq30,areq31,areq32,areq33,ploc0,plocl, phec2, ploc3,dout03,
endmodule

A.5 fmem.v

// FMEM block
// Revised: March 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module fmem (
din0, // (16 bit) data input for bank 0
dinl, // (16 bit) data input for bank 1
selectRam, // (2*BUFFERS bits) select bit for banks 0 and 1 10
write,  // (PACKSIZE bits) write strobe for each wordreg
start, // (BUFFERS bits) buffer should begin outputting contents
reset, // (1 bit) resets buffer logic when high
iclk, // (1 bit) internal clock for the router
selectBuf, // (2*OUTPORTS bits) select for multiplexor to output ports
dout0, // (16 bits) data out for output port0
doutl, // (16 bits) data out for output portl
dout2, // (16 bits) data out for output port2
//4x4 add these lines:
//dout3, 20
makeavail // (4 bit) signal that a buffer is ready for a new packet

);

// port inputs and outputs

input [15:0] dinO;

input [15:0] dinl;

input [2*BUFFERS—1:0] selectRam;
input [PACKSIZE—1:0] write;

input [BUFFERS—1:0] start;
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input reset;

input iclk;

input [2*OUTPORTS~1:0] selectBuf;
output [15:0] dout0; reg [15:0] dout0;
output [15:0] doutl; reg [15:0] doutl;
output [15:0] dout2; reg [15:0] dout2;
//4x4 add these lines:

//output [15:0] dout3; reg [15:0] dout3;
output [3:0] makeavail;

//internal variables
wire [15:0] douta;
wire [15:0] doutb;
wire [15:0] doutc;
wire [15:0] doutd;

packbuff u0 (din0,din1,selectRam([0],select Ram[1],write,start[0],reset,iclk,douta,makeavail[0]);
packbuff ul (din0,dinl,selectRam(2],selectRam[3],write,start[1],reset,iclk,doutb,makeavail(1]);
packbuff u2 (din0,din1,selectRam[4],selectRam[5], write,start[2],reset,iclk,doutc, makeavail[2]);
packbuff u3 (din0,din1,selectRam[6],selectRam[7],write,start[3],reset,iclk,doutd, makeavail(3]);

always @(selectBuf or douta or doutb or doutc or doutd) begin
#1
case (selectBuf[1:0])
0: dout0 = douta;
1: dout0 = doutb;
2: dout0 = doutc;
3: dout0 = doutd;
endcase
case (selectBuf[3:2])
0: doutl = douta;
1: doutl = doutb;
2: doutl = doutc;
3: doutl = doutd;
endcase
case (selectBuf[5:4])
0: dout2 = doutas;
1: dout2 = doutb;
2: dout2 = doutc;
3: dout2 = doutd;
endcase
//4x4 add these lines:
//case (selectBuf][7:6])
// 0: dout3 = douta;
// 1: dout3 = doutb;
// 2: dout3 = doutc;
// 3: dout3 = doutd;
/ /endcase
end

endmodule
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A.6 iport.v

// Input Port
// Revised: March ¢, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module iport (
din, // (16 bit) data input
start, // (4 bits) start signals for each buffer
selbuf, // (OUTPORTS*2 bits) 2 bits for each output multiplexor
rinf, // (8 bits) routing information control
ackreq0, // (1 bit) acknowledgement of port 0 request
ackreql, // (1 bit) acknowledgement of port 1 request
ackreq2, // (1 bit) acknowledgement of port 2 request
//4x4 add these lines:
//ackreq3,
xclk, // (1 bit) clock for input port
iclk, // (1 bit) internal clock for the router
reset, // (1 bit) resets buffer logic when high
roomerr, // (1 bit) no room for an incoming packet error
mywait, // (1 bit) flow control tells sender to wait
req0, // (1 bit) request line for output port 0
reql, // (1 bit) request line for output port 1
req2, // (1 bit) request line for output port 2
//4x4 add these lines:
//req3,
ploc, // (2 bits) buffer number of packet making request
dout0, // (16 bits) data out to output port 0
doutl, // (16 bits) data out to output port 1
dout2 // (16 bits) data out to output port 2
//4x4 add these lines:
//dout3

)i

// port inputs and outputs
input [15:0] din;

input [3:0] start;

input [OUTPORTS*2—1:0] selbuf;
input [7:0] rinf;

input xclk;

input iclk;

input reset;

input ackreq0;

input ackreql;

input ackreq2;

//4x4 add these lines:
//input ackreq3;

output roomerr;

output mywait;

output req0;

output reql;
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output req2;

//4x4 add these lines:

//output req3;

output [1:0] ploc;

output [15:0] dout0;

output [15:0] doutl;

output [15:0] dout2;

//4x4 add these lines:

//output [15:0] dout3; 80

//internal variables

wire [15:0] dO;

wire [15:0] d1;

wire first;

wire avail0;

wire availl;

wire avail2;

wire avail3;

wire savail0; 70
wire savaill;

wire savail2;

wire savail3;

wire [7:0] sel;

wire [PACKSIZE—1:0] write;

fmem u0 (d0,d1,sel,write,start,reset,iclk,selbuf,dout0,dout1,dout2,{avail3,avail2,availl avail0});

//4x4 change to:

//fmem u0 (d0,d1,sel,write,start,reset,iclk,selbuf,dout0,dout1,dout2,dout3,{avail3,avail2,avail1,avail0});
pacstart ul (din,reset,xclk,first);

rdata u2 (din,xclk,reset,d0,d1);

pacent u3 (first,xclk,reset,write);

sync u4 (avail0,xclk,savail0);

sync ub (availl,xclk,savaill);

sync u6 (avail2,xclk,savail2);

sync u7 (avail3,xclk,savail3);

availb u8 (savail0,savaill,savail2,savail3,first,xclk,reset,roomerr,ploc,sel, mywait);

selport ud (first,xclk,iclk,avail0,availl,avail2,avail3,reset, {ackreq2,ackreql,ackreq0},din,rinf,{req2,reql,req0});
//4x4 change to: 00

/ [selport u9 (first,xclk,iclk,avail0,availl,avail2,avail3,reset, {ackreq3,ackreq2,ackreql,ackreq0},din,rinf,{req3,req2,req
endmodule

A.7 oport.v

// Output Port

// Revised: April 9, 1693

// Author:  Steve Chamberlin
#include "thesis.h"

module oport (
iclk, // (1 bit) internal clock for the router
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reset, // (1 bit) resets buffer logic when high

mywait, // (1 bit) inhibits sending of packets when high
req0, // (1 bit) request line from input port 0

reql, // (1 bit) request line from input port 1

req2, // (1 bit) request line from input port 2

//4x4 add these lines:

//req3,
areq0, // (1 bit) acknowledgement of iport 0°s request
areqi, // (1 bit) acknowledgement of iport 1’s request

areq2, // (1 bit) acknowledgement of iport 2°s request
//4x4 add these lines:

//areq3,

plocO, // (2 bits) buffer number of packet from port 0
ploct, // (2 bits) buffer number of packet from port 1
ploc2, // (2 bits) buffer number of packet from port 2
//4x4 add these lines:

//ploc3,

din0, // (16 bits) data from input port O

dini, // (16 bits) data from input port 1

din2, // (16 bits) data from input port 2

//4x4 add these lines:

//din3,

fmuxsel, // (2 bits) mux select for fmem block

start, // (BUFFERS*INKPORTS bits) start lines for input buffers
dout, // (18 bits) data out to the network

clkout // (1 bit) clock out to the network

K

// port inputs and outputs
input iclk;

input reset;

input reqO;

input reqi;

input req2;

//4x4 add these lines:
//input req3;

input [1:0] plocO;
input [1:0] ploci;
input [1:0] ploc2;
//4x4 add these lines:
//input [1:0] ploc3;
input [156:0] dinO;
input [15:0] din?;
input [15:0] din2;
//4x4 add these lines:
//input [15:0] din3;
input mywait;

output [11:0] start;
output [1:0] fmuxsel;
output areq0;

output areqi;

output areq2;

//4x4 add these lines:
//output areq3;
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output [165:0] dout;
output clkout;

//internal variables

wire more;

wire next;

wire inc;

wire [1:0] portnum; 70
wire [3:0] stfin;

wire [3:0] sfout;

wire [INPORTS*BUFFERS:0] write;

wire [INPORTS*BUFFERS:0] read;

sfifo u0 (write,read,sfin,sfout);
selreq uil (iclk,{req2,req1,req0},reset,{areq2,areqi,areq0},inc,portnum);
//4x4 change to:
//selreq ui (iclk,{req3,req2,reql,req0},reset,{areq3,areq2,areqi,areq0},inc,portnum);
seldata u2 (iclk,ploc0,ploci,ploc2,portnum,sfin); 80
//4x4 change to:
//seldata u2 (iclk,ploc0,ploci,ploc2,ploc3,portnum,sfin);
reqcount u3 (iclk,reset,inc,next,more);
countin u4 (iclk,reset,inc,write);
countout us (iclk,reset,next,read);
tcontroller ué (iclk,reset,more,mywait,sfout,din0,dini,din2,next,start,fmuxsel,dout,clkout);
//4x4 change to:
//tcontroller u6 (iclk,reset,more,mywait,sfout,din0,dini,din2,din3,next,start,fmuxsel,dout,clkou
endmodule
90

A.8 paccnt.v

// Packet word counter and write strobe generator
// Revised: March 9, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module pacent(
first, // (1 bit) high during first word of a new packet
xclk, // (1 bit) clock for this input port
reset, // (1 bit) resets when high 10
write // (PACKSIZE bits) write strobes for packet buffers

)

// port inputs and outputs

input first;

input xclk;

input reset;

output [PACKSIZE—1:0] write; reg [PACKSIZE—1:0] write;

always @(reset) begin 20

if (reset)
#1 write = 0;
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end

always @(posedge xclk) begin
if (first) begin
#1 write = 1;
end
else if (write != 0 && write != 1<<(PACKSIZE-1))
#1 write = write << 1;
else if (write == 1<<(PACKSIZE-1))
#1 write = 0;
end

endmodule

80

A.9 packbuff.v

// Packet buffer consisting of 2 interleaved RAM banks
// Revised: March 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module packbuff (
din0, // (16 bit) data input for bank 0
dinl, // (16 bit) data input for bank 1
sel0, // (1 bit) select for bank 0
sell, // (1 bit) select for bank 1
write, // (PACKSIZE bits) write strobe for each wordreg
start, // {1 bit) signal for this buffer to begin outputting contents
reset, // (1 bit) resets buffer logic when high
iclk, // (1 bit) internal clock for the router
dout, // (16 bits) data out
makeavail // (1 bit) signal that this buffer is ready for a new packet

)i

// port inputs and outputs
input [15:0] din0;

input [15:0] din1;

input sel0;

input sell;

input [PACKSIZE—1:0] write;
input start;

input reset;

input iclk;

output [15:0] dout; reg [15:0] dout;
output makeavail; reg makeavail;

//internal variables

wire [15:0] dout0;

wire [15:0] doutl;

reg [PACKSIZE—1:0] read;
reg muxselect;
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//depending on PACKSIZE, instantiate as many wordregs as needed, interleaving
//them so din0 and dout0 serve wordregs with even write and read numbers.
wordreg u0 (din0,dcut0,sel0,write[0],read(0]);

wordreg ul (dinO,doutO,selO,write[2],read[2]);

wordreg u2 (din0,dout0,sel0,write[4],read[4});

wordreg u3 (din0,dout0,sel0,write[6],read[6});

wordreg u4 (din0,dout0,sel0,write[8] ,read([8]);

wordreg u5 (din0,dout0,sel0,write[10],read[10]);

wordreg u6 (din1,doutl,sell,write[1],read[1]);
wordreg u7 (din1,dout1,sell,write[3],read(3]);
wordreg u8 (din1,doutl,sell,write[5},read(5]);
wordreg u9 (din1,dout1,sell,write[7],read[7]);
wordreg u10 (dinl,dout1,sell,write[9],zead(9]);
wordreg ull (dinl,dout1,sell,write[11],read[11]);

always @(muxselect or dout0 or doutl) begin
if (muxselect) #1 dout = doutl;
else #1 dout = dout0;

end

always @(reset) begin
if (reset) begin

read = 3;

makeavail = 1;

muxselect = 0;
end

end

always @(write or sel0 or sell) begin
if ((write != 0) && (sel0 || sell))
#1 makeavail = 0;
end

always @(posedge iclk) begin
if (start && read == 3) begin
#1 muxselect = 1;
read = read << 1;

end

else if (read != 3 && read != 1<<(PACKSIZE—1)) begin
#1 muxselect = “muxselect;
read = read << 1;

end

eise if (read == 1<<(PACKSIZE-1)) begin
#1 muxselect = 0;
read = 3;

end

end

always @(posedge iclk) begin
if (read == 3<<(PACKSIZE-2))
#1 makeavail = 1;
end
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endmodule

A.10 pacstart.v

// Packet Start detector
// Revised: March 9, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module pacstart(
din, // (16 bits) input port data in
reset, // (1 bit) resets when high
xclk, // (1 bit) clock for this input port
first // (1 bit) high for first word of a new packet

);

// port inputs and outputs
input [15:0] din;

input reset;

input xclk;

output first; reg first;

// internal variables
reg [3:0] wordreg;

always @(wordreg or din) begin
if (wordreg != 0) #1 first = 6;
else #1 first = din[SOP]J;

end

always @(reset) begin
if (reset)
wordreg = 0;
end

always @(posedge xclk) begin
if (din[SOP] && wordreg == 0)
#1 wordreg = 1;
else if (wordreg != 0 && wordreg != PACKSIZE — 1)
#1 wordreg = wordreg + 1;
else if (wordreg == PACKSIZE — 1)
#1 wordreg = 0;
end

endmodule
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// Received data generator
// Revised: March 9, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module rdata(
din, // (16 bits) input port data in
xclk, // (1 bit) clock for this input port
reset, // (1 bit) resets when high
dout0,  // (16 bits) even data words
doutl // (16 bits) odd data words

)

// port inputs and cutputs

input [15:0] din;

input reset;

input xclk;

output [15:0] dout0; reg [15:0] dout0;
output [15:0] doutl; reg [15:0] doutl;

// internal variables
reg [3:0] wordreg;

always @(reset) begin
if (reset)
#1 wordreg = 0;
end

always @(posedge xclk) begin
if (" wordreg[0])
#1 dout0 = din;
else
#1 doutl = din;
end

always @(posedge xclk) begin
if (din[SOP] && wordreg == 0)
#1 wordreg = 1;
else if (wordreg != 0 && wordreg != PACKSIZE-1)
#1 wordreg = wordreg + 1;
else if (wordreg == PACKSIZE-1)
#1 wordrcg = 0;
end

endmodule
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A.12 reqcount.v

// Request Counter
// Revised: April 8, 1993
// Author:  Steve Chamberlin
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#include "thesis.h"

module reqcount (
iclk, // (1 bit) internal chip clock
reset, // (1 bit) resets when high

inc, // (1 bit) increments counter when lngh
next, // (1 bit) decrements counter when high
more // (1 bit) high if there are queued requests

);

// port inputs and outputs
input iclk;

input reset;

input inc;

input next;

output more;

//internal variables
reg [3:0] mycount;

assign more = mycount != 0;

always @(reset) begin
if (reset)
mycount = 0;
end

always @(posedge iclk) begin
if (inc && ~next)
mycount = mycount + 1;
else if ("inc && next)
mycount = mycount — 1;
end

endmodule
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A.13 seldata.v

// Select Packet Info Block
// Revised: April 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module seldata (
iclk, // (1 bit) internal chip clock
ploco, // (2 bits) ploc from input port 0
plocl, // (2 bits) ploc from input port 1
ploc2, // (2 bits) ploc from input port 2
//4x4 add these lines:

//ploc3,
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muxsel, // (2 bits) mux selector
ldout // (4 bits) packet description info

)i

// port inputs and outputs
input iclk;

input [1:0] ploc0;

input [1:0] plocl;

input [1:0] ploc2;

//4x4 add these lines:

//input [1:0] ploc3;

input [1:0] muxsel;

output {3:0] 1dout; reg[3:0] ldout;

//internal variables
wire [3:0] dout;

assign dout[3:2] = muxsel;

assign dout[1] = (plocO[1] & “muxsel{0] & ~muxsel[1]) |
(plocl[l] & muxsel{0] & ~“muxsel[1]) |
(ploc2[1] & ~“muxsei[0] & muxsel[1]);

//4x4 change last term to:

// (ploc3[1] & muxsel[0] & muxsel{1])

assign dout[0] = (ploc0[0] & “muxsel[0] & “muxsel[1]) |
(ploc1{0] & muxsel[0] & ~“muxsel[1]) |
(ploc2[0] & ~“muxsel[0] & muxsel[1]);

//4x4 change last term to:

// (ploc3[0] & muxsel[0] & muxsel[1])

always @(dout or iclk) begin
if (“iclk)
#1 ldout = dout;
end

endmodule
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A.14 selport.v

// Selects which port packet should be sent to
// Revised: April 7, 1993

// Author:  Steve Chamberlin

#include "thesis.h"

module selport(

first,  // (1 bit) high during first word of a new packet

xclk, // (1 bit) clock for this input port
iclk, // (1 bit) internal clock

availo, // (1 bit) buffer 0 available
availl, // (1 bit) buffer 1 available
avail2, // (1 bit) buffer 2 available
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avail3, // (1 bit) buffer 3 available

reset, // (1 bit) resets when high

ackreq, // (OUTPORTS bits) ack of request from each output port
din, // (16 bits) incoming packet data

rinf, // (8 bits) routing information control

)i

// port inputs and outputs
input first;

input xclk;

input iclk;

input avaii0;

input availl;

input avail2;

input avail3;

input reset;

input [OUTPORTS—1:0] ackreg;
input [15:0] din;

input [7:0] rinf;

output [OUTPORTS—1:0] request;

-

request // (OUTPORTS bits) requests to each output port, synced to iclk

reg [1:0] portreg;
reg [OUTPORTS—1:0] xreq;

sync u0 (xreq[0},iclk,request[0]);
sync ul (xreq[1},iclk,request[1]);
sync u2 (xreq[2],iclk,request(2]);
//4x4 add these lines:

//sync u3 (xreq[3],iclk,request[3]);

always @(reset) begin
if (reset) begin

#1 xreq = 0;
portreg = 0;
end

end

always @(posedge xclk) begin
if (first && (avail0 | availl | avail2 | avail3)) begin
// don’t make a request if packet can’t be stored in a buffer
#1 portreg[0] = din(rinf[3:0]};
portreg[1l] = din[rinf[7:4]];
//may need to wait a clock cycle here?
xreq[portreg] = 1; // this will die if portreg == 3 when using 3x3
end
end

always @(ackreq) begin
if (ackreq != 0)
#1 xreq = 0;
end

endmodule
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A.15 selreq.v

// Select Request Block
// Revised: April 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module selreq (
iclk, // (1 bit) internal chip clock

requests, // (INPORTS bits) request lines fr. * % ports

reset, // (1 bit) resets when high

ackreqs, // (INPORTS bits) acknowledgenients of requests

inc, // (1 bit) increments count of queued requests
muxsel // (2 bits) selects ploc info from proper input port
)
// port inputs and outputs
input iclk;

input [INPORTS—1:0] requests;

input reset;

output [INPORTS—1:0] ackregs; reg [INPORTS-1:0] ackregs;
output inc; reg inc;

output [1:0] muxsel; reg [1:0] muxsel;

//internal variables

always @(reset) begin
if (reset) begin

ackreqs = 0;
inc = 0;
end

end

always @(posedge iclk) begin

if (requests[0] && ~ackreqs[0]) begin
#1 ackreqs(0] = 1;
inc = 1;
muxsel = 0;

end

else if (requests[1] && ~ackregs(1]) begin
#1 ackeeqgs[l] = 1;

inc = 1;
muxsel = 1;
end

else if (requests[2] && “ackregs[2]) begin
#1 ackregs[2] = 1;

inc = 1;
muxsel = 2;
end

//4x4 add these lines:
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/ [else if (requests[3] && ~ackreqs(3]) begin
/] #1 ackreqs[3] = 1;

// ime=1;

// muxsel = 3;

//end

else #1 inc = 0;
end

always @(posedge iclk) begin

if (ackreqs[0] && ~requests[0])
#1 ackreqs[0] = 0;

if (ackreqs(l] && ~“requests[1])
#1 ackreqs(1] = 0;

if (ac.reqs[2] && “requests[2])
#1 ackregs[2] = 0;

//4x4 add these lines:

/ /if (ackreqs([3] && ~requests[3])

/] #1 ackregs[3] = 0;

end

endmodule
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A.16 sfifo.v

// SFIFO

// Revised: April 8, 1993

// Author:  Steve Chamberlin
#include "thesis.h"

module sfifo (

write, // (BUFFERS*INPORTS+1 bits) write lines for fifo locations
read, // (BUFFERS*INPORTS+1 bits) read lines for fifo locations

din, // (4 bits) data input
dout // (4 bits) data output

);

//port inputs and outputs

input [3:0] din;

input [BUFFERS*INPORTS:0] write;
input [BUFFERS*INPORTS:0] read;
output [3:0] dout;

sreg u0 (din,dout,write[0],read[0]);
sreg ul (din,dout,write[1],read([1]);
sreg u2 (din,dout,write[2],read[2]);
sreg u3 (din,dout,write[3],read[3]);
sreg u4 (din,dout,write[4],read[4]);
sreg ub (din,dout,write[5),read[5]);
sreg u6 (din,dout,write[6],read[6]);
sreg u7 (din,dout,write[7],read[7]);
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steg u8 (din,dout,write[8],read|8]);

sreg u9 (din,dout,write[9],zead[9]);

steg ul0 (din,dout,write[10],read(10]);
sreg ull (din,dout,write[11],read(11]);
sreg ul2 (din,dout,write12],read[12]);
//4x4 add these lines:

//steg u13 (din,dout,write[13],read{i3});
/ [sreg ul4 (din,dout,write[14],read[14]);
//sreg u1b (din,dout,write[15],read(15]);
//sreg ul6 (din,dout,write[16],read[16]);

endmodule
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A.17 sreg.v

// 4-bit custom word register
// Revised: April 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

modaule sreg ( :
din, // (4 bit) data input
dout, // (4 bit) data out
write, // (1 bit) write strobe, active high

)i

//port inputs and outputs
input {3:0] din;

input write;

input read;

output [3:0] dout; reg [3:0] dout;

//internal registers and variables
reg [3:0] the_data;

always @(read or the_data) begin
if (read) #1 dout = the_data;
else #1 dout = 4’bzzzz;

end

aluvays @(write or din) begin
it (write)
the_data = din;
end

endmodule

read // (1 bit) wordreg drives dout when read is high, 2 otherwise
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A.18 sync.v

// synchronizer
// Revised: March 9, 1993
// Author:  Steve Chamberlin

#include "thesis.h"

module sync(

din, // (1 bit) data in
newclk, // (1 bit) clock to synchronize to

dout // (1 bit) data out 10
)i
// port inputs and outputs
input din;
input neweclk;
output dout; reg dout;
// internal
reg a;
20
always @(posedge newclk) begin
dout = a;
#1 a = din;
end
endmodule
A.19 tcontroller.v
// Transmitter Controller
// Revised: April 8, 1993
// Author:  Steve Chamberlin
#include "thesis.h"
module tcontroller (
iclk, // (1 bit) internal chip clock
reset, // (1 bii) resets when high
more, // (1 bit) high when there are packets mywaiting to be sent 10
mywait, // (1 bit) low if receiver can accept more packets
pacinfo, // (4 bits) port and buffer number of packet
din0, // (16 bits) data input from port0
dinl, // (16 bits) data input from portl
din2, // (16 bits) data input from port2
//4x4 add these lines:
//din3,
next, // (1 bit) high when transmitter wants info on next packet
start, // (BUFFERS*INPORTS bits) start lines for input buffers
fmuxsel, // (2 bits) mux select for fmem block 20
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dout, // (16 bits) data out to network
clkout  // (1 bit) clk out to network

)i

// port inputs and outputs

input iclk;

input reset;

input more;

input mywait;

input [3:0] pacinfo;

input [15:0] din0;

input [15:0] din1;

input [15:0] din2;

//4x4 add these lines:

//input [15:0] din3;

output next; reg next;

output [BUFFERS*INPORTS-1:0] start; reg [BUFFERS*INPORTS—1:0] start;
output [1:0] fmuxsel; reg [1:0] fmuxsel;
output [15:0] dout; reg [15:0] dout;
output clkout;

// internal variables
reg [3:0] wordreg;
reg sending;

reg [1:0] portmux;
reg [15:0] mout;

assign clkout = “iclk;
always @(reset) begin

if (reset) begin
wordreg = 0;

start = 0;
next = 0;
fmuxsel = 0;
dout = 0;
sending = 0;
end
end

always @(mout or wordreg) begin
if (wordreg != 0)
#1 dout = mout;
else
#1 dout = 0;
end

always @(dir0 or dinl or din2 or portmux) begin
//4x4 change to:
//always @(din0 or dinl or din2 or din3 or portmux) begin
case (portmux)
0: mout = din0;
1: mout = dinl;
2: mout = din2;
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3: mout = din2;

//4x4 change to:
//3: mout = din3;
endcase
end
80
always @(posedge iclk) begin
if (more && ~“mywait && ~sending) begin
#1 sending = 1;
fmuxsel = pacinfo[1:0];
portmux = pacinfo[3:2];
wordreg = 1;
start[(pacinfo[3:2]*4)+pacinfo[1:0]] = 1;
next = 1;
end
else if (sending && wordreg != PACKSIZE—1) begin 20
next = 0;
start[(pacinfo[3:2]*4)+pacinfo[1:0]] = 0;
wordreg = wordreg + 1;
end
else if (wordreg == PACKSIZE—1) begin
wordreg = wordreg + 1;
sending = 0;
end
else if (wordreg == PACKSIZE)
wordreg = 0; 100
end
endmodule

A.20 thesis.h

#+define INPORTS 3
#define OUTPORTS 3

/* INPORTS and OUTPORTS cannot be changed without also modifying the code.
There are comments in the code ezplaining what changes need to be made to
use jz§ rather than 3z3. Other sizes can also be made, making changes in
the code analagous to those for fz4. */

#define BUFFERS 4 /* number of packet buffers per input port. currently,
changing this parameter will cause everything to 10
break. To get things working with BUFFERS != |,
significant changes to the code are necessary. %/
#define PACKSIZE 12 /* number of 16—bit words in a packet. some regs will
have to de resized if PACKSIZE is made > 15 */
#tdefine SOP 15 / * start of packet bit */

A.21 wordreg.v
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// 16—bit custom word register
// Revised: March 8, 1993
// Author:  Steve Chamberlin

#include "thesis.h"
module wordreg (

din, // (16 bit) data input
dout, // (16 bit) data out

select, // (1 bit) selects this buffer for writing if high

write, // (1 bit) write strobe, active high

)

//port inputs and outputs

input [15:0] din;

input select;

input write;

input read;

output [15:0] dout; reg [15:0] dout;

read // (1 bit) wordreg drives dout when read is high, z otherwise

//internal registers and variables
reg [15:0] the_data;

always @(read or the_data) begin

if (read) #1 dout = the_data;

else #1 dout = 16’bzzzzzz222222222Z;
end

always Q(select or write or din) begin
if (select && write) begin

the_data = din;
end

end

endmodule
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