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Abstract

Existing models based on artificial neu-
ral networks (ANNs) for sentence classi-
fication often do not incorporate the con-
text in which sentences appear, and clas-
sify sentences individually. However, tra-
ditional sentence classification approaches
have been shown to greatly benefit from
jointly classifying subsequent sentences,
such as with conditional random fields. In
this work, we present an ANN architecture
that combines the effectiveness of typical
ANN models to classify sentences in iso-
lation, with the strength of structured pre-
diction. Our model achieves state-of-the-
art results on two different datasets for se-
quential sentence classification in medical
abstracts.

1 Introduction

Over 50 million scholarly articles have been pub-
lished (Jinha, 2010), and the number of arti-
cles published every year keeps increasing (Druss
and Marcus, 2005; Larsen and Von Ins, 2010).
Approximately half of them are biomedical pa-
pers. While this repository of human knowledge
abounds with useful information that may unlock
new, promising research directions or provide con-
clusive evidence about phenomena, it has become
increasingly difficult to take advantage of all avail-
able information due to its sheer amount. There-
fore, a technology that can assist a user to quickly
locate the information of interest is highly desired,
as it may reduce the time required to locate rele-
vant information.

When researchers search for previous literature,
for example, they often skim through abstracts in
order to quickly check whether the papers match
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their criteria of interest. This process is easier
when abstracts are structured, i.e., the text in an
abstract is divided into semantic headings such as
objective, method, result, and conclusion. How-
ever, a significant portion of published paper ab-
stracts is unstructured, which makes it more diffi-
cult to quickly access the information of interest.
Therefore, classifying each sentence of an abstract
to an appropriate heading can significantly reduce
time to locate the desired information.

We call this the sequential sentence classifica-
tion task, in order to distinguish it from general
text classification or sentence classification that
does not have any context. Besides aiding humans,
this task may also be useful for automatic text
summarization, information extraction, and infor-
mation retrieval.

In this paper, we present a system based on
ANNs for the sequential sentence classification
task. Our model makes use of both token and
character embeddings for classifying sentences,
and has a sequence optimization layer that is
learned jointly with other components of the
model. We evaluate our model on the NICTA-
PIBOSO dataset as well as a new dataset we com-
piled based on the PubMed database.

2 Related Work

Existing systems for sequential sentence clas-
sification are mostly based on naive Bayes
(NB) (Ruch et al., 2007; Huang et al., 2013),
support vector machines (SVMs) (McKnight and
Srinivasan, 2003; Yamamoto and Takagi, 2005;
Hirohata et al., 2008), Hidden Markov models
(HMMs) (Lin et al., 2006), and conditional ran-
dom fields (CRFs) (Kim et al., 2011; Hassan-
zadeh et al., 2014; Hirohata et al., 2008). They
often require numerous hand-engineered features
based on lexical (bag-of-words, n-grams, dic-
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tionaries, cue words), semantic (synonyms, hy-
ponyms), structural (part-of-speech tags, head-
ings), and sequential (sentence position, surround-
ing features) information.

On the other hand, recent approaches to nat-
ural language processing (NLP) based on artifi-
cial neural networks (ANNs) do not require man-
ual features, as they are trained to automatically
learn features based on word as well as charac-
ter embeddings. Moreover, ANN-based models
have achieved state-of-the-art results on various
NLP tasks. For short-text classification, many
ANN models use word embeddings (Socher et al.,
2013; Kim, 2014; Kalchbrenner et al., 2014), and
most recent works are based on character embed-
dings (Zhang et al., 2015; Conneau et al., 2016;
Xiao and Cho, 2016). Dos Santos and Gatti (2014)
use both word and character embeddings.

However, most existing works using ANNs for
short-text classification do not use any context.
This is in contrast with sequential sentence classi-
fication, where each sentence in a text is classified
taking into account its context. The context uti-
lized for the classification could be the surround-
ing sentences or possibly the whole text. One ex-
ception is a recent work on dialog act classifica-
tion (Lee and Dernoncourt, 2016), where each ut-
terance in a dialog is classified into its dialog act,
but only the preceding utterances were used, as the
system was designed with real-time applications
in mind.

3 Model

In the following, we denote scalars in italic low-
ercase (e.g., k, bf ), vectors in bold lowercase
(e.g., s, xi), and matrices in italic uppercase
(e.g., Wf ) symbols. We use the colon notations
xi:j and vi:j to denote the sequences of scalars
(xi, xi+1, . . . , xj) and vectors (vi,vi+1, . . . ,vj),
respectively.

3.1 ANN model
Our ANN model (Figure 1) consists of three com-
ponents: a hybrid token embedding layer, a sen-
tence label prediction layer, and a label sequence
optimization layer.

3.1.1 Hybrid token embedding layer
The hybrid token embedding layer takes a token
as an input and outputs its vector representation
utilizing both the token embeddings and as well as
the character embeddings.
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Figure 1: ANN model for sequential sentence classifica-
tion. x: token, t: token embeddings (300), zi: ith character
of x, ci: character embeddings (25), c: character-based to-
ken embeddings (50), ei: hybrid token embeddings (350), s:
sentence vector (200), aj : sentence label vector (number of
classes), yj : sentence label. The numbers in parenthesis in-
dicate the dimensions of the vectors. Token embeddings are
initialized with GloVe (Pennington et al., 2014) embeddings
pretrained on Wikipedia and Gigaword 5 (Parker et al., 2011).

Token embeddings are a direct mapping VT (·)
from token to vector, which can be pre-trained on
large unlabeled datasets using programs such as
word2vec (Mikolov et al., 2013b; Mikolov et al.,
2013a; Mikolov et al., 2013c) or GloVe (Penning-
ton et al., 2014). Character embeddings are also
defined in an analogous manner, as a direct map-
ping VC(·) from character to vector.

Let z1:` be the sequence of characters that com-
prise a token x. Each character zi is first mapped
to its embedding ci = VC(zi), and the resulting
sequence c1:` is input to a bidirectional LSTM,
which outputs the character-based token embed-
ding c.

The output e of the hybrid token embedding
layer for the token x is the concatenation of the
character-based token embedding c and the token
embedding t = VT (x).



3.1.2 Sentence label prediction layer
Let x1:m be the sequence of tokens in a given sen-
tence, and e1:m be the corresponding embedding
output from the hybrid token embedding layer.
The sentence label prediction layer takes as in-
put the sequence of vectors e1:m, and outputs a,
where the kth element of a, denoted a[k], reflects
the probability that the given sentence has label k.

To achieve this, the sequence e1:m is first input
to a bidirectional LSTM, which outputs the vector
representation s of the given sentence. The vec-
tor s is subsequently input to a feedforward neural
network with one hidden layer, which outputs the
corresponding probability vector a.

3.1.3 Label sequence optimization layer
The label sequence optimization layer takes the se-
quence of probability vectors a1:n from the label
prediction layer as input, and outputs a sequence
of labels y1:n, where yi is the label assigned to the
token xi.

In order to model dependencies between subse-
quent labels, we incorporate a matrix T that con-
tains the transition probabilities between two sub-
sequent labels; we define T [i, j] as the probability
that a token with label i is followed by a token with
the label j. The score of a label sequence y1:n is
defined as the sum of the probabilities of individ-
ual labels and the transition probabilities:

s(y1:n) =

n∑
i=1

ai[yi] +

n∑
i=2

T [yi−1, yi].

These scores can be turned into probabilities of the
label sequences by taking a softmax function over
all possible label sequences. During the training
phase, the objective is to maximize the log prob-
ability of the gold label sequence. In the testing
phase, given an input sequence of tokens, the cor-
responding sequence of predicted labels is chosen
as the one that maximizes the score.

4 Experiments

4.1 Datasets
We evaluate our model on the sentence classifica-
tion task using the following two medical abstract
datasets, where each sentence of the abstract is an-
notated with one label. Table 1 presents statistics
on each dataset.

NICTA-PIBOSO This dataset was introduced
in (Kim et al., 2011) and was the basis of the
ALTA 2012 Shared Task (Amini et al., 2012).

PubMed 20k RCT We assembled this corpus
consisting of randomized controlled trials (RCTs)
from the PubMed database of biomedical litera-
ture, which provides a standard set of 5 sentence
labels: objectives, background, methods, results
and conclusions.

Dataset |C| |V | Train Validation Test
PubMed 5 68k 15k (195k) 2.5k (33k) 2.5k (33k)
NICTA 6 17k 722 (8k) 77 (0.9k) 200 (2k)

Table 1: Dataset overview. |C| denotes the number of
classes, |V | the vocabulary size. For the train, validation and
test sets, we indicate the number of number of abstracts fol-
lowed by the number of sentences in parentheses.

4.2 Training
The model is trained using stochastic gradient de-
scent, updating all parameters, i.e., token embed-
dings, character embeddings, parameters of bidi-
rectional LSTMs, and transition probabilities, at
each gradient step. For regularization, dropout
with a rate of 0.5 is applied to the character-
enhanced token embeddings and before the label
prediction layer.

5 Results and Discussion

Table 2 compares our model against several base-
lines as well as the best performing model (Lui,
2012) in the ALTA 2012 Shared Task, in which
8 competing research teams participated to build
the most accurate classifier for the NICTA-
PIBOSO corpus.

The first baseline (LR) is a classifier based on
logistic regression using n-gram features extracted
from the current sentence: it does not use any in-
formation from the surrounding sentences. The
second baseline (Forward ANN) uses the model
presented in (Lee and Dernoncourt, 2016): it com-
putes sentence embeddings for each sentence, then
classifies the current sentence given a few preced-
ing sentence embeddings as well as the current
sentence embedding. The third baseline (CRF) is
a CRF that uses n-grams as features: each out-
put variable of the CRF corresponds to a label for
a sentence, and the sequence the CRF considers
is the entire abstract. The CRF baseline there-
fore uses both preceding and succeeding sentences
when classifying the current sentence. Lastly, the
model presented in (Lui, 2012) developed a new



Model PubMed 20k NICTA
LR 83.0 71.6
Forward ANN 86.1 75.1
CRF 89.3 81.2
Best published – 82.0
Our model 89.9 82.7

Table 2: F1-scores on the test set with several baselines, the
best published method (Lui, 2012) from the literature, and
our model. Since PubMed 20k was introduced in this work,
there is no previous best published method for this dataset.
The presented results for the ANN-based models are the F1-
scores on the test set of the run with the highest F1-score on
the validation set.

approach called feature stacking, which is a met-
alearner that combines multiple feature sets, and
is the best performing system on NICTA-PIBOSO
published in the literature.

The LR system performs honorably on PubMed
20k RCT (F1-score: 83.0), but quite poorly on
NICTA-PIBOSO (F1-score: 71.6): this suggests
that using the surrounding sentences may be more
important in NICTA-PIBOSO than in PubMed
20k RCT.

The Forward ANN system performs better than
the LR system, and worse than the CRF: this is un-
surprising, as the Forward ANN system only uses
the information from the preceding sentences but
does not use any information from the succeeding
sentences, unlike the CRF.

Our model performs better than the CRF sys-
tem and the (Lui, 2012) system. We hypothesize
that the following four factors give an edge to our
model.
No human-engineered features: Unlike most
other systems, our model does not rely on any
human-engineered features.
No n-grams: While other systems heavily rely
on n-grams, our model maps each token to a to-
ken embedding, and feeds it as an input to an
RNN. This helps combat data scarcity: for exam-
ple, “chronic tendonitis” and “chronic tendinitis”
are two different bigrams, but their token embed-
dings should be very similar since they share the
same meaning.
Structured prediction: The labels for all sen-
tences in an abstract are predicted jointly, which
improves the coherence between the predicted la-
bels in a given abstract.
Joint learning: Our model learned the features
and token embeddings jointly with the sequence
optimization.

Label PubMed 20k RCT
Precision Recall F1-score Support

Background 71.8 88.2 79.1 3621
Conclusion 93.5 92.9 93.2 4571

Methods 93.7 96.2 94.9 9897
Objectives 78.2 48.1 59.6 2333

Results 94.8 93.1 93.9 9713
Total 90.0 89.8 89.9 30135

Table 3: Detailed results of our model on the PubMed 20k
RCT dataset.
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Figure 2: Transition matrix learned on PubMed 20k. The
rows represent the label of the previous sentence, the columns
represent the label of the current sentence.

Figure 2 presents an example of a transition ma-
trix after the model has been trained on PubMed
20k RCT. We can see that it effectively reflects
transitions between different labels. For example,
it learned that the first sentence of an abstract is
most likely to be either discussing objective (0.23)
or background (0.26). By the same token, a sen-
tence pertaining to the methods is typically fol-
lowed by a sentence pertaining to the methods
(0.25) or the results (0.17).

Table 3 details the result of our model for each
label in PubMed 20k RCT: the main difficulty the
classifier has is distinguishing background sen-
tences from objective sentences.

6 Conclusions

In this article we have presented an ANN architec-
ture to classify sentences that appear in sequence.
We demonstrate that jointly predicting the classes
of all sentences in a given text improves the quality
of the predictions and yields better performance
than a CRF. Our model achieves state-of-the-art
results on two datasets for sentence classification
in medical abstracts.
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