A RULE-BASED MEDIATOR IMPLEMENTATION FOR
SOLVING SEMANTIC CONFLICTS IN SQL

by
Francisco J. Madero

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN
PARTIAL FULFILLME. T CF THE REQUIREMENTS
FOR THE DEGREE OF

EACHELOR OF SCIENCE IN ELECTRICAL SCIENCE AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

s

October 1992 - . * . . - .

Copyright © Francisco J. Madero, 1992. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis in whole or in part.

Signature of Author y . S
Department of Electrical Engineering and Computer Science
October 9, 1992

Cextified by v

M Dr. Michael Siegel
Thesis Supervisor
Accepted by Ny)
e Professor Leonard A. Gould
Chairman, Department Cornmittee on Undergraduate Theses

ARCHIvE
MASSACHUSETTS INSTITUTE
OF TErUN OGY

JUL 26 1933

LISRARIES

A RULE-BASED MEDIATOR IMPLEMENTATION FOR
JLVING SEMANTIC CONFLICTS IN S5QL

by

Francisco J. Madero

Submitted to the Department of Electrical Engineering and Computer Science on
October 9, 1992 in partial fulfillment of the requirements for the degree of
Bachelor of Science in Electrical Science and Engineering.

Abstract

The implementation of a rule-based algorithm for avoiding semantic conflicts in SQL is
discussed. It allows owners of databases and users of application programs that query those
databases to define the semantic context of the data that they respectively export or import.
They do so by writing a set of rules from which the value of the meta-data that modify the
non-primitive attributes can be derived. A Subsumption Algorithm, compares the
application and database sets of rules, and creates a set of tables that store information
regarding when the rules conflict or match. Then, a Query Processing Algorithm uses the
tables created by the Subsumption Algorithm to make sure that a query made by the
application to the database won’t return results in the wrong context.

Thesis Supervisor: Dr. Michael Siegel
Title: Research Associate, Sloan School of Management

The Libraries
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Institute Archives and Special Collections
Room 14N-118
1617) 253-5688

This is the most complete text of the thesis
available. The following page(s) were not
correctly copied in the copy of the thesis

deposited in the Institute Archives by the
author:

Table of Contents

Abstract
Dedication
Table of Contents

PART L. INTRODUCTION

PART II. THE CONTEXT MEDIATOR

PART IIY. THE SUBSUMPTION ALGORITHM
PART 1IV. THE QUERY PROCESSOR

PART V. CONCLUSION AND FUTURE RESEARCH
PART VI. Appendix 1

PART VII. Appendix 2

10
26
64
82

84

PART I

INTRODUTION

Distributed computer systems have become very popular in recent times. The invention of
the personal computer, along with advances in networking technology and operating
systems have produced a dramatic increase in the number of computer networks. These new
sets of interconnected computers provide their users with many novel ways of work and
communication. Among the most important of these is the possibility of sharing huge
amounts of data. By connecting his or her computer to a network, any user can -if given the
necessary permissions- access data from many different sources. This increased ability to

share data is already significantly influencing many organizations.

There is, however, a problem that arises when one tries to use data created and maintained
by other persons: one might not know very well what that data means. For example, if
someone finds out from a database in a network that the price for certain product is 100,
that person might not be sure what 100 means. Are they US dollars or deutsche marks? Are
taxes included? Is it today’s or an obsolete price?, etc. The problem arises because there is
a significant amount of information about the price, beyond its magnitude of 100, that is
unknown by the user. This information is called the context of the price, and it is
indispensable to understand what the price means. When someone misunderstands some

data because of lack of knowledge of its context, a semantic conflict occurs.

In general, semantic conflicts arise because the person who creates and maintains a

database (in general its owner) always knows, but does not makes explicit the context of the

data that he or she stores. In the time before computer networks facilitated the sharing of
data, semantic conflicts were not very important because most of the time people only used

their own databases. But today, when anyone can access hundreds of data sources, each

-6-
with different context specifications which are not made explicit, semantic conflicts are
widespread. There is a lot of interest in government and industry in finding ways to avoid
these misunderstandings. In particular, there is some research being done at MIT and other
places to find ways in which semantic conflicts ca.. be detected automatically by a
computer, saving its user the effort of checking that every piece of information that he or

she imports has the correct context.

This thesis presents thc implementation of a source-receiver system, in which an
application retrieves data from database without incurring in semantic conflicts. This is
achieved using a context mediation method proposed by Madnick and Siegel [SM’91], in
which both the application and the database make their context explicit, and all possible
semantic conflicts are detected before the application queries the database. The conflicts are
found by executing a Subsumption Algorithm that compares the application’s and the
database’s context definitions. Figure 1 shows a simple sketch of the elements of the

system.

At its highest level, the systern consists of an application and a database. The application
can be any program that retrieves information from the database; and the database can have
any desired schema. For example, assume that the database is a financial database whose

schema contains the following four attributes:
Company_Name, Exchange, Instrument_Type and Trade_Price

A sample tuple from this database could contain the values 'IBM’, 'nyse’, ’equity’, and 30,

meaning that IBM’s equities were traded in the New York Stock Exchange at a price of 30.

The next level of the system (again shown in Figure 1) consists of Context Rules for both
the application and the database. These are two sets of instructions for determining the
context (meaning) of the attributes whose meaning can be confusing. For example, in the

sample database only the value of the Trade_Price attribute is ambiguous: What does a

Application

N\

Context
rules

Subsumption
Aigorithm

Database

/

Context
rules

yes_table

no_table

bad

query
processing
algorithm
result

< Intermediate query

Figure 1 Simple System Diagram

-7-
price of 30 meuns? Today’s average price in US dollars? Yesterday’s closing price in

Deutsche marks?

To write a rule about an attribute, a set of meta-attributes is defined. Their values determine
the context of the attribute. For example, assume that the context of Trade_Price is
determined by the value of the meta-attributes Trade_Price_Currency, and
Trade Price_Status. If someone knows that for a certain Trade_Price, its
Trade_Price_Currency is 'USdollars’, and its Trade_Price_Status is 'latest_closing_price’,
then that person knows without ambiguity what the price means: The price is the
instrument’s price in US dollars when the trading closed for the last time. Suppose that in

the sample database, the application’s context rules contain only one rule:
i) If Exchange = 'nyse’ then Currency = USdollars.

meaning that the application will assume that Currency of the Trade_Piice of everything
traded in New York is in dollars. Also, suppose that the databasz's context rules contain the

following rule:
i) If Instrument_Type = 'equity’ then Currency = ’pesetas’.
meaning that in the database, the Trade_Price of all equities is in Spanish pesetas.

The third level of the system in Figure 1 is a Subsumption Algorithm that compares the
application’s and database’s context rules and looks for conflicts between them. (The
Subsumption Algorithm stores its results in three tables called the yes_table, no_table, and
bad table, shown in Figure 1. They are explained in detail in the next section.) For example,
given the previous two context rules, the subsumption finds that there would be a semantic
conflict if the application tried to get a Trade_Price from the database where Exchange =
'nyse’ and Instrument_Type = ’equity’. The conflict would happen because the application
would be expecting a Trade_Price in USdollars, but the database would provide a

Trade_Price in pesetas.

-8-

The last level of the system in Figure 1 is a Query Processing Algorithm that makes sure
that no query made by the application to the database will return results in the wrong
semantic context, before the query is made. To do this, the query processing algorithm uses
the result; of the subsumption algorithm. For example, if the application wants to make the

following query to the database:

select Trade_Price

where Exchange = 'madrid’

the query processiny aigorithm check that the query won’t return any semantically incorrect
value, before allowing the application to perform the query. In this case, the query
processing algorithm finds out that the query can be performed because semautic conflicts
can only occur when Exchange = 'nyse’ and Instrument_Type = ’equity’, but not when
Exchange = 'madrid’. Therefore, the Query Processing Algorithm allows the application to
perform the query on the database. On the cther hand, if the application wants to make the

following query:
select Trade_Price where Exchange = 'nyse’

then the query processor discovers that there could be a semantic conflict if the database
contained a tuple with Exchange = ’'nyse’ and Instrument_Type = ’equity’. Therefore,
before allowing the application to perform the query on the database, the query processing
algorithm makes sure that the database does not contain any tuple that satisfies those
conditions. It does so by performing one or more intermediate queries, (shown in Figure 1)
to the database. If the intermediate queries find any tuple in the database that would cause
semantic conflicts, then Query Processing Algorithm does not allow the application to
perform the query. If, on the other hand, none of the intermediate queries retum
semantically incorrect results, the Query Processing Algorithm realizes that the query won't
return semantically incorrect results, and it allows the application to proceed querying the

database.

9.

The method just described prevents the application from retrieving informaticii from the
database whose meaning would be misunderstood. Therefore, semantic conflicts are
eliminated. Moreover, this is achieved in a very general form: the application user and
database owner only have to write their context rules, and the system automatically does the
rest of the work. This is much more efficient than the current situation in which the user of
the application has to personally check that the data retrieved is in the correct context, or in
which no checks are perforimed at all. Moreover, it provides the base in which to build
future systems that would automatically fix semantic conflicts (by automatically changirg a
price from pesetas to dollars, for example), without making the user of the application write

a special purpose conversion algorithm for every database that he or she wants to access.

The following sections will present the system in more detail, and discuss its

implementation.

-10-

PART II

THE CONTEXT MEDIATOR

An intuitive explanation of what the system does has already beer. presented in the
Introduction. This section gives a more rigorous description of how the context information
and queries are stored and manipulated by the system. The emphasis is on explaining in
greater detail what the Subsumption and Query Processing Algorithms do, without dwelling
on how they are implemented. The two sections after this will discuss the algorithms’
implementations, referring constantly to the code in the Appendixes. The Subsumption and

Query Processing algorithms were designed in part by Andrew Leung.

STEP 1: Building the Rules Files

As explained in the Introduction, the Context Mediator’s work starts by receiving two sets
of rules: one from the user and one from the database. In the implementation these rules are
written into files with specified format. These files of are parsed by a parser written by Rith
Peou into rules tables. For example, assume that the database’s schema contains the

following attributes:

In general, semantic conflicts arise because the person who creates and maintains a

database (in general its owner) always knows, but does not makes explicit the context of the

data that he or she stores. In the time before computer networks facilitated the sharing of
data, semantic conflicts were not very important because most of the time people only used
their own databases. But today, when anyone can access hundreds of data sources, each
with different context specifications which are not made explicit, semantic conflicts are

widespread. There is a lot of interest in government and industry in finding ways to avoid

-11-

these misunderstandings. In particular, there is some research being done at MIT and other
places to find ways in which semantic conflicts can be detected automatically by a
computer, saving its user the effort of checking that every piece of information that he or

she imports has the correct context.

This thesis presents the implementation of a source-receiver system, in which an
application retrieves data from database without incurring in semantic conflicts. This is
achieved using a context mediation method proposed by Madnick and Siegel [SM 91], in
which both the application and the database make their context explicit, and all possible
semantic conflicts are detected before the application queries the database. The conflicts are
found by exe.uting a Subsumption Algorithm that compares the application’s and the
database’s context definitions. Other useful references are [SSR a 92}, and [SSR b 92].

Figure 1 shows a simple sketch of the elements of the system.

At its highest level, the system consists of an application and a database. The application
can be any program that retrieves information from the database; and the database can have
any desired schema. For example, assume that the database is a financial database whose

schema contains the following four attributes:

Company_Name, Exchange, Instrument_Type and Trade_Price
And, as in the Introduction, only Trade_Price is the only attribute whose meaning can be
ambiguous. An example of a file of rules for deriving the application’s context is shown in

Figure 1.

It is important to point out the structure of this file. First it starts with the keyword
APPLICATION which specifies that the file refers to the rules for the user (the application)
who wants data from the database. Otherwise, i< it referred to the rules for the source (the
database,) it would start with the keyword SOURCE. The keyword is followed by 4
statements: a define sem_domain statement, a define assign_domain
statement, and two . id_rule statements. Each of the statements ends with the keyword

end.

-12-
APPLICATION

define_sem domain Trade_ Price

from db_semantics

as { Trade Price_Status, Currency }
end

define assign_domain Trade Price
from db_semantics

as { Instrument Type, Exchange }
end

add rule Trade Price

if Instrument Type = ’'equity’ and Exchange = ’'madrid’

then Trade Price_Status = 'latest nominal price’ and
Currency = 'pesetas’

end

add_rule Trade Price
if Exchange = ’'nyse’

then Trade Price_Status = "latest _trade price’ and
Currency = ’'US dollars’
end

Figure 1. Sample application rules file

All the statements are followed oy the name of an attribute in the data base; in this case, all
the names are Trade_Price. These are the attributes whose meaning can be ar:biguous, and
therefore need their context defined. They are called non_primitive attributes. Non-
primitive attributes have modifiers called meta-attributes, which appear in the
define_sem_domain statement. In this case, the meta-attributes of Trade Price are

Trade_Price_Status and Currency.

The statement define_assign_domain is used to define the set of attributes from which the
values of the meta-attributes of Trade_Price are derived. In this case those attributes are:

Instrument_Type and Exchange.

-13-
Finally the last twe add_rule statements, are used to define the ruies for deriving the context
oi Trade_Price. Note that the rules are if-then statements. No ¢lse statement is allowed. In
the if-part (before the then), only attributes from the define_assign_domain statement are
allowed. In the then-pari, only attributes from the define_sem_domain (the meta-
attributes) are allowed. Note that ands are allowed both in the if-part and the then-part, but

ors are not permitted in either.

Observe also that in the add_rule statements shown, the conditions in the if-part ar.d then-
part only contain the operation =. However, != is also allowed, and >, <, >=, and <= are

permitted for those conditions whose values are floating por:ts. In other words, it would be

fine if the first rule had said;

if Instrument Type != equity’ and Exchange != ’'madrid’

or if another mle said:

if Trade_ Price > 5.03e2

STEP 2: Parsing the Rules Files

The ’human readable’ files of rules described a above are parsed into 'machine readable’
tables by rule_parser. The parser builds two tables: an appl_rules table, that contains the
rules from the APPLICATION file, and a db_rules table, that contains the SOURCE rules.

Figure 2 shows the appl_rules table that results from parsing the file shown in Figure 1.

-14-

APPL_RULES

r_number atr_name arg_name operation value a_domain mark
1 Trade_Price Tnstrument_Type = equity A 0

1 Trade_Price Exchange = madrid A 0

1 Trade Price Trade_ Price_Status = latest_nominal S 0

1 Trade_Price Currency = pesetas S 0

2 Trade_Price Exchange = nyse A 0

2 Trade_Price Trade_Price_Status = latest_trude S 0

2 Trade_Price Currency = USdollars S 0

Figure 2. appl_rules table created after parsing the rules file
from Figure 1.
The appl_rules table shown in Figure 2 separates the different rules by having different
values for the r_number field. For example, in Figure 2, all the tuples with r_number = 1
refer to the first add_rule statement of the rules file, and the tuples with r_number = 2 refer
to the second add_rule statemeni. Within a same add_rule statement, the if-part is separated
from the then-part by the domain_type field. Tuples with domain_type = A come from the

if-pazt, and tuples with domain_type = S come from the then-part.

The rest of the fields contain the conditions specified in the rules. To find out the condition
specified in the if-part of rule 1, the tuples with r_number = 1 and domain_type = A are
ANDed together, to obtain:

Instrument Type = ’‘equity’ AND Exchange = ’‘madrid’
just as in the original rules file. In this way, it is straightforward to reconstruct the rules

from the tables.

STEP 3: Performing the Subsumption Algorithm

The Subsumption Program compares the rules from the application and source, to find out

-15-
under which conditions queries from the application to the database will return results with
the correct semantic context, and under which conditions they won’t. The idea of the
Subsumption Algorit. .. is to perform the rules comparison only once and store their
results, so that they can be used by future queries from the application to the database. This

should speed up query processing significantly.

The Subsumption Algorithm produces two tables under which these conditions are stored:
the no_table and the yes table. It also produces a bad table where the
non_primitive attributes that may cause semantic conflicts are stored. Figure 3 contains a
rules file for a source, and Figure 4 contains the db_tabl. that results from parsing it.
Figure 5 shows the results returned by the Subsumption Algorithm after comparing the

rules in Figure 4 with those shown in Figure 2.

The Subsumption Algorithm performs two steps on every combination of rules from the

application and database. First it checks whether their if conditions intersect or conflict. If

they intersect, it stores their intersection in either the yes_table or the no_table, depending

on whether the then conditions of the database are equal-or-subset of the 1en conditions of

the application. This will become clear with the current example.

SOURCE

define_ sem_ domain Trade Price

from db_semantics

as { Trade Price_Status, Currency }
end

define assign_domain Trade Price
from db_semantics

as { Instrument Type, Exchange }
end

add_rule Trade Price

if Instrument Type = ’‘equity’ and Exchange = ’'madrid’

then Trade Price_Status = ’'latest nominal’ and Currency =
'pesetas’

end

add rule Trade Price

if Instrument Type = ’'equity’ and Exchange = 'nyse’

then Trade Price_Status = 'latest trade’ and Currency =
"USdollars’

end

add rule Trade Price

if Instrument_ Type = ’future’

then Trade Price Status = ’latest_closing’ and Currency =
"USdollars’

Figure 3. Sample source rules file

-17-

DB_RULES

r_number atr_name arg_name operation value a_domain mark
1 Trade_Price Instrument_Type = equity A 0
1 Trade_Price Exchange = madrid A 0
1 Trade_Price Trade_Price_Status = latest_nominal S 0
1 Trade_Price Currency = pesetas S 0
2 Trade_Price Instrument_Type = equity A 0
2 Trade_Price Exchange = nyse A 0
2 Trade_Price Trade_Price_Status = latest_trade S 0
2 Trade_Price Currency = USdollars S 0
3 Trade_Price Instrument_Type = future A 0
3 Trade_Price Trade_Price_Status = latest_closing S 0
3 Trade_Price Currency = USdollars S 0

Figure 4. db_rules table created after parsing the rules file
shown in Figure 3.

Comparing the If Conditions
The if-conditions of rules 2 from the application and 3 from the data source don’t conflict.
This can be seen by rebuilding the if conditions from the tables in Figures 2 and 4, as

explained in the previous step. These conditions are:

APPLICATION: Exchange = 'nyse’
SOURCE: Instrument_Type = 'futurs’

Their intersection (the condition that satisfies both conditions) is:
Exchange = 'nyse’ AND Instrument_Type = ’future’

This intersection is stored in either the yes_table or the no_table, depending on the result of

-18-
comparing the rules’ then-conditions. Another pair of rules whose if-conditions intersect

are rules 1 and 1 from the application and source:

APPLICATION: Exchange = 'madrid’ AND Instrument_Type = equity’

SOURCE: Exchange = 'madrid’ AND Instrument_Type = ’equity’

In this case finding the intersection is trivial because both cenditions are identical. Again,
the interaction of the conditions will be stored in either the yes_table or no_table,

depending on the next step.

A pair of rules whose if-conditions conflict are rules 2 and 1 from the application and

database:

APPLICATION: Exchange = 'nyse’

SOURCE: Exchange = 'madrid’ AND Instrument_Type = ’equity’

In this case there is no tuple whose Exchange value can satisfy both conditions above.

When the if-parts of two rules conflict, their then-parts are not compared.

Comparing the Then Conditions

Once the interseciion of the if-conditions has been found, it is necessary to know if the
application’s then-condition is automatically satisfied if the source’s then-condition is
satisfied. In other words we want to know if the source’s then-condition is equal or subset

of the application’s then-condition. If it is, then it is certain that the source will provide data

in the correct context to the application if the intersection of the if conditions is satisfied.

For example, see what happens when the then-conditions of rules 1 and 1, and the then-
conditions of rules 2 and 3 are compared. (Remember that in the previous step it was found

that for either of these combinations of rules their if-conditions intersect).

It is not hard to see that the then-conditions of source rule 3 NOT equal-or-subset of the

then-conditions of application rule 2:

-19-
APPLICATION: Trade_Price_Status = 'latest_trade’

AND Currency = ’‘USdollar’
SOVRCE: Trade_Price_Status = ’latest_closing’

AND Currency = ’‘USdollars
In other words, satisfying the source’s then-conditions means that the application’s then
conditions are not necessarily satisfied. The attribute that causes the conflict is Trade_Price.
Because of this, the intersection these rules’ if-conditions that was found in the previous

part is stored in the no_table, and the attribute Trade_Price is stored in the bad table.

On the other hand, the then-condition of source rule 1 is equal-or-subset of the then-

condition of application rule 1:

APPLICATION: Trade_Price_status = ’latest nominal_price’
AND Currency = ’'pesetas’
SOURCE: Trade Price status = ’'latest nominal price’

AND Currency = ’'pesetas’

Satisfying the source’s then-conditions automatically satisfies the application’s then-
conditions. Because of this, the intersection of their if-conditions that was found in the
previous part is stored in the yes_table. Also the then-condition of rule 2 in the database is
equal-or-subset of the then condition of application rule 1. Nothing is stored in the bad table
in these two cases. Figure 5 shows the yes_table, no_table, and bad produced by subsuming
these two sets of rules. Those tables are used by the query processing algorithm to make
sure that the queries made by the application to the database won’t return semantically

incorrect results.

YES_TABLE

r_number s_number atr_name

1 1 Trade_Price
1 1 Trade_Price
2 2 Trade_Price
2 2 Trade_Price
NO_TABLE

r_number s_number atr_name

2 3 Trade_Price
2 3 Trade_Price
BAD

r_number s_number np_attr

2 3 Trade_Price

arg_name
Instrument_Type
Exchange
Instrument_Type

Exchange

arg_name
Exchange

Instrument_Type

operation

operation

value
equity
madrid
equity

nyse

value
nyse

future

Figure 5. Tables produced by subsuming the tables shown in

Figures 2 and 4

STEP 4: Building and Parsing Queries

As in the rules case, queries are written into "human readable’ files which are then parsed
into 'machine readable’ query tables by a query-parser. The query-parser was written by
Rith Peou. The query processing algorithm uses the query tables, along with the yes_table,
no_table and bad tables retumned by the Subsumption Algorithm, to make sure that the

query won'’t return semantically incorrect results from the database. A sample query file is

shown in Figure 6.

21
select TradePrice
from db_table

where Exchange = ’'nyse’ ;

Figure 6 Sample query

The things to note from the query in Figure 6 is that it assumes that the database table is
called db_table, and that the query ends with a semicolon. More than one attribute could be
in the select clause, and the where clause can contain ORs in addition to the ANDs shown.
When the query_parser is given as input the query shown in Figure 6, it produces the 3

tables (called a_list, t_list and c_list) shown in Figure 7.

A_LIST
attrib

TradePrice

T_LIST
tabl
db_table

C_LIST
‘_number attr_name operation value mark
1 Exchange = nyse 0

Figure 7 Tables produced by the query_parser after processing
the file shown in Figure 6.

It is easy to see by comparing Figures 6 and 7 that the attributes in the select list of the

query (in this case only Trade_Price) are stored in the a_list table. The name of the database

22-
is stored in the t_list table. And the conditions in the where clause of the query are stored in
the c_list table. Just as in the case with the rules tables, and the yes_table and no_table, all
conditions in the c_list table with the same r_number are ANDed together. By observing

the c_list in Figure 7, it is easy to se¢ that the where condition in the query was:
where Exchange = ’'nyse’

If there had been an OR in the where clause of the query, then the c_list would have some
tuples with r_number = 2. The tables shown in Figures 5 and 7 are used by the query

processing algorithm to decide if the query can be performed by the application.

STEP 5: The Query Processing Algorithm

The purpose of the query processing algorithm is to decide if the application is allowed or
not to perform the query on the database. To decide this, the algorithm checks if the query
would return tuples in a context different from the one required by the application. If this
found to happen, then the application does not receive permission to execute the quer,
Otherwise it does. The query processing algorithm performs two separate steps to check for

semantic inconsistencies:
i) First it checks that the query’s where clause is in the correct context.

ii) Second it checks that, if given the conditions in the where clause, the query does not

retum any attribute from the selec. clause that is in the wrong context.

For example, for the query shown in Figure 6, the part that checks the where clause would
look in the c_table for any attribute that is also in the bad table. As can be seen in Figure 5,
the bad table contains only the Trade_Price attribute; and as can be seen in Figure 7, the
c_list table only contains the Exchange attribute. Therefore, no attribute is both in the
where clause and in the bad table. Because of this, there can be no misunderstanding
between the application and the database when deciding what the where clause means. The

query processing algorithm then proceeds to check the select list.

-23-

In this part, the query processing algorithm would look for an attribute that is in both the
select clause and in the bad table. In our example, Trade_Price is in both tables. That means
that there is the possibility that the query could return a Trade_Price result in the wrong
context. To check if this happens, the query processor has to find out if the database
includes a tuple that satisfies the queries where conditions and the conditions in the

no_table. For this, the query processor performs the following steps.

First, it copies the where conditions into the ’query_conditions’ table, and it copies the
relevant conditions from the no_table into the 'no_conditions’ table. Figure 8 shows these
tables. Note that these two new tables have the same schema than the appl_rules and
db_rules tables used in the Subsumption Algorithm, but different names. The reason for this
is simple: it is necessary to find the intersection of the where clause and the conditions in
the no_table, to see¢ if a tuple in the database can satisfy both at the same time. For this, it is

necessary to perform the part if the subsumption algorithm that finds the intersection of the

if-clauses of two sets of rules, using the where conditions and the conditions in the no_table

as if they were if conditions from rules. This is the reason for which in both the

query_conditions and no_conditions tables, the domain_type field contains the only the
value "A", and for which the r_number, s_number pair from the no_table has been

consolidated into an r_number in the no_conditions table.

QUERY_CONDITIONS
r_number atr_name arg_name operation value a_domain mark

1 Exchange = nyse A 0

NO_CONDITIONS

r_number atr_name arg_name operation value a_domain mark
1 Exchange = nyse A 0
1 Instrument_Type = future A 0

Figure 8. Tables ready to be subsumed produced by the query processing
algorithm from the c_list and no_table tables from Figures 5 and 7.

In this case it is easy to see that the condition in the query_conditions table does not conflict
with the conditions in the no_conditions table. The intersection of these two sets of
conditions is equal to the conditions in the no_conditions table. This intersection is stored

by the Subsumption Algorithm in the ’intermediate’ table, shown in Figuie 9.

INTERMEDIATE

r_number atr_name operation value
1 Exchange = nyse
1 Instrument_Type = future

Figure 9 Intermediate table contains the intersection of the conditions
in the no_conditions and query_conditions tables shown in Figure 8.

The query processing algorithm uses the information in the intermediate table to produce

the intermediate query:

-25-
select TradePrice

from db_table

where Exchange = ’'nyse’

and Instrument Type = ’future’;

Any result returned by this query is certain to be semantically incorrect, because the query’s
where clause intersects (in this case is equal to) the conditions in the no table. Because of
that, if the result of the intermediate query is not null, the query processing algorithm would
not allow the application to execute the query that it wants to do to the database (query
shown in Figure 6). On the other hand, if this intermediate query retumns a null result, that
means that the database does not contain any attribute in the wrong semantic context for the
application, and the application can be permitted to make its query. With this, the procedure

is completed.

What is Next?

This section has presented a scmewhat sophisticated example of applicution and database
rules, and has followed in general detail the operations performed by the subsumption and
query processing algorithms. It has also presented the major storage structures by the
algorithms in the system: the appl_rules, db_rules, yes_table, no_table, bad,
query_conditions, no_conditions and intermediate tables. The next two sections will
respectively discuss the Subsumption Algorithm and the Query Processing Algorithm in
exhaustive detail. Their purpose will be to acquaint the reader to the specific
implementation of the Algorithms, including their code in the Appendixes, as opposite to
the current section and the Introduction which only give a general feel of what the

Algorithms do.

PART III

THE SUBSUMPTION ALGORITHM

In this part, a detailed discussion of the Subsumption Algorithin’s implementation will be
presented. The algorithm’s code, which is included in Appendix I, will be constantly
referenced. The code consists of 4 major procedures, and 6 subsidiary ones. The names of
these major procedures are main, SemanticEqOrSub, CanBeSubsumed, and NotEqStuff.
The subsidiary procedures are called DeclareSubsumptionCursors,
Number_Application_Rules, Number_Source_Rules, compare_strings, print_status, and

str_to_float. The following is a picture of how the procedures call each other:

main

CanBeSubsumed SemanticEqOrSub NotEqStuff Number_Application_Rules
Number_Db_Rules
print_status

str_to_float

must be compiled into an executable. The executable will be called by the user interface
program whenever there is need to subsume two sets of rules that have already been parsed.
The executable won’t work if any of the 10 procedures in the algorithm are copied into
different .ec files, which are then linked and compiled together. The reason is that the
DeclareSubsumptionCursors procedure declares all the cursors that the other procedures
use, and it is an ESQL requirement that a procedure only use cursors which were declared
in the file in which it is written. It is also required that DeclareSubsumptionCursors be the

procedure at the top of the file.

-27-
The next part of this section explains which are the requirements that must be met before
calling the Subsumption Algorithm, and then, the following 4 sections explain the code for

each of the major programs.
1 Requirements for calling the Subsumption Algorithm

The Subsumption Algorithm should be called after the application and database rules have
been parsed into the appl_rules and db_rules tables described in the previous section. There
must be at least one rule in each of the tables. The rules in each table must be numbered
with increasing integer values, starting from 1. In other words, there must always be a
db_rule 1 and an appl_rule 1. There must not be an appl_rule (or db_rule) 3 if there is not
an appl_rule (or db_rule) 2, and so forth. This has important repercussions for a future 'rule
browser’ that might allow the user to delete a rule from a set of rules that have already been
parsed. The hypothetical browser will have to make sure that all pertinent rule numbers are
changed to fit the specification given above.

Another important specification, is that the mark field of all the tuples in the appl_rules and
db_rules tables should be 0 before the subsumption is called. Currently the rules parser

always inserts the value of 0 in such a field when the tables are filled.

As explained in the previous section, the rules in either the application or source can only
have =, !=, >, <, >=, or <= operations. Also, as explained there, the = and != operations
may be followed by any type of string or floating point number, but the other operations

only work with floating point numbers.

The final requirement before calling the Subsumption Algorithm is that the bad, yes, and no
tables shouid be empty. The subsumption algorithm doesn’t clear them before it starts, so

care must be taken of clearing them by the program that calls the subsumption.
2 The main Procedure

The main procedure has two major parts: the first one sets the environment in which the

-28-
Subsumption Algorithm is performed, and the second controls the execution of the
algorithm. This 2 parts will be explained separately. The two parts are clearly marked in the

main procedure’s code in Appendix 1.

PART I. Setting the Environment

The first thing that the main procedure does is to set up the environment in which the

subsumption algorithm can be performed. It does this in two steps:

STEP 1 sets the 'cdrdb’ database as the current database, in which all queries and other

ESQL operations will be performed. This is done by executing the statement:
$database cdrdb;

As explained before, the cdrdb database contains all the tables that are used in the
subsumption and Query Processing Algorithms. When the subsumption is compiled and an
executable file is created, this executable must be put in the same directory that contains the
cdrdb.dbs subdirectory; otherwise the algorithm won’t know how to find the cdrdb
database.

STEP 2 creates all the 20 cursors used in the subsequent parts of the algorithm by calling
the procedure DeclareSubsumptionCursors(). (The reader is referred to the Informix ESQL
manual [Informix 86], as well as [Tare 89] for an explanation of what cursors are.) The
names of the 20 cursors, followed by the names of the procedures that use them are listed
below: curl used by CanBeSubsumed and SemEqualOrSub

cur2 used by CanBeSubsumed

cur_eq used by CanBeSubsumed and SemEqualOrSub

cur _neq used by SemEqualOrSub

cur_gt used by CanBeSubsumed and SemEqualOrSub

cur_lt used by CanBeSubsumed and SemEqualOrSub

cur_get used by CanBeSubsumed

-29-
cur_templ used by CanBeSubsumed
cur_chkl used by CanBeSubsumed
cur_chk2 used by CanBeSubsumed
cursor_final used by CanBeSubsumed

cur3 used by NotEqStuff

cr " 1sed by NotEqStuff
cur5 used by NotEqStuff
cur_Teq used by NotEqStuff
cur_Tgt used by NotEqStuff
cur_TIt used by NotEqStuff

cur_deltemp used by main

cur_applt vsed by Number_Application_Rules

cur_sourcused by Number_Source_Rules

PART II. Controlling the Execution of the Algorithm

When the environment has been set up, the Subsumption Algorithm can start. Its execution
is controlled by PART II of the main procedure. It has 2 steps, which are marked in the
code in Appendix 1.

STEP 1 finds out how many rules there are in the appl_rules and db_rules tables. It does so
by calling the Number_Application_Rules and Number_Db_Rules procedures. These
procedures are so simple that they don’t merit any lengthy discussion. Each scans one of
the rules tables (the appl_rules and db_rules tables respectively) checking the r_number of

the tuples, and returns the largest r_number found.

In STEP 2 the procedure enters a double for loop, in which it compares each of the rules in

the application with each of the rules in the source. For each combination of application

-30-

rule and db rule, the procedure does at least the first two of the following 4 operations,

which are marked in the Appendix:

FIRST, clean the tempoiary table because the procedure CanBeSubsumed requires it. This

is done by executing the command:
$delete from temporary;

SECOND, compare the if-conditions of each pair of rules, and find their intersection. (In
the language of [SM ’91], compares the parts of the rules that deal with assignment
domain). This is done in twe steps: calling the procedure CanBeSubsumed, and then
calling the procedure NotEqStuff, with the r_numbers of the rules that are being compared
as arguments. If both procedures return the value 1, then the if-conditions intersect, and the
intersection is stor=d in the tempcrary table. If, on the other hand, one of them retumns 0, the

if-conditions conflict, and whatever is stored in the temporary table is garbage.

If the if conditions of the rules are found to conflict, nothing else is done with that
combination of rules, and the procedure starts the next loop, in which it compares the next
combination of rules. If the if-conditions don’t conflict, the procedure proceeds to execute

the next two operations.

THIRD, compare the then-conditions of the rules, to find out if the previously found
intersection of the if-conditions should be written into the yes_table, or into the no_table.
This is done by calling the procedure SemanticEqOrSub, which returns 1 if the
then-conditions of the database are equal or subset to the then-condition of the application,
and 0 if they are not. The procedure SemanticEqOrSub also updates the bad table when the
then-conditions of the database rule are not equal or subset of the then-conditions of the

application rule.

FOURTH, copy the contents of the temporary table into the yes_table or no_table,

depending on the result of the previous step. This is done by entering a while loop in which

31-

the contents of the temporary table are extracted tuple by tuple, and copied into one of the
tables. The only thing to note here is that the temporary table does not contain the
r_number, s_number, and mark fields that the yes_table and no_table contain. This is not a
problem because when a tuple is inserted into the yes_table or no_table, the value of
r_number is the number of thc application rule that is being examined; the value of
s_number is the number of the database rule that is being examined; and the value of mark

is always 0.

When STEP II of the main procedure finishes, each combination of rules has been
processed, and the Subsumption Algorithm ends. Now, the yes_table and no_table contain
the information that say under which conditions the database always returns data in the
correct context for the application, and under which conditions it might return data in the
wrong context. The bad table contains the information that relates the name of a non-
primitive attribute that has different semantic context in the application and the database,

with the rule numbers that produced the conflict.
3 The CanBeSubsumed Procedure.

The CanBeSubsumed procedure is called by the main procedure, and receives as arguments
the numbers of two rules: one from the application, and one from the database. It then
proceeds to compare the if-conditions of the application and database rules indexed by these
numbers, and finds out if these conditions conflict or intersect. To do this, the procedure
gets from the appl_rules and the db_rules tables the tuples that correspond to the
if-conditions of these rules. In other words, it gets the tuples from appl_rules and db_rules
whose r_numbers are equal to the arguments with which CanBeSubsumed was called, and
whose a_domain field contains an A. From these tuples, the procedure ignores all those,
whose operation is ! =, which are later processed by the procedure NotEqStuff. Using the
tuples that it keeps, CanBeSubsumed executes a complex algorithm in which it finds the

intersection of the if-conditions of the rule from appl_rules, with the if-condition of the rule

-32-
from db_rules. This intersection is stored in the temporary table. CanBeSubsumed returns

1 when the if-conditions from the two rules compared intersect, and 0 when they conflict.

The CanBeSubsumed algorithm consists of 4 parts, which are performed in strict order, and
marked in the code in Appendix 1. If the procedure detects a conflict between the
if-conditions of the rules when executing any part, it inmediately ends returning the value
of 0 to signal that the two rules don’t have an intersection. Otherwise, if no conflict is
found after part 4 finishes, the procedure retumns 1 to signal that the rules intersect, leaving

the intersection of the rules in the temporary table.

The 4 parts of the CanBeSubsumed procedure will be presented by going through an
example. Suppose that the database had a schema with 5 different fields, which we shall
call attribute_A, attribute_B, attribute_C, attribute_D, attribute_E and attribute_F. Suppose
that only attribute_F is a non_primitive attribute. in other words, only the value of
atiribute_F is complex enough to merit defining some meta-attributes to clarify what
attribute_F means (We don’t give names for the hypothetical meta-attributes of attribute_F
here, but the reader can assume that they exist.) Furthermore, suppose that the attributes in
the assignment_domain of attribute_F are attribute_A, attribute_B, attribute_C, attribute_D,
and attribute_E. In other words, the context of attribute_F is determined by observing the
values of attribute_A, attribute_B, attribute_C, attribute_attribute_D, and attribute_E, and

applying some rules.
For example, suppose that rule 1 of the application said:

add rule attribute F
if attribute A = 50 and attribute B = 60
and attribute C = 1000 and attribute D >= 300

then

(The then part of the rule is irrelevant here). Furthermore, suppose that rule 2 of the

database said:

-33.
add rule attribute F
if attribute A = 50 and attribute B > 30
and attribute B < 100
and attribute D > 100 and attribute D <= 300
and attribute E = 6

then

(Again, the rhen part of the rule is irrelevant here.) Obviously the database also has to have
a rule 1, but we don’t care about it in this example. Immediately after the rules are parsed,
the contents of the appl_rules and db_rules tables that refer to the if-parts of the rules
discussed above are shown in Figure 10. The reader should not have any trouble noting that
in Figure 10 not ALL the contents of the appl_rules and db_rules tables are shown, BUT
only those that are relevant for the example. For example, only the two rules discussed
above are shown, aithough the application could have more than one rule, and the database
at least has to have a rule 1 besides the rule 2 shown. The a_domain field from the tables
has been omitted to save space, because all the tuples shown in Figure 10 would have a
value of A in that field, because they refer to the conditions in the if part of the rules. All the
tuples that refer to the then parts of the rules have been omitted also because they are

irrelevani for the exampie.

Now, suppose that the main procedure requests the CanBeSubsumed procedure to find the

intersection of the if-parts of the rules shown above by calling:

CanBeSubsumed (1, 2)

APPL_RULES

r_number atr_name arg_name operation value mark
1 attribute_F attribute_ A = 50 0

1 attribute_F attribute_ B = 60 0

1 attribute_F attribute C = 1000 0

1 attribute_F attribute_D >= 300 0
DB_RULES

r_number atr_name arg_name operation value mark
2 attribute_F attribute_ A = 50 0

2 attribute_F attribute B > 30 0

2 attribute_F attribute B < 100 0

2 attribute_F attribute D <= 300 0

2 attribute_F attribute_ D > 10C¢ 0

2 attribute_F attribute E = 6 0

Figure 10. Sample appl_rules and db_rules tables

Part I, Making Sure that rules refer to the same non-primitive attribute

The first thing that the CanBeSubsumed checks is if the rules refer to the same non-
primitive attribute. This is done by checking that the atr_name fields of the db_table and
appl_table, indexed by the r_numbers given to CanBeSubsumed, are equal. If this is so, the
CanBeSubsumed proceeds with the next part of the procedure; and if if the rules don’t refer
to the same non-primiti- then CanBeSubsumed immediately terminates returning the
value of 0. In the ex> | above, both rule 1 of the application and rule 2 of the database
refer to the non-primitive attribute attribute_F, so CanBeSubsumed continues to the next

Part.

-3s.

Part I, The

or <= Special C

The second part of the algorithm looks for all the tuples from the relevant part of appl_rules
whose operation is >= or <=. (For the rest of this discussion, the ’relevant part’ of
appl_rules or db_rules, or simply the appl_rules and db_rules tables are what is shown in
Figure 10.) For each of those tuples, it looks in the relevant part of db_rules for a tuple
with the same atr_name, the same value, but 'opposite operation’ (the 'opposite’ of >= is
<= and the other way around.) If it finds such a tuple in db_rules, it is said to 'match’ the

tuple in appl_rules.

If the procedure doesn’t find the match of a tuple, it loops around to look for the 'match’ of
the the next of the tuples retrieved from appl_rules with operation >= or <=. When there are
no more of these tuples left, the procedure goes to Part III. When CanBeSubsumed finds a
tuple in db_rules that matches an appl_rules tuple, it executes the following operations.
First, it sets the mark to 1 in all the tuples of the relevant part of db_rules whose arg_name
is equal to the arg_name of the tuples that matched. Then it copies the arg_name and value

from the tuple in appl_rules to the temporary table, using the operation =.

For example, see what Part I does with the tables shown in Figure 10. First, it looks for

tuple in the relevant part of appl_rules with operation >= or <=, and finds only one:

attribute D >= 300

Then, it looks in db_rules for the match of the tuple just found, and finds it:

attribute D <= 300
Therefore, the CanBeSubsumed executes the following operations, which have been
explained explained above: First, it sets the mark field to 1 in BOTH of the tuples in the

db_rules table, whose atr_name is attribute_D:

attribute D <= 300 AND attribute_ D > 100

Then, it inserts into the temporary table the tuple:

attribute D = 300

After this, Part I finishes because there are no more tuples left in appl_rules with operation
>= or <=. Figure 11 shows the state of the relevant parts of the appl_rules, db_rules, and
temporary tables when Part II terminates. Note that the tuple: attribute D = 300
that was inserted into the temporary table, is the intersection of the interval attribute D
>= 300 from the appl_rules and the interval 100 < attribute D <= 300 from
db_rules. The reasons for which BOTH the tuples in db_rules were marked will become

apparent in the next two parts.

Part Ill, Scanning the appl_rules Tuples

Part I starts with the temporary and db_rules tables as Part II left them. Opposite from
Part II, which only uses the tuples in the relevant part of appl_rules with operations >= or
<=, Part III uses ALL the tuples in the relevant part of appl_rules, except those whose
operation is !=. Part III, treats differently tuples with different values in their operation
field. Depending on the value of the operation, Part III ciassifies tuples into 5 cases: Case 1
for tuples with operation =, Case 2 for operation >, 3 for <, 4 for >=, and 5 for <=. The
code for each of these cases is Clearly in Appendix 1. Continuing the example from Figure
10, it is easy to see that attribute A, attribute B, and attribute C in

appi_rules are Case i, and that attribute D is Case 4.

-37-

APPL_RULES

r_number atr_name arg_name ope ‘ion value mark
1 attribute_F attribute_ A = 50 0

1 attribute_F attribute B = 60 0

1 attribute_F attribute_ C = 1000 0

1 attribute_F attribute_D >= 300 0
DB_RULES

r_number atr_name arg_name operation value mark
2 attribute_F attribute_ A = 50 0

2 attribute_F attribute B > 30 0

2 attribute_F attribute B < 100 0

2 attribute_F attribute D <= 300 1

2 attribute_F attribute D > 100 1

2 attribute_F attribute_ E = 6 0
TEMPORARY

atr_name operation value

attribute D = 300

Figure 11, State of the appl_rules, db_rules and temporary tables
after Part II of CanBeSubsumed finishes. The arrows the tuples in
appl_rules wu_rules that match, from which the tuple in temporary

is derived. Note the marks in db_rules.

-38-
In Part ITI, for every tuple in the relevant part of appl_rules, CanBeSubsumed searches in

the relevant part of db_rules for tuples with the same arg_name. It checks if the db_rules

tuples conflict with the appl_rules tuple, in which case the procedure terminates returning 0
to signal that the if parts of the rules conflict. Otherwise, CanBeSubsume' finds their
intersection and writes it in the temporary table. Then, CanBeSubsumed puts some

necessary marks on the db_rules tuples that will be explained later.

For example, see what the procedure does with the three Case 1 tuples, and then what it

does with the Case 4 one:

Case 1 Tuples
For every tuple that CanBeSubsumed retrieves from appl_rules with operation =, it

performs the following steps:

Step 1 looks in the db_table for a tuple with the same arg_name, and operation =. In the
example above, it finds such a tuple among the db_table tuples for the tuple with arg_name
= attribute_X, but not for the tuples with arg_name = attribute_B or arg_name =
attribute C. Forthe attribute_A case, the procedure executes Step 1.1, but for the

attribute Band attribute_C cases, it continues with Step 2.

Step 1.1 compares the value of the tuple in appl_rules with that of the tuple in db_rules. In
the attribute A case, both values are equal to 50. If the values are equal, it copies the
arg_name, operation and value from appl_rules into the temporary table. Then sets the mark
in the db_table tuple to 1. If, on the other hand, the values are not equal, the program
immediately ends and retumns the value of 0, signaling that the if conditions of the two rules
are disjoint. After Step 1.1, the procedure is done processing the current tuple from

appl_rules, and it loops to the next tuple.

In the example in Figure 11, when the program realizes that the two values of the

attribute A tuples are equal, it executes the aforementioned operations, leaving the

-39.
state of the db_rules and temporary tables as shown in Figure 12. The program proceeds to

process the appl_rules tuple with arg_name attribute B.

Step 2 If in Step I CanBeSubsumed couldn’t find a tuple in db_rules with the same
arg_name as the appl_rules tuple, and with operation =, then it proceeds as follows: It 1ooks
for tuples among those retrieved from db_rules whose arg_name matches the arg_name of
the .uple from appl_rules, but whose operation is >, <, >=, or <=. In the example in Figure
12, there are two such tuples in db_rules for the attribute B case, but none for the
attribute_ C case. For the att.ribute_ B case, the procedure executes step 2.1, but

for the attribute_C case, it continues with step 3.

Step 2.1 makes sure that none of the tuples retrieved in step 2 conflicts with the tuple from

appl_rules. An example of conflict would be the following: If the appl_rules tupie said

attribute B = 60

and one of the source_rules tuples said:

attribute_B > 100
then the first tuple would not be inside the interval defined by the second tuple. Therefore,
there would be no intersection between the two if-conditions, and the rules would conflict.

The program would then immediately end, returning the value of 0.

In the example from Figure 12, however, there is no such conflict between the
attribute_B tuple in the appl_rules table and the att ribute_B tuples in the db_rules
table. CanBeSubsumed proceeds as follows. First it sets to 1 the mark field of BOTH of the
tuples checked from db_rules discussed above. Then it copies into the temporary table the
atr_name, operation, and value of the tuple from appl_rules. After this, the procedure loops
around to the following tuple in appl_rules. Figure 13 shows the state of the source_rules

and temporary tables after executing step 2.1 for the attribute_B tuple from appl_rules.

APPL_RULES

r_number atr_name arg_name value

1 attribute_F attribute_A 50 0
1 attribute_F attribute_B 60 0
1 attribute_F attribute_C N 0
1 attribute_F attribute_D 300 0
DB_RULES

r_number atr_name arg_name value

2 attribute_F attribute_A 50

2 attribute_F attribute_B 30 0
2 attribute_F attribute_B 100 0
2 attribute_F attribute_D 300

2 attribute_F attribute_D 100

2 attribute_F attribute_E 6
TEMPORARY

atr_name operation value

attribute_ D = 300

attribute_ A = 50

Figure 12, State of the appl_rules, db_rules and temporary tables
after the attribute_A tuple in appl_rules has been processed. The arrow
shows which tuple in db_rules matches it. Note the mark in db_rules

APPL_RULES

r_number atr_name

1
1
1

attribute_F

attribute_F

attribute_F

1 attribute_F

DB_RULES

r_number atr_name

NN NN

attribute_F
attribute_F
attribute_F
attribute_F
attribute_F

attribute_F

TEMPORARY

atr_name
attribute_D
attribute_ A

attribute_B

operation

arg_name
attnibute_ A
attribute_B

attribute_C

attribute_D

arg_name
attribute_A
attribute_B
attribute_B
attribute_D
attribute_D

attribute_E

value
300
50
60

operation

operation

value

50

1000
300

value
50
30
100
300
100

mark

(= = =]

mark

Figure 13, State of the appl_rules, db_rules and temporary tables

after the second tuple in appl_rules has been processed. The arrow

shows which tuples in db_rules match it. Note the marks there

-42-

APPL_RULES

r_number atr_name arg_name operation value
1 attribute_F attribute. A = 50

1 attribute_F attribute B = 60

1 attribute_F attribute C = 1000
1 attribute_F attribute D >= 300
DB_RULES

r_number atr_name arg_name operation value
2 attribute_F attribute_ A = 50

2 attribute_F attribvtc_ B > 30

2 attribute_F attribute B < 100
2 atrripue_F attribute_ D <= 300
2 attribute_F attribute D > 100
2 attribute_F attribute E = 6
TEMPORARY

atr_name operation value

attribute_ D = 300

attribute_ A = 50

attribute_ B = 60

attribute C = 1000

mark

o o o O

mark

Figure 14, State of db_rules and temporary tables after the third tuple in

appl_rules has been processed. Arrow shows origin of last temporary tuple.

-43-
Step 3 If CanBeSubsumed failed to find matches for the appl_rules tuple in the db_rules
table in Steps 1 and 2, it jumps to Step 3. Here, CanBeSubsumed simply copies the
atr_name, operation, and value from the app!_rules tuple to the temporary table. After Step
3 is performed for the attribute C tuple, the state of the temporary table is shown in

Figure 14.

Non Case | Tuples

After the attribute_C tuple in appl_rules, the procedure reaches the attribute D
tugle. For the first time in the example this is a non case 1 tuple: its operation is not = but
>=, This time the procedure executes the code marked case 4 in the code (shown in

Appendix 1).

The attribute_ D tuple in appl_rules is a very special case, because it has already been
processed in Part II. (Remember that in Part I the procedure found a tuple attribute D
<= 300 in db_rules that matched the tuple attribute D >= 300 in appl_rules, and it
stored the tuple attribute D = 300 in the temporary table). Because Part II has
already taken care of this tuple, all the relevant attribute D tuples is db_rules have
already been marked. Part III ignores the attribute D tuple from appl_rules when it
finds this marks. In other words, because Part I has already stored the intersection of the
application and database attribute_D tuples in the temporary table, Part III doesn’t do
all that work again. Therefore, after processing the attribute D tuple, the tables in
Figure 14 are left unchanged. After this, Part III finishes because there are not any new

tuples left in the appl_rules tables beyond the attribute D tuple.

Now, suppose that the example shown in Figure 14 had been a little different. Suppose that
instead of being the last tuple in appl_rules, there would have been a another tuple after
attribute D >= 300, and suppose that this last tuple was: attribute D < 500.
In this case, Part III would not have finished after processing the attribute D >= 300

tuple, but instead it would have continued with the attribute D < 500 tuple. Just as

-44-
before, Part III would have found this extra tuple irrelevant because the attribute D
tuples in db_rules are already marked. Therefore, the presence of this last extra tuple would

not make any difference to the db_rules and temporary tables shown in Figure 14.

On the other hand, suppose that the example in Figure 14 had the appl_rules tuples
attribute D > 200 and attribute D < 500, instead of the attribute D >=

300 tuple. This is shown in Figure 15.

-45-

APPL_RULES

r_number atr_name arg_name operation value mark
1 attribute_F attribute. A = 50 0

1 attribute_F attribute B = 60 0

1 attribute_F attribute C = ! 0

1 attribute_F attribute D > 200 0

1 attribute_F attribute_ D < 500 0
DB_RULES

r_number atr_name arg_name operation value mark
2 attribute_F attribute_ A = 50 1

2 attribute_F attiibute B > 30 1

2 attribute_F attribute B < 100 1

2 attribute_F attribute D <= 300 0

2 attribute_F attribute D > 100 0

2 attribute_F attribute_ E = 6 0
TEMPORARY

atr_name operation value

attribute_A = 50

attribute B = 60

attribute_C = 1000

Figure 15, New example. The last two appl_rules tuples are different
from the original. The state of the temporary - nd db_rules tables is
that after which the third tuple of the appl_rules table has been processed.
Note that the attribute_D tuples in db_rules table are not marked anymore. Also,
the attribute_D = 300 tuple has disappeared from the temporary table.

-46-
Figure 15 shows what would be the state of the tables just before Part III reached the first
attribute D tuple in appl_rulec Obviously, in this new example, Part II would not

have found any matching pair of tuples with operations >= and <=, as it had done before.

Because of this, the temporary table in Figure 15 does not include the attribute D
tuple at the top that the table in Figure 14 does. Also because of the same reason, the
attribute_D tuples in db_rules in Figure 15 are not marked as they are in Figure 14.
Hewever, note the non case 1 tuples attribute_ A, attribute B, and
attribute_C have been treated in the new example exactly as they had been before. In
other words, the temporary table in Figure 15 contains the same attribute A,
attribute_B, and attribute C as the temporary table in Figure 14, and the
attribute_A and attribute_B tuples in the db_rules table on Figure 15 are marked

exactly as the are in Figure 14.

When Part IIl reaches the first attribute_D tuple in appl_rules: attribute D >
200, it finds a non case 1 tuple, whose counterparts in db_rules have not been marked. The

processing of this, as any other non: Case 1 tuples, is done in four steps:

In Step 1, for each tuple in the appl_rules table with sign > or >= (or <, <=) , the procedure
first looks in db_rules for a tuple with the same arg_name and operation =. If the tuple is
not found, (as in Figure 14), the procedure continues with step 2. Otherwise, if such a tuple
exists, the procedure checks if the tuples conflict, and if they do, it finishes immediately,
retumning 0. If they don’t conflict, the procedure checks if the tuple from db_rules is
marked, in which case it doesn’t do anything else. If the tuple from db_rules is not marked,
it marks it, and copies it into the temporary table. In the example on Figure 15, there are no

attribute_D tuples in db_rules with operation =, so Part Il would continue with step 2.

Step 2 if the tuple trom step I is not found, Part III looks for the tuple in db_rules with same
arg_name and the 'opposite’ operation of the tuple from appl_rules. For example, if the

tuple from appl_rules has operation < or <= it looks in db_rules for a tuple with the same

-47-
arg_name, but operation > or >=, and the other way around. If such a tuple from db_rules
does not exist, then that’s fine, and the procedure continues with Step 3. Otherwise, the

procedure checks that the tuples don’t conflict. For example, the tuples in Figure 15:

attribute D > 200 from appl_rules, and

attribute D <= 300 from db_rules
do not conflict. Also from Figure 15, the tuples:

attribute D < 500 from appl_rules, and

attribute D > 100 from db_rules

do not conflict either. If, on the other hand, the first att ribute D tuple form appl_rules
had said attribute_D > 400, It would have conflicted with the attribute D <=
300 tuple in db_rules. In case of conflict the program immediately ends, returning 0 to
indicate the conflict. Otherwise, proceeds to Step 3.

Step 3 after making sure that no tuple in db_rules conflicts with our tuple from appl_rules
which had operation > or >= (or < or <=), the program looks for the tuple in db_rules with
the same atr_name and operation > or >= (or <, <=). If there is no such a tuple, then it goes
to Step 4. If the tuple exists, then it marks the tuple in db_rules, picks the most restrictive of
the two tuples and copies its arg_name, operation, and primitive into the temporary table.

Examples of restrictivity are:

attribute_D > 400 is more restrictive than attribute D > 300
attribute_D > 400 is more restrictive than attribute D >= 400
attribute D < 400 is more restrictive than attribute D < 500

attribute_D < 400 is more restrictive than attribute D <= 400
Foi ample, for the tuples in Figure 15:

attribute_D > 200 from appl_rules, and

attribute D > 100 from db_rules

48-
It would insert attribute D > 200 into the temporary table because it is more
restrictive, and marks the attribute D > 100 tuple in db_rules. Also from Figure 15,

for the tuples:

atiribute D < 500 from appl_rules, and

attribute D <= 300 from db_rules

It would insert attribute D <= 300 into the temporary table because it is more
restrictive, and marks the corresponding tuple in the db_rules table. Figure 16 shows the
state of the tables after the two attribute D tuples from appl_rules have been

processed, at the end of Part IT1.

Step 4 if none of the tuples fru.n db_rules from steps 1 and 3 are found, then the tuple from
appl_rules is inserted into the temporary table.

-49-

APPL_RULES

r_number atr_rame arg_name operation value mark
1 attribute_ F attribute_ A = 50 0
1 attribute_F attribute_ B = 60 0
1 attribute_F attribute. C = 1000 0
1 attribute_F attribute_ D >= 300 0
DB_RULES

r_number atr_name arg_name operation value mark
2 attribute_F attribute_ A = 50 1
2 attribute_F attribute B > 30 1
2 attribute_F attribute B < 100 1
2 attribute_F attribute D <= 300 1
2 attribute_F attribute D > 100 1
2 attribute_F attribute_ E = 6 0
TEMPORARY

atr_name operation value

attribute_ A = 50

attribute_ B = 60

attribute C = 1000

attribute. D > 200

attribute_ D <= 300

Figure 16, Example from Figure 15 at the end of Part Iil. See the two last
tuples in the temporary table, and the marks on the two last tuples in the
db_rules table. Arrows indicate from which tuples in appl_rules and db_rules
were derived the two last tuples in temporary.

-50-
The final case to treat in the discussion of Part II is the one in which the appl_rules tupies
have non Case 1 operators, but the tuple with same atr_name in db_rules has operation =.

Figure 17 shows a variation of the example in Figure 15 that satisfies this condition.

The way this cases are handled is simple: for every tuple in appl_rules with opcration >, <,
>=, or <=, if the procedure finds a tuple in db_rules with the same arg_name and operation

=, it performs two steps.

In Step I, it checks if the values conflict. In Figure 17, for example, the db_rules tuple
attribute D = 300 doesn’t conflict with either of the appl_rules tuples
attribute_D > 200 and attribute D < 500. If, on the other hand, the tuple in
db_rules had been attribute D = 600, then it would have conflicted with the second
of the appl_rules tuples. In case of conflict, the procedure immediately ends returning 0, to
signal that the if conditions conflict. If not, proceeds to Step 2.

In Step 2, the procedure checks if the db_rules tuple has been marked. If it has not been,

then it marks it and copies the arg_name, operation and value from the db_table into the

temporary table. If it has already been marked, then it doesn’t do anything. In our example
on Figure 17, only the first of the two appl_rules attribute_D tuples marks the db_rule

attribute_D tuple, although both make sure that they don’t conflict with it.

After processing the last two tuples on appl_rules in Figure 17, at the end of Part IIi, the

state of the tables is shcwn in Figure 18.

-51-

APPL_RULES
r_number atr_name arg_name operation value mark
1 attribute_F attribute A = 50 0
1 attribute_F attribute B = 60 0
1 attribute_F attribute_ C = 1000 0
1 attribute_S attribute. D > 200 0
1 attribute F attribute_D < 500 0
DB_RULES
r_number atr_name arg_name operation value mark
2 attribute_F attribute_ A = 50 1
2 attribute_F attribute B > 30 1
2 attribute_F attribute B < 100 1
2 attribute_F attribute_ D = 300 0
2 attribute_F attribute E = 6 0
TEMPORARY
atr_name operation value
attribute_A = 50
attribute B = 60
attribute_ C = 1000

Figure 17, Variation of example in Figure 15. The attribute_D tuple
in db_table has changed. Note that it is not marked anymore, and the the
temporary table doesn’t have any attribute_D tuple.

-52-

APPL_RULES
r_number atr_name arg_name operation value mark
1 attribute_F attribute_ A = 50 0
1 attribute_F attribute B = 60 0
1 attribute F attribute C = 1000 0
1 attribute_F attribuie D > 200 0
1 attribute_F attribute_ D < 500 0
DB_RULES
r_number atr_name arg_name operation value mark
2 attribute_F attribute_ A = 50 1
2 attribute_F attribute B > 30 1
2 attribute_F attribute B < 100 1
2 attribute_F attribute_ D = 300 1
2 attribute_F attribute E = 6 0
TEMPORARY
atr_name operation value
attribute_ A = 50
attribute_ B = 60
attribute_ C = 1000
attribute D = 300

Figure 18, continues example from Figure 17. State of the tables
after the two attribute_D tuples in appl_rules have been processed.

-53.

Part IV, Scanning the Unmarked source_rules Tuples

Part IV is much simpler than any of the first two parts. It simply goes through the db_rules
table looking for the relevant tuples that have not been marked, marks them, and copies
them into the temporary table. Returning to our original example, we can see in Figure 14
(which shows the state of the tables after Part III finishes), that only the attribute F =
60 tuple in db_rules is still unmarked. The reason for which it is unmarked is that there are
no tuples with arg_name attribute E in appl_rules. (If there had only been a tuple of
the form attribute_E < 100 or attribute E <= 100 in appl_rules, then the
tuple attribute E > 60 would also have remaired unmarked in db_rules). Figure 19
shows the state of the tables from Figure 14, after Part IV finishes. With this, the
CanBeSubsumed algorithm finishes.

APPL_RULES

r_number atr_name

1 attribute_F

1 attribute_F

1 attribute_F

1 attribute_F

DB_RULES

r_number atr_name

NN NN

[)

attribute_F
attribute_F
attribute_F
attribute_F

attribute_F

2 attribute_F

TEMPORARY

atr_name

attribute_D
attribute_ A
attribute_B
attribute_C

attribute_F

operation

-54-

arg_name operation value
attribute_ A = 50
attribute. B = 60
attribute C = 1000
attribute_ D >= 300
arg_name operation value
attribute_ A = 50
attribute_ B > 30
attribute B < 106
attribute D <= 300
attribute_ D > 100
attribute_E = 6

value

300

50

60

1000

6

o o o O

mark

Figure 19, continued from Figure 14. Tables’ state after Part II1. Note the mark in

the High tuple in db_rules. Arrow indicates how last temporary tuple was obtained.

4 The NotEqStuff Procedure.

-55-
As explained in section 3.2, the NotEqStuff procedure is called immediately after the
CanBeSubsumed procedure finishes, if there were no conflicts found between the
if-conditions without operation != of the application rule and database rule that are being
compared. NotEqStuff finishes the work that CanBeSubsumed left incomplete. Remember
that CanBeSubsumed doesn’t find the whole intersection of the two rules; it only finds the
intersection of their conditions that don’t have operation !=. NotEqStuff takes this
intersection and updates it by taking into account the ! - conditions from both the
application rule and from the database rule. Just as CanBeSubsumed did, if NotEqStuff
finds out that the two rules conflict because of their ! = conditions, it returns (. Otherwise
it returns 1, and leaves the (this time final) intersection of the two rules in the temporary

table.

Before going into the implementation of NotEqStuff it is important to make clear two

important points about how the program works:

First, note that there is only one way in which two rules can conflict because of a condition
with != operation in one of them. An example will show this. If among the conditions in

the application rule there was:

attribute A != 50

and among the conditions in the database rule there was:

attribute A = 50
then there would be a conflict, and NotEqStuff would retun 0. The same thing would have
happened if the first condition was from the data base and the second from the application.

However, if the second condition had been anything different from that above, there would

not have been a conflict. For example, if the second condition had been:

attribute A >= 50
then there would be no conflict. The intersection of the two conditions (what would be

written into the temporary table) is:

attribute A > 50

Second note the following tricky point: if there is a condition with != operation in the
application, AND if a condition from the database conflicts with, THEN it is possible to
find this conflict it by looking ONLY on the temporary table. There is no need to look at
the db_table. The same thing happens with a condition with operation != from the
database: there is no need to look at the appl_rules table, to find if the application rule
conflicts with it; it is only necessary to look at the temporary table. The reason for this can

be explained in 3 steps:
Step 1, see that if any of the two rules has a condition:

attribute A = 50

then that condition must be in the temporary table by the time NotEqStuff is called. This is

easy to see with an example: suppose that the application rule had the condition shown

above, and the data base rule had the condition:

attribute A < 100

Then the intersection of the two conditions would have been attribute A = 50, and
CanBeSubsumed would have written it into the temporary table before NotEqStuff was
called.

Step 2, now remember that if a rule has the condition:

attribute A != 50

then it can not also have the condition:

attribute A = 50

because the conditions within one rule can not conflict.
Step 3, from steps 1 and 2 it is possible to conclude that:

if either the application rule or the source rule (say application) has the condition:

-57-
attribute A != 50

and the temporary table has the condition:

attribute A = 50

then the condition in the temporary table must have come from the other (say database)

rule. Therefore, it is possible to find conflicts by looking at the temporary table. QED.

A clever reader might point out that if the application rule had the condition:

attribute A >= 50

and the source rule had the condition:

attribute A <= 5(

then the temporary table would have the condition:

attribute A = 50

That is correct, but in that case, neither of the two rules can have the condition:

attribute A != 50

because that would conflict with step 2 above: no rule can have the conditions
attridute A != 50 and attribute A >= 50 or the conditions attribute A
!= 50 and attribute A <= 50 because the two conditions contradict each other.

Therefore the reader’s counter example does not invalidate the conclusion reached above.

Having understood the two points above, it is possible to proceed to discuss NotEqStuff’s

implementation.

Implementation
NotEqStuff takes the appl_rules, db_rules and temporary tables just as CanBeSubsumed left

them. It receives the same two arguments that CanBeSubsumed does: the r_number of the
application rule and the r_number of the db_rule that it is going to compare. For example,
continuing with the example of section 3.3, after CanBeSubsumed retums from
successfully comparing rules 1 and 2 from the application and database, the rnain program

calls:

-58-

NotEqStuff (1,2)

and the state of the tables is that shown in Figure 19. Obviously that example is a trivial
one bzcause none of the two rules contains conditions with operation ! =. NotEqStuff does

not change anything and returns 1, meaning that it did not find any conflict.

N nEqStuff first scans all the tuples with operation ! = from the appl_rules table, and then
scans all the tuples with operation != from the db_rules table that are not also in the
appl_rules table. Therefore, there is a slight variation in the way that the conditions from
the two tables are treated. Whenever NotEqStuff finds a condition with ! = operation in the
appl_rules table, it looks for a tuple with the same operation and value in the db_rules table.

If it finds it, it marks it. For example, if it finds the tuple

attribute A != 50

in the appl_rules table, it looks for that same tuple in the db_rules table, and if found, sets
the value of its mark column to 1. The reason for doing this is that the same condition
should not be processed twice. In other words, once NotEqStuff has made sure that the
condition attribute A != 50 from the appl_rules table does not cause a conflict; and
once it has updated the temporary table to reflect that condition; it must not perform those
operations for a second time when it finds the same condition in the db_rules table. Ti.at's
why it marks all the conditicns in the db_rules table with operation ! = that are also on the
appl_rules table. NotEqStuff processes all the tuples with operation != from appl_rules,
but only those with operation ! = and mark 0 from db_rules.

Besides the previous distinction, NotEqStuff executes the following 3 steps on any tuple

that it processes, regardless of which of the rules tables it came from.

Step 1, for every tuple with operation != from either the appl_rules or db_rules tables, it
looks in the temporary table for a tuple with operation = and the same value. For example

for the tuple

-59.
attribute_ A != 50

from any of the rules tables, it looks for the the condition

attribute A = 50

in the temporary table. If it finds it, then that is a conflict between the rules because of the
two points made in the Introduction of this subsection, and the procedure finishes
immediately returning the value 0. If it doesn’t find such a condition in the temporary table,

the procedure continues with Step 2.

Step 2, for every tuple with operation != from either the appl_rules of db_rules tables, it
looks in the temporary table for a condition with operation >= or operation <= and the

same value. For example, for the condition

attribute A != 50

discussed above, it looks for either of the conditions

attribute A >= 50orattribute A <= 50
in the temporary table. If it finds one of them (it can’t find both), it updates the temporary

table to say:

attribute A > S50orattribute A < 50

and finishes operating on that condition (doesn’t do any of the following steps). If it doesn’t
find either of the >= or <= conditions in the temporary table, continues with step 3. 2~
Step 3 the final step is deciding if the condition should be written into the temporary or if it
would be redundant to do so. For example, for our attribute A != 50 condition, if

the temporary table had the condition:

attribute A < 40

or if it had the condition:

attribute A > 60

then it would be redundant to put the condition attribute A != 50 in the temporary

-60-
table, because other condidons already implied it. If, on the other hand the temporary table
had the conditions:

attribute A > 40 and attribute A < 60
then the attribute A != 50 condition should be added to the others by inserting it

into the temporary table.

It is not necessary to give detailed examples of the NotEqStuff program iike the ones of the
CanBeSubsumed one, because it is much simpler. The three steps described above are
clearly marked in NotEqStuff’s code in Appendix 1.

5 The SemEqOrSub Procedure.

The structure of the SemEqOrSub procedure is similar to Part III of the CanBeSubsumed
procedure described in section 3.3. It one by one selects the conditions from the then part of
the application rules and classifies them into 4 different types of cases, depending on their
operation field: Case 1 for =, 2 for > or >=, 3 for < or <=, and 4 for ! =. For every relevant
condition in the application rule, it looks for conditions in the database rule, and sees if they
conflict. Whenever a conflict is found, the atr_name of the attribute that caused it, along
with the r_numbers of the application and database rules that are being compared are stored
into the bad table, and the program returns immediately the result 0. If the program reaches
the end without finding a conflict it retumns 1. See how the program handles the 4 different

cases.
Case 1 Whenever there is a condition in appl_rules like the following:

meta-attribute A = 50

there must be an identical condition in db_rules in order to avoid conflict. This is quite easy
to see, because if meta-attribute_ A had any value in db_rules other than 50, then the
condition in db_rules would not be equal or subset of the condition in appl_rules. This is
the only thing that has to be checked in Case 1. In case of conflict, the conflict procedure is

performed: insert attribute_A along with rules numbers into bad, and retum 0.

-61-

Case 2 Whenever there is a condition in appl_rules like one of the following:

imeta-attribute A >= 50 ormeta-attribute A > 50

there are three steps performed, wiich are marked in the code:
First, see if a condition like:

meta-attribute A = X

exists, where X is obviously an floating point value. If X is smaller than 50 there is
obviously a conflict. A conflicts also occurs if X = 50 and the application condition is
meta-attribute_A > 50. In case of conflict the same conflict procedure as above is

performed.

Second, if no meta-attribute A = X condition is found in db_rules, look in that

same table for a condition of the form:

meta-attribute A > Yorattribute A >= Y

In any case, if Y is smaller than 50 a conflict occurs. There is also a conflict if the database
condition is meta-attribute A >= 50, and the application condition is
meta-attribute A > 50. In case of conflict perform the standard conflict

procec .re.

Third, if none of the conditions that were searched in the first and second steps are found,

then there is also a conflict. The conflict procedure is performed.
Case 3 is very similar to Case 2 above. Wherever there is a condition in appl_rules like:

meta-attribute A <= 50 ormeta-attribute A < 50
Do the same 3 steps as in Case 2, but substitute all > with < and all >= with <=. The steps

are marked in the code.
Case 4 is somewhat more complex. Whenever there is a tuple of the form:

attribute A != 50

in appl_rules, there are 5 steps performed, which are marked in the code:

-62-
First, look for a tuple of the form:
attribute A = 50

in db_rules. If it is found then there is immediately a conflict, and the standard conflict

procedure is performed. There is no need to proceed with the next steps.
Second, look for tuples of the form:

meta-attribute A > Yormeta-attribute A >= Y
where Y is an integer. Obviously if the tuple found is meta-attribute A >= 50

there is a conflict and the conflict procedure is performed.

If the value of Y is smaller than 50 there is the potential for a conflict. It can’t be known if
there is actually a conflict until a tuple with the form meta-attribute A < Z or
meta-attribute A <= Z is found. (See next step). For the moment the value of a
variable called ne_condition set to 1 to indicate the potential conflict. By the same token, if
no tuple of the foom attribute A > Y or meta-attribute A >= Y is found,
then there is also the potential for a conflict, and the variable ne_condition is set to i to
indicate this.

If, on the other hand, the value of Y is greater than 50, or the tuple found is

meta-attribute_ A > 50 then there is no conflict.
Third, look for tuples of the form:

meta-attribute A < Zormeta-attribute A <= Z
Where Z is an integer. Again, if the tuple found is meta-attribute A <= 50 there is

a conflict and the conflict procedure is performed.

If Z is greater than 50, nothing is done to the ne_condition variable. It is still unknown if

there is a conflict, and step 4 has to be performed to know.

On the other hand, if Z is smaller than 50, or the tuple found is meta-attribute A <

50 then there is no conflict, and the value of the variable ne_condition is set to 0.

-€3-
Fourth, look for the condition: meta-attribute A != 50
in db_rules. If it is found, then there is certainty that there can not be a conflict and

ne_condition is tumed off. Otherwise proceed to step 5.

Fifth, if the value of ne_condition is 1, or if none of the tuples in the db_rules table that
were searched in steps 1 through 4 above was found, then there is conflict, and the standard

procedure is applied.
At the end, the variable condition is retumed.
6 Conclusion.

In this section the Subsumption Algorithm and the 4 principal procedures that implement it
have been described in detail. The reader must now understand not only what the
Subsumption Algorithm does, but the code in Appendix 1 works. It is reiterated that after
the subsumption finishes, the yes_table contains the intersection of the if parts of all the
combinations of application and database rules, in which the database’s then part is equal or
subset of the application’s then part, and the no_table contains the intersection of the if
parts of ali the combinations of rules whose database’s then part is NOT equal or subset «f
the application’s then part. The no_table will later be used by the query processing without

conversion algorithm in section 4.

PART IV

THE QUERY PROCESSOR

It is important to check that the application and the database 'understand the same thing’
when they interpret the conditions on the where clause of a query. For example, in the
query:

select Instrument_Name

where Trade_Price > 100

the Query Processor must make sure that for all the tuples in the database whose a
Trade_Price field’s nominal value is greater than a hundred, the application and the
database agree on what are the values of the Trade_Price’s meta-attributes:
Trade_Price_Status, and Trade_Price_Currency. In other words, even if the application and
the database are not in disagreement what Instrument_Name means (ie, Instrument_Name
is a primitive attribute), it would be incorrect if the application was asking for the names of
all instruments that traded at a price greater than 100 USdollars, and the database retumed
the names of all instruments that traded at Trade_Price greater than 100 pesetas. Therefo' .
although it is not as obvious as checking for semantic conflicts in the select clause, it

important to also check for semantic conflicts in the where clause.

These two operations: checking for conflicts in the where clause, ai:d ch:cking for conflicts
in the where clause are done in two steps by the Query Processor. The next two subsections

explain them separately.
1 Checking the Where Clause

The where program is the first executed by the Query Processor. It is called by the user
interface AFTER the Subsumption Algorithm has been performed, the user has entered a
query, and th~ query has been parsed by the query parser. It ha: S non_trivial procedures:

-65-
main, Prepare_Query_Conditions, Arrange_Query_Conditions, ExecuteSubsumpt,
QueryRebuild, and 11 trivial ones: Declare_Check_Query_Where_Cursors,
Copy_No_To_Intermediate, Copy_C_To_Query_Conditions, Insert_Into_Check_List,
Number_Where_Conditions, = Copy_No_To_No_Conditions, Declare_Build_Cursor,
Clear_Temporary, Clear_No_Conditions, Clear_Tables, and Copy_Temp_To_Interm.
Besides, it uses the CanBeSubsumed and NotEqStuff procedures from the Subsumption

Algorithm, along with the DeclareSubsumptionCursors procedure explained in Section 3.

The Clear_Temporary, Clear_No_Conditions, and Clear_Tables procedures are used, as
their names indicate, to erase all the contents of some tables in the database. The
Declare_Check_Query_Where_Cursors, and Declare_Build_Cursor procedures are used to
declare the cursors used in the program. Declare_Check_Query_Where_Cursors must be at
the top of the file. The following is a picture of how the procedures call each other:

main

Prepare_Query_Conditions Arrange_Query_Conditions
Execute_Subsumpt Query_Rebuild

CanBeSubsumed SemanticEqOrSub NotEqStuff

The.c where program starts by calling the main procedure whenever there is need to check

the where clause of a query. Suppose the user makes the query:

select Instrument_Name
from db_table
where Volume <= 10

or Trade_Price < 100 AND Volume > 10 AND Exchange = 'nyse’

Where Instrument_Name and Exchange are primitive attributes, and Trade_Price and

Volume are

-66-

non-primitive (the meta-attributes

of Trade_Price

could be

Trade_Price_Currency and Trade_Price_Status; and the meta-attribute of Volume could be

Volume_Scale.) The query is parsed by the query parser into the following a_list, t_list and

c_list tables:

Now, suppose that the bad table contains the following information:

A_LIST
attrib

Instrument_Name

T_LIST

tabl

db_table

C_LIST

c_number attr_name operation
1 Volume <=

2 Trade_Price <

2 Volume >

2 Exchange =

BAD

appl_rule db_rule np_attr

1 2 TradePrice
3 3 Volume

value
10
100
10

nyse

mark

(= = - R -

The main procedure executes each of the following 4 parts (which are shown in the code in

Appendix 2.):

-67-

PART 1: Declares the current database and all the cursors necessary for the algorithm.

PART 2. Calls the Prepare_Query_Conditions procedure, which separaies the non-primitive
attributes that can cause semantic conflicts in the where clause, from the primitive and non-
primitive attributes that can not cause semantic conflicts. It does so by filling two new

tables: the check_list table, and the quer_cnd_tmp table.

The check_list table is a table with only one field, called attrib, into which the names of all
non-primitive attributes in the where clause that also appear in the bad table are inserted. In
the example above, both Trade_Price and Volume appear in both the c_list (where clause)
and the bad table. Therefore, Prepare_Query_Conditions puts into the check_list table the

following information:

CHECK_LIST
attrib
Trade_Price

Volume

The quer_cnd_temp table has exactly the same fields as the query_conditions table (which
was discussed in the Context Mediator chapter): r_number, atr_name, arg_name, operation,
primitive, domain_type, and mark. Prepare_Query_Conditions copies into this table all the
tuples that appear in the c_list which refer to primitive attributes or non-primitive aitributes
that don’t appear in the bad table, according to the following rules: the ¢_number in c_list
becomes the r_number in quer_cnd_tmp, the attr_name in c_list becomes the arg_name in
quer_cnd_tmp; the operation 1> ~opied to the field with the same name, and the value field
is copied into quer_cnd_tmp’s primitive field. The other 3 fields in quer_cnd_tmp are filled
with an empty string, an A and a 0. For example, in the c_list shown above, there is only
one tuple that refers to a non-primitive attribute: Exchange. The rest of the tuple in c_list
refer to the non-primitive attributes Trade_Price and Exchange, which also appear in the

bad table. Because of that, the following quer_cnd_tmp table is produced:

QUER_CND_TMP
r_number atr_name arg_name operation primitive a_domain mark

2 Exchange = nyse A 0

PART 3. Loops around the check_list table, and performs the following 5 steps for every

element in that table:

Step 1. Calls Arrange_Where_Condition. which copies the contents of the quer_cnd_tmp
table into the query_conditions table, making sure tnat the r_numbers are ordered in
consecutive integers, starting from 1. For example, for the quer_cnd_tmp table shown
above, the Arrange_Where_Conditions notices that there is no condition with r_number =
1. Therefore, when copying the tuple from quer_cnd_tmp into query_conditions,
Arrange_Where_Conditions changes the value of the r_number from 2 to 1, producing the
following table:

QUERY_CONDITIONS
r_number atr_name arg_name operation primitive a_domain mark

1 Exchange = nyse A 0

This query_conditions table is ready to be subsumed.

Step 2. Calls the Copy_No_To_No_Conditions to copy the conditions in the no_table that
refer to the attribute in the check_list into the no_conditions table. (Remember that the
no_conditions table was discussed in the Context Mediator chapter, and has the same
schema as the query_conditions table.) For example, suppose that the no_table contains the

following information:

-69-

NO_TABLE

r_number s_number atr_name arg_name operation primitive
1 2 Trade_Price Instrument_Type = future

3 3 Volume Exchange = nyse

Copy_No_To_No_Conditions first checks in the bad table that Trade_Price might conflict
because of rules 1 and 2, and then copies the conditions in the bad table indexed by rules 1

and 2 into the no_conditions table, producing the following:

NO_CONDITIONS
r_number atr_name arg_name operation primitive a_domain mark

1 Instrument_Type = future A G

Which is another table ready for subsumption.

Step 3. Calls Execute_Subsumpt, which finds the intersection of the conditions in the
Query_Conditions table and the conditions in the No_Conditions table, and puts it in the

Intermediate table. After Step 3, the Intermediate table contains:

INTERMEDIATE

r_number atr_name arg_name operation primitive
1 Instrument_Type = future

1 Exchange = nyse

Step 4. Calls Query_Rebuild, which makes an intermediate query to the database based on
the conditions in the Intermediate table. For example, the Intermediate table above only has
one OR condition (ie, there is only r_number 1), so the Query_Rebuild procedure produces

only one intermediate query:

select Trade_Price
from db_table

where (Instrument_Type = 'future’ and Exchange = 'nyse’)

-70-
If the query retums anything but Null, then a semantic conflict occurs, and the procedure
breaks from the loop in Part III, and continues to Part I'V (see ahead) where it finishes in

failure. Otherwise, if the result of the query is Null, the procedure continues with Step 5.

Step 5. Once that it has been determined that Trade_Price can not cause a semantic conflict
in the where clause, all conditions dealing with Trade_Price are copied from the c_list to
the quer_cnd_tmp table. This is done by calling the procedure
Copy_C_To_Query_Conditions with the argument Trade_Price. This produces the

following quer_cnd_tmp table:

QUER_CND_TMP

r_number atr_name arg_name operation primitive a_domain mark
2 Exchange = nyse A 0
2 Trade_Price < 100 A 0

In this moment, Part Il LOOPS AND STARTS AGAIN for the next attribute in the

check_list table: Volume. To finish the example, the 4 steps executed will be shown briefly:

Step 1. The Query_Conditions table is erased, and Arrange_Conditions copies the
quer_cnd_tmp table into Query_Conditions, making sure that the r_numbers are crdered

correctly:

QUERY_CONDITIONS

r_number atr_name arg_name operation primitive a_comain mark
1 Exchange = nyse A 0
1 Trade_Price < 100 A 0

Step 2. The no_conditions table is erased, and the attributes from the no_table dealing with
Volume are copied into it, in the correct r_number ordering (remember the no_tatle shown

above):

71-
NO_CONDITIONS
r_number atr_name arg_name operation primitive a_domain mark

1 Exchange = nyse A 0

Step 3. The Query_Conditions table and no_conditions table are subsumed, and the result

put in the Intermediate table:

INTERMEDIATE

r_number atr_name arg_name operation primitive
1 Trade_Price < 100

1 Exchange = nyse

Step 4. An intermediate query is built to see if Volume can cause a semantic « .liict:

select Volume
from db_table

where (Trade_Price < 100 and Exchange = 'nyse’)

If the intermediate query returns Null, then the original query can be made without
semantic problems, and if not then it can not. After step 4, because there are no more tuples
left in the check_query table, then the procedure continues with Part IV instead of looping

around Part III again.

PART IV. If no conflict was found in Part III, Part IV inserts the value 1 in the
procedure_result table, and finishes. If a conflict was found, then it inserts (), and

terminates.

This is the end of the where program. After it, if no semantic conflicts were found in the

where clause, the Query Processor continues with the select procedure.

n-

2 Checking the Select Clause

The sslect program is called by the user interface AFTER it has made sure that the
application and the database understand the same thing when interpreting the conditions in
the query’s where clause. It has 4 non_trivial procedures: main, CheckQuerySelect,
ExecuteSubsumpt, and QueryRebuild; and 7 trivial ones:
Declare_Check_Query_Select_Cursors, Declare_Build_Cursor, Clear_Temporary,
Clear_No_Corditions, Clear_Tables, Copy_C_To_No_Conditions, and
Copy_Temp_To_Interm. Besides, it uses the CanBeSubsumed and NotEqStuff procedures
from the Subsumption algorithm, along with the DeclareSubsumptionCursors procedure
explained in Section 3. The Clear_Temporary, Clear_No_Conditions, and Clear_Tables
procedures are used, as their names indicate, to erase all the contents of some tables in the
database. The Declare_Check_Query_Select_Cursors, and Declare_Build_Cursor
procedures are used to declare the cursors used . the program.
Declare_Check_Query_Select_Cursors must be at the top of the file.The following is a

picture of how the procedures call each other:

main
CheckQuerySelect Execute_Subsumpt Query_Rebuild
CanBeSubsumed SemanticEqOrSub NotEqStuff

Copy_C_To_Query_Conditions is used to copy the contents of the c_list table into the
query_conditions table, as explained in Section 1. It returns the number of or conditions in
the where clause. The reason for which this is done is that later in the program the where
clause is subsumed with the no_table, for which the query_conditions table, and not the

c_list table, has the correct schema.. (The query_conditions table has the same schema but

13-
different name as the appl_rules and db_rules tables.) Suppose that the user wants to make
the query:

select TradePrice

from db_table

where Profits > 100 or CEO_pay >= 30000000

Then, after parsing, c_list contains:

C_LIST

c_number attr_name operation value mark
1 Profits > 100 0

2 CEO_pay >= 3000000 0

When called, Copy_C_To_No_Conditions puts into the query_conditions table the

following information, ready to be subsumed:

QUERY_CONDITIONS

r_number atr_name arg_name operation value a_domain mark
1 Profits > 100 A 0
2 CEO_pay >= 3000000 A 0

The Copy_Temp_To_Interm program copies the content of the temporary table into the

intermediate table, which is used when rebuilding queries.
The next 4 subsections deal with the 4 non_trivial procedures in the select program.

1 The main Procedure

main is a somewhat simple procedure: it starts by declaring the cursors needed in the select

program, and copying the c_list table into the query_conditions table. This copying is

-14-
necessary because when later in the program the no_table and the c_list are subsumed.
They have to be copied to the no_conditions and query_conditions tables to be able to use
the old subsumption procedures that were explained in section 3. It has already explained
how Copy_C_To_No_Conditions works. It not only copies the c_list to query_conditions,

but also tells main how many conditions separated by ORs are there in the c_list.

The next thing that main does is start fetching the attributes from the select statement in the
query, which have been put into the a_list tabie by the query parser. Once it gets one of this
attributes it checks to see if it is in the where clause. The reason is that, as the select
program is only called after the where program has retumed a positive result, no attribute
that is in the where clause can possibly produce a semantic conflict. Therefore the program
skips the following steps for all the attributes in the select clause that are simultaneously in

the where clause.

If an attribute in the select clause is not in the where clause, main calls the procedure
CheckQuerySelect with that attribute’s name as an argument. CheckQuerySelect returns to
main a count of how many times that attribute appears in the bad table. In other words, it
tells main how many times that attribute caused a semantic conflict when comparing an
application and a source rules. CheckQuerySelect also copies the relevant contents of the
no_table into the no_conditions table (see next subsection), preparing the road for a

subsumption of the relevant part of the no_table and the c_list to be performed.

If CheckQuerySelect returns a number larger than 0, then that means tl:at a subsumption
has to be performed just as explained above, in order to find the intersection of the where
table and the relevant part of the no_table. Because of that this subsumption only uses the
CanBeSubsumed and NotEqStuff procedures, but not the SemEqOrSub procedure. This last
procedure is not used because there is not any then part to worry about here: the Select
program does not compare rules, but simply conditions. The intersection of the where

clause and no_table is found when main calls the procedure Execute_Subsumpt with two

-75-

arguments: the number of ORed conditions in the c_list, and the number of ORed
conditions in the no_table. Note that this is equivalent to telling the onginal Subsumption
Algorithm how many rules there were in the application and and database repositories.
This will be discussed further in the Execute_Subsumption subsection. Execute_Subsumpt
puts the intersection of these two sets of conditions in the Intermediate table, from which a
query can be built to the database, and retums how many ORed conditions it put into that

table.

The main procedure uses the conditions in the Intermediate table to build intermediate
queries, from which it discovers if the original query will retumn results in the wrong
context. To make this intermediate queries, main calls the procedure Query_Rebuild, which
retumns | if the intermediate query does not find any semantically incorrect data in the
database, and O if it does. Query_Rebuild makes one intermediate query to the database for

each of the ORed conditions in the Intermediate table.

Query_Rebuild returns 1 if all the intermediate queries made to the database return null
result, but 0 if any of them doesn’t. When a 0 is retumed, main immediately terminates
putting the value O in the procedure_result table. This value can later be seen by the user
interface to know that a semantic conflict will occur when making the user’s query to the
database. The user can still ask the interface to make the original query requested, at the
expense of having some semantic conflicts. If, on the other hand, Query_Rebuild retums 1,
then that means that there is no tuple in the database in which the attribute frem the select
clause being checked would return semantically incorrect values. In that case, main can
continue fetching the next attribute in the select clause from the a_list table to see if it also
won'’t produce a semantic conflict. When the a_list has been completely scanned, and none
of the attributes there has produced a semantic conflict, than the user’s query can be made
without problems. In that case, main terminates putting the value 1 in the procedure_result

table for user interface to see.

2 The CheckQuerySelect Procedure

CheckQuerySelect receives from main the name of an attribute in the select list that is not
in the where clause, and returns how many times that attribute appears in the bad table. For

example, if main calls:

CheckQuerySelect (Trade Price)

and the bad table contains the following information:

BAD

appl_rule db_rule np_attr

2 1 Trade_Price
3 3 Trade_Price

CheckQuerySelect returns the value 2 because eamings made the combination of rules 2
and 1 fail, as well as the combination of rules 3 and 3. Suppose that the no_table contains

the following information:

NO_TABLE

r_number s_number atr_name arg_name operation primitive
1 Trade_Price debt > 20

2 1 Trade_Price assets >= 100

3 3 Trade_Price debt < 15

3 3 Trade_Price CEO_pay >= 30000000

Then, CheckQuerySelect puts into the no_conditions table the following inforration:

71-

NO_CONDITIONS

r_number atr_name arg_name operation primit:.e a_domain mark
1 debt > 20 A O
1 assets >= 100 A 0
2 debt < 15 A 0
2 CEO_pay >= 30000000 A 0

which, along with the information put into the query_conditions table by Copy_D_To_Db,
leaves everything set up to subsume the rules in both tables. CheckQuerySelect retumns to
main the value 2, which is the amount of times that the Trade_Price attribute appears in the

bad table.

3 The Execute_Subsumption Procedure

The Execute_Subsumption procedure is very similar t~ the main procedure of the
Subsumption Algorithm explained in the subsumption section. It loops through the
combination of ’rules’ in the query_conditions and no_conditions tables; calls
CanBeSubsumed for every combination of rules, and if successful calls NotEqStuff; and
copies the result of this subsumption (the temporary table) into a new table called the
Intermediate table. However, there are some differences. Remember that the original
subsumption’s main procedure started by calling the subsumptior. procedures
Number_Application_Rules and Number_Query_Conditions to find out how many rules
there were in the application and database. In this case, those two numbers are given to
Execute_Subsumption as arguments by main. Also, the Execute_Subsumption does not call
SemanticEqOrSub to decide if the contents of the temporary table are copied into the
yes_table or no_table, but instead always copies them to the Intermediate table. Finally,
Execute_Subsunipt returns a count of how many combinations of conditions from the
query_conditions and no_conditions tables did not conflict, as opposite to the original

subsumption’s main program which does not return any result.

-78-

The Execute_Subsumption procedure finds the intersection of the conditions in the
no_conditions and query_conditions tables, just as the original Subsumption Algorithm
found the intersection of the conditions in the appl_rules and db_rules tables. To do this,
Execute_Subsumpt calls CanBeSubsumed for every possible combination of no_conditions
condition and query_conditions condition. If CanBeSubsumed returns 1, then
Execute_Subsumption calls NotEqStuff for those same ruies. If this also returns 1 then the
intersection of the rules is in the temporary table, and Execute_Subsumpt copies it into the

Intermediate table.

The Intermediate table is like the yes and no tables of the original subsumption, but instead
of having two rule number fields (one for the application and one for the database), it only
has one such number, that increaces every time two rules intersect. When
Execute_Subsumption finishes, it returns this number to the main procedure; literally, it
means how many intermediate queries will Query_Rebuild have to make to the database (in
the next step of the select program.) For example, when Execute_Subsumpt finds the
intersection of the query_conditions and no_conditions tables shown above, it leaves in the

temporary table the information:

INTERMEDIATE

r_number

A A W W WNNN

ooooo

atr_name

debt
assets
Profits
debt
assets
CEO_pay
debt
CEO_pays
Profits
debt
CEO_pay

-79-

operation

.....

.....

primitive

And returns the number 4 that is the number of ORed conditions that the Intermediate table

contains. In the next section it will be shown how this information is usc¢. to make 4

intermediate queries:

select Trade_Price

from query_conditions

where (debt > 20 and assets > 100 and Profits > 100)

select Trade_Price

from query_conditions

where (debt > 20 and assets >= 100 and CEO_pay >= 300(0000)

-80-
select Trade_Price from query_conditions

where(debt < 15 and CEO_pay >= 30000000 and Profits > 100)

select Trade_Price from query_conditions

where(debt < 15 and CEO_pay >= 30000000)

which are used to find out if there are semantic conflicts in the select clause: if any of these
queries returns a non-null result, the original query will return semantically incorrect

results.

4 The Query Rebuild Procedure

This is a very simple procedure. It is called by the main program with two arguments: the
name of the attribute in the select clause which is being checked to be semantically correct,
and the number of ORed conditions in the Intermediate table (the number returned by
Execute_Subsumption in subsection 3). This is the same number of internediate queries

that the procedure will make.

What the procedure does is very simple: For every different r_number in the Intermediate

table, it builds a string that contains a select statement and the name of the attribute in the

select clause of the original query (in this case Earnings):
select Eamnings

which is followed by a from statement indicating the table from which the information

should be obtained (in this case the db_table table):
from db_table

followed by the statements from the Intermediate table with the3 current r_number arranged
in the following manner: all statements with the current r_number are ANDed together and
put inside parenthesis. For example, for the conditions in the Intermediate table above with

r_number = 1, Query_Rebuild produces the string:

-81-
select Eamnings
from query_conditions

where (debt > 20 and assets > 100 and Profits > 100)

Which it later converts to an intermediate query and executes it. If the query retums any
result different than NULL, Query_Rebuild returns O because the original query would
retum semantically incorrect results if executed. If, on the other hand, the previous
intermediate query returns a null result, similar intermediate queries are built and executed
for the conditions in the Intermediate table with r_numbers 2, 3, and 4. If any of these
queries retuns a non-null result, Query_Rebuild retums 0. If all return null results,

Query_Rebuild retums 1.
4.3 Conclusion

We have explained how the Where and Select Programs work. They always are called after
the query kas been parsed into the a_list, t_list and c_list tables, and they retum their result
to the jam interface via the procedure_result table.

For every query, the jam interface must first call the Where Program and then the Select
Program. If both leave a 1 result in the procedure_result table, than the query won’t retumn
any tuple that causes a semantic conflict from the db_table. If the Where Program returns a
0, the query can not be made, because the application and the database w::uld
misunderstand each other when interpreting the conditions used to select the tuples that the
query retumns.. If only the Select program retumns 0, then the query also can not be made,

because the database would retum tuples with different meaning than the application

expects.

-82-

PART V

CONCLUSION AND FUTURE RESEARCH

This thesis has presented a demonstrable implementation of the ideas proposed in [SM'91].
The system allows the application and database to' define independent sets of rules for
deriving their semantic contexts, and correctly subsumes them. By taking advantage of the
information produced by the Subsumption Algorithm, the Query Processor checks that no
query made by the applicaticn to the database will return semantically incorrect results,
before the query is performed. With this, the primary objective of automatically avoiding

semantic conflicts in a source-receiver model has been accomplished.

There are some short comings to this implementation. The most important is that the source
and all the system tables have to be in the same database, limiting the usefulness of the
system. Ideally, the system tables and the source should be in different parts of a network,
in different databases, and some form of Remote Procedure Calls would be used to query

the source.

There is also a limit on how many intermediate queries can be done by any call to the
Where Program or the Select Program. The problem is that every intermediate .. ery
requires building an ’ad-hoc’ ESQL cursor, which can not be destroyed. There is a limit 0
how many cursors can be created in ESQL, and, if a certain query requires many
intermediate queries to check either its where clause or its select list, there is the possibility
that the system could run out of cursors and crash. I have never seen this problem happen,

but would not be surprised if it did.

Another problem is that the system is not optimized, and could be very slow in real

applications.

-83-
Future research might focus on implementing conversion functions and the necessary
ontologies, which would make possible to convert data from one semantic form to another.
A system with these characteristics, would change all the semantically incorrect tuples that
a query returns into an equivalent, semantically correct form. This would be a big
improvement to the cvrrent implementation, which forbids all queries that would produce

semantic conflicts.

A further improvement to the system will probably allow niles with other functions besides
the current =, != >, <, >= and <=. Longer term research will probably try to implement

some form of this system into real life situations, and market 1.

PART VI

Appendix 1

#include <stdio.h>
#include <string.h>
$include sqglca;
$include sqlda;

/* ARAAAA AR AR AAAR R A AR AR KA AR AR AR AN AT AAA A AR ANAARANAAARAARA A AR KA KK KA KAk h Aok */

/* THIS IS THE CSQL SUBSUMPTION ALGORITHM v
/* Algorithms inspired by Professor Madnik and Dr. Siegel, designed by %/
/* Andrew Leung, and implemented by Francisco Madero at MIT’s Sloan */
/* Scool of Management. Summer 1992. */

/\\ AAAK AR AR AN AR AR AR AR AR AR AR AR AR R A AR AR A RA KA AAAAAAARAIRRAKR AR A AR K R A KA kA */

/* Procedure DeclareSubsumptionCursors declares all the cursors that are */
/* used in the subsumption algorithm. It is called only once by the main */
/* program, before anything else is dc.e. */

/* Note, this procedore MUST BE PUT AT THE TOP OF THE FILE, because ESQL */
/* is very picky. It doesn’t like a procedure using cursors declared in */
/* another procedure written after it. */

DeclareSubsumptionCursors ()

{
$char strl[300]);
$char str2(300];
$char st_£in[300]};
$char str_eq(300];
Schar str_gt(300];
$char str _get [300];

$char check _str1(300];
$char check str2(300];

$char str3([300]);

$char str4[300]);

$char str5(300]);

S$char st_finl[300];

$char stteq(300];

$char sttgt [300];

$char str_temporary(300];

strcpy (check_strl, "select atr name from appl rules where r number := ?");
strcpy (check_str2, "select atr_name from db_rules where r number = ?");

$prepare query chkl from $check strl;
print status("Prepare q_chkl"};
$declare cur chkl cursor for query chkl;

print__ status ("Declare q_chkl");

Sprepare query chk2 from $check str2;
print_status("Prepare q_chk2");
$declare cur chk2 cursor for query chk2;
print status("Declare q_chk2");

strcpy (strl,

"select atr i1 ime, arg name, operation, primitive ");
strcat (strl, " from appl rules ");
strcat (strl, " where r number = ? AND domain_type = ?");

$prepare queryl from $strl;
print status("P1l");

$declare curl cursor for queryl;
print_status ("Al");

strcpy (str2,

R

i T = S AN RN R i,

"'select atr name, arg name, operation, primitive ");
strcat (str2, " from appl rules ");
strcat (str2, " where r number = ? AND domain_ type = ? ") -
strcat (str2, " AND operation = ? OR r_number = ? ");
strcat (str2, AND domain type = ? AND operation = ? ");

$prepare query2 from $str2;
print_status ("P2");

$declare cur2 cursor for query2;
print_status ("A2");

strcpy (st_fin,
"select atr name, arg name, operation, primitive ");
strcat (st_fin, " from db rules ");
strcat (st_fin, " where r number = ? AND mark = 0");
strcat (st_fin, " AND domain_ type = ? AND operation != ?2");

Sprepare query fin from $st_fin;

print status(“?3")-

$declare cursor final cursor for query fii;
print status ("A3")

strcpy (str_eq,
"select primitive, mark from db_rules ");
strcat (str_eq, " where r number = ? AND atr name = ? AND ");
strcat (str_eq, " arg name = ? AND domain type = 2?2 ");
strcat (str_eq, " AND operation = ?2"),

$prepare query eq from $str_egq;
print__ status ("P4") ;

Sdeclare cur _eq cursor for query egq;
print_status ("A4");

$prepare query neq from $str _egq;
$declare cur_neq cursor for query neq,
print status(“ASS“),

strcpy (str_gt,

"select operation, primitive, mark from db rules ");
strcat (str_gt, " where r number =~ ? AND atr name = ? AND ");
strcat (atr_gt, " arg name = ? AND domain type = 2 ");
strcat (str_gt, " AND operation = ? OR ");
strcat (str_gt, " r number = ? AND atr name = ? AND ");
strcat (str_gt, " arg _name = ? AND domain _type = 2 ");
strcat (str gt, " AND operation = ?2");

$prepare query gt from $str gt;
print status ("P5") ;

$declare cur_gt cursor for query gt;
print status("AZl"),

$prepare query templ from $str gt;
$declare cur_ templ cursor for query templ;
print status("A23"),

$prepare query lt from $str gt;
$declare cur_ 1t cursor for query 1t;
print__ status ("AS");

strcpy (str_get,

"select operation, primitive, mark from db_rules ");
ctrcat (str_get, " where r number = ? AND atr name = ? AND ");
strcat (str_get, " arg name = ? AND domain_type = ? ");
strcat (str get, " AND operation = ? ");

$prepare query get from $str_get;
print_ status ("P6");

$declare cur _get cursor for query get;
print_ st~tus ("A24") ;

strcpy (str3,

"select atr name, arg name, operation, primitive ");
strcat (str3, " from appl ru.es ");
strcat (str3, " where r number = ? AND domain_type = 2");
strcat (str3, " AND operation = ?");

$prepare query3 from $str3;
prirt status ("P13");

$declare cur3 cursor for query3;
print_status ("Al3");

strcpy (str4,

"select atr name, arg name, operation, primitive ");
strcat (str4, " from db rules ");
strcat (str4, " where r number = ? AND domain_type = ?2");
strcat (strd4, " AND operation = ? AND mark = 0");

$prepare queryd from $strd;
print_status("P14");

$declare cur4 cursor for queryd;
print_status ("Al4");

strcpy (str5, "select primitive ");

strcat (str5, " from db_rules ");

strcat (str5, " where r number = ? AND mark = 0 ");
strcat (str5, " AND atr _name = ? AND arg name = ? ");
strcat (str5, " AND domain_type = ? AND operation = ?2");
strcat (str5, " AND primitive = 2");

Sprepare query5 from $str5;
print_status ("P15");

$declare cur5 cursor for query5;
print_status ("Al5");

strcpy (stteq, "select primitive from temporary ");
strcat (stteq, " where atr name = 7 AND ");

strcat (stteq, " arg name = ? ");

strcat (stteq, "AND operation = ? AND primitive = ?2");

$prepare query Teq from $stteq;

print status("P1l6");

$declare cur Teq cursor for query Teq;
print__ status ("Alé6") ;

strcpy (sttgt, "select operation, primitive from temporary ");
strcat (sttgt, " where atr name = ? AND ");
strcat (sttgt, " arg name = ? ");

strcat (sttgt, " AND operation = ? OR ");
strcat (sttgt, " atr name = ? AND ");
strcat (sttgt, " arg _name = ? ");

strcat (sttgt, " AND operation = ?2");

$prepare query Tgt from $sttgt;
print status ("P17");

$declare cur _Tgt cursor for query Tgt;
prlnt_status("A17"),

$prepare query Tlt from $sttgt;
print_status ("P18");

main ()

$declare cur_ Tlt cursor for query Tlt;
print_ status ("A18");

$declare cur_deltemp cursor for
select atr name, arg name, operation, primitive
from temporary;
print_status ("Al9");

$declare cur_applt cursor for select unique r number from
appl rules;
print_status ("Declare APPLT"Y) ;

$declare cur sourc cursor for select unique r_ number from
db_rules;
print_status("Declare SOURC");

Schar t_attr(30];
Schar t_arg[30];
$char t_op(S5]):

$char t_val[30];

$long a;

$long b;

$long X;

$long Y

int sem_case;
int result;

/* PART I, SETTING THE ENVIRONMENT

/* The fisrt thing that has to be done is to declare the current
/* database and all the cursors that will be used by all the

/* programs in the file. THIS MUST BE DONE ONLY ONCE

$database cdrdb;
DeclareSubsumptionCursors () ;

/* PART II, SUBSUMPTION ALGORITHM

/*
/* Step I find out how many rules there are in the application
/* and in the data base context xepositories

a = Number Application_Rules();
b = Number Db _Rules () ;
printf ("RULES a= %i, b = %i\n", a, b);

/* Step II perform a double loop to compare every combination of
/* application rule and source rule

for (x=1; x<=a; =x++)

{
for(y=1; y<=b; y+)
{

/* FIRST clear temporary table */

*/
*/
*/
*/

*/
*/

*/

*/

$delete from temporary;
print_status("clear temporary");

/* SECOND Find intersection of if conditions disregarding */
/* not_equals by calling CanBeSubsumed */

result = CanBeSubsumed(x,y):;
printf ("SUBSUMPT %i, %i, %i\n", result, x, y);

/* If they are disjoint here don’t do anything else. */
/* Otherwise find the whole intersection by calling */
S NotEqStuff /

if (result == 1)
{
result = NotEqualStuff (x,y);
printf ("NEQ %i\n", result);

/* If not_equals make rules disjoint dont’ do anything else.*/

/* If not, temporary table has the intersection of the */
/* if conditions and we have to figure out if we copy it to */
/* the yes table or to the no table. */

if (result == 1)

/* THIRD compare then conditions by calling SemEgOrSub */
/* sem case is 1 if source’s then condition is equal or */
/* subset of application’s then condition. If it is not, */
/* bad table is automatically updated by SemanticEqOrSub */

sem case = SemanticEqOrSub(x,y);
printf ("3EMANTIC %i, %i, %i\n", sem case, x, y);

/* FOURTH copy temporary table into yes table if semcase =1 */
/* or into no_table if semcase = 0. */

$open cur_deltemp;
print_status("3");

while (1)
{
$fetch cur_deltemp
into $t_attr, $t_arg, $t_op, $t_val;
print_status ("Fetch deltemp");

if (sglca.sqglcode == SQLNOTFOUND)
{
$close cur_deltemp;
break;

}

if (sem _case == 1)
{
$insert into yes table
values ($x, y, St_attr, $t_arg, $t_op, $t_vai, 0);
print_status ("insert into yes");

}

else if (sem case == ()

{
Sinsert into no table

values ($x, Sy, $t_attr, $t_arg, St _op, $t_val, 0);
print_status ("insert into no");

}

/* This procedure scans appl rules and returns how many rules there are in it */

long Number Application_Rules ()

{

$long ar_num;
long count;

count = 0;
$open cur_applt;
print_status ("Open APPLT");
while (1)
{
$fetch cur_applt into $ar_num;
printf£ ("FETCH APPLT %i, %i", sqlca.sqlcode, ar num);
print_status("Fetch APPLT");
if (sglca.sgqlcode == SQLNOTFOUND)

break;
if (ar_num > count)
count = ar_num;

}

return (count) ;

/* This procedure scans db_rules and returns how many rules there are in it */

long Number Db Rules ()

{

}

$long sr_num;
long count;

count = 0;
$open cur_sourc;
print_status ("Open SOURC");
while (1)
{
$fetch cur_sourc into $sr_num;
printf ("FETCH SOURC %i, %i", sqlca.sqglcode, sr_num);
print_status("Fetch SOURC");
if (sqlca.sgqlcode == SQLNOTFOUND)
break;
if (sr_num > count)
count = sr num;
}

return (count) ;

int CanBeSubsumed (x,y)

$long x;
$long y;
{

$char
Schar
$char
$char
$char
$char
$char

$char
$chau
$char
$char
$long
int
int
int co

int c¢n
int no
int in

cnt =
dom =
condit

strcpy
strcat
strcat
strcat
strcat

strcpy
strcat
strcat

a_attr([30};
b_attr[30];
a_opl[5];
s_opl[5];
a_val(30];
s_val([30]);
a_nam{30];

str sul[300];
str_clrtmp(300];

*dom;
dummy [{30]) ;
s_mark;
condition;
comp;
unter;

t;
t_found;
serted;

1;
"A" ’.
ion = 1;

(str_sul, "update db_rules ");

(str_sul, "
(str_sul, "
(str_sul, "
(str_sul, "

(stxr_clrtmp,
(str_clrtmp,
(str_clrtmp,

set mark = 1 *);
where r number = ? AND atr name = ? AND ");
arg_name = 7 AND domain_type = ? AND ");
operation = ? AND primitive = ?");

"update db rules ");
" gset mark = 0 ");
" where r number = ? ");

$open curl using $x, $dom;

print

_status ("4");

$open cur2 using $x, $dom, ">= ", $x, $dom, "<= ",

print_status("5");

$open cursor final using $y, "A", "l= ",
print_. status ("6") ;

$prepare updte 11 from $str sul;

$prepare updte_sul from $str sul;
$prepare update tmp from $str clrtmp;
$execute update tmp using $y;

/* PART I */
/* USES CUR_CHK1 AND CUR_CHK2 TO SEE IF THE TWO */
/* RULES REFER TO 1THE SAME NON-PRIMITIVE ATTRIBUTE */
/* BY CHECKING THAT THE VALUES OF THEIR ATR_NAME */

/* FIELDS ARE EQUAL

*/

$open cur_chkl using $x;
print_ status ("Open cur chkl");
$fetch cur_chkl into $a_attr;
status ("Open cur “chk1") ;

print _

if (sqlca.sqlcode !

{

= SQLNOTFOUND)

$open cur chk2 using $y;

print_status ("Open cur chk2");
$fetch cur_chk2 into $b_attr;
print_status ("Open cur chk2");
if (sqlca.sgqlcode != SQLNOTFOUND)
{
if (strcmp(a_attr, b_attr) != 0)
return (0) ;

/* PART 11 */
/* */
/* THE FIRST LOOP IN THE PROGRAM CHECKS FOR THE VERY */
/* SPECIAL CASES LIKE THE FOLLOWING: */
/* APPL_RULES contains a tuple saying: price >= 50 */
/* BND */
/* DB_RULES contains the tuple: price <= 50 */
/* IN THAT CASE, STORES INTO THE temporay TABLE THE */
/* TUPLE: price = 50, */
/* AND MARKS IN THE db rules TABLE THE TUPLE SAYING */
/* price <= 50 AS WELL AS ANY TUPLE THAT SUCH TABLE */
/* MIGHT CONTAIN SAYING price >= something OR */
/* price > something */
while (1)
{

/* cur2 RETRIEVES ALL THE TUPLES IN THE

/* APPL _RULES TABLE WITH OPERARATIONN >= OR <=

$fetch cur2 into $a_nam, $a_attr, $a_op, $a_val;

if (sqlca.sglcode)
break;

/* FOR EVERY TUPLE WITH OPERATON >= RETIEVED
/* FROM APPL RULES
if (strcmp(a_op, ">= ") == 0)

{

*/
*/

*/
*/

/* cur get LOOKS FOR A TUPLE WITH THE SAME */

/* ATTRIBUTE NAME, AND OPERATION <=
$open cur get

using $y, $a_nam, $a_attr, $dom, "<=
print status("7");

*

",
4

$fetch cur _get into $s op, $s val, $s mark;

if (sqlca.sqglcode != SQLNOTFOUND)
{

printf("gets %s %s\n ", a_val, s_val);

if (compare strings (a_val, s_val) == 0)

{
printf ("OOPS|n");
/* IF SUCH TUPLE IS FOUND:

/* 1- UPDATES THE TEMPORARY TABLE
$insert into temporary
values ($a_nam, $a_attr,
" “' $a_val) ;

/* 2- MARKS THE TUPLE FOUND IN . .
/* DB_RULES TABLE
$execute updte_ 11 using $y, $a_nam,

$a attr, $dom, $s op, $s_val;

/* 3- cur_templ LOOKS FOR A TUPLE IN

/

*/
*/

*/

/* DB_RULES TABLE WITH SAME ATRIBUTE */

/* NAME AND OPERATOION >= OR > */
$open cur_templ using $y, $a_nam,
$a_attr, $dom, "> ", 8y, $a _nam,
$a_attx, $dom, ">= ";
print_status ("9");
$fetch cur_templ into $s_op,
$s_val, $s_mark;

/* 4- IF FOUND MARKS IT */
if (sglca.sglcode != SQLNOTFOUND)
$execute updte sul using $y, $a nam,

$a_attr, $dom, $s_op, $s_val;

$close cur_templ;

}
}
$close cur_get;

}

/* FOR EVERY TUPLE WITH OPERATON <= RETIEVED */
/* FROM APPL RULES */
if (strcmp(a op, "<= ") == 0)
{
/* cur_get LOOKS FOR A TUPLE WITH THE SAME */

/* ATTRIBUTE NAME, AND OPERATION <= */
$open cur_get
using $y, $a nam, $a attr, $dom, ">= ",

print_status ("8");
$fetch cur get into $s_op, $s_val, $s_mark;

if (sglca.sglcode != SQLNOTFOUND)
{
/* IF SUCH TUPLE IS FOUND: */
/* 1- UPDATES THE TEMPORARY TABLE * /

if (compare strings (a_val, s_val) ==0)

{
$insert into temporary
values ($a_nam, $a attr,
"_ u, $a__val) ;
/* 2- MARKS THE TUPLE FOUND IN THE */
/* DB_RULES TABLE */
$execute updte 11 using $y, $a nam,
$a_attr, $dom, $s op, $s_val;

/* 3~ cur templ LOOKS FOR A TUPLE IN */
/* DB_RULES TABLE WITH SAME ATRIBUTE */
/* NAME AND OPERATOION <= OR < */
$open cur templ using $y, $a nam,
$a_attr, $dom, "< ", 8y, $a nam,

$a_attr, $dom, "<= ",
print_status ("10");
$fetch cur templ into $s cp,
$s_val, $s mark;

/* STEP 4 Marks it */
if (sqglca.sqlcode != SQLNOTFOUND)
$execute updte sul using $y, $a nam,

$a_attr, $dom, $s op, $s_val;
$close cur_templ;

}
}

$close cur_get;

}

$close cur?;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

PART III */

*/

THE SECOND LOOP OF THE PROGRAM DOES THE HEAVY W * /
IT GOES THROUGH ALL THE TUPLES IN THE APPL_RULE. */
WITH THE RULE NUMBER GIVEN AS THE FIRST ARGUMENT TO */
THE PROGRAM, AND DEPENDING ON THEIR */
OPERATION DOES ONE OF THE FOLLOWING 5 CASES: */
CASE 1: OPERATION IS = */
CASE 2: OPERATION IS > */
CASE 3: OPERATION IS < */
CASE 4: OPERATION IS >= */
CASE 5: OPERATION IS <= */
(operation != is not handled in this program) */

*/

THERE ARE VARYING DETAILS THAT WILL BE EXPLAINED */
DOWN BEFORE EACH CASE, BUT THE COMMON CHARACTERISTC */
IS THIS: */
FOR EVERY CASE OF TUPLE FOUND IN THE */
APPL RULES, IT LOOKS FOR THE TUPLES IN THE IN THE */

DB RULES WITH THE RULE NUMBER GIVEN AS THE SECOND */

ARGUMENT TO THE PROGRAM, THAT HAVE THE SAME */
ATTRIBUTE NAME. */
IF IT FINDS THEM, CHECKS IF THE THEY CONFLICT WITH */
TUPLE FROM THE APPL RULES THAT WL ARE OBSERVING */
(in which case the program ends */
immediately in failure) OR FINDS THEIR INTERSECTION, */
STORES IT IN THE temporary, MARKS THE RELEVANT */
TUPLES IN THE DB_RULES, AND LOOPS TO THE NEXT TUPLE */
IN THE APPL_RULES WITH THE GIVEN RULE NUMBER. */
IF IT DOESN’T FIND THEM, COPIES THE TUPLE IN THE */
RULES INTO THE temporary TABLE, AND LOOPS TO THE */

NEXT TUPLE IN APPL_ RULES WITH THE GIVEN RULE NUMBER */

while (1)

{

counter = 1;
if (condition == 0)
break;
$fetch curl into $a_nam, $a_attr, $a_op, $a_val;

if (sglca.sglcode)
break;

$open cur_eq using Sy, $a nam, $a attr, $dom, "=
print_status("11");
$open cur_gt using $y, $a_nam, $a_attr, $dow, ">

$y, $a nam, $a_attr, $dom, ">= ";

print_status("12");
$rpen cur_lt using $y, $a_nam, $a_attr, $dom, "<

$y, $a_nam, $a_attr, 3dom, "<= ";

print_status("13");
not._found = 1;
inserted =

’

’

/* CASE 1:

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

OPERATION =

LOOKS IN DB RULES FOR

Step 1
A TUPLE WITH THE SAME ATRIBUTE:NAME AND
OPERATION =,

Step 1.1 IF IT FINDS

THEIR VALUES,

IT, COMPARES

AND IF THEY ARE EQUAL COPIES IT

INTO THE temporary TABLE, AND MAKS THE TUPLE

IN THE DB RULES.

IF THE VALUES ARE DIFFERENT,

THEN THE RULES ARE DISJOINT AND THE PROGRAM

END
Step

S.
2

IF IT DOESNT FIND THE TUPLE WITH OPERALiION =
IN THE DB_RUL! 3, THEN FIRST LOOKS FOR A "UPLE
IN DB_RULES WITH THE SAME ATTRIBUTE NAME \ND
OPERATION > OR >=, AND THEN LOOKS FOR A T JPLE
WITH OPERATION <= OR <,
Step 2.1 IF IT FINDS ONE OF THESE TUPLES, NO

WHAT COMBINATION IT IS

combination, or a < and

et

c)

IT MAKES SURE

(ie, a <= and >=

>=, or just a > alone,
THAT THE VALUE 1IN

THE APPL_RULES DOESN’T CONFLICT WITH THE
VALUE-S IN THE DB_RULES. IF THIS IS THE CASE
THE TUPLE-S FOUNF IN THE DB_RULES TABLE, AND
COPIES THE TUPLE FOUND IN APPL RULES 1INTO THE
temporary TABLE. OTHERWISE THE TWO RULES ARE
DISJOINT AND THE PROGRAM ENDS.

IF NO TUPLE WAS FOUND IN " KULES IN
STEPS 1 AND 2, COPY THE TUPLE 1N APPL RULES
TO THE TEMPORARY TABLE
if (strcmp(a_op, "= ")

Step 3

{

,/*

STEP 1

$fetch cur_eq into $s_val, $s_mark;
if (sglca.sqlcode != SQLNOTFOUND)

{

}

/* STEP 1.1

if (strcmp (s_val,

{

a val) == 0)

/* VALUES ARE EQUAL, INSERT INTO

/* TEMPORSRY
not found = 0;

if (s_mark == 0)

f

$insert into temporary
values ($a_nam, $a_attr,

$a_op, $¢ val);

Sexecute updte_sﬁl using Sy, $a nam,
$a_attr, $dom, $a op, $s val;

}
}

/* VALUES ARE NOT EQUAL, THER IS
/* CONFLICT, PROGRAM ENDS IMMEDIATELY

else
condition

/* STEP 2
else

{

*/

*/

*/

$fetch cur gt into $s_op, $s_val, $s_mark;

if (sglca.sglcode

!= SQLMNTFOUND)

*/

*/

/* STEP 2.1 */
{

if
(((comp = compare_ strings(a_val, s val)) < 0)
Il (comp == 0) && (s_op == "> "))
condition = 0;
/* CONFLICT OCCURS IF APFL HAS FOR EXAMPLE */
/* value = 100 AND DB HAS value > 500 */
else

{
/* IF THERE IS NO CONFLICT INSERT TUrFLE */

/* FROM APPLICATION INTO TEMPORARY. THE */
/* VARIABLE inserted IS SET TO MAKE SURIN */
/* THAT THE TUPLE IS NOT INSERTED TWICE */
$insert into temnporary
values ($a _nam, $a_attr,
$a_op, $a val);
not found = 0;
inserted = 1;
$execute updte sul using $y, $a_nam,
$a_attr, $dom, $s_op, $s_val;
}

}
$fetch cur_lt into $s_op, $s_val, $s_mark;

if (sqlca.sglcode != SQLNOTFOUND)
/* STEP 2.1 v/
{
if
(({(comp = compare_ strings(a_val, s_val)) > 0)
Il (comp == 0) && (s_op == "> "))

condition = 0;
/* CONFLICT OCCURS IF APPL HAS FOR EXAMP.,E */
/* value = 100 AND DB FAS value < 50 */

else
{

/* IF THERE IS NO CONFLICT AND THE TUPLE */
/* FROM APPLICATION HAS NOT PREVIOUSLY */
/* BEEN INSERTED INTO TEMPORARY. THEN */
/* INSERT IT, OTHERWISE DON’T DO ANYTHING */
not found = 0;
if (inserted == 0)
$insert into temporary
values ($a _nam, $a attr,
$a_op, $a_val);
$execute updte_sul using $y, $a_nam,
$a_attr, $dom, $s op, $3 val;

/* STEP 3 */
if (not_found == 1)
$insert into temporary
values ($a nam, $a attr,
$a_op, $a_val);

/* CASE 2: OPERATION > */
/* Step 1 LOOKS IN DB _RULES FOR */

/* A TUPLE WITH THE SAME ATRIBUTE NAME AND */

/* OPERATION =. IF IT FINDS IT, COMPARES THEM*/
/* TO SEE IF THEY CONFLICT. IF THEY CONFLICT, */
/* PROCEDURE ENDS IMMEDIATELY. IF THEY DON’T * /
/* CONFLICT, CHECKS IF THE TUPLE FROM DB RULES TIS*/
/* MARKED, AND IF IT IS NOT, MARKS IT AND COPIES */
/* INTO TEMPORARY. IF MARKED DON’T DO ANYTHING */
/* EXAMPLE: Price > 50 CONFLICTS WITH Price = 30.*/
/* Step 2 */
/* IF IT DOESNT FIND THE TUPLE WITH OPERATION = */
/* IN THE DB RULES, THEN LOOKS FOR A TUPLE */
/* IN DB RULES WITH THE SAME ATTRIBUTE NAME AND */
/* OPERATION < OR <=, IF IT FINDS SUCH A TUPLE, */
/* MAKES SURE THAT IT DOESN’T CONFLICT. OTHERWISE*/
/* RETURNS 0. EXAMPLE: Price > 50 AND Price <= 4 */
/* CONFLICT. IF THERE’S NO SUCH TUPLE ITS OK */
/* Step 3 */
/* IF THERE WAS NO CONFLICT IN STEP 2, LOOKS */
/* IN DB_RULES FOR A TUPLE WITH THE SAME */
/* ATTRIBUTE NAME AND OPERATION > OR >=, IF IT */
/* FINDS SUCH A TUPLE, CHECKS IF IT IS MARKED, */
/* AND IF NOT, MARKS IT, PICKS THE MOST */
/* RESTRICIVE OF THE TWO TUPLES AND INSERTS 1IN */
/* THE TEMPORARY TABLE. IF THE TUPLE IS MARKED */
/* DON’T DO ANYTHING. EXAMPLE: Price > 50 IS */
/* MORE RESTRICTIVE THAN Price >= 30. */
/* Step 4 IF NO TUPLE WAS FOUND IN DB RULES IN */
/* STEPS 1 AND 3, COPY THE TUPLE IN APPL RULES */
/* TO THE TEMPORARY TABLE - * /
else if (strcmp(a_op, "> "y == 0)
{

/* STEP 1 */

$fetch cur eq into $s val;

if (sqlca.sqlcode != SQLNOTFOUND)

{
if (strcmp (s_val, a val) > 0)

{

not found = 0;
if (s_mark == 0)
{
$insert into temporary

values ($Sa_nam, $a_attr,

W= ", Se val);
$execute updte sul using Sy, $a nam,
a_attr, $dom, "= ", $s val;
}
}
else
condition = 0;
}
else
{
/* STEP 2 */
$fetch cur gt into $s_op, $s_val, $s mark;
if (sqglca.sqglcode != SQLNOTFOUND)

{

not found = 0;

if (s_mark == 0)

{

if

(((comp = compare_ strings(a_val, s_val))

|| (comp < 0))

$insert into temporary

else if

values ($a _nam, $a_attr,
$s_op, $s_val):
else
$insert into temporary
values ($a_nam, $a attr,
$a op, $a val);
$execute updte sul using $y, $a nam,
$a_attr, $dom, $s op, $s val;
}
}

/* STEP 3
$fetch cur_lt into $s_op, $s val, $s mark;
if (sqlca.sqlcode != SQLNOTFCUND)
{
if
(((comp = compare_strings(a_val, s val))
Il (comp > 0))
condition = 0;
}
}
/* STEP $ */
if (not_found == 1)

$insert into temporary
values ($a_nam, $a attr,
$a_op, $a_val);

/* CASE 3: OPERATION < */
/* Step 1 LOOKS IN DB RULES FOR */
/* A TUPLE WITH THE SAME ATRIBUTE NAME AND */
/* OPERATION =. IF IT FINDS IT, COMPARES THEM*/
/* TO SEE IF THEY CONFLICT. IF THEY CONFLICT, */
/* PROCEDURE ENDS IMMEDIATELY. IF THEY DON'T */
/* CONFLICT, CHECKS IF THE TUPLE FROM DB RULES IS*/

/* MARKED, AND IF IT IS NOT, MARKS IT AND COPIES */
/* INTO TEMPORARY. IF MARKED DON’T DO ANYTHING */
/* EXAMPLE: Price < 50 CONFLICTS WITH Price = 70.*/
/* Step 2 */
/* IF IT DOESNT FIND THE TUPLE WITH OPERATION = */
/* IN THE DB_RULES, THEN LOOKS FOR A TUPLE */
;* IN DB_RULES WITH THE SAME ATTRIBUTE NAME AND */
/* OPERATION > OR >=., IF IT FINDS SUCH A TUPLE, */
/* MAKES SURE THAT IT DOESN’T CONFLICT. OTHERWISE*/
/* RETURNS 0. EXAMPLE: Price > 50 AND Price >= 60*/
/* CONFLICT. IF THERE’S NO SUCH TUPLE ITS OK */
/* Step 3 */
/* IF THERE WAS NO CONFLICT IN STEP 2, LOOKS */
/* IN DB_RULES FOR A TUPLE WITH THE SAME */
/* ATTRIBUTE NAME AND OPERATION < OR <=. IF IT */
/* FINDS SUCH A TUELE, CHECKS IF IT IS MARKED, */
/* AND IF NOT, MARKS IT, PICKS THE MOST */
/* RESTRICIVE OF THE TWO TUPLES, AND INSERTS IN */
/* THE TEMPORARY TABLE. IF THE TUPLE IS MARKED */
/* DON’T DO ANYTHING. EXAMPLE: Price < 50 IS */
/* MORE RESTRICTIVE THAN Price <= 60. */
/* Step 4 IF NO TUPLE WAS FOUND IN DB_RULES IN */
/* STEPS 1 AND 3, COPY THE TUPLE IN APPL RULES */
/* TO THE TEMPORARY TABLE */
(strcmp (a_op, "< ") == 0)

{

/* STEP 1 */

*/

$fetch cur_eq into $s_val, $s_mark;
if (sglca.sglcode != SQLNOTFOUND)
{
if (strcmp (s_val, a val) < 0)
{
not found = 0;
if (s _mark == 0)
{
$insert into temporary
values ($a_nam, $a attr,
" u' $s_val);
$execute updte sul using $y,$a nam,

$a attr, $dom, "= ", $s val;
}
}
}
else
{
/* STEP 3 */
$fetch cur_lt into $s_op, $s val, $s mark;
if (sglca.sgqlcode != SQLNOTFOUND)
{
not_found = 0;
if (s_mark == 0)
{
if
(((comp = compare_strings(a val, s val)) ==
|l (comp < 0))

$insert into temporary
values ($a_nam, $a attr,
Sa_op, $a_val);
else
$insert into temporary
values ($a nam, $a attr,
$s _op, $s val);

$execute updte sul using $y, $a nam,
$a_attr, $dom, $s op, $s_val;

/* STEP 2

S$fetch cur gt into $s_op, $s_val, $s nark;

if (sqlca.sqlcode != SQLNOTFQUND)

{
if
(((comp = compare_strings (a_val, s val)) ==
Il (comp < 0))
{

condition = 0;

}
}
}

/* STEP 4
if (not_found == 1)
$insert into temporary
values ($a nam, $a attr,
$a_op, $a val);

0)

*/

*/

/* CASE 4: OPERATION >= *)

/* Step 1 LOOKS IN DB RULES FOR */
/* A TUPLE WITH THE SAME ATRIBUTE NAME AND x/
/* OPERATION =, IF IT FINDS IT, COMPARES THEM*/
/* TO SEE IF THEY CONFLICT. IF THEY CONFLICT, */
/* PROCEDURE ENDS IMMEDIATELY. IF THEY DON'T */
/* CONFLICT, CHECKS IF THE TUPLE FROM DR RULES IS*/
/* MARKED, AND IF IT IS NOT, MARKS IT AND COPIES */
/* INTO TEMPORARY. IF MARKED DON’T DO ANYTHING */
/* EXAMPLE: Price >=50 CONFLICTS WITH Price = 30.%/
/* Step 2 */
/* IF IT DOESNT FIND THE TUPLE WITH OPERATION = »*/
/* IN THE DB_RULES, THEN LOOKS FOR A TUPLE * /
/* IN DB RULES WITH THE SAME ATTRIBUTE NAME AND */
/* OPERATION < OR <=, IF IT FINDS SUCH A TUPLE, */
/* MAKES SURE THAT IT DOESN’T CONFLICT. OTHERWISE*/
/* RETURNS 0. EXAMPLE: Price >= 50 AND Price <= 6*/
/* CONFLICT. IF THERE’S NO SUCH TUPLE ITS OK */
J* Step 3 */
/* IF THERE WAS NO CONFLICT IN STEP 2, LOOKS */
/* IN DB_RULES FOR A TUPLE WITH THE SAME */
/* ATTRIBUTE NAME AND OPERATION > OR >=. IF IT */
/* FINDS SUCH A TUPLE, CHECKS IF IT IS MARKED, x/
/* AND IF NOT, MARKS IT, PICKS THE MOST */
/* RESTRICIVE OF THE TWO TUPLES, AND INSERTS IN */
/* THE TEMPORARY TABLE. IF THE TUPLE IS MARKED */
/* DON’T DO ANYTHING. EXAMPLE: Price >= 50 IS */
/* MORE RESTRICTIVE THAN Price >= 40. */
/* Step 4 IF NO TUPLE WAS FOUND IN DB RULES IN */
/* STEPS 1 AND 3, COPY THE TUPLE IN APPL RULES x/
/* TO THE TEMPORARY TABLE - */
else if (strcmp(a op, ">= ") == 0)
{

/* STEP 1 * /

$fetch cur_eq into $s_val, $s mark;

if (sglca.sglcode != SQLNOTFOUND)

{
if (((comp = compare_strings (s_val, a val
[l (comp == 0))
{

not found = 0;

if (s_mark == 0)

{

$insert into temporary
values ($a nam, $a attr,

W= %, $3 val);
$execute updte sul using S$y, Sg_nam,
$a_attr, $dom, "= ", $s_val;
}
}
else
condition = 0;
}
else
{
/* STEP 2
$fetch cur_1lt into $s_op, $s_val, $s mark;
if (sqlca.sqlcode != SQLNOTFOUND)
{
comp = compare strings (a_val, s val);

not found = 0;
if (((strxcmp(s_op, "< ") == 0) &&

))

:'(/

> 0)

(comp == 0)) || (comp > 0))
{

condition = 0;
}
/* STEP 3

$fetch cur_gt into $s _op, $s_val, $s mark;
print_status("Fetch cur gt");

print £ ("\nGT1 %i\n", sqlca.sglcode);

printf ("\nGT %s %s %i\n", a_vaI
0

if (sqglca.sglcode != SQLNOTFOUND)
{
not found = 0;
comp = compare_ctrings (a_val, s _val);
, S_val, comp):;
if (s_mark == 0)
{
if
((comp == 0) || (comp < 0))
$insert into temporary
values ($a_nam, $a_attr,
$s_op, $s_val);
else
$insert into temporary
values ($a_nam, $a_attr,
$a_op, $a_val);

$execute updte sul using $y, $a_nam,
$a_attr, $dom, $s op, $s_val;

}

/* STEP 4
if (not_found == 1)
$insert into temporary
values ($a_nam, $a_attr,
$a_op, $a_val);

/* CASE 4: OPERATION <= */
/* Step 1 LOOKS IN DB RULES FOR */
/* A TUPLE WITH THE SAME ATRIBUTE NAME AND */
/* OPERATION =. IF IT FINDS 1IT, COMPARES THEM*/
/* TO SEE IF THEY CONFLICT. IF THEY CONFLICT, */
/* PROCEDURE ENDS IMMEDIATELY. IF THEY DON'T */
/* CONFLICT, CHECKS IF THE TUPLE FROM DB_RULES IS*/
/* MARKED, AND IF IT IS NOT, MARKS IT AND COPIES */
/* INTO TEMPORARY. IF MARKED DON’T DO ANYTHING */
/* EXAMPLE: Price <=50 CONFLICTS WITH Price = 70.%*/
/* Step 2 */
/* IF IT DOESNT FIND THE TUPLE WITH OPERATION = */
/* IN THE DB RULES, THEN LOOKS FOR A TUPLE */
/* IN DB_RULE§ WITH THE SAME ATTRIBUTE NAME AND */
/* OPERATION > OR >=, IF IT FINDS SUCH A TUPLE, */
/* MAKES SURE THAT IT DOESN’T CONFLICT. OTHERWISE*/
/* RETURNS 0. EXAMPLE: Price <= 5 AND Price > 5 */
/* CONFLICT. IF THERE’S NO SUCH TUPLE ITS OK */
/* Step 3 */
/* IF THERE WAS NO CONFLICT IN STEP 2, LOOKS */
/* IN DB RULES FOR A TUPLE WITH THE SAME */
/* ATTRIBUTE NAME AND OPERATION < OR <=. IF IT */
/* FINDS SUCH A TUPLE, CHECKS IF IT IS MARKED, */

*/

*/

/* AND IF NOT, MARKS IT, PICKS THE MOST */

/* RESTRICIVE OF THE TWO TUPLES, AND INSERTS IN */
/* THE TEMPORARY TABLE. IF THE TUPLE IS MARKED */
/* DON’T DO ANYTHING. EXAMPLE: Price <= 50 IS */
/* MORE RESTRICTIVE THAN Price <= 4000. */
/* Step 4 IF NO TUPLE WAS FOUND IN DB RULES IN */
/* STEPS 1 AND 3, COPY THE TUPLE IN APPL RULES */
/* TO THE TEMPORARY TABLE */
else if (strcmp(a _op, "<= ") == 0)
{
/* STEP 1 */

$fetch cur eq into $s_val, $s_mark;
if (sglca.sglcode != SQLNOTFOUND)
{
comp = compare strings (s_val, a val);
if ((comp > 0)
Il (comp == 0))
{
not_ found = 0;
if (s_mark == 0)
{
$insert into temporary
values ($Sa_nam, $a attr,
"= ", $5 val);

$execute updte_sul using $y, $a_nam,
$a_attr, $dom, "= ", $s_val;

}
}

else
condition = 0;

else

{

/* STEP 2 */
$fetch cur_gt into $s_op, $s_val, $s_mark;
if (sgqlca.sglcode != SQLNOTFOUND)
{
comp = compare strings (a val, s _val);
not found = 0;

if (((strcmp (s_op, "> ") == 0) &&
(comp == 0)) || (comp < 0})
{

condition = 0;

}

/* STEP 3 */
$fetch cur 1t into $s_op, $s_val, $s mark;
if (sglca.sqglcode != SQLNCTFOUND)

{
not found = 0;
comp = compare_strings (a_val, s _val);
if (s_mark == 0)
{
if
((comp == 0) || (comp > 0))
$insert into temporary
values ($a nam, Sa attr,
$s_op, $s_val);

else
$insert into temporary
values ($a_nam, $a_attr,
$a_op, $a_val);

$execvrte updte sul using Sy, S$a_ nam,
$a_attr, $dom, $s _op, $s_val;

}

/* STEP 4 */
if (not_found == 1)
$insert into temporary
values ($a _ram, $Sa_ attr,
$a op, $a_val);

$close cur_egq;
$close cur_gt;
$close cur_lt;

$close curl;

/* PART IV */
/* */
/* COPY THE UNMARKED TUPLES FROM DB_RULES INTO TEMPORARY */
while (1)

{
$fetch cursor final into $a_nam, $a_attr, $a_op, $a_val;
if (sglca.sglcode)

}

break;

$insert into temporary
values ($a_nam, $a_attr, $a _op, $a val);

$close cursor_final;
return (condition);

print_status(statmt)

char *statmt;

{

if (sglca.sqglcode < 0)

{
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
b}

L L —— e s g g p—— \ n") ;
"SQLCA After %s\n", statmt);

"sqlcode : $1d\n", sqglca.sqglcode);

"Error character : $1d\n", sqlca.sqglerrd[4]);

long str_to_float (j)

char *j;
{
float

333;

int i;

float divider;

int cas;

int i_case;

int exponent;

int expo_case;
float result;

float intermediate;

i case = 1;
expo_case = 1;
exponent = 0;
cas = 0;
result = 0;
divider = 10;
i=0;

while (1)

{

break;

if (jI[i) == ".")

cas = 1;
else if ((j[i) == 'e’) || (j[i) == 'E"))
cas = 2;

else if (cas == ()
{
if (3[i) == '-")
{

result = result * -1;
i _case = -1;
}
else result = (result * 10) + i case * (j[i] - ’'0");

}
else if (cas == 1)
{
intermediate = (j[i] - 70") / divider;
result = result + (i_case * intermediate);
divider = divider * 10:
}
else if (cas == 2)
{
if (Ji] == '-")
expo case = 0;
else exponent = (exponent * 10) + j[i} - ’(

i++;
}

while (exponent > 0)

{

exponent = exponent - 1;

if (expo_case == 1)

result = result * 10;
else result = result / 10;
}

printf ("Res %f\n", result);
return (result) ;

}

int SemanticEqOrSub (x,y)
$long x;
$long y;
{

$char
$char
$char
$char
$char
$char

$char
$char
int

int
int
int

a attr[2C}];
a_op[5];
s_oplS];
a val([30];
s_val [30];
a nam[30];

*dom;
dummy [30] ;
s_mark;

ne_condition;
condition;
comp;

int not_found;

dom = "s";
condition = 1;

$open curl using $x,

$dom;

print_status("14");

IN WHICH IT SACANS EVERY

TUPLE FROM THE THEN CONDITION IN THE APPL RULES. EACH OF
THOSE TUPLES IS CLASIFIED INTO 4 CASES, DEPENDING ON ITS

OF THEM IT LOOKS FOR TUPLES

IN THE DB RULES TABLE THAT MIGHT CONFLICT WITH THE TUPLE

THE ATR NAME OF

THE TUPLE THAT CAUSED IT IS STORED IN THE BAD TABLE, AND
THE PROGRAM, ALTHOUGH NOT FORCED TO FINISH IMMEDIATELY,
IS SET TO RETURN 0. THIS IS DONE BY SETTING THE condition
condition IS ALWAY3 INITIATED WITH VALUE

IT CAN NEVER BE 1

THE PROCEDURE RETURNS THE VALUE OF condition.

/* PART I

/* THIS PROCEDURE ONLY HAS ONE PART
/*

/*

/* OPERATION:

/* CASE 1 FOR OPERATION =.

/* CASE 2 FOR OPERATION > OR >=

/* CASE 3 FOR OPERATION < OR <=

/* CASE 4 FOR OPERATION !=

/* EACH CASE VARIES, BUT IN ALL

/* »

/* FROM APPL RULES. IF ANY CONFILICT HAPPENS,
/*

/*

/*

/* VARIABLE TO O.

/* 1, BUT WHENEVER IT IS CHANGED TO 0,
/* AT THE END,

/* THE PROCEDURE FINISHES WHEN ALL TUPLES
/* FROM APPL RULES HAVE BEEN SCANED
while (1)

{

§fetch curl into $a_nam, $a_attr, $a op, $a val;

if (sglca.sglcode)

/* ONLY WAY TO FINISH IS WHEN THERE ARE NO
/* TUPLES LEFT IN APPL RULES

break:;

$open cur_eq using $y, $a_nam, $a_attr, $dom, "=

print_status ("15");
$open cur_neq using $y,
print_status("16");

$open cur gt using Sy, $a_nam, $a_attr, $dom,
$y, $a nam, $a attr, $dom, ">= :

$a_nam, a_attr, Sdom, "!=

L1 > "

r

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*

*/
*/

*/
*/

LL Y
7

print_status("17");
$open cur_lt using Sy, $a _nam, $a_attr, $dom, "< L
Sy, $a_nam, $a attr, $dom, "<= ";
print_status("18");
not_ found = 1;

/* CASE 1 * /
/* AFTER FINDING A TUPLE Price = 50 IN APPL_RULES, */
/* THERE MUST BE A TUPLE IDENTICAL TO IT IN DB_RULES */
/* OR THERE IS A CONFLICT. */
if (strcmp(a_op, "= ")y == ()
{
$fetch cur_eq into $s_val, $s_mark;
if (sglca.sglcode == SQLNOTFOUND)
{
$insert into bad
values ($x, Sy, $a nam);
condition = 0;
}
if (strcmp (s_val, a_val) != 0)
{
$insert into bad
values ($x, Sy, $a nam);
condition = 0;

/* CASE 2: OPERATION > OR >= x/
/* FIRST, FOR EVERY TUPLE Price > or >= A */
/* LOOK FOR TUPLE Price = B IN DB _RULES, AND */
/* SEE IF THEY CONFLICT. EXAMPLE: PRICE > 50 */
/* CONFLICTS WITH Price = 30 */
/* SECOND, IF NO TUPLE WAS FOUND IN STEP I, LOOK*/
/* FOR TUPLE Price > C IN DB_RULES AND SEE IF*/
/* IT IS LESS RESTRICTIVE THAN THE TUPLE FROM*/
/* APPL RULES, IN WHICH CASE THEY CONFLICT. */
/* FOR EXAMPLE Price >= 50 CONFLICTS WITH */
/* Price > 20. */
/* THIRD IF NO TUPLE WAS FOUND IN THE TWO STEPS */
/* ABOVE, THERE IS A CONFLICT */
else if ((strcmp(a_op, "> ")y == 0)
Il (strcmp(a op, ">= ") == 0))
{

/* FIRST x/

$fetch cur_eq into $s_val, $s_mark;

if (sglca.sglcode != SQLNOTFOUND)

{
not found = 0;
if
(compare_strings(a_val, s_val) > 0)
{
$insert into bad
values ($x, Sy, $a_nam);
condition = 0;
}
else if ((strcmp(a_op, "> ")y == ()
&& (compare_strings(a_val, s_val) == 0))
{

$insert into bad

values ($x, $y, $a nam);

condition = 0;
}
}
else
{
/* SECOND * /
$fetch cur gt into $s_op, $s_val, $s_mark;
if (sglca.sglcode != SQLNOTFOUND)

{
not_found = 0;
if (compare strings(a_val, s_val) > 0)
{
$insert into bad
values ($x, $y, $a nam);

condition = 0;
}
if ((compare strings(a_val, s _val) == 0)
&& (strcmp(a_op, "> ") == 0)
&& (strcmp(s_op, ">= ") == 0))
{
$insert into bad
values ($x, Sy, $a_nam);
condition = 0;
}
}
}
/* THIRD */
if (not_found == 1)
{
$insert into bad
values ($x, Sy, $a_nam);
condition = 0;
}
}
/* CASE 3: OPERATICN < OR <= */
/* FIRST, FOR EVERY TUPLE Price < or <= A */
/* LOOK FOR TUPLE Price = B IN DB _RULES, AND */
/* SEE IF THEY CONFLICT. EXAMPLE: PRICE < 50 */
/* CONFLICTS WITH Price = 80 */
/* SECOND, IF NO TUPLE WAS FOUND IN STEP I, LOOK*/
/* FOR TUPLE Price < C IN DB_RULES AND SEE IF*/
/* IT IS LESS RESTRICTIVE THAN THE TUPLE FROM*/
/* APPL_RULES, IN WHICH CASE THEY CONFLICT. */
/* FOR EXAMPLE Price <= 50 CONFLICTS WITH */
/* Price < 700. */
/* THIRD IF NO TUPLE WAS FOUND IN THE TWO STEPS */
/* ABOVE, THERE IS A CONFLICT */
else if ((strcmp(a_op, "< ") == 0)
Il (strcmp(a_op, "<= ") == 0))
{
/* FIRST */
$fetch cur_eq into $s_val, $s_mark;
if (sglca.sglcode != SQLNOTFOUND)

{
not found = 0;

if
(compare strings(a_val, s_val) < 0)

{
$insert into bad
values ($x, Sy, $a_nam);
condition = O;
}
else if ((strcmp(a _op, "< vy == 0)
&& (compare_strings(a_val, s_val) == 0))
{
$insert into bad
values ($x, Sy, $a_nam);
condition = 0;

}
else

/* SECOND */
{
$fetch cur lt into $s_op, $s_val, $s_mark;

if (sqlca.sglcode != SQLNOTFOUND)
{

not_found = 0;
if (compare strings(a_val, s_val) < 0)
{
$insert into bad
values ($x, Sy, $a_nam);

condition = 0;
}
if ((compare strings(a_val, s_val) == 0)
&& (strcmp(a_op, "< " T== ()
&& (stremp(s _op, "<= ") == 0))

{

Sinsert into bad
values ($x, $y, $a_nam);
condition = 0;

}

}

/* THIRD */
if (not_found == 1)
{
$insert into bad
values ($x, Sy, $a nam);

condition = 0;
}
}
/* CASE 4: OPERATION != */
/* FIRST FOR EVERY TUPLE OF THE FORM Frice != 50 */
/* FOUND IN APPL RULES, LOOK FOR TUPLEL * /
/* Price = 50 IN DB_RULES, IN WHICH CASE THERE */
/* IS A CONFLICT. */
/* SECOND FOR THE TUPLE Price != 50, 1F THE */
/* Price = 50 WAS NOT FOUND IN FIRST STEP, LOOK*/
/* IN DB_RULES FOR TUPLE Price > OR >= A, AND */
/* SEE IF THEKRE IS POTENTIAL CONFLICT. FOR */
/* EXAMPLE, THE TUPLE Price »= 30 POTENTIALLY */
/* CONFLICTS WITH Price != 50. ON THE OTHEK */
/* HAND, Price > 70 COMPLETELY RULES OUT ANY */

/* CONFLICT */

/* THIRD IF CONFLICT IS POTENTIAL LOOK */

/* IN DB_RULES FOR TUPLE Price < OR <= B, AND */
/* SEE IF IT RULES OUT CONFLICT. FOR */
/* EXAMPLE, THE TUPLE Price <= 30 COMPLETELY */
/* RULES OUT CONFLICT WITH Price != 50, BUT * /
/* Price < 70 LEAVES THE POSSIBILITY OPEN FOR */
/* CONFLICT */
/* FOURT IF CONFLICT HAS NOT YET BEEN RULED OUT, */
/* LOOK IN DB RULES FOR THE TUPLE Price != 50 %/
/* WHICH COMPLETELY RULES OUT CONFLICT */
/* FIFTE IF CONFLICT WAS NOT RULED OUT IN ANY OF * /
/* THE THREE STEPS BEFORE, SET THE condition */
/* VARIARLE TO 0, AND UPDATE THE BAD TABLE */
else if (strcmp(a op, "!= ") == 0)
{

/* FIRST * /

$fetch cur_eq into $s_val, $s_mark;

if (sglca.sglcode != SQLNOTFOUND)

{
not found = 0;
if (compare_strings(a_val, s_val) == 0)
{
$insert into bad
values ($x, $y, $a_nam);
condition = 0;

else

{

ne_condition = 1;

/* THIRD */
$fetch cur 1t into $s op, $s val, $s mark;
if (sglca.sqlcode != SQLNOTFOUND) -
{
not_found = 0;
if
(((comp = compare_strings(a_val, s val)) > 0)
Il (comp == 0))
ne_condition = 0;
if ((strcmp(s_op, "<= ") == 0) &&
(compare_strings(a_val, s_val) == 0))
{
$insert into bad
values ($x, Sy, $a nam);
condition = 0;
}
}
/* SECOND */
$rfetch cur_gt into $s_op, $s_val, $s _mark;
if (sqglca.sglcode != SQLNOTFOUND)

{

not_ found = 0;

if
(((comp =compare_strings(a val, s val)) < 0)
[l (comp == 0))
ne_condition = 0;
if ((strcmp(s_op, "<= ") == 0) &&
(compare strings(a_val, s val) == 0))

{
$insert into bad

values ($x, Sy, $a nam);

condition = 0;
}
}

/* FOURTH */
while (1)
{
$fetch cur_neq into $s_op, $s val, $s mark;
if (sqlca.sglcode)

break;
if (compare_ strings(a_val, s val) == 0)
{
ne_condition = 0;
not found = 0;
preak;
}
}
}
/* FIFTH >/
if ((not_found == 1) || (ne_condition == 1))

{
$insert into bad

values ($x, Sy, $a nam);
condition = 0;

$close cur_eq;
$close cur_negq;
$close cur_gt;
$close cur_ 1lt;

}
$close curl;
return (condition);

int NotEqualStuff (x,y)
$long x;
$long vy;
{

$char a_attr(30];
$char a_opl[5]);
$char s _op([5];
$char a_val{30];
$char s _val[30];
$char a nam([30];

$char str sul[300);
$char sttup([300];

Schar *dom;
$char dummy [{30] ;

$long s_mark;

int cond;

int ne_condition;
int cas;

strcpy (str sul, "update db rules ");
strcat (str sul, " set mark =1 ");

/*
/*

/*
/*
/*

strcat (str_sul, " where r number = ? AND atr name = ? AND ");
strcat (str_sul, " arg_name = ? AND domain_type = ? AND ");
strcat (str_sul, " operation = ? AND primitive = 2");

strcpy (sttup, "update temporary ");

strcat (sttup, " set operation = ? ");

strcat (sttup, " where atr name = ? AND ");

strcat (sttup, " arg name = ? AND ");

strcat (sttup, " operation = ? AND primitive = ?");
dom = "A"“;

print_status ("QQQQ") ;
$open cur3 using $x, $dom, "!= ";
print_status("19");

Sopen cur4 using Sy, S%dom, "t= ";
print_status ("20");

$prepare updte suN from $str sul;
$prepare updte Tup from Ssttup;

cond = 1;
cas = 1;

THE SAME LOOP APPLIES TO FETCHING THE ATTRIBUTES WITH OPERATION */
!= FROM APPL_RULES AND FROM DB_RULES. IT STARTS WITH THE VARIABLE */
cas = 1, FETCHING TUPLES FROM APPL RULES. WHEN THERE ARE NO MORE */

TUPLES WITH OPERATION != FROM APPL_RULES, cas IS SET TO 2, AND */
THE PROCEDURE STARTS FETCHING TUPLES FROM DB_RULES. WHEN ALL THESE*/
ARE GONE IT FINISHES. ALSO FINISHES WHEN A CONFLICT OCCURS */

while (1)

{

if (cond == 0)
/* break BECAUSE OF CONFLICT */
break;

ne_condition = 0;

if (cas == 1)
{
$fetch cur3 into $a _nam, $a_attr, $a op, $a val;
print status ("FETCH CUR3"):

printf ("CUR3 %i %s %s\n", sqlca.sqlcode, a op, a val);

if (sqlca.sglcode)
cas = 2;
}
if (cas == 2)

{

$fetch curd into $a_nam, $a_attr, $a op, $a val;

if (sqlca.sqlcode)
/* break BECAUSE NO TUPLES LEFT IN EITHER TABLE */
break;

$open cur5 using $y, $a_nam, $a_attr, $dom, "!= ", Sa val;
print_status("21");
$open cur_Teq using $a_nam, $a_attr, "= ",
print_status("22");
$open cur_Tgt using $a_nam, $a_attr, "> ",
- $a_nam, $a_attr, ">= ";
print_status("23");
$open cur Tlt using $a nam, $a_attr, "< ",
$a_nam, $a _attr, "<= “;
print_status("24");

$fetch cur5 into $s val;

if (sqlca.sqglcode != SQLNOTFOUND)
$execute updte suN using $y, $a nam,
$a_attr, $dom, "!= ", §s_val;
/* STEP 1 FOR EVERY TUPLE Price != 50 FROM APPL RULES OR */
/* DB RULES LOOKS IN TEMPORARY FOR Price = 50 IN */
/* WHICH CASE THERE IS THE ONLY POSSIBLE CONFLICT */
/* IN THIS PROCEDURE */
$fetch cur Teq into $s_val;
if (sqlca.sqlcode != SQLNOTFOUND)
if (strcmp (s_val, a val) == 0)
cond = 0;
/* THIS IS THE ONLY CONFLICT. cond = 0 SIGNALS IT*/
else ne_condition = 1;
else

$fetch cur_Tgt into $s_op, $s_val;

if (sqlca.gqlcode != SQLNOTFOUND)
{
if ((compare strings(a_val, s_val) == 0)
&& (strcmp(s _op, ">= ") == 0))
{
/* STEP 2 IF WE HAVE TUPLE Price != 50 */

/* AND IN TEMPORARY WE HAVE Price >= 50 */
/* UPDATE TEMPORARY TO SAY Price > 50. */

$execute updte Tup using "> ", $a_nam,
$a_attr, $s_op, $s_val;
ne_ condition = 1;

}
else if ((compare_strings(a_val, s _val) < 0)
i1 ((compare_strings(a_val, s val) == 0)
&& (strcmp(s_op, "> "y == 0)))
ne_condition = 1;

}

$fetch cur T1lt into $s op, $s val;

if (sqlca.sglcode != SQLNOTFOUND)
{
if ((compare_strings(a_val, s_val) == 0)
&& (strcmp(s_op, "<= ") == 0))
{
/* STEP 2 IF WE HAVE TUPLE Price != 50 */

/* AND IN TEMPORARY WE HAVE Purice <= 50 */
/* UPDATE TEMPORARY TO SAY Price < 50. */

$execute updte Tup using "< ", $a nam,
$a_attr, $s op, $s val;
ne_condition = 1;

}
(

else if ((compare_strings(a_val, s _val) > 0)
I ((compare_strings(a val, s val) == 0)
&& (strcmp(s op, "< ")y == 0)))
ne_condition = 1;
}
}
/* STEP 3 IF IT IS NOT REDUNDANT TO WRITE THE != TUPLE INTO THE */

/* TEMPORARY TABLE, ne_condition IS 0, AND THE TUPLE IS WRITTEN */

if (ne condition == ()
$insert into temporary
values ($a_nam, $a attr,
$a_op, $a_val);
$close cur5;
$close cur_Teq;
$close cur_ Tgt;
$close cur Tlt;
}
$close cur3;
$close cur4;
return (cond) ;

int compare_ strings(f, g)

char *f;
char *g;
{
float k;
float 1:;
int res;
k = str_to_float (f);
1l = str_to_float (q);
printf ("RETURNS %f $f\n", k, 1):
if (k > 1)

res = 1;
if (1 > k)

res = -1;
if (1 == k)

res = 0;
return (res);

}

-85-

PART VII

Appendix 2

#include <stdio.h>
#include <string.h>
$include sqlca;
$include sqlda;

/* Procedure Declare Check_Query Select Cursor */
/* Is called only once at the statrt of « query processing program */

Declare_Check Query Where Cursors ()
{

$char a str([300];
$char c_str[300];
$char sel c_str{300];
$char d_str[300];
$char e str[300];
$char number_no_stxr[300];
$char bad str[300];
$char where_str([300];
$char scan_check_str([300];

strcpy (c_str, "select unique attr name from c_list ");
strcpy (a_str, "select unique attrib from a list ");
strcpy (scan_check_str, "select unique attrib from check_list ");

strcpy (sel_c_str, "select c_number, operation, value, mark ");
strcat (sel c_str, " from c_list ");
strcat (sel c_str, " where attr name = ? ");

strcpy (bad str, "select unique appl_ rule, db_rule ");
strcat (bad str, " from bad ");
strcat (bad_str, " where np _attr = ? ");

strcpy (number no_str, "select atr name, arg name, operation, primitive,
strcat (number no_str, " from no_table ");
strcat (number no_str, " where r number = ? AND s number = ? ");

strcpy (where_str, "select unique r_number ");
strcat (where_str, " from quer cnd tmp ");

strcpy (d_str, "select unique r number ");
strcat (d_str, " from quer cnd _tmp ");
strcat (d_str, " where r number = 2 ");

strcpy (e_str,

"select atr_name, arg name, operation, primitive, domain type ");
strcat (e_str, " from quer cnd_tmp ");
strcat (e_str, " where r_number =7 ");

$prepare C_query from $c_str;
print_status ("Prepare C");
$declare C_cur cursor for C_query;
prlnt_status("Declare cY"):

$prepare sel _C_query from $sel c_str;
print status("Prepare sel C");

$declare sel _C_cur cursor for sel C_query;
print_status("Declare sel C");

$prepare A query from $a_str;
print status("Prepare A");
$declare A _cur cursor for A query;
prlnt_status("Declare A");

main ()

$Sprepare where _query from S$where str;
print status("Prepare where") ;

$declare where cur cursor for where _query;
print_. status ("Declare where");

$prepare scan _check_query from $scan_check_str;
print status(“Prepare Scan_Check");

$declare scan _check_cur cursor for scan_check query;
print__ status("Dec1are Scan_Check") ;

$prepare D query from $d_ str;
print_status ("Prepare D") ;
$declare D cur cursor for D_query;
prlnt_status("Declare D");

$prepare E_query from $e str;
print_status ("Prepare E");
$declare E cur cursor for E _query;
print_status ("Declare E");

$prepare BAD_query from $bad str;
print status("Prepare BAD") ;

$declare BAD cur cursor for BAD _query;
print status("Declare BAD") ;

$prepare num NO_query from $number no_str;
print status("Prepare num NO") ;

$declare num_NO_cur cursor for num NO query;
print__ status ("Declare num . NO") ;

$declare copyC cur cursor for select * from c _list;
$declare copyTemp cur cursor for select * from temporary;
$declare copy no_cur cursor for select * from no _conditions;

long conditions;
$char c_atcr([30];
$char a_attr[30];
$char chk_attr([30];

long no_count;
long c_count;
int result;

result = 1;
conditions = 0;
no_count = 0;

/* PART I */
/* PREPARES THE ENVIRONMENT FOR EXECUTING THE ALGORITHM */
/* BY DECLARING THE CURSORS (INCLUDING THE SUBSUMPTION’S) */

$database cdrdb;

Declare_Check Query Where Cursors();
DeclareSubsumpt1onCursors(),

Declare Build_Cursor();

$delete from procedure result;
print_status("Clear procedure result"
S$update no table set mark = 0;
prlnt_status("Update NO TABLE");

/* PART II */

/* CALLS Prepare Query Conditions TO SEPARATE THE */
/* CONDITIONS IN THE WYERE CLAUSE IN TWO: THOSE DEALING */
/* WITH NON-PRIMITIVE ATTRIBUTES, AND THOSE DEALING WITH */
/* PRIMITIVE ATTRIBUTES. Prepare_Query Conditions COPIES */
/* ALL CONDITIONS DEALING WITH NON-PRIMITIVE ATTRIBUTES */
/* DIRECTLY INTO THE quer cnd tmp TABLE; AND COPIES ALL */
/* THE NAMES OF THE NON-PRIMITIVE ATTRIBUTES APPEARING IN */
/* THE WHERE CLAUSE INTO THE check list TABLE */

Prepare Query Conditions();
Clear_Tables();

/* PART IIT */
/* PERFORMS THE FOLLOWING LOOP FOR EVERY NON-PRIMITIVE */
/* ATTRIBUTE IN THE WHERE CLAUSE (ie. every attribute in */
/* the check list table.): */
/* STEP I */
/* CALLS Arrange_Query Conditions, WHICH */
/* COPIES THE quer_cnd_tmp TABLE INTO THE */
/* query_conditions TABLE, WHERE THE r_numbers ARE */
/* SET UP IN INCREASING NUMBERS, AS THE SUBSUMPTION’S*/
/* SPECIFICATIONS REQUIRE. *x/
/* STEP II */
/* COPIES ALL THE CONDITIONS IN THE NO TABLE WHICH */
/* CAN MAKE THE CURRENT NON_PRIMITIVE ATTRIBUTE FROM */
/* THE WHERE CLAUSE PRODUCE A SEMANTIC CONFLICT INTO */
’* THE CONDITIONS, LEAVING THE STAGE READY FOR A */
/* SUBSUMPTION. */
/* STEP III *x/
/* CALLS Execute_subsumpt, WHICH *

/* SUBSUMES THE NO_CONDITIONS TABLE WITH THE */
/= QUERY_ CONDITIONS TABLE, AND LEAVES THE RESULT IN */
/* THE Intermediate TABLE. THIS TABLE NOW CONTAINS */
/* THE CONDITIONS UNDER WHICH THE CURRENT */
/* NON-PRIMITIVE FROM THE WHERE CLAUSE CAN PRODUCE */
/* SEMANTIC CONFLICTS */
/* STEP IV */
/* CALLS THE Query Rebuild PROCEDURE, WHICH, */
/* FOR EVERY OF THE OR CONDITIONS IN THE Intermediate*/
/* TABLE MAKES A QUERY TO THE DATABASE. IF ALL OF THE*/
/* RETURN NULL RESULTS, THEN THE CURRENT ATTRIBUTE IN*/
/* THE WHERE CLAUSE DOES NOT CAUSE A SEMANTIC */
/* STEP V */
/* COPIES ALL CONDITIONS DEALING WITH THAT ATTRIBUTE */
/* FROM THE c_list INTO THE quer_cnd tmp TABLE. */

$open scan_check_cur;
print_status ("Open Scan_Check");
while (1)

{

$fetch scan_check _cur into $c_attr;

print__ status ("Fetch Scan Check")-

if (sqlca.sqlcode == SQLNOTFOUND)
break;

/* STEP I */
Clear Tables();

c count = Arrange_Query Conditions();

printf ("C_count = %$i\n"¥, c_count);

/* STEP II */
no_count = Copy No_To No Condltlons(c attr);
printf ("No_count = $i\n", no_count) ;

if (no_count > 0)

/* IF NO_COUNT = 0, IT MEANS THAT THERE ARE NO */
/* POSSIBILITIES OF HAVING A SEMANTIC CONFLICT,*/
/* SO THERE IS NO NEED TO MAKE THE INTERMEDIATE*/
/* QUERY */
if (c_count == ()
{
conditions = no_count;
Copy_No_To_Intermediate();
}
else
{
/* STEP III */
conditions = Execute_Subsumpt (no_count, c_count);
}
printf ("Conditions = %i\n", conditions);
/* STEP IV */
result = Query Rebuild(c_attr, conditions);
if (result == 0)
break;
}
/* STEP V */
Copy_C_to_Query Conditions(c_attr);

/* PART IV * /
/* IF THERE IS NO SEMANTCI CONFLICT IN THE WHERE CLAUSE, */
/* INSERTS THE VALUE OF 1 IN THE orocedure_result TABLE. */
/* OTHERWISE INSERTS THE VALUE OF 1 IN THAT TABLE. */
printf ("RESULT = %i\n", result):;

$insert into procedure result values(result);

}

Copy No_To_Intermediate ()
{

$long r_n;

$char at_n(30];

$char ar n(30];

$char op[5];

$char prim(30];

$char domn([3];

$long mk;

$open copy_ no_cur;
print_status ("OPen Copy No");
while (1)
{
$fetch copy_no_cur into $r_n, $at_n, $ar n, $op, $prim, $domn, $mk;
print_status ("Fetch Copy No");
if (sglca.sglcode == SQLNOTFOUND)
break;
$insert into intermediate
values ($r_n, $at_n, $ar_n, $op, $prim);
print_status("Inseff from no to intermediate");

Copy_C_to_Query Conditions (c_attr)
$char c_attr(30];
{

$long cnum;

ychar C_OplLd]);
$char cval(30];
$long cmark;

$open sel C_cur using $c_attr;
print status("Open Sel C"),
while (1)

{

}

$fetch sel C cur into $cnum, $c_op, Scval,
print_. status ("Fetch Sel _Cc");
if (sglca.scqicode == SQLNOTFOUND)
breal.;
$insert jinto quer cnd tmp
valves ($cnum,
"nn P
$c_attr,
$c_op,
$cval,
nan ’
$cmark)
print_status ("Insert into query cnd_tmp"):;

Prepare Query Conditions()

{

}

$long a;
$long b;
$char c_attr([30];

$delete from quer cnd_tmp;
print_status (" Clear Quer Cnd_Tmp");

$open C_cur;
print_status("Open C");
while (1)

{

$fetch C_cur into $c_attr;

print__ status ("Fetch C");

if (sqlca sglcode == SQLNOTFOUND)
break;

$open BAD cur using $c_attr;
print status("Open BAD 1I");
$fetch BAD cur into $a, $b;
print__ status ("Fetch BAD 1I");

if (sqlca.sglcode == SQLNOTFOUND)

Scmark;

Copy_C_to Query Conditions(c_attr);

else Insert Into Check List(c_attr);

$close BAD cur;
print_status("Close BAD I");
}
$close C_cur;
print_status("Close C");

Insert_Into_Check_List (c_attr)
$char c attr[30],

{

}

$insert into check 1list

values ($c_attr);

long Number Where Conditions ()

$long r_n;
long conds_count;

conds_count = 0;

$open where cur;

print_status ("Open where I");

while (1)

{
$fetch where cur intoc $r_n;
print status("Fetch where I");
if (sqlca.sqglcode == SQLNOTFOUND)

break;

conds_count++;

}

return (conds_count);

}

long Arrange Query Conditions ()
{

$long cond_count;
$long current count;
$long actual count;
$long dmb;
$char tat_name[30];
$char tar_name([30];
$char top[5]);
$char tprim([30];
$char tdom{3];

cond count = Number_ Where Conditions(};
current_count = 1;
actual count = 1;
while f(current_count <= cond_count)
{
while (1)
{
$open D_cur using $actual_count;
print_status ("Open D");
$fetch D_cur into $dmb;
print_status ("Fetch D");
if (sqlca.sglcode != SQLNOTFOUND)
break;
else actual_ count++;
}

$open e_cur using Sactual_count;
print_status ("Open E");
while (1)
{
$fetch e cur into $tat_name, $tar_ name, $top, $tprim, Stdom;
print status("Fetch E");
if (sqglca.sglcode == SQLNOTFOUND)
break;
$insert into query conditions
values ($current_count,
$tat_name,
$tar_ name;
$top,
$tprim,
$tdom,
0):
print_status ("Insert into query_conditions");

}

current_count++;

7

return(cond_count) ;

long Copy_No_To_No_Conditions (c_attr)
$char ¢ attr[30],
{
$long no_count;
$long s _n;
$long r_n;
$char nat_name([30];
$char nar_name[30];
$char nop([5];
$char nprim([30];

no count = 0;

$open BAD _cur using $c_attr;

print status("Open BAD II");

while (1)

{
$fetch BAD_cur into $s_n, $r n;
print_status ("Fetch BAD II");
if (sqlca.sglcode == SQLNOTFOUND)

break;

no_count++;
$open num L NO_cur using $s_n, $r_n;
print status(“Open NO"Y) ;
while (1)
{
$fetch num NO_cur into $nat_name, $nar name, $nop, $nprim;
print_. status ("Fetch NO");
if (sqlca.sqlcode == SQLNOTFOUND)
break;
$insert into no_conditions
values ($no_count,
nn
$nar_ name,
$nop,
$nprim,
nan,
0):
print_status("Insert into No_conds");
}
}

return(no_count);

long Execute_Subsumpt (a_num, s_num)
long a_num;
long s_num;

{

int result;
long count;
long x;
long y:

AAS AT Y Y N S ¥
result = £;
princf {("ex subs %i %i\n", & num, s_num);

/* ENTERS DOUBLE LOCP TO FIND EVERY POSSIBLE COMBINATION OF CONDITIONS */
/* FROM THE NG_CONDITICNS AND DB_RULES TABIE */
fer (x=1; »<=a _nuam; x4+)
{

for (y = 1; y <= s _num; y++)

{

Clear_Temporary () ;

/* FIND INTERSECTION OF CONDITIONS RY CALLING CanBeSubsumed AND */
/* NoLEQStuef. */
result = CanBeSuwwsumed(x,vy):;
%#Z2 (resulyi == 1)
{
result = NotEqualStuff (x,y);
if (result == 1)
{
/* IF CONDITIONS INTERSECT INCREMENT count AND COPY TO */
/* intermediate TABLE */
count++;
Copy_Temp To_Interm(count);

}
}
/* RETURN COUNT OF SUCCESSFULL INTERSECTIONS TO FINISH */
return (count) ;

}

Declare_ Build Cursor ()

{
$char bui_str(300];

strcpy (bui_str,

"select atr name, arg name, operation, primitive ");
strcat (bui_str, " from intermediate ");
strcat (bui_str, "where r number = ? ");

$prepare BUI_query from $bui_str;
print_status ("Prepare BUI");

$declare BUI _cur cursor for BUI_ query;
print__ status ("Declare BUI");

int Query Rebuild(c_attr, conditions)
$char c_attr([30);
long conditions;
{
$long x;
$char i_attr[30];
$char i_arg[30];
$char i_op[(30];
$char i_val(30];
$char dbquery str[600];

int nonecond;
int result;
int 8_cas;

result = 1;
printf ("Q REBUILD %i $%s", conditions, c_attr);

for (x = 1; x <= corditions; x++)

{

strcpy (dbquery str, "select ");

strcat (dbquery str, c_attr);

strcat (dbquery_str, " from db _table “);
strcat (dbquery_str, " where \n (");

$open BUI cur using $x;
print_status ("Open BUI");
nonecond = 0;

while (1)
{

$fetch BUI_cur into $i_attr, $i_arg, $i_op, $i val;
print£("BUI x %i sql %i\n", x, sqlca.sqlcode);
print status ("Fetch BUI");

if (sqglca.sglcode == SQLNOTFOUND)
break;

if (nonecond == ()
nonecond++;

else strcat (dbquery str, "\n AND \n ");
s_cas = is_string(i_val);

strcat (dbquery str, i arg);

strcat (dbquery str, " ");
strcat (dbquery str, i op);
strcat (dbquery str, " ");

if (s_cas == 0)
strcat (dbquery str, "'");
strcat (dbquery str, i val);
if (s_cas == 0)
strcat (dbquery str, "'");
}

strcat (dbquery str, ")");

printf ("$s\n", dbquery str);
$prepare DBSEL_query from $dbquery str;
print_status ("Prepare DBSEL_query"):;
$declare DBSEL_cur cursor for DBSEL query;
print_status("Declare DBSEL_cur");
$open DBSEL_cur;
print_status ("Open DBSEL cur");
$fetch DBSEIL_cur into $c_attr;
print_status("Fetch DBSEL_cur");
if (sqlca.sglcode != SQLNOTFOUND)
{
result = 0;
break;
}
}
return (result);

}

int is string (3j)
char *j;
{
int i;
int val;

int result;

result = 0;

i = 0;
while (1)
{
if (3[1] == 7\O’ || 3[i] == "\n’ || JF(i]
break;
if ((37i) '= r~-7) && (J[i) t="."))
{
if (i) == 'e’)
result = 0;
else
{
val = j[i) - '0’;
if ((val < 0) || (val > 9))
{
result = 0;
break;
}
else
result = 1;
}
}
i++;

}
return (result);

}

Clear No_Conditions ()
{
$delete from no_conditions;
print_status("delete NO_CONDS");
}
Clear_Temporary ()
{
$delete from temporary;
print_status("c.2lete temp");
}

Clear Tables ()
{

$delete from intermediate;
print_status("delete intermediate");
$delete from temporary;
print_status ("delete temp");
$delete from no_conditions;
print status ("delete no conditions");
$delete from query conditions;
print_status ("delete query conditions");

Copy Temp_To_Interm(t_num)

$long

{
Schar
$char
$char
$char

t_nuw;

t_attr[30];
t_arg[30];
t_op(5]);
t_val([30];

printf ("COPY TEMP %i", t num);
$open copyTemp cur;
print_ status("open copyTemp_ cur");

om = ’

")

while (1)
{
$fetch copyTemp_cur into $t_attr, $t_arg, $t _op, $t val;
printf ("COPY TEMP TO I %i", sqglca.sglcode);
print_status("fetch copyTemp cur"),
if (sglca.sqlcode == SQLNOTFOUND)
break;
$insert into intermediate
values ($t_num, $t_attr, $t_arg, $t_op, $t_val);
print_status("insert into intermediate");
}
$close copyTemp_cur;
print_status("close copyTemp cur");

}

/* KAAARAA KA AR AR AR RA R AR AR AR AR AR A AN AN RN AN RN RAAANARNRAANAAANARAAAR AN AAAAAA AR

/* HERE GO THE CanBeSubsumed, NotEqStuff, DeclareSubsumptionCursors
/* procedures. Omitted in this print out.

*/
*/

#include <stdio.h>
#include <string.h>
$include sqlca;
$include sqlda;

/* Procedure Declare_Check Query Select Cursor */
/* Is called only once at the statrt of query processing program */

Declar=_Check Query Select Cursors()
{
$char a_str(300];
$char check _c[300]);
$char bad _str(300];
$char no_str(300]);

strcpvy (a_str, "select attrib from a_list ");

strcpy (check_c,
"select attr name ");
strcat (check_c, " from c_list where attr name= ?2");

strcpy (bad_str, "select unique appl rule, db_rule ");
strcat (bad str, " from bad ");
strcat (bad _str, " where np attr = 2?2 ");

strcpy (no_str, "select atr name, arg _name, operation,primitive, mark "):
strcat (no_str, " from no_table ");
strcat (no_str, " where r number = ? AND s number = ? ");

$prepare A _query from $a_str;
print_status("Prepare A");
$declare A_cur cursor for A query;
print__ status ("Declare A");

$prepare checkC_query from $check_c;
print_status("Prepare check_C");

$declare checkC _cur cursor for checkC _query;
print__ status ("Declare C");

$prepare BAD query from $bad str;
print_status("Prepare BAD");

$declare BAD cur cursor for BAD _query;
print__ status ("Declare BAD");

$prepare NO_query from $no_str;
print_status ("Prepare NO") ;

$declare NO_cur cursor for NO_query;
print__ status(“Declare NO") ;

$declare copyC_cur cursor for select * from c_list;
$declare copyTemp cur cursor for select * from temporary;

}

/* THE MAIN PROCEDURE DOES THE FOLLOWING OPERATIONS */

/* SATRTS BY CREATING THE CURSORS USED IN THE PROGRAM, */

/* DECLARING THE CURRENT DATABASE, AND COPYING THE C_LIST */

/* INTO THE QUERY_CONULITIONS TABLE BY CALLING Copy_ c To_Db. THIS */
/* RETURNES THE NUMBER OF ORED CONDITIONS IN THE QUERY CONDITIONS */
/* TABLE THAT ARE GOING TO BE SUBSUMED. */

/* THEN, FOR EVERY ATTRIBUTE IN THE SELECT CLAUSE PERFORMS */

/* THE FOLLOWING 5 STEPS: */

/* FIRST ERRASE TEMPORARY, INTERMEDIATE, AND ALL TUPLES */

/* WITH IN QUERY CONDITIONS, TO SET THE */

/* STAGE FOR PERFORMING THE SUBSUMPTION OF STEP 4 */

/* SECOND CHECK IF THE TUPLE IS ALSO IN THE WHERE CLAUSE. */

/* IF IT IS, SKIP THE NEXT STEPS, AND IF IT IS NOT */

/* CONTINUE WITH STEP 3. */
/* THIRD CALL CheckQuerySelect WITH THE ATTRIBUTE NAME AS */
/> ARGUMENT. THIS PREPARES THE APPL_RULES TABLE BY */
/* COPYING THE RELEVANT CONDITIONS FROM THE NO_TABLE */
/* FOR THE SUBSUMPTION OF STEP 4. THE RESULT RETURNED */
/* BY CheckQuerySelect IS HOW MANY ORED CONDITIONS */
/> ARE IN THE NO_TABLE FOR THE NEXT STEP. */
/* FOURTH IF BOTH CheckQuerySelect AND Copy_C_To Db */
/* RETURNED VALUES GREATER THAN 0, Execute Subsumpt */
/* IS CALLED TO PUT THE INTERSECTION OF THE C _LIST */
/* AND RELEVANT PART OF NO TABLE IN THE INTERMEDIATE */
/* TABLE. - */
/* FIFTH THE PROCEDURE Query_Rebuild IS CALLED TO TAKE THE */
/* CONTENTS OF THE INTERMEDIATE TABLE, AND PERFORM A */
/* QUERY TO DB TABLE, TC SEE IF SOME ATTRIBUTES IN THE*/
/* SELECT CLAUSE ARE IN THE WRONG CONTEXT. */
/* */
/* FINALLY, IF Query_Rebuild RETURNS 0, THEN A CONFLICT */
/* OCCURS. THEN THE VALUE OF 0 IS STORED IN THE MESSAGE */
/* TABLE, AND THE PROGRAM ENDS. IF ON THE OTHER HAND THE */

/* PROGRAM REACHES THE END WITHOUT HAVING FOUND A CONFLICT */
/* IN ANY ATTRIBUTE ON THE SELECT CLAUSE, THEN IT STORES 1 */
/* IN THE MESSAGE TABLE AND FINISHES. */

main ()
{
long conditions;
$char c_attr[30];
$char chk_attr([30];

long no_count;
long c_count;
int result;

$char up_db[300];

$database cdrdb;

strcpy (up_db, "update query_ conditions set atr name = ? ");
$prepare db_update from $up db;

print_status ("Prepare dbup");

result = 1;
conditions = 0;
no_count = 0;

/* SET UP ENVIRONMENT */

Declare_Check_Query Select Cursors();
DeclareSubsumptionCursors () ;

Declare Build Cursor();

Clear Query Conditions () ;

$delete from procedure_result;

/* COPY C_LIST TO QUERY_ CONDITIONS AND FIGURE HOW MANY CONDITIONS */
/* ARE IN IT */

c_count = Copy_C_To_Query Conditions({();

$update no table set mark = 0;

prlnt_status("Update NO_TABLE") ;

$open A cur;

/* THE FOLLOWING LOOP IS PERFORMED FOR EVERY TUPLE IN */
/* THE SELECT CLAUSE */
while (1)

{

$fetch A _cur into $c_attr;

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

print_status ("Fetch A");
if (sglca.sglcode == SQLNOTFOUND)
break;

/* STEP 1 Ny
Clear_Tables();
printf ("A selects %s\n", c_attr);

/* STEP 2 */
$open checkC_cur using $c_attr;
print status("Open CheckC™) ;
$fetch checkC _cur into Schk_attr;
print status ("Fetch CheckC");
if (sqlca 3sglcode == SQLNOTFOUND)
{
$execute db_update using $c_attr;
/* STEP 3 */
no_count = CheckQuerySelect (c_attr);
printf ("No_count = %i\n", no_count);
if (no_count > 0)
{
/* STEP 4 ny
conditions = Execute_Subsumpt (no_count, c_count);
printf ("Conditions = %i\n", conditions);
/* STEP 5 */
result = Query Rebuild(c_attr, conditions);
if (result == ()
break;

}
printf ("RESULT = %i\n", result);

$insert into procedure result values(result);

CHECKQUERYSELECT GETS FROM MAIN THE NAME OF AN ATTRIBUTE WHICH IS IN THE */
SELECT CLAUSE BUT NOT IN THE WHERE CLAUSE. IT LOOKS IN THE BAD TABLE FOR */
EVERY APPEARANCE OF THAT ATTRIBUTE, AND FOR EACH PERFORMS THE FOLLOWUING */

4 STEPS: */
FIRST CHECK IF THE TUPLES WITH ATRIBUTE NAME AND RULE NUMBERS IN THE */
NO_TABLE EQUAL TO THOSE FETCHRED FROM THE BAD TABLE ARE ALREADY MARKED.*/
IN WHICH CASE NOTHING IS DONE WITH THEM. OTHERWISE INCREMENT THE */
COUNT OF TUPLES GOT FROM THE BAD TABLE (cont) AND GOTO SET 2. */
SECOND COPY THE TUPLES IN THE NO TABLE INDEXED BY THE ATRIBUTE NAME AND */

RULE NUMBERS FROM THE BAD TABLE INTO THE NO_CONDITIONS TABLE, AND MARK

THEM. */
THIRD WHEN THERE ARE NO MORE TUPLES TO FETCH FROM THE BAD TABLE, FINISH * /

RETURNING THE VALUE count. */

long CheckQuerySelect (c_attr)

$char c_attr{30];
{
$long rule_num;
$long a_r;
$long s_r;
$long n_value;
$char updte no[300];
$char s_attr(30];
$char s _arg[30]);
$char s _op(5]);
$char s _val(30];
long count;

count = (;

*/

strcpy (updte_no, "updaate no_tvaple “};

strcat (updte no, " set mark = 1 ");

strcat (updte_no, " where r_number = ? AND s number = ? ");
strcat (updte_no, "™ &ND atr name = ? and arg name = ? ");
strcat (updte no, " AND operation = ? AND primitive = ? ");

$prepare upno_query from $updte_no;
print_status ("Prepare upno");

$open BAD_cur using $c_attr;
print status("Open BAD") ;
while (1)

{

/* THE FOLLOWING STEPS ARE PERFORMED ON ALL THE TUPLE IN THE BAD */
/* TABLE WITH np_attr FIELD = c_attr. * /
$fetch BAD cur into $a_r, $s_r;
print _ status ("Fetch BAD");
printf ("BAD %i\n", sqlca.sglcode);
if (sqglca.sqlcode == SQLNOTFOUND)

break;

count++;

rule num = count;

$open NO_cur using $Sa_r, $s_rx;
print status ("Open NO");

while (1)
{

/* STEP 1, CHECK IF NO TABLE ATTRIBUTES */
/* ARE MARKED, IN WHICH CASE */
/* n value IS 1. IF MARKED, DON’T COPY OR */
/* COUNT THEM: (no_cond ==0) */
$fetch NO_cur into "~ $s _attr, $s_arg, $s_op, $s_val, $n_value;
print_ status ("Fetch NO");
if (sqlca sgqlcode == SQLNOTFOUND)
break;
if (n_value == 1)
{
count = count - 1;
break;
}
/* STEP 2 IF ATTRIBUTES FROM NO TABLE ARE */
/* NOT MARKED, COPY THEM INTO */
/* NO_CONDITIONS AND MARK THEM */
$insert into no conditions
values (Srule_num, $s_attr, $s_arg, $s _op,
$s val,"a", 0);
print_status ("Insert A RULES");
$execute upno_query using $a_r, $s_r, $s_attr, $s_arg,
$s_op, $s_val;
print_status ("Execute UPNO");
}
$close NO_cur;
print_status ("Close NO");

}
$close BAD cur;
print_status ("Close BAD");

/* STEP 3 RETURN count. */
return (count) ;

/*
/*
/*
/*
/*
/*
/*
/*

EXECUTE SUBSUMPT RECEIVES ARE ARGUMENT HOW MANY OR CONDITIONS ARE IN THE */
NO_CONDTTIONS AND QUERY_CONDITIONS, AND FINDS THEIR INTERSECTION */

BY CALLING THE PROCEDURES CanBeSubsumed AND NotEqStuff, FOR EVERY POSSIBLE */
COMBINATION OF CONDITIONS FROM THE NO_CONDITIONS AND QUERY CONDITIONGS.

IF BOTH PROCEDURES RETURN 1 FOR A COMBINATION OF CONDITIONS, INCREMENTS */

count, AND COPIES THE CONDITIONS INTO THE INTERMEDIATE TABLE. */
WHEN THERE ARE NO MORE COMBINATIONS OF CONDITIONS LEFT TO SUBSUME RETURNS */
count. */

long Execute_ Subsumpt (a_num, s_num)

long a_num;
long s_num;

{

int result;
long count;
long x;
long y;

count = 0;
result = 0;
printf ("ex subs %i %i\n", a_num, s_num);

/* ENTERS DOUBLE LOOP TO FIND EVERY POSSIBLE COMBINATION OF CONDITIONS */
/* FROM THE NO_CONDITIONS AND QUERY CONDITIONS TABLE
for (x=1; x<=a_num; x++)
{
for (y = 1; y <= s _num; y++)
{
Clear Temporary():

/* FIND INTERSECTION OF CONDITIONS BY CALLING CanBeSubsumed AND */

/* NotEqStuff. */

result = CanBeSubsumed(x,y):;

if (result == 1)

{
result = NotEqualStuff (x,y):;
if (result == 1)
{

/* IF CONDITIONS INTERSECT INCREMENT count AND COPY TO */
/* INTERMEDIATE TABLE */
count++;
Copy_Temp_ To_Interm(count) ;

}

}
/* RETURN COUNT OF SUCCESSFULL INTERSECTIONS TO FINISH */
return (count) ;

}

Declare Build Cursor()

{
$char bui_str[300];

strcpy (bui_str,

"select atr name, arg name, operation, primitive ");
strcat (bui_str, " from intermediate ");
strcat (bui_str, "where r number = ? ");

$prepare BUI_query from $bui_str;
princ_status ("Prepare BUI");

$declare BUI_cur curgor for BUI_query;
print_status ("Declare BUI");

int Query Rebuild(c_attr, conditions)

$char
long

{

$long x;
i attr(30);

$char
$char
$char
$char
$char
int
int
int

c attr[30],
conditions;

i arg[30],
i_op(30};
i val[30],

“dbquery str[600];
nonecond;

result;

s_cas;

result = 1;
printf ("Q REBUILD %i $%s", conditions,

strcpy
strcat
strcat
strcat

for (x
{

(dbquery_ str, "select ");
(dbquery str, c_attr);
(dbquery str, " from db_table

(

dbquery str, " where \n (");

= 1; x <= conditions; x++)

$open BUI cur using $x;
print_status("Open BUI");
nonecond = 0;

while (1)

}

{

$fetch BUI_cur into $i_attr,

print£("BUI x %i sql %i\n", x,

print_status("Fetch BUI");

c_attr);

")

$i_arg,

if (sqlca.sqlcode == SQLNOTFOUND)

break;
if (nonecond == ()
nonecond++;
else strcat (dbquery str,

s_cas = is string(i_val);

strcat (dbquery str, i_arg);
strcat (dbquery str, " ");
strcat (dbquery str, i_op):
strcat (dbquery str, " ");
if (s_cas == 0)

"\n AND

strcat (dbquer; str, "'");

strcat (dbquery str, i_val);
if (s_cas == 0)

strcat (dbquery str, "'");

strcat (dbquery str, ")");

printf ("$s\n", dbquery str):;
$prepare DBSEL query from $dbquery str;
print__ status ("Prepare DBSEL query"),
$declare DBSEL_cur cursor for DBSEL _query;
print__ status ("Declare DBSEL _cur");
$open DBSEL_cur;

print status("Open DBSEL_cur");
$fetch DBSEL_cur into $c_attr;

$i_op,

\n ");

$i_val;

sqlca.sqglcode);

! Sutubi b di b i di N S b b b I LT A4

1f (sqlca. sqlcode != SQLNOYFOUND)
{

result = 0;
break;
}
}
return(result);

}

Clear Temporary ()
{
$§delete from temporary;
print_status ("delete temp");
}

Clear_ Query Conditions ()
{
$delete from query conditions;
print_status ("delete query conditions");
}

Clear_Tables ()
{

$delete from intermediate;
print_status ("delete Intermediate");
$delete from no_conditions;
print status("delete no_conditions");
$delete from temporary;
print_status ("delete temp");

long Copy_C_To_Query Conditions()
{

$long c_num;
$long ci num;
$long dum;

long total;
$char c_arg([30];
$char c_op[5);
$char c_val(30];

total = 0;

$open copyC_cur;

print status("open copyC_cur");
while (1)

{

$fetch copyC_cur into $c_num, $c_arg, $c _op, $c_val, $dum,

printf ("c Cur, %i, cenum %i\n", sqlca. sqlcode,
printf("c_attr, %s, c_op %s\n", c_arg, c_op);
printf("c_val, %s, dum %s\n", c_val, dum) ;
print_ status ("fetch copyC_ cur"),
if (sqlca.sqlcode == SQLNOTFOUND)
break;
if (c_num > total)
total = c_num;
ci_num = c_num;
$insert into query conditions

values ($ci _num, "", $c_arg, $c_op, $c_val,

print_ status ("insert into db");
}

$close copyC_cur;
print_status("close copyC_cur");

0):

AGLULLI\LULQL

}

Copy Temp_To_Interm(t_ num)
$long t_num;
{
$char t_attr([30];
$char t_arg(30]);
$char t_op[5]);
$char t_val(30];

print£ ("COPY TEMP %i", t num);
$open copyTemp_cur;
print_status(“open copyTemp_ cur");
while (1)
{
$fetch copyTemp_cur into $t_attr, $t_arg, $t_op, $t_val;
printf ("COPY TEMP TO I %i", sqlca.sqlcode);
print_status ("fetch copyremp cur");
if (sqlca.sqlcode == SQLNOTFOUND)
break;
$insert into Intermediate
values ($t_num, $t_attr, $t_arg, $t_op, $t_val);
print_ status ("insert into intermediate");
}
$close copyTemp_cur;
print_status("close copyTemp cur");
}

/* Here go Can BeSubSumed, NotEqStuff, and DeclareSubsumptionCursors
/* Omitted from printout

*/
*/

(Informix 86]

[SMI1]

[SSR a 92]

[SSR b 92]

[Tare 89]

B

o

References

Informix ESQL User’s Manuc.’
Informix, 1986.

M. Siegel and S. Madnick.
Metadata requirements for resolving semantic heterogeneities.
Sigmod Record Special Isuue on Semantic Heterogeneity , 1991.

E. Sciore, M. Siegel and A. Rosenthal.

Context interchange using meta-attributes.

ISSM First International Conference on Information and Knowledge
Management , November, 1992.

E. Sciore, M. Siegel and A. Rosenthal.

Using semantic values for semantic interoperability.

In In Submittion to Seond Workshop on Information Knowledge
Management , November, 1992.

R. S. Tare.
Data Processing in the UNIX Environment.
MacGraw-Hill, 1989.

