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Symmetries of a fluid-gyrokinetic model are investigated using Lie group tech-
niques. Specifically the nonlinear system constructed by Zocco and Schekochihin
(Zocco & Schekochihin 2011), which combines nonlinear fluid equations with a drift-
kinetic description of parallel electron dynamics, is studied. Significantly, this model is
fully gyrokinetic, allowing for arbitrary k⊥ρi, where k⊥ is the perpendicular wave vector
of the fluctuations and ρi the ion gyroradius. The model includes integral operators
corresponding to gyroaveraging as well as the moment equations relating fluid variables
to the kinetic distribution function. A large variety of exact symmetries is uncovered,
some of which have unexpected form. Using these results, new nonlinear solutions are
constructed, including a helical generalization of the Chapman-Kendall solution for a
collapsing current sheet.

1. Introduction

Symmetry transformations – changes in the dependent and independent variables of
a physical model that leave the model equations unchanged – are revealing and useful
throughout theoretical physics. The most general scheme for uncovering point symmetries
of a system of equations is Lie group analysis (see, e.g., Olver 1993; Cantwell 2002). This
scheme has been used extensively in plasma physics, including studies of the Vlasov-
Maxwell model for an unmagnetized plasma (see Roberts 1985; Kovalev et al. 1996) and
the Grad-Shafranov equation (White & Hazeltine 2009). A special case of Lie symmetry,
scaling symmetry, was fruitfully employed by Connor & Taylor (1977). In this work
we apply the Lie procedure to a particular nonlinear gyrokinetic fluid model used in
magnetized plasma turbulence and magnetic reconnection studies.

The symmetries of any physical model have intrinsic interest, especially because one
often uncovers unexpected symmetries – beyond the usual rotations, translations and
so on which are obvious from physical considerations. Knowledge of the symmetries can
simplify numerical calculations, while providing useful tests on their accuracy. When
a variational principle is available, the symmetries can be used to identify dynamical
constants. They can also be used to generate new solutions from old ones – in particular,
physically interesting solutions can be constructed by applying the group operator to a
trivial, less interesting solution. Finally, in many cases symmetries can be used to reduce
the order of a differential equation system, in some cases leading to exact solutions.

† Email address for correspondence: rlw@mit.edu
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1.1. Fluid-gyrokinetic model

A magnetized plasma is one in which the ion gyro-radius, ρi, is small compared to all
equilibrium gradient scale lengths. But scale lengths of perturbed quantities in a magne-
tized plasma, measured by the perpendicular wave length k−1

⊥ , can break this ordering:
k⊥ρi ∼ 1. Theories allowing for such finite-Larmor-radius (FLR) effects increasingly
dominate plasma physics research, entering both kinetic and fluid models of plasma
dynamics.

There are two ways in which conventional fluid equations fall short in their
description of magnetized plasma dynamics. First, they represent FLR effects
crudely, retaining at most terms of second order in k⊥ρi. Second, they entirely
omit Landau resonances, which, in the magnetized context, enter through wave-
particle interactions parallel to the field – effects conventionally treated by the drift-
kinetic equation. Gyrokinetics (Rutherford & Frieman 1968; Taylor & Hastie 1968;
Catto 1978; Catto et al. 1981; Frieman & Chen 1982; Dubin et al. 1983; Lee 1983,
1987; Hahm et al. 1988; Brizard 1992) addresses both shortcomings, providing in
particular a full FLR treatment of the perturbed fields, with however the expense
and complexity of computation (analytical and numerical) in five dimensions of
phase space. Gyro-fluid models reduce this overhead by restricting the FLR physics
to coordinate space (see, for example, Hammett & Perkins 1990; Hammett et al.
1992; Dorland & Hammett 1993; Hammett et al. 1993; Beer & Hammett 1996;
Snyder & Hammett 2001; Waelbroeck et al. 2009; Bian & Kontar 2010). However,
the validity of the approximations made in their derivation can be hard to ascertain,
especially in nonlinear contexts (Dimits et al. 2000).

An alternative and conceptually straightforward approach combines a fluid treatment
of the perpendicular physics with a drift-kinetic description, including resonances and
collisions, of the parallel dynamics (Ramos 2010, 2011). Such a hybrid approach was pro-
posed and applied as early as 1958 (Kruskal & Oberman 1958; Rosenbluth & Rostoker
1959). Called “kinetic MHD,” the early approach neglected most FLR effects, combin-
ing MHD with the drift-kinetic equation. However in other respects it resembles the
gyrokinetic fluid hybrid considered here.

We study a particular representative of the fluid-kinetic approach: the reduced gy-
rokinetic model derived in Zocco & Schekochihin (2011), referred to below as ZS. The
model uses five fields – five functions of five independent variables (including time).
To make this work self-contained, and establish notation, we start by reviewing the
physical assumptions built into the ZS model in Section 2.1, and then express the
model equations in normalized variables in Section 2.2. The remainder of the paper uses
exclusively normalized variables, so the reader who is already familiar with the model
can skip Section 2.1. The symmetries obtained from our analysis are shown in Section
3. Section 4 presents new exact solutions of the reduced MHD (RMHD) equations–a
limit of the ZS model–obtained using symmetry transformations. In Section 5 we display
the Lie group generator and present the procedure used to derive the symmetries for the
(integro-differential) ZS model. We do not attempt any full exegesis of the Lie procedure;
readers unfamiliar with it may consult such texts as Olver (1993) or Cantwell (2002).
Our conclusions are summarized and discussed in Section 6.
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2. Model equations

2.1. Introduction

The detailed derivation of the ZS model from the gyrokinetic equations is given in
Zocco & Schekochihin (2011). Here, we briefly survey the physical assumptions, summa-
rize the resulting equations, and indicate the physical meaning of each of the fields.
The plasma, composed of electrons with charge−e and ions with charge Ze, is assumed

to have a uniform background magnetic field B0ẑ, and the equilibrium electrons and ions
are Maxwellian:

F0s =
n0s

(2π)3/2v3Ts
exp

(

− v2

2v2Ts

)

, (2.1)

with vTs = (T0s/ms)
1/2. Here we deviate from the convention of Zocco & Schekochihin

(2011), where the Maxwellian is characterized by its most probable speed vth,s =
√
2vTs.

This translates to a slightly different definition of the Larmor radius, which for us is
defined ρs = vTs/|Ωs|, with Ωs = qsB0/(msc). This modification eliminates many factors
of

√
2 in the final equations.

In accordance with the standard δf gyrokinetic ansatz, each field is split into its
background value plus a small perturbation, with δfs/F0s ∼ δB/B0 ∼ k‖/k⊥ ∼ ω/Ωs ∼
ǫ ≪ 1, and, additionally, βs ∼ Zme/mi, with the mass ratio being treated as a second
formal small parameter.

2.1.1. Electrostatic Ions

After ordering out electromagnetic effects and parallel streaming in the ion gyrokinetic
equation, the ion distribution function is approximated by

δfi =
ZeF0i

τT0e
(〈ϕ〉Ri

− ϕ) , (2.2)

where Ri(r,v) = r−Ω−1
i v× ẑ, Ωi = ZeB0/(mic), τ = T0i/T0e, and 〈· · · 〉Ri

denotes the
gyroaverage at fixed Ri.
It follows that the ion density perturbation δni and mean parallel flow u‖,i are given

by

δni
n0i

=− Z

τ
(1− Γ̂0)

eϕ

T0e
, (2.3)

u‖,i =0, (2.4)

where Γ̂0 is an ion gyroaveraging operator:

Γ̂0[· · · ] ≡
1

n0i

∫

d3v〈〈· · · 〉Ri
〉rF0i(v). (2.5)

In Fourier space, Γ0 has the closed-form expression

Γ0 = I0(αi)e
−αi , (2.6)

where I0 is the zeroth order modified Bessel function and αi = k2⊥ρ
2
i .

2.1.2. Quasineutrality and Ampère’s Law

Since u‖,i = 0, we have J‖ = −en0eu‖e, and thus the parallel component of Ampère’s
law becomes

u‖,e =
e

mec
d2e∇2

⊥A‖. (2.7)
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According to Eq. (2.3), quasineutrality is expressed by

δne
n0e

= −Z
τ
(1− Γ̂0)

eϕ

T0e
. (2.8)

2.1.3. Drift-kinetic electrons

The electrons are described by a distribution function ge from which the density and
parallel flow terms have been extracted:

ge = δfe −
(
δne
n0e

− v‖
u‖,e

v2Te

)

F0e, (2.9)

The electron dynamics is described by fluid equations for the explicit moments, together
with a simplified drift kinetic equation:

d

dt

δne
n0e

= −b̂ · ∇u‖e, (2.10)

d

dt

(

A‖ +
cme

e
u‖e

)

= −c∂ϕ
∂z

+
cT0e
e

b̂ · ∇
(
δne
n0e

+
δT‖,e

T0e

)

, (2.11)

where

δT‖,e

T0e
=

1

n0e

∫

d3v
v2‖

v2Te
ge, (2.12)

is the electron temperature perturbation. We have also introduced the convective time
derivative

df

dt
≡∂f
∂t

+
c

B0
{ϕ, f} , (2.13)

with the Poisson bracket defined by

{f, g} ≡ ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (2.14)

and the parallel gradient operator

b̂ · ∇f ≡∂f
∂z

− 1

B0

{
A‖, f

}
. (2.15)

The remaining distribution ge is determined by a simplified drift-kinetic equation:

dge
dt

+ v‖b̂ · ∇
(

ge −
δT‖,e

T0e
F0e

)

− C[ge]

=

(

1−
v2‖

v2Te

)

F0eb̂ · ∇u‖,e,
(2.16)

in which electron FLR terms, as well as curvature drifts, are ordered out by the strong
guide field. Finally,

C[ge] = νei

[

v2Te
∂

∂v‖

(
∂

∂v‖
+

v‖
v2Te

)

ge −
(

1−
v2‖
v2Te

)

δT‖e
T0e

F0e

]

(2.17)

is a model collision operator that conserves particles, parallel momentum and parallel
kinetic energy (Zocco & Schekochihin 2011). This model operator – a generalization of
the so-called Lenard-Bernstein operator introduced by Rayleigh (1891) – also satisfies an
H theorem.
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Note that (2.9) requires the integral constraints

∫

d3v

(
1
v‖

)

ge = 0. (2.18)

2.1.4. Summary

Given a background characterized by B0 and vTs, Eqs. (2.7), (2.8), (2.10), (2.11), and
(2.16), are a closed system of equations governing small nonlinear perturbations of the
fields ϕ, A‖, u‖e, δne/n0e, and ge. In the final formulation of the model presented in Eqs.
(62)–(64) of Zocco & Schekochihin (2011), u‖e has been eliminated using (2.7). We will
do the same in the remainder of the paper.

2.2. Normalization

For the purposes of obtaining symmetries, it is convenient to reduce the number of
constants in the ZS model by normalizing all quantities. It turns out that the fields can
be normalized in such a way that there are only two dimensionless constants: Z/τ and
α ≡ ρ2i /d

2
e, and these only appear in the integral closure relation relating the electrostatic

potential to the density perturbation.

The dependent variables are normalized via

δn = δne/n0e

〈δne/n0e〉
, ψ =

A‖

〈A‖〉 , φ = ϕ
〈ϕ〉 ,

δT =
δT‖e/T0e

〈δT‖e/T0e〉 , g = ge
F0e〈ge〉

,
(2.19)

with

〈
A‖

〉
=B0νeid

2
e/vTe, (2.20)

〈ϕ〉 =B0νeid
2
e/c, (2.21)

〈δne/n0e〉 =
〈
δT‖e/T0e

〉
= 〈ge〉 = 〈δ〉, (2.22)

where

〈δ〉 ≡ eB0νeid
2
e

cT0e
=
νei
Ωe

√

βe. (2.23)

The independent variables are similarly normalized, with the following normalization
scales:

〈v‖〉 = vTe, 〈x⊥〉 = de, 〈z〉 = vTe/νei, 〈t〉 = 1/νei. (2.24)

Defining the normalized convective time derivative, parallel gradient, and perpendicu-
lar Laplacian

dtf ≡ ∂tf + {φ, f}, ∇‖f ≡ ∂zf − {ψ, f}, ∆ ≡ ∂2x + ∂2y , (2.25)

and normalized gyrokinetic and collision operators

Ĝ ≡ − Z

τ

e〈ϕ〉
〈δ〉 G, (2.26)

Ĉ ≡gvv − vgv − (1 − v2)δT, (2.27)
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the normalized reduced fluid-kinetic model takes the form

dtδn = −∇‖∆ψ, (2.28)

dtψ + φz =λ
[
∆(ψ + dtψ) +∇‖(δn+ δT )

]
, (2.29)

dtg + v∇‖(g − δT ) =Ĉ + (1− v2)∇‖∆ψ, (2.30)

δT =
1√
2π

∫

dv′v′2e−v
′2/2g(v′), (2.31)

Here, the brackets are the same as (2.14) except the perpendicular coordinates are now
normalized, and λ(= 1) is a tag for the terms that are dropped in the ideal reduced
magnetohydrodynamic (RMHD) limit. These differential equations are to be solved
subject to the integral constraints

(
0
0

)

=
1√
2π

∫

dv′
(

0
v′

)

e−v
′2/2g(v′), (2.32)

together with

δn = Ĝφ. (2.33)

We introduce a normalized Alfvèn velocity,

vA =
1

vTe

B0√
4πn0imi

(2.34)

(=
√

τα/Z), (2.35)

and the normalized kernel,

K̂(x) =
−Z/τ
2π

∫

dk⊥ k⊥J0(k⊥x)
[

1− I0(αk
2
⊥)e

−αk2⊥

]

(2.36)

obtained from (2.6). Then the operator Ĝ becomes

Ĝu =

∫

d2x′⊥K̂(|x⊥ − x′
⊥|)u(x′

⊥), (2.37)

=v−2
A ∆+ λO(α2∆2). (2.38)

Finally, to determine the symmetries of these equations, we must explicitly include the
trivial relations

∂vδn = ∂vφ = ∂vψ = ∂vδT = 0. (2.39)

2.3. RMHD Limit

If we set λ = 0 in (2.29) and (2.38), the equations (2.28)–(2.29) become an autonomous
subsystem for φ and ψ:

dt∆φ =− v2A∇‖∆ψ, (2.40)

dtψ + φz =0, (2.41)

while g becomes a decoupled scalar field, constrained to satisfy the driven integro-
differential equation

dtg + v∇‖(g − δT [g]) = gvv − vgv + (1 − v2)(∇‖∆ψ − δT [g]). (2.42)

Equations (2.40) and (2.41) define ideal RMHD (Kadomtsev & Pogutse 1974; Strauss
1976). There is no coupling to the kinetic equation.
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3. Symmetries

Here, we present the symmetries of the system (2.28)–(2.33) in the form of transfor-
mations of known solutions, rather than in terms of the infinitesimal generators of the
symmetries. The latter are obtained directly from the invariance criterion in section 5.

3.1. Gauge Transformation

Given a solution (φ, ψ, δn, δT, g)(v,x⊥, z, t), and an arbitrary function H(z, t), one can
generate a new solution (φ̃, ψ̃, δ̃n, δ̃T , g̃)(v,x⊥, z, t) via









φ̃

ψ̃

δ̃n

δ̃T
g̃









(v,x⊥, z, t) =









φ
ψ
δn
δT
g









(v,x⊥, z, t) +









−∂tH
∂zH
0
0
0









. (3.1)

It is not hard to see that this symmetry is expressing gauge invariance. After undoing
the normalizations, (3.1) becomes

(
ϕ̃

Ã

)

=

(
ϕ
A

)

+

(
− 1
c
∂Λ
∂t

∇Λ

)

, (3.2)

where Λ = c〈ϕ〉〈t〉H , and A = ẑA‖ +O(
√
βs). Note that if H had x⊥ dependence, then

this gauge transformation would change A⊥ as well. However, in the low-β limit, A⊥ is
ordered out of the model, so the gauge must be independent of x⊥.
Of course this symmetry also holds in the RMHD model – explaining the absence of

λ in the transformation (3.1).
The appearance of gauge symmetry in the ZS model is not surprising, but also not

without significance. In view of the many approximations involved in the construction
of ZS and other reduced models, its emergence here gives confidence in the model’s
treatment of the electromagnetic field.

3.2. Perpendicular Translations

Let ξ(z, t) be an arbitrary displacement in the x-y plane. Then ξ produces the
symmetry transformation








φ̃

ψ̃

δ̃n

δ̃T
g̃









(v, x, y, z, t) =









φ
ψ
δn
δT
g









(v,x⊥ + ξ(z, t), z, t) +









−∂t (ẑ · ξ × x⊥)
∂z(ẑ · ξ × x⊥)

0
0
0









. (3.3)

In the case where ξ is a constant, we recover the obvious result that the model is
translation invariant in the x⊥ plane. In the more general case, the transformations of φ
and ψ follow the same pattern as the gauge symmetry, but the overall transformation of
these fields is not a gauge transformation: note the additional (z, t)-dependent translation
of the initial fields, as well as the fact that the gradient of ẑ · ξ × x⊥ has nonzero x̂⊥

components.

3.3. Alfvènic Rotations

Let Θ(z, t) be a solution to the one dimensional (Alfvèn) wave equation

v−2
A Θtt = Θzz . (3.4)
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This function will determine the z-t dependent rotation of the original solution about
the z axis. After transforming to polar coordinates in the x-y plane, x⊥ = rr̂(θ), the
symmetry transformation takes the form








φ̃

ψ̃

δ̃n

δ̃T
g̃









(v, r, θ, z, t) =









φ
ψ
δn
δT
g









(v, r, θ +Θ, z, t) +









−∂t(r2Θ/2)
∂z(r

2Θ/2)
−2∂tΘ/v

2
A

0
G









+ λ









F
0
0
T
0









.

(3.5)

Here the function G(v, z, t) appears as a displacement for the distribution function g:

g → g +G. (3.6)

A detailed discussion of G appears in the following subsection. We have also introduced

F = 2(Θ + ∂tΘ)− 2∂tΘ/v
2
A + T , (3.7)

and

T =
1√
2π

∫

dv′v′2e−v
′2/2G(v′). (3.8)

The first term on the right side of (3.7) is due to the combination of resistivity and
electron inertia; the second term arises from the density contribution to the perturbed
electron pressure; and the last term is due to the electron temperature perturbation.
Note that our symmetries apply to limiting case of RMHD, where the functions G and

T can be ignored.

3.4. The function G

3.4.1. Linear drift-kinetic equation

The function Θ determines G implicitly, through the kinetic equation

Gvv − vGv − vGz −Gt = −He2(v)(T − 2Θtt/v
2
A)−He1(v)Tz , (3.9)

with the constraints
(

0
0

)

=
1√
2π

∫

dv′
(

0
v′

)

e−v
′2/2G(v′). (3.10)

In (3.9), the Hen are the “probabilist’s” Hermite polynomials.
Aside from the coefficients on its right-hand side, (3.9) is identical to the linearized ver-

sion of the drift-kinetic equation (2.16), which has been previously studied in detail (see,
for example, Zocco & Schekochihin 2011; Hatch et al. 2014; Schekochihin et al. 2016;
White & Hazeltine 2017). In the symmetry context, the linearity of (3.9) does not result
from approximation; here the linearity follows from the general structure of Lie groups.
In particular, the infinitesimal generators of any Lie group form a vector space, so the
determining equations for symmetry transformations are always linear. Similarly the
absence of the electrostatic potential in (3.9) is not an approximation; it reflects exact
Lie symmetries, such as (5.10), (5.11) and (5.16).

3.4.2. Closed form solution for G(v, z, t)

Using special choices for such functions as

Θ(z, t) = Θ+(z + vAt) +Θ−(z − vAt), (3.11)
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it is not hard to find a closed-form solution for G. Here we are content to display a single
example: the choice

Θ = −T0
48

[
(z + vAt)

3 + (z − vAt)
3
]
, (3.12)

where T0 is a constant, together with

T =
T0
4vA

[
(z + vAt)

2 − (z − vAt)
2
]
= T0zt (3.13)

allows an exact solution with

G(v, z, t) =
T0
2

[

tzHe2(v)−
1

3

(

t− 1

3
+ c e−3t

)

He3(v)

]

, (3.14)

where c is an arbitrary constant. It is easily verified that this function satisfies the
differential equation as well as the integral constraints. In addition to furnishing an
explicit symmetry, this relatively simple function is in fact an exact solution to the full
nonlinear integrodifferential model, and thus can be used for benchmarking codes.

3.4.3. Fourier-Hermite expansion of G

A conventional approach to the drift-kinetic equation (Watanabe & Sugama 2004;
Zocco & Schekochihin 2011; Hatch et al. 2014; Kanekar et al. 2015) expands the dis-
tribution function, in this case G(v, z, t), as a series in Hermite polynomials. Here it is
convenient to use “probabilists” Hermite polynomials, and to Fourier analyze the z- and
t-dependent Hermite coefficient, thus expressing G as

G(v, z, t) =

∞∑

0

Hen(v)√
n!

∫
dωdk

(2π)2
Gn(ω, k)e

i(kz−ωt). (3.15)

We note that this expansion restricts our consideration to solutions which have a Fourier
transform; it would exclude, for example, (3.14).
The constraints (3.10) become

G0 = G1 = 0, (3.16)

while (3.8) gives

G2 =
1√
2
T . (3.17)

The remaining Gn are determined by the recursion relation

k
(√
n+ 1Gn+1 +

√
nGn−1

)
− inGn − ωGn = 0, n > 2. (3.18)

Although (3.18) is a simple, linear recursion relation, solving it requires some care:
there is a spurious divergent “solution” (White & Hazeltine 2017) that must be avoided
by appropriate determination of initial data – in this case the ratio ∆ ≡ G3/G2. In
numerical applications, one is only interested in calculating a finite subset {Gn}n6N
because g is represented by a finite sum of Hermite polynomials. In this case, ∆(N) can
be determined by the same closure scheme adopted by the numerical method to solve
the full nonlinear model. For example, if one simply truncates by setting GN+1 = 0, then
(3.18) can be iterated backward to determine {GN/GN−1, GN−1/GN−2, . . . , ∆(N)}. See
Zocco et al. (2015); Loureiro et al. (2016) for alternate closure schemes. The choice of
∆, as well as other approaches to solving the recursion relation, will be considered in a
future publication.
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Finally, T is expressed in terms of the Θ and ∆ via

T (z, t) =

∫
(

2ik
ω/k
2 −

√
3∆(ω, k)

)

Θ(ω, k)e−ikz+iωt dωdk

(2π)2
. (3.19)

This expression, like (3.18), is obtained by direct Fourier-Hermite transformation of
(3.15).

4. Sample Applications

The value of knowing the symmetries of a some mathematical description is appre-
ciated in nearly all areas of physics. In addition to their relation to conservation laws
(discussed below), symmetries can be used to test numerical solution schemes, to motivate
approximation hypotheses, and to generate novel exact solutions. In an important sense,
the symmetries of a system carry information about its deep structure. The following
discussion, touching upon two samples of potential application, is merely intended to be
suggestive.

4.1. Transforming the trivial solution

The most straightforward way to use symmetry transformations is to generate new
solutions from known solutions. One obvious exact solution is the trivial solution, with
all of the fields identically zero. In this case, by specifying the functions H , ξ, and Θ,
one can generate nontrivial exact solutions by transforming the trivial solution using
the symmetries presented in Section 3. In fact, one can directly verify that all of the
nonlinear terms in the set of solutions obtained this way are exactly zero. In other words,
by transforming the trivial solution, one obtains solutions to the linearized version of the
model which happen to be exact solutions to the full nonlinear system.

4.2. Transformed Chapman-Kendall solution

As a second illustration of the use of the transformations presented in section 3, we
consider the exact solution

φ = Γxy, ψ = x2

a0e−2Γt − y2

b0e2Γt (4.1)

of the RMHD equations (2.40) and (2.41) derived in Chapman & Kendall (1963). Here
the arbitrary rate parameter Γ , which is set by boundary conditions, is assumed to be
fast compared to any diffusion time scale. This solution corresponds to a thinning and
elongating magnetic neutral line at x = 0, as would be found at the center of a localized
collapsing current sheet Waelbroeck (1989, 1993); Loureiro et al. (2005).
This is a particularly relevant solution for the ZS model, as the orderings were

constructed with magnetic reconnection studies in mind. For example, a prototypical
model problem would be a localized thinning current sheet whose evolution is eventually
disrupted by a reconnecting instability (Uzdensky & Loureiro 2016). Typically, in a high
temperature plasma, the length scales associated with the reconnecting instability are
much smaller than the width of the current sheet itself. In this circumstance, a localized
model of the current sheet such as (4.1) can capture the salient features of the background
which play a role in the physics of the instability, and subsequent nonlinear evolution.
Using very simple solutions of (3.4), one can generate more exotic versions of the

Chapman-Kendall solution. For example, by choosing Θ = z/z0, the initial solution (4.1)
transforms to

φ̃ = Γ x̄ȳ, ψ̃ = x̄2
(

1
a0e−2Γt +

1
2z0

)

− ȳ2
(

1
b0e2Γt − 1

2z0

)

, (4.2)
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Figure 1. Flux surfaces near magnetic null for (4.2) with t = 0, a = 1, b = 0.5, and z0 = 1.

Figure 2. Flux surfaces near magnetic null for (4.2) with z = 0, a = 1, b = 0.5, Γ = 1 and
z0 = 1.

where

x̄ = x cos(z/z0) + y sin(z/z0), ȳ = y cos(z/z0)− x sin(z/z0) (4.3)

are the helically rotated coordinates. Physically, this transformation corresponds to a
linear helical twisting of the original current sheet with a uniform current (amplitude
proportional to the helical pitch) added. Note that if b0 < 2z0, then the flux surfaces will
initially be hyperbolic, but at a later time tc when b0 exp(Γtc) = 2z0, they topologically
transform to elliptic surfaces.
This three-dimensional magnetic structure is a simple, analytically-tractable model

configuration of an evolving three dimensional magnetic structure that will eventually
become unstable to reconnection-driven instabilities. The formation of helical three-
dimensional magnetic fields – and the potential subsequent magnetic reconnection
thought to occur in such structures – is highly relevant for solar flares (Janvier et al.
2013).
As a second example, by choosing Θ = (z− vAt)/z0, we find a solution which, at time

t = 0, is in the same helical configuration as (4.2), but now moves along the guide field
at the Alfvèn speed.

5. Symmetry Analysis

5.1. Infinitesimal Generators

The maps given in section 3 can be viewed geometrically as a continuous family of
transformations of the graph of the solution, which is a set of points in the (10 dimen-
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sional) space labeled by (v, x, y, z, t;φ, ψ, δn, δT, g). These subgroups of transformations
can be characterized by their infinitesimal generators Ξ.
For example, consider the action of an infinitesimal gauge transformation δH(z, t) on

the graph of a solution (φ, ψ, δn, δT, g):

(ṽ, x̃⊥, z̃, t̃, φ̃, ψ̃, δ̃n, δ̃T , g̃) = [1−δHt∂φ+δHz∂ψ+O(δ2)](v,x, z, t;φ, ψ, δn, δT, g). (5.1)

Here, the infinitesimal generator is seen to be

ΞH = −Ht∂φ +Hz∂ψ . (5.2)

Similarly, the infinitesimal generators for (3.3) and (3.5) are

Ξξ = −ξ · ∂x⊥
+ ∂zẑ · ξ × x⊥∂ψ − ∂tẑ · ξ × x⊥∂φ, (5.3)

and

ΞΘ =Θ∂θ + ∂z

(
r2

2
Θ

)

∂ψ +

[

−∂t
(
r2

2
Θ

)

+ F
]

∂φ

+

[

−v−2
A ∆∂t

(
r2

2
Θ

)]

∂δn + T ∂δT +G∂g,

(5.4)

respectively.
There is a one-to-one correspondence between Lie-group transformations and their

infinitesimal generators.. For a rigorous but readable introduction to this formalism, see
Chapter 1 of Olver (1993).

5.2. Generators acting on differential equations

As an extension to a standard graph, one can take a solution of the ZS model and
produce a graph in the higher dimensional space consisting of the independent and
dependent variables, as well as all higher derivatives up to second order (the highest
order that appears in the model equations). In this higher dimensional jet space, labeled
(v, x, y, z, t;φ, ψ, δn, δT, g;φv, . . . , φt, . . . ) ≡ (xi, uα, uαi , u

α
i,j), the action of a symmetry

transformation will also involve the coordinates associated with the derivatives:

Ξ∗ = ξi(x, u)∂xi + Uα(x, u)∂uα

︸ ︷︷ ︸

=Ξ

+
∑

i,j

Uα;i,j(x, u)∂uα
ij
.

In this higher dimensional space, the model equations, generically expressed in the form

F (xi, uα, uαi , u
α
i,j) = 0 for all xi, (5.5)

are formally algebraic equations.
A transformation generated by (5.2) is a symmetry of the model if the model equations

themselves are invariant under the transformation while transforming a solution. That is

Ξ∗F = 0 whenever F = 0 ⇔ Ξ is a symmetry of F. (5.6)

This invariance criterion is a fundamental theorem in symmetry analysis of differential
equations.
The second key result is the prolongation formula, which expresses the functions Uα;i,j

in terms of the Uα and ξi. In other words, given an infinitesimal generator Ξ in the
space (xi, uα), the prolongation formula provides an explicit expression of the form of
the generator Ξ∗ in the jet space (xi, uα, uαi , u

α
ij).

Using the prolongation formula, the invariance criterion (5.6) becomes a working
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procedure to obtain symmetries. Starting from the general symmetry generator

Ξ = ξi(x, u)∂xi + Uα(x, u)∂uα , (5.7)

with unknown coefficents ξi and Uα, one uses the prolongation formula to compute
the form of this symmetry generator (denoted here as Ξ∗) in jet space. Once this is
computed, the invariance criterion imposes conditions on the coefficients of Ξ∗ which
must be satisfied in order for (5.7) to correspond to a symmetry of the system. By solving
these determining equations, the most general symmetry of the form (5.7) is obtained.
There are two characteristics of this procedure that will be leveraged to extend the

procedure to the ZS model, which also has integral relations. First, in a model consisting
of more than one equation, the invariance criterion can be applied to one equation at
a time. The resulting symmetry group will be a subset of the full group; after all, any
symmetry of the full model must leave each of its equations unchanged. Thus we can
find the symmetries of the under-determined system (2.28)–(2.30) before considering the
integral relations (2.31) and (2.33).
The second noteworthy point is that determining equations are usually straightforward

to solve, even for highly complicated nonlinear models, provided there are no integral
terms. This justifies the operation of deriving the (generally more complicated) symmetry
group of the under-determined model first. Once the symmetry group of the under-
determined model is obtained, this class of transformations is used to simplify application
of the integral constraints.

5.3. Determining equations

We begin our analysis with a generator of the form

Ξ = c1∂t + c2∂z +X∂x + Y ∂y + Φ∂φ + Ψ∂ψ +G∂g + T ∂δT +N∂δn, (5.8)

where ci are constants, and the remaining unknown functions depend only on the
independent variables. This is not the most generic form. Our motivation for choosing
this simpler but less general form is based on exploratory computational analysis,
using software provided by Cantwell (2002). This exploration suggests that all of the
symmetries are of the form (5.8).

5.3.1. Local determining equations

Following the procedure sketched in the preceding subsection, we obtain from (2.28)
and (2.30) the following determining equations:

Xv = Yv = Φv = Ψv = Tv = Nv = 0, (5.9)

Xx + Yy = 0, (5.10)

Xx = Yy = 0, (5.11)

Ψx − Yz = Ψy −Xz = 0, (5.12)

Φy +Xt = Φx − Yt = 0, (5.13)

Nx = Ny = 0, (5.14)

Tx = Ty = 0, (5.15)

Gx = Gy = 0, (5.16)

Nt = ∆Ψz, (5.17)

Ψt −∆Ψt = ∆Ψ − Φz −Nz − Tz , (5.18)

Gt + v(Gz + T ) = Gvv − vGv

+ (1− v2)(Nt + T ). (5.19)
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These linear differential equations are sometimes called the “local” determining equa-
tions; symmetries of the non-local, integral relations (2.31) – (2.33) remain to be consid-
ered.

5.3.2. Integral determining equations

For integrodifferential equations, the notion of the jet space (itself a generalization
of the graph space) can be extended to include the moments of independent vari-
ables which appear in the model. We denote the variables in this space generically as
(xi, uα, uαi , u

α
i,j ,m

µ ≡
∫
Kµ
α(x, x

′)uα(x′)). For the ZS model, the two moment variables
are δn and δT . What is needed for the invariance criterion (5.6) is the expression for
Ξmµ in terms of the generator coefficients Uα and X i.

For this purpose, there is a very useful fact: one can re-express Ξ in canonical form,
where it acts only on the dependent variables:

Ξ =
∑

α

Qα∂uα , (5.20)

with

Qα = Uα −
∑

i

X iuαi . (5.21)

It turns out (see e.g. Kovalev et al. 1996) that the action of the canonical generator (5.20)
on an integral – a functional of the uα – is obtained by replacing ordinary derivatives by
functional derivatives in the canonical expression

Ξmµ =
∑

α

Qα
δmµ

δuα
. (5.22)

Using (5.22), the invariance criteria Ξ(2.31)= 0 and Ξ(2.33)= 0 give the integral

determining equations

T =
1√
2π

∫

dv′v′2e−v
′2/2G(v′), (5.23)

and

N = ĜΦ, (5.24)

respectively. Similarly, the integral constraints (2.32) lead to the determining equations

(
0
0

)

=
1√
2π

∫

dv′
(

0
v′

)

e−v
′2/2G(v′). (5.25)

Thus our full system of equations for the generator coefficients consist of the local
equations (5.10)–(5.19) together with the integral relations (5.23)–(5.25). Note in partic-
ular that this system of equations also involves a gyroaveraging operator, as well as other
integral relations which usually lead to analytical intractability. However in this case, the
local determining equations form an autonomous subsystem; we are able to obtain their
general solution before even deriving the remaining (integral) determining equations.
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5.4. Solution of determining equations

The general solution of the local determining equations (5.9)–(5.19) is

X = Θy + x̂ · ξ, (5.26)

Y = −Θx + ŷ · ξ, (5.27)

Ψ = ∂z

(

Θ
x2 + y2

2
+ ẑ · ξ × x⊥ +H

)

, (5.28)

Φ = −∂t
(

Θ
x2 + y2

2
+ ẑ · ξ × x⊥ +H

)

+ [2(Θt +Θ) + T +N ] , (5.29)

N = −2v−2
A Θt (5.30)

T = T (z, t), (5.31)

Gt + vGz = −Gvv + vGv − (1− v2)(Nt + T )− vTz, (5.32)

Here x̂ ·ξ(z, t), ŷ ·ξ(z, t), and H(z, t) are arbitrary functions, while Θ(z, t) is an arbitrary
solution to the wave equation (3.4).
In obtaining this result, we have used

ĜΦ =
1

v2A
∆Φ, (5.33)

=− 2

v2A
Θt. (5.34)

In other words, the leading FLR approximation to Ĝ, shown in (2.38), here becomes
exact, since the Φ given in (5.29) is quadratic in the perpendicular coordinates.
The function G is determined implicitly by (5.32) and constrained to satisfy

0 =

∫

dv′G(v′)e−v
′2/2, (5.35)

0 =

∫

dv′v′G(v′)e−v
′2/2. (5.36)

The symmetries discussed in Section 3 follow from Eqs. (5.26)–(5.36).

6. Conclusion

We have found that the fluid-gyrokinetic ZS model has a rich symmetry group, with
the full set of symmetries spanned by five arbitrary functions H(z, t), x̂ ·ξ(z, t), ŷ ·ξ(z, t),
and Θ±(z± vAt). These symmetries are discussed in Section 3, and summarized by Eqs.
(5.8), with (5.26)–(5.36).
To our knowledge, this is the first time symmetry analysis has been applied to a model

with a gyroaveraging operator. Gyroaveraging, viewed as a constitutive relation linking
φ to δn, turns out to not pose a serious obstacle in our analysis, largely because the
x⊥ dependence of the infinitesimal generator for φ allowed the exact gyroaverage to
be expressed in closed form. Similarly, the generator G for displacement symmetry of
the distribution function is found to satisfy exactly a linear drift-kinetic equation. The
success of symmetry analysis for the ZS model suggests that a similar study for the full
gyrokinetic equations might also be possible.
Our analysis assumes, based on computational exploration, a special form for the

symmetries, so it is possible that additional symmetries remain undiscovered. In fact, even
if we did begin our analysis with the most general possible transformation, the integral
terms in ZS place it beyond the scope of the theorems that would prove completeness.
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Because RMHD is a limit of the ZS model, our analysis also provides a large family of
symmetries of RMHD. RMHD is a simpler and better studied model, so there are more
exact solutions available to transform by our methods. In particular, the results obtained
here can be used to generate new exact solutions to RMHD by transforming the Elsasser
solutions (Elsasser 1950), which play an important role in MHD theories of turbulence
(for a review, see, e.g., Biskamp 2003).
For illustrative purposes, the modified Chapman-Kendall solution obtained in Section

4.2 employed a very simple particular symmetry transformation. More generally, using the
full set of transformations obtained here, the original two parameter Chapman-Kendall
solution becomes a large family of solutions, spanned by the arbitrary functions H , ξ
and Θ.
In the context of the full kinetic model, one can, for example, leverage simulation

results that start from a Chapman-Kendall-like two-dimensional current configuration
to infer the behavior of a whole family of (generally three dimensional) initial current
profiles, such as the helical collapsing current sheet given in (4.2).
Noether’s theorem applies to all of the symmetry transformations obtained here. If one

is able to construct an action for this model (see Charidakos et al. 2014; Morrison et al.

2014; Burby 2017, for manifestly action-preserving derivations of reduced models), and
if the action is invariant under any of these transformations, then one can use Noether’s
theorem to derive conserved quantities which, like the symmetries themselves, may not be
obvious from physical considerations. Symmetry analysis can thus enhance the value of
a reduced model by uncovering quantities which, while perhaps not exactly conserved in
the full Maxwell-Boltzmann description, are approximately constant in particular regimes
of interest. For the ZS model, this context would be nonlinear fluctuations in a high
temperature strongly-magnetized plasma.
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