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Robust Online Motion Planning with Regions of
Finite Time Invariance

Anirudha Majumdar and Russ Tedrake

Abstract In this paper we consider the problem of generating motion plans for a
nonlinear dynamical system that are guaranteed to succeed despite uncertainty in
the environment, parametric model uncertainty, disturbances, and/or errors in state
estimation. Furthermore, we consider the case where these plans must be generated
online, because constraints such as obstacles in the environment may not be known
until they are perceived (with a noisy sensor) at runtime. Previous work on feedback
motion planning for nonlinear systems was limited to offline planning due to the
computational cost of safety verification. Here we take a trajectory library approach
by designing controllers that stabilize the nominal trajectories in the library and pre-
computing regions of finite time invariance (“funnels”) for the resulting closed loop
system. We leverage sums-of-squares programming in order to efficiently compute
funnels which take into account bounded disturbances and uncertainty. The resulting
funnel library is then used to sequentially compose motion plans at runtime while
ensuring the safety of the robot. A major advantage of the work presented here is
that by explicitly taking into account the effect of uncertainty, the robot can evaluate
motion plans based on how vulnerable they are to disturbances. We demonstrate our
method on a simulation of a plane flying through a two dimensional forest of polyg-
onal trees with parametric uncertainty and disturbances in the form of a bounded
“cross-wind”.

1 Introduction

The ability to plan and execute dynamic motions under uncertainty is a critical skill
with which we must endow our robots in order for them to perform useful tasks
in the real world. Whether it is an unmanned aerial vehicle (UAV) flying at high
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(a) A plane deviating from its nominal planned
trajectory due to a heavy cross-wind.
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(b) The “funnel” of possible trajectories.

Fig. 1 Not accounting for uncertainty while planning motions can lead to disastrous consequences.

speeds through a cluttered environment in the presence of wind gusts, a legged robot
traversing rough slippery terrain, or a micro-air vehicle with noisy on-board sensing,
the inability to take into account disturbances, model uncertainty and state uncer-
tainty can have disastrous consequences.

Motion planning has been the subject of significant research in the last few
decades and has enjoyed a large degree of success in recent years. Planning al-
gorithms like the Rapidly-exploring Randomized Tree (RRT) [12], RRT? [11], and
related trajectory library approaches [13] [5] can handle large state space dimen-
sions and complex differential constraints, and have been successfully demonstrated
on a wide variety of hardware platforms [22] [21]. However, a significant failing is
their inability to explicitly reason about uncertainty and feedback. Modeling errors,
state uncertainty and disturbances can lead to failure if the system deviates from
the planned nominal trajectories. A cartoon of the issue is sketched in Figure 1(a),
where a UAV attempting to fly through a forest with a heavy cross-wind gets blown
off its planned nominal trajectory and crashes into a tree.

More recently, planning algorithms which explicitly take into account feedback
control have been proposed. LQR-Trees [24] and the minimum snap trajectory gen-
eration approach [16] operate by generating locally optimal trajectories through
state space and stabilizing them locally. However, the former approach lacks the
ability to handle scenarios in which the task and environment are unknown till run-
time since it is too computationally intensive for online implementation. The latter
technique has no mechanism for reasoning about uncertainty in the form of unmod-
eled disturbances, state errors and model uncertainty.



Robust Online Motion Planning with Regions of Finite Time Invariance 3

In this paper, we present a partial solution to these issues by combining trajec-
tory libraries, feedback control, and sums-of-squares programming [18] in order to
perform robust motion planning in the face of uncertainty. In particular, in the of-
fline computation stage, we design a finite library of motion primitives and augment
them with feedback controllers that locally stabilize them. Then, using sums-of-
squares programming, we compute robust regions of finite time invariance (“fun-
nels”) around these trajectories that guarantee stability of the closed loop system
in the presence of sensor noise, parametric model uncertainty, unmodeled bounded
disturbances and changes in initial conditions. A cartoon of these regions of finite
time invariance, or “funnels”, is shown in Figure 1(b). Finally, we provide a way of
composing these robust motion plans online in order to operate in a provably safe
manner.

One of the most important advantages that our approach affords us is the ability
to choose between the motion primitives in our library in a way that takes into ac-
count the dynamic effects of uncertainty. Imagine a UAV flying through a forest that
has to choose between two motion primitives: a highly dynamic roll maneuver that
avoids the trees in front of the UAV by a large margin or a maneuver involves flying
straight while avoiding the trees only by a small distance. A traditional approach
that neglects the effects of disturbances and uncertainty may prefer the former ma-
neuver since it avoid the trees by a large margin and is therefore “safer”. However, a
more careful consideration of the two maneuvers leads to a different conclusion: the
dynamic roll maneuver is far more susceptible to wind gusts and state uncertainty
than the second one. Thus, it may be much more advantageous to execute the second
motion primitive. Further, it may be possible that neither maneuver is guaranteed to
succeed and it is safer to abort the mission and simply transition to a hover mode.
Our approach allows robots to make these critical decisions, which are essential if
robots are to move out of labs and operate in real-world environments.

2 Related Work

The motion planning aspect of our approach draws inspiration from the vast body
of work that is focused on computing motion primitives in the form of trajectory
libraries. For example, trajectory libraries have been used in diverse applications
such as humanoid balance control [13], autonomous ground vehicle navigation [21]
and grasping [4]. The Maneuver Automaton [5] attempts to capture the formal prop-
erties of trajectory libraries as a hybrid automaton, thus providing a nice unifying
theoretical framework. Further theoretical investigations have focused on the offline
generation of diverse but sparse trajectories that ensure the robot’s ability to per-
form the necessary tasks online in an efficient manner [6]. More recently, tools from
sub-modular sequence optimization have been leveraged in the optimization of the
sequence and content of trajectories evaluated online [4].

Robust motion planning has also been a very active area of research in the
robotics community. Early work focused on the purely kinematic problem of plan-
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ning paths through configuration space with “tubes” of specified radii around them
such that all paths in the tube remained collision-free [9] [8]. Recent work has fo-
cused on reasoning more explicitly about the manner in which uncertainty/disturbances
influence the dynamics of the robot, and is closer in spirit to the work presented
here. In particular, [20] approaches the problem through dynamic programming on
a model with disturbances by making use of the Maneuver Automaton framework
mentioned earlier. However, the work does not take into account obstacles in the
environment and does not provide or make use of any explicit guarantees on al-
lowed deviations from the planned trajectories in the Maneuver Automaton. The
authors of [27] attempt to address the robust motion planning problem through H∞

control techniques. However, the results focused on a planar vehicle and the basic
motion planning framework does not easily extend to three dimensional environ-
ments. Also, while regions of invariance are approximated analytically and numeri-
cally, they are used only to evaluate the performance of the controller and not while
constructing motion plans. Another approach that is closely related to ours is Model
Predictive Control with Tubes [15]. The idea is to solve the optimal control problem
online with guaranteed “tubes” that the trajectories stay in. However, the method is
limited to linear systems and convex constraints.

A critical component of the work presented here is the computation of regions of
invariance for nonlinear systems via Lyapunov functions. This idea, along with the
metaphor of a “funnel”, was introduced to the robotics community in [2], where fun-
nels were sequentially composed in order to produce dynamic behaviors in a robot.
In recent years, sums-of-squares programming has emerged as a way of checking
the Lyapunov function conditions [18]. The technique relies on the ability to check
positivity of multivariate polynomials by expressing them as a sum-of-squares. This
can be written as a semi-definite optimization program and is amenable to efficient
computational algorithms such as interior point methods [17]. Assuming polyno-
mial dynamics of our system, one can check that a polynomial Lyapunov candidate,
V (x), satisfies V (x)> 0 and V̇ (x)< 0 in some region Br. Importantly, the same idea
can be used in computing regions of finite time invariance (“funnels”) around time-
indexed trajectories of the system [25]. Further, robust regions of attraction can be
computed using an approach that verifies stability/invariance of sets around fixed
points under parametric uncertainty [26]. In this paper, we show how to combine
these ideas to compute robust regions of finite-time invariance around trajectories
that guarantee that the if the system starts off in the set of given initial conditions, it
will remain in the computed “funnel” even if the model of the dynamics is uncertain
and the system is subjected to bounded disturbances and state uncertainty.

3 Contributions

This paper makes two main contributions. First, we provide a way of generating
regions of finite time invariance (“funnels”) for time-varying polynomial systems
subjected to a general class of uncertainty (bounded uncertainty in parameters en-
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tering polynomially in the dynamics). This is an extension of the results presented
in [25], which presents a method for computing “funnels” for systems with time-
varying polynomial dynamics assuming no model uncertainty/disturbances. Second,
we show how a library of such funnels can be precomputed offline and composed
together at runtime in a receding horizon manner while ensuring that the resulting
closed loop system is “safe” (i.e. avoids obstacles and switches between the planned
sequence of funnels). This can be viewed as an extension of the LQR-Trees algo-
rithm [24] for feedback motion planning, which was limited to offline planning due
to the relatively large computational cost of computing the funnels; our algorithm
is suitable for real-time, online planning. We expect this framework to be useful in
robotic tasks where the dynamics and perceptual system of the robot are difficult to
model perfectly and for which the robot does not have access to the geometry of the
environment till runtime.

4 Approach

A considerable amount of research effort in the motion planning community has
focused on the design of trajectory libraries (Section 2). Further, a substantial
but largely separate literature in control theory [19] [7] exists for the design of
controllers that stabilize uncertain non-linear systems along nominal trajectories.
Hence, in this section, we do not focus on the particulars of the generation of trajec-
tory libraries and controllers. Rather, we concentrate on how these powerful meth-
ods from the fields of motion planning and control theory can be combined with
sums-of-squares programming in order to perform robust online motion planning in
the face of dynamic and state uncertainty. To this end, we assume that we are pro-
vided with a trajectory library consisting of a finite set of nominal feasible trajecto-
ries for the robot and a corresponding set of controllers that stabilize these trajecto-
ries. We discuss one particular method for obtaining trajectory libraries, controllers
and Lyapunov functions in Section 5.

4.1 Robust Regions of Finite Time Invariance

The techniques for the computation of regions of finite time invariance presented in
[25] can be extended to handle scenarios in which there is uncertainty in state and
dynamics. This computation is similar to the one presented in [26], but instead of
computing regions of attraction for asymptotically stable equilibrium points, we ask
for certificates of finite time invariance around trajectories (“funnels”). Let x0(t) :
[0,T ] 7→ Rn be a trajectory in our trajectory library and u(x, t) be the controller that
stabilizes x0(t). Then, the closed loop dynamics of the system can be written as:

ẋ = f (x, t,w(t,x)) (1)



6 Anirudha Majumdar and Russ Tedrake

where w(t,x) ∈W ⊂ Rd is a free (but bounded) uncertainty term that can be used
to model instantaneous disturbances, parametric model uncertainty, and state uncer-
tainty.

We further assume that we have a time varying Lyapunov function, V (x, t), that
locally guarantees stability around the trajectory. An example of how such a candi-
date Lyapunov function may be obtained in practice is provided in Section 5. Given
a set of initial conditions X0 = {x|V (x, t) ≤ ρ(0)}, our goal is to compute a tight
outer estimate of the set of states the system may evolve to under the closed loop
dynamics and bounded uncertainty. In particular, we are concerned with finding a
set of states Xt = {x|V (x, t)≤ ρ(t)} for each time t ∈ [0,T ] such that:

x(0) ∈ X0 =⇒ x(t) ∈ Xt ,∀t ∈ [0,T ].

As described in [25], under mild technical conditions it is sufficient to find ρ(t) such
that:

V (x, t) = ρ(t) =⇒ V̇ (x, t,w)≤ ρ̇(t),∀w ∈W. (2)

As noted in [25], checking condition (2) on a finite set of time samples, ti, results in
large computational gains while still maintaining accuracy. Thus, assuming that the
closed loop dynamics are polynomial in x and w for a given t, and that w belongs to
a bounded semi-algebraic set W = {w|Wj(w)≥ 0}, we can write a sums-of-squares
optimization program to compute ρ(ti) (and thus Xt ):

minimize
ρ,Li,M j

∑
ti

ρ(ti) (3)

subject to ρ̇(ti)−V̇ (x,w)−Li(x)[V (x)−ρ(ti)]−∑
j

M j(w)Wj(w)≥ 0,∀ti

M j > 0, ρ(ti)≥ 0

It is easy to see that (3) is a sufficient condition for (2) since when Wj(w) ≥ 0 and
V (x) = ρ(ti), we have that ρ̇(ti)− V̇ (x,w) ≥ 0. This optimization program is bi-
linear in the decision variables and is amenable to an alternating search over ρ and
Lagrange multipliers (as in [25]). Note that the objective in our sums-of-squares
program, ∑ti ρ(ti), helps us find a tight conservative estimate of the set of states the
closed loop system may evolve to under the given uncertain dynamics. Further, one
can very easily augment this optimization program to handle actuator saturations in
a manner similar to the one described in [24].

4.2 Funnel Libraries

The tools from Section 4.1 can be used to create libraries of funnels offline. Given a
trajectory library, T , consisting of finitely many trajectories xi(t), locally stabilizing
controllers ui(x, t), and associated candidate Lyapunov functions Vi(x, t), we can
compute a robust funnel for each trajectory in T . However, there is an important
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issue that needs to be addressed when designing libraries of funnels and has an
analogy in the traditional trajectory library approach. In particular, trajectories in
a traditional trajectory library need to be designed in a way that allows them to
be sequenced together. More formally, let P denote the projection operator that
projects a state, x, onto the subspace formed by the non-cyclic dimensions of the
system (i.e. the dimensions with respect to which the Lagrangian of the system is
not invariant). Then, for two trajectories xi(t) and x j(t) to be executed one after
another, we must have

P(xi(Ti)) = P(x j(0)).

Note that the cyclic coordinates do not pose a problem since one can simply “shift”
trajectories around in these dimensions. This issue is discussed thoroughly in [5]
and is addressed by having a trim trajectory of the system that other trajectories
(maneuvers) start from and end at (of course, one may also have more than one trim
trajectory).

In the case of funnel libraries, however, it is neither necessary nor sufficient for
the nominal trajectories to line up in the non-cyclic coordinates. It is the interface
between funnels that is important. Let xi(t) and x j(t) be two nominal trajectories in
our library and Fi(t) = {x|Vi(x, t) ≤ ρi(t)} and Fj(t) = {x|Vj(x, t) ≤ ρ j(t)} be the
corresponding funnels. Further, we write x = [xc,xnc], where xc represent the cyclic
dimensions and xnc the non-cyclic ones. Following Burridge and Koditschek [2], we
say that two funnels are sequentially composable if:

P(Fi(Ti))⊂P(Fj(0)) (4)
⇐⇒ ∀x = [xc,xnc] ∈ Fi(Ti), ∃x0,c s.t. [x0,c,xnc] ∈ Fj(0)

While (4) is a necessary and sufficient condition for two funnels to be executed one
after another, the dependence of x0,c on x makes searching for x0,c a non-convex
problem in general. Thus, we set x0,c to be the cyclic coordinates of x j(0), resulting
in a stronger sufficient condition that can be checked via a sums-of-squares program:

∀x = [xc,xnc] ∈ Fi(Ti), [x0,c,xnc] ∈ Fj(0) (5)

Intuitively, (5) corresponds to “shifting” the inlet of funnel Fj along the cyclic di-
mensions so it lines up with xc. Assuming Fi(Ti) and Fj(0) are semi-algebraic sets,
a simple sums-of-squares feasibility program can be used to check this condition:

ρ j(0)−Vj(P([x j(0),xnc],0))+L(x)[Vi([xc,xnc],Ti)−ρi(Ti)]≥ 0 (6)
L(x)≥ 0

where L(x) is a non-negative Lagrange multiplier. Note that not all pairs of funnels
in the library will be sequentially composable in general. Thus, as we discuss in
Section 4.3, we must be careful to ensure sequential composability when planning
sequences of funnels online.
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4.3 Online Planning with Funnels

Having computed libraries of funnels in the offline pre-computation stage, we can
proceed to use these primitives to perform robust motion planning online. The
robot’s task specification may be in terms of a goal region that must be reached
(as in the case of a manipulator arm grasping an object), or in terms of a nominal
direction the robot should move in while avoiding obstacles (as in the case of a UAV
flying through a forest or a legged robot walking over rough terrain). For the sake
of concreteness, we adopt the latter task specification although one can easily adapt
the contents of this section to the former specification. We further assume that the
robot is provided with polytopic regions in configuration space that obstacles are
guaranteed to lie in and that the robot’s sensors only provide this information up to
a finite (but receding) spatial horizon. Our task is to sequentially compose funnels
from our library in a way that avoids obstacles while moving forwards in the nomi-
nal direction. The finite horizon of the robot’s sensors along with the computational
power at our disposal determines how long the sequence of planned funnels can be
at any given time.

The most important computation that needs to be performed at runtime is to
check whether a given funnel intersects an obstacle. For the important case in which
our Lyapunov functions are quadratic in x, this computation is a Quadratic Program
(QP) and can be solved very efficiently (as evidenced by the success of Model Pre-
dictive Control [3]). Let the funnel be given by the sets Xti = {x|V (x, ti) ≤ ρ(ti)}
for i = 1, . . . ,N, and a particular obstacle defined by half-plane constraints A jx ≥ 0
for j = 1, ...,M. Note that A j will typically be sparse since it will contain zeros in
places corresponding to non-configuration space variables (like velocities). Then,
for i = 1, . . . ,N, we solve the following QP:

minimize
x

V (x, ti) (7)

subject to A jx≥ 0,∀ j

Denoting the solution of (7) for a given ti as V ?(x?, ti), the funnel does not intersect
the obstacle if and only if V ?(x?, ti) ≥ ρ(ti),∀ti. Multiple obstacles are handled by
simply solving (7) for each obstacle. An important point that should be noted is that
we do not require the obstacle regions to be convex. It is only required that they are
represented as unions of convex polytopic sets.

For higher order polynomial Lyapunov functions, the following sums-of-squares
conditions need to be checked for all ti:

V (x, ti)−ρ(ti)−Li(x)∑
j

A jx≥ 0 (8)

Li(x)≥ 0

However, these provide only sufficient conditions for non-collision. Thus, if the
conditions in (8) are met, one is guaranteed that there is no intersection with the
obstacle. The converse is not true in general. Further, depending on the state space



Robust Online Motion Planning with Regions of Finite Time Invariance 9

dimension of the robot, this optimization problem may be computationally expen-
sive to solve online. Hence, for tasks in which online execution speed is crucial, one
may need to restrict oneself to quadratic Lyapunov functions. However, since most
popular control design techniques like the Linear Quadratic Regulator, H∞ and LMI
methods ([19] [7]) provide quadratic Lyapunov function candidates, the loss is not
substantial.

Algorithm 1 provides a sketch of the online planning loop. At every control cy-
cle, the robot updates its state in the world along with the obstacle positions. It
then checks to see if the sequence of funnels it is currently executing may lead to
a collision with an obstacle (which should only be the case if the sensors report
new obstacles). If so, it replans a sequence of funnels that can be executed from
its current state and don’t lead to any collisions. The ReplanFunnels(x,O) subrou-
tine assumes that funnel sequences that are sequentially composable in the sense of
Section 4.2 have been ordered by preference during the pre-computation stage. For
example, sequences may be ordered by the amount they make the robot progress
in its nominal direction for a navigation task. ReplanFunnels(x,O) goes through
funnel sequences and checks two things. First, it checks that its current state is con-
tained in the first funnel in the sequence (after appropriately shifting the funnel in
the cyclic dimensions). Second, it checks that the sequence leads to no collisions
with obstacles. The algorithm returns the first sequence of funnels that satisfies both
criteria. Finally, the online planing loop computes which funnel of the current plan
it is in and applies the corresponding control input ui(x, t.internal).

Of course, several variations on Algorithm 1 are possible. In practice, it may not
be necessary to consider re-planning at the frequency of the control loop. Instead,
longer sections of the plan may be executed before re-planning. Also, instead of
choosing the most “preferred” collision-free sequence of funnels, one could choose
the sequence that maximizes the minimum over ti of V ?(x?,ti)

ρ(ti)
. As before, V ?(x?, ti)

is the solution of the QP (7). Since the 1-sublevel set of V (x,ti)
ρ(ti)

corresponds to the
funnel, maximizing this is a reasonable choice for choosing sequences of funnels.

Algorithm 1 Online Planning
1: Initialize current planned funnel sequence, P = {F1,F2, . . . ,Fn}
2: for t = 0, . . . do
3: O ⇐ Obstacles in sensor horizon
4: x⇐ Current state of robot
5: Collision⇐ Check if P collides with O by solving QPs (7)
6: if Collision then
7: P ⇐ ReplanFunnels(x,O)
8: end if
9: F.current⇐ Fi ∈P such that x ∈ Fi

10: t.internal⇐ Internal time of F.current
11: Apply control ui(x, t.internal)
12: end for
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5 Example

X

Y

Fig. 2 Visualization of the system showing the coordinate system, polygonal obstacles, and “cross-
wind”.

We demonstrate our approach on a model of an aircraft flying in two dimensions
through a forest of polygonal trees. A pictorial depiction of the model is provided in
Figure 2. The aircraft is constrained to move at a fixed forward speed and can control
the second derivative of its yaw angle. We introduce uncertainty into the model by
assuming that the speed of the plane is uncertain and time-varying and that there is
a time-varying “cross-wind” whose magnitude is instantaneously bounded. The full
non-linear dynamics of the system are then given by:

x =


x
y
ψ

ψ̇

 , ẋ =


−v(t)cosψ

v(t)sinψ

ψ̇

u

+


w(t)

0
0
0

 . (9)

with the speed of the plane v(t)∈ [9.5,10.5]m/s and cross-wind w(t)∈ [−0.3,0.3m/s].
The plane’s trajectory library, T , consists of 11 trajectories and is shown in Fig-

ure 3(a). The trajectories xi(t) : [0,Ti] 7→ R4 and the corresponding nominal open-
loop control inputs ui(t) were obtained via the direct collocation trajectory opti-
mization method [1] by constraining xi(0) and xi(Ti) and locally minimizing a cost
of the form:

J =
∫ Ti

0
[1+u0(t)T R(t)u0(t)]dt.

Here, R is a positive-definite cost matrix. For each xi(t) in T we design a H∞ con-
troller that locally stabilizes the system. This is done by first computing a time-
varying linearization of the dynamics and disturbances about the trajectory:
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˙̄x≈ Ai(t)x̄(t)+Bi(t)ū(t)+Di(t)w(t)

where x̄ = x− xi(t) and ū = u− ui(t). The optimal linear control law, ū?(x, t) =
−R−1Bi(t)T Si(t)x̄ is obtained by solving the Generalized Riccati Differential Equa-
tion:

−Ṡi(t) = Q+Si(t)Ai(t)+Ai(t)T Si(t)−Si(t)[Bi(t)R−1Bi(t)T − 1
γ2 Di(t)Di(t)T ]Si(t)

with final value conditions Si(T ) = ST,i. The quadratic functional:

Vi(x, t) = (x− xi(t))T Si(t)(x− xi(t))

is our locally valid Lyapunov candidate. Then, as described in Section 4.1, we use
Vi(x, t) to compute robust regions of finite-time invariance (“funnels”). A few imple-
mentation details are worth noting here. Similar to [24], we perform the verification
on the time-varying nonlinear system by taking third-order Taylor-approximations
of the dynamics about the nominal trajectories. Secondly, the set of possible ini-
tial conditions for a given funnel, X0 = {x|V (x, t) ≤ ρ(0)} needs to be specified.
Since the Riccati equation does not allow us to fix S(0) directly, we can only af-
fect the shape of the initial ellipsoidal region by scaling ρ(0). In order to choose a
physically meaningful set of initial conditions we specify a desired ellipsoidal set
X0,des = {x|Vdes(x) ≤ 1}, and then choose the smallest ρ(0) such that X0,des ⊂ X0.
The following sums-of-squares program can be solved to obtain such a ρ(0):

minimize
ρ(0),τ

ρ(0) (10)

subject to ρ(0)−V (x,0)+ τ(Vdes(x)−1)≥ 0
τ ≥ 0

Three of the funnels in our library are shown in Figure 3(b). Note that the funnels
have been projected down from the original four dimensional state space to the x-y
plane for the sake of visualization.

Figure 5 demonstrates the use of the online planning algorithm in Section 4.3.
The plane plans two funnels in advance while nominally attempting to fly in the
y-direction and avoiding obstacles. The projection of the full sequence of funnels
executed by the plane is shown in the figure. Figures 4(a) and 4(b) show the plane
flying through the same forest with identical initial conditions. The only difference
is that the cross-wind term is biased in different directions. In Figure 4(a), the cross-
wind is primarily blowing towards the right, while in Figure 4(b), the cross-wind is
biased towards the left. Of course, the plane is not directly aware of this difference,
but ends up following different paths around the obstacles as it is buffeted around
by the wind.

Finally, we demonstrate the utility of explicitly taking into account uncertainty
in Figure 5. There are two obstacles in front of the plane. The two options available
to the plane are to fly straight in between the obstacles or to bank right and attempt
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(a) Trajectory library consisting of 11 locally
optimal trajectories.
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(b) Three funnels in our funnel library pro-
jected onto the x-y plane.

Fig. 3 Trajectory and funnel libraries for the plane.
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(a) Cross-wind biased towards the right. (b) Cross-wind biased to the left.

Fig. 4 Robust online planning though a forest of polygonal obstacles. The two subfigures show
the plane flying through the same forest, but with the cross-wind biased in different directions. The
eventual path through the forest is different, as the plane goes right around the marked obstacle in
(a) and left in (b).

to go around them. If the motion planner didn’t take uncertainty into account and
chose the one that maximized the average distance to the obstacles, it would choose
the trajectory that banks right and goes around the obstacles. However, taking the
funnels into account leads to a different decision: going straight in between the
obstacles is safer even though the distance to the obstacles is smaller.



Robust Online Motion Planning with Regions of Finite Time Invariance 13

−1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

x

y

Fig. 5 This figure shows the utility of explicitly taking uncertainty into account while planning.
The intuitively more “risky” strategy of flying in between two closely spaced obstacles is guaran-
teed to be safe, while the path that avoids going in between obstacles is less robust to uncertainty
and could lead to a collision.

6 Discussion and Future Work

6.1 Stochastic Verification

Throughout this paper, we have assumed that all disturbances and uncertainty are
bounded with probability one. In practice, this assumption may either not be fully
valid or could lead to over-conservative performance. In such situations, it is more
natural to provide guarantees of finite time invariance of a probabilistic nature.
Recently, results from classical super-martingale theory have been combined with
sums-of-squares programming in order to compute such probabilistic certificates
of finite time invariance [23]. i.e. provide upper bounds on the probability that a
stochastic nonlinear system will leave a given region of state space. The results pre-
sented in [23] can be directly combined with the approach presented in this work
to perform robust online planning on stochastic systems and will be the subject of
future work.

6.2 Continuously Parameterized Families of Funnels

As discussed in Section 4.2, we are currently partially exploiting invariances in the
dynamics by shifting trajectories (and corresponding funnels) that we want to ex-
ecute next in the cyclic coordinates so they line up with the cyclic coordinates of
the robot’s current state. In our example from Section 5, this simply corresponds
to translating and rotating funnels so the beginning of the next trajectory lines up
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with the current state’s x,y and yaw. However, we could further exploit invariances
in the dynamics by shifting funnels around locally to ensure that they don’t inter-
sect an obstacle while still maintaining the current state inside the funnel. One can
then think of the nominal trajectories and funnels being continuously parameterized
by shifts in the cyclic coordinates. Interestingly, it is also possible to use sums-
of-squares programming to compute conservative funnels for cases in which one
shifts the nominal trajectory in the non-cyclic coordinates [14]. Thus, one could po-
tentially significantly improve the richness of the funnel library by pre-computing
continuously parameterized funnel libraries instead of just a finite family. However,
choosing the right “shift” to apply at runtime is generally a non-convex problem
(since the free-space of the robot’s environment is non-convex) and thus one can
only hope to find “shifts” that are locally optimal.

6.3 Sequence optimization for Large Funnel Libraries

For extremely large funnel libraries, it may be computationally difficult to search
all the funnels while planning online. This is a problem that traditional trajectory li-
braries face too [4]. Advances in submodular sequence optimization were leveraged
in [4] to address this issue. The approach involves limiting the set of trajectories
that are evaluated online and optimizing the sequence in which trajectories are eval-
uated. Guarantees are provided on the sub-optimality of the resulting strategy. This
technique could be adapted to work in our framework too and will be addressed in
future work.

6.4 Designing and Evaluating Trajectory Libraries

As discussed in Section 2, the design of trajectory libraries has been the subject of
a large body of work in motion planning. One of the most exciting recent results
is presented in [10] in which percolation theory is used to provide mathematical
bounds on the speed at which a robot can safely fly through a forest. Assuming
that the probability distribution that gave rise to the forest is ergodic and under a
few technical conditions on the dynamics of the robot, it is shown that there exists
a critical speed beyond which the robot cannot fly forever without collisions. If
the robot flies below this speed, there exists an infinite path through the forest. We
believe that the techniques used in [10] can be used to evaluate and compare funnel
libraries too. In the setting where the distribution of the obstacle generating process
is known and is ergodic, we can compute the probability that there exists a sequence
of funnels that can be chained together to traverse the forest without colliding with
a tree. Intuitively, the idea is to consider all possible funnel sequences through the
forest and then computing the probability that there exists a particular sequence with
no tree lying inside any funnel in that sequence.
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This may provide an important extension to the approach presented in this paper
since it allows us to directly deal with uncertainty in the nature of the environment
too. It also provides us with a meaningful way to evaluate whether a given funnel
library is “good enough” or whether more primitives are required in order to have a
high chance of success.

7 Conclusion

In this paper, we have presented an approach for motion planning in a priori un-
known environments with dynamic uncertainty in the form of bounded parametric
model uncertainty, disturbances, and state errors. The method augments the tradi-
tional trajectory library approach by constructing stabilizing controllers around the
nominal trajectories in a library and computing robust regions of finite time in-
variance (“funnels”) for the resulting closed loop controllers via sums-of-squares
programming. The pre-computed set of funnels is then used to plan online by se-
quentially composing them together in a manner that ensures obstacles are avoided.
By explicitly taking into account uncertainty and disturbances while making motion
plans, we can evaluate trajectory sequences based on how susceptible they are to dis-
turbances. We have demonstrated our approach on a simulation of a plane flying in
two dimensions through a forest of polygonal obstacles. Future work will focus on
extending our results to scenarios in which a stochastic description of uncertainty
is more appropriate and using the tools from this paper to evaluate different trajec-
tory libraries in order to determine whether they can be successfully employed to
perform the task at hand.
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