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Transverse instability magnetic field thresholds of electron phase-space holes

I. H. Hutchinson
Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139, USA

(Received 20 January 2019; published 30 May 2019)

A detailed comparison is presented of analytical and particle-in-cell simulation investigation of the trans-
verse instability, in two dimensions, of initially one-dimensional electron phase-space hole equilibria. Good
quantitative agreement is found between the shift-mode analysis and the simulations for the magnetic field (B)
threshold at which the instability becomes overstable (time oscillatory) and for the real and imaginary parts of
the frequency. The simulation B threshold for full stabilization exceeds the predictions of shift-mode analysis
by 20–30%, because the mode becomes substantially narrower in spatial extent than a pure shift. This threshold
shift is qualitatively explained by the kinematic mechanism of instability.
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I. INTRODUCTION

An electron phase-space hole in a collisionless plasma is
an isolated positive electric potential structure with trapped
electron orbits on which the phase-space density is lower than
for untrapped orbits. The resulting local decrease of electron
charge density self-consistently sustains the enhanced poten-
tial in steady state [1–4]. Electron holes are formed during
the nonlinear (electron trapping) phase of most electrostatic
(Penrose) instabilities in one dimension [4]. They have also
been widely observed in space plasmas since electric field
sampling rates began to be fast enough to resolve the rapid
passage of a hole past the spacecraft [5–17]. In multiple
dimensions, electron holes are known from simulations to
break up by what is called the transverse instability: grow-
ing perturbations that vary in the direction transverse to the
direction of particle trapping, and observed in many studies
[18–25]. Such instabilities probably determine the long-term
multidimensional structure of these electrostatic solitonlike
objects, and their ultimate dissipation into the background
plasma. Therefore it is vital to understand the mechanisms
involved and their bearing on experimental observations.

Recent theory of linear kink stability of an initially planar
electron hole identified the kinematic mechanism of trans-
verse instability at low magnetization, and confirmed it by
comparison with simulation [26]. Detailed mathematical anal-
ysis also showed why instability is suppressed by a sufficiently
strong magnetic field in the trapping direction (z), normal to
the plane [27]. However a quantitative discrepancy of approx-
imately a factor of 2 was noted between the magnetic field
threshold calculated analytically and what is observed in PIC
simulations. In simulations, full suppression of the kink in-
stability takes approximately twice as strong a magnetic field
as was found analytically in that work. The purpose of this
paper is to report further investigations that now explain the
prior discrepancy concerning the threshold, confirming and
extending our understanding of the instability mechanisms.

To clarify what is meant by a kink, the spatial form of
the instability is illustrated by the potential contours at two
times during instability growth during a particle-in-cell (PIC)

simulation in Fig. 1. The initial equilibrium is independent
of the transverse coordinate y, but as time passes, a growing
displacement of the hole in the z direction develops, which is
sinusoidal in y, and in this case oscillating in time. The two-
dimensional simulation is independent of the third coordinate
(x) throughout.

Two main factors in the previous assumptions and approx-
imations are found to cause the discrepancy: (1) It was previ-
ously assumed that solutions to the analytic dispersion relation
are purely growing modes whose frequency ω is pure imagi-
nary; it turns out, in contrast, that there are overstable modes
at fields a little above the threshold for stability of the purely
growing modes. And (2) the analytic calculation approximates
the eigenmode to be a pure “shift mode,” consisting of a lateral
motion independent of z; the PIC simulations show that at
the highest unstable magnetic fields, the eigenmode is not a
pure shift; the displacement is concentrated in the center of
the hole. This effect allows the overstable modes to exist at
somewhat higher fields than for pure shift modes.

The present paper draws heavily on the previous analysis,
but removes the restriction to imaginary ω and gives direct
comparisons with detailed simulations in the vicinity of the
threshold. It does not address or explain the slower-growing
instabilities observed in PIC simulations at high magnetic
fields well above the threshold [20,21,23,25,28–30], which
are associated with hole-wave coupling to long-wavelength
perturbations often called streaks or whistlers.

II. ANALYTIC DISPERSION RELATION

We only summarize here the analysis that was carried out
in Ref. [27], which should be consulted for the mathematical
details. Ions are taken as a uniform immobile background and
only electron dynamics are included. Throughout this paper
dimensionless units are used with length normalized to Debye
length λD =

√
ε0Te/n0e2, velocity to electron thermal speeds

vt = √
Te/me, electric potential to thermal energy Te/e, and

frequency to plasma frequency ωp = vt/λD (time normalized
to ω−1

p ). The linearized analytic treatment of electrostatic
instability of a magnetized electron hole integrates Vlasov’s
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(a) t = 194 (b) t = 238

FIG. 1. Example PIC simulation of a kink instability of an initially planar hole. Contours of potential φ in two spatial dimensions: z is
the direction of trapping and the magnetic field, y is the transverse direction. The perturbation consists of sinusoidal wave variation in the y
direction of a displacement in the z direction. This case has a displacement that is a growing standing wave whose amplitude in (b) at later
time t = 238 is opposite in sign and greater in magnitude than that in (a) at t = 194. (ψ = 0.16, � = 0.2.)

equation along the equilibrium (zeroth order) orbits to obtain
the first order perturbation to the distribution function f1

caused by a potential perturbation φ1. For an electron hole,
the equilibrium is nonuniform in the (trapping) z direction
and differs from the textbook wave case in that only in the
transverse direction (y) does Fourier analysis yield uncoupled
eigenmodes. The z dependence of the eigenmodes’ potential
must be expressed in a full-wave manner, so we write

φ1(x, t ) = φ̂(z) exp i(ky − ωt ), (1)

taking the transverse wave vector to be in the y direction
without loss of generality. The integration along unperturbed

helical orbits (the characteristics of the linearized equation)
gives rise to an expansion in harmonics of the cyclotron
frequency (� = eB/me which represents the magnetic field
strength) involving [see [27], Eq. (5.6)]

�m(z, t ) ≡
∫ t

−∞
φ̂[z(τ )]e−i(m�+ω)(τ−t )dτ, (2)

where z(τ ) = z(t ) + ∫ τ

t vz(t ′)dt ′ is the position at earlier time
τ . For the positive imaginary part of ω (ωi > 0) the parallel
distribution function (integrated over transverse velocities)
then can be found as [see [27], Eq. (5.9)]

f‖1(y, t ) = qeφ1(t )
∂ f‖0

∂W‖

∣∣∣∣
t

+
∞∑

m=−∞
i

[
(m� + ω)

∂ f‖0

∂W‖
+ m�

f‖0

T⊥

]
qe�me−ζ 2

t Im
(
ζ 2

t

)
ei(ky−ωt ), (3)

where qe and me are the electron charge and mass, W‖ is the
parallel energy 1

2 mev
2
z + qeφ, f‖0 is the unperturbed parallel

distribution function, T⊥ is the perpendicular (Maxwellian)
temperature, ζt is the transverse wave number k times the
thermal Larmor radius, so that ζ 2

t = k2T⊥/�2me, and Im is
the modified Bessel function. The first term of this equation
is the “adiabatic” contribution, which can be thought of as the
perturbation that would have arisen if f had stayed the same
function of energy as it was in the unperturbed equilibrium.
The remaining harmonic sum is the nonadiabatic contribution
we denote f̃‖.

The specific hole equilibrium we analyze is

φ0 = ψ sech4(z/4), (4)

where the constant ψ is the maximum hole potential: the
“depth” of the hole. The corresponding trapped particle
bounce time for the most deeply trapped electrons is ωb =√

ψ/2. The background parallel velocity distribution is the
Maxwellian of temperature Te, and throughout T⊥ = Te.

The main difficulty is to find the shape of the eigenfunction
φ̂(z) which self-consistently satisfies the Poisson equation
because this is an integrodifferential eigenproblem. For slow
time dependence relative to particle transit time, it can be

argued on general grounds that the eigenmode consists of a
spatial shift (by small distance � independent of position)
of the equilibrium potential profile (φ0) (see [27], Sec. 3.1)
giving

φ̂ = −�
∂φ0

∂z
. (5)

We must concern ourselves with frequencies whose periods
are not much longer than the transit time, so this shift form
cannot be expected to hold exactly. However, we can obtain
a good approximation to the corresponding eigenvalue of our
system by expressing it in terms of a “Rayleigh quotient”: a
variational approximation which gives an eigenvalue whose
errors are only second order in the deviation of the eigenmode
from its exact form (a brief historical introduction can be
found for example in Ref. [31]). This mathematical proce-
dure is equivalent to requiring the conservation of total z
momentum under the influence of the assumed shift eigen-
mode (see [27], Sec. 3). The resulting kink of the hole gives
rise to two different contributions to momentum balance: FE

consists of transfer by Maxwell stress of z momentum in
the y direction, and F̃ consists of the force exerted by the
equilibrium potential on the nonadiabatic part of the charge
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(a) (b)

(c) (d)

FIG. 2. Contours in the complex ω plane of the real and imaginary part of the momentum balance Ftot, which is required to be zero, i.e.,
the solution (denoted @) is the intersection of the two zero contours. (a) Purely growing case; (b) no solution; (c),(d) overstable solution. Hole
parameters ψ = 0.16, ωb = 0.2.

density perturbation. The eigenvalue equation is that they
must balance [see [27], Eq. (3.6)],

FE ≡ −ε0k2
∫

dφ0

dz
φ1dz = −

∫
dφ0

dz

(∫
qe f̃‖dvz

)
dz ≡ F̃ ,

(6)
into which we substitute the shift mode, Eqs. (5) and (1).

The task then, for specified real k, is to find real and
imaginary parts (ωr and ωi) of the complex frequency that
satisfy Eqs. (1)–(6). If a solution exists with positive ωi, it is
unstable; if no such solution exists, the equilibrium is stable.
The integrals of Eqs. (2) and (6) are carried out numerically
for given ω. Solutions are displayed graphically and found
precisely by 2D Newton iteration of ω to find the roots of the
complex quantity Ftot = F̃ − FE when they exist.

III. OVERSTABILITY CALCULATED ANALYTICALLY

Figure 2 shows contours of total (complex) momentum
transfer rate Ftot for a shift eigenmode in the complex ω

plane, for a (real) transverse wave number k chosen to give
a large instability growth rate. It shows where the analytic
solutions for unstable shift kinks occur. The solution of the
associated dispersion relation, Ftot = 0, is at the intersection
of the two zero contours, for the real and imaginary parts.
In Figs. 2(a) and 2(b) the Im(Ftot ) = 0 contour exists only at
ωr = 0, the imaginary axis. In (a) a solution exists (with ωi �
0.01) shown by the (@-denoted) convergence point of the
Newton iteration. Convergence requires only a few iterations.
In (b), at slightly higher field, no solution exists because the
Re(Ftot ) = 0 contour is absent at ωr = 0. Newton iteration
takes the root search into the negative ωi region, where the
integration technique is invalid (and the mode would be
damped). This instability suppression occurs at the previously
documented analytic threshold � � 0.68ωb, which for this
hole depth (ψ = 0.16) is � � 0.136 (ωp units).

However, as � is increased further, for example Fig. 2(c), a
new solution appears away from the imaginary axis, because
the Im(Ftot ) = 0 contour is now present at finite ωr . This type
of solution persists up to a second threshold at fields just above
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(a) (b)

FIG. 3. Summary of dispersion solutions for (a) ψ = 0.16 and (b) ψ = 0.36, and six k values.

the case (d) when the Im(Ftot ) = 0 contour disappears again
below ωi = 0 at the relevant ωr . The contour plot domains are
deliberately chosen large to illustrate that there are no other
roots. Plots like these also confirm there are no solutions at
higher �.

The dependence of the solutions on the transverse wave
number can be seen by plotting the solution ω as a function
of �, as illustrated in Fig. 3. Here we show values normalized
to

√
ψ because as was noted in prior analysis this makes the

curves almost independent of hole depth (at least for shallow
holes). This near-universality is evident by inspection of the
two cases (a) ψ = 0.16 and (b) ψ = 0.36. The purely growing
mode, which exists for �/

√
ψ � 0.33, is just what was ana-

lyzed before and the results are exactly the same. It is unstable
from small k to about twice the k having maximum growth
rate: k � √

ψ/8. Purely growing modes for all k’s stabilize
at � � 0.33

√
ψ . Then overstable modes (undiscovered by

prior analysis) with ωr ∼ k appear at marginally higher �. It
is uncertain, in view of rounding errors and other numerical
limitations especially at high k, whether the apparent gap
here between the two types of instability is really present; in
any case it is narrow. The overstable mode’s ωr is essentially
independent of �, but the growth rate has a continuous profile.
The fastest growing oscillatory mode at fixed � has k/

√
ψ

value of 0.15–0.2 (ωr/
√

ψ � 0.11–0.14) at the lower end of
the unstable � range, but 0.20–0.25 (ωr/

√
ψ = 0.14–0.16)

at the upper end. The latter, higher-k, modes also remain
unstable to higher values of �, even when k values are high
enough to suppress the purely growing, low-�, instability
entirely. The fastest growth rate of the overstable mode is
ωi � 0.025

√
ψ .

The relationship between k and ωr can be understood
as a kink vibration of the hole (in the same spirit as was
analyzed in Ref. [28] for a waterbag hole) that balances F̃
and FE . Reference [27] referred to the Maxwell stress FE as a
“tension” force, but that terminology is somewhat misleading.
In fact FE is a force that acts to increase any kink displacement
of the hole, not to oppose it. The vibration then occurs because
F̃ is such as to oppose kinking by transferring momentum to
particles (“jetting” them) in the direction of z displacement.
Jetting (F̃ ) for low frequency is approximately proportional

to ω2, that is to acceleration, while FE is independent of ω.
Therefore their roles have reversed sign in analogy with a
stretched string. FE acts like negative tension (compression)
and F̃ acts like negative inertia. The resulting momentum
balance is nevertheless a vibrating wave. A fit to the numer-
ically calculated relationship, approximately independent of
hole depth ψ , namely

ωr/
√

ψ � 0.45(k/
√

ψ )0.75, (7)

is shown in Fig. 4. The range of ωr values is shown by the
vertical bars.

In summary, the shift-mode analytic results show there are
two threshold values of magnetic field. The purely growing
mode is suppressed for � � 0.34

√
ψ � 0.68ωb. The over-

stable mode appears immediately above this threshold and is
present until � � 0.6

√
ψ � 1.2ωb. This overstable mode, not

FIG. 4. Relation between oscillation frequency ωr and wave
number k for overstable modes. Points are derived from numerical
evaluation of the dispersion relation. The curve is an empirical
approximate fit to the points.
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considered in the previous analysis, explains why instability
and subsequent hole decay is observed in simulations above
the previous pure-growth threshold.

IV. TWO-DIMENSIONAL PIC SIMULATIONS

Particle-in-cell simulations were carried out with the code
COPTIC [32,33] to compare with the analytic results. The
potential is represented on a periodic two dimensional domain
−32 < z < 32 (trapping direction), −64 < y < 64 (trans-
verse direction), and initialized with a φ0 = ψ sech4(z/4) hole
uniform in the y direction by seeding the self-consistent parti-
cle distribution calculated by the integral equation method [4].
Ions are a uniform immobile background. In total 0.8 billion
electron particles on 512 parallel cpus are pushed with a time
step of 0.5 (ω−1

p ), and cell size 0.5 × 1 (λD) until instability
growth is observed. All three electron velocity components
are tracked and the particle positions are also periodic.

It is convenient to Fourier transform the resulting po-
tential perturbations in the y direction, so that φ(y, z, t ) =∑

 A(z, t )eiky. Mode 0 (k = 0) is then the mean, which is
essentially the equilibrium in the linear growth phase. The
higher modes, , are the possible periodic eigenmodes k =
k = 2π/128. The modes’ z variation is retained and so
each mode depends on time t and position z. Generally a
dominant integer mode number is observed to grow, together
with adjacent mode numbers of lower amplitude (and different
frequency).

Figure 5 shows example contour plots of the dominant
mode evolution. Only positions −10 < z < 10 close to the
hole are shown. Also, although some simulations at late times
show strongly nonlinear behavior, that part of the contour
part is not displayed since the concern in this paper is only
the linear growth phase. The segment of the plot prior to
time 20 (where there is no significant perturbation yet) has
been replaced with a template that represents an arbitrarily
scaled version of the shift mode − ∂φ0

∂z to compare with the
later observed structures. Figure 5(a) has a magnetic field
strength � = 0.20, just below what is needed to stabilize the
purely growing mode. It grows without oscillations during the
linear phase. Figure 5(b) has � = 0.25 in which the purely
growing mode has disappeared and an overstable mode with
 = 2 has replaced it. Both these panels have mode positional
structure similar to the shift mode. Panel (c) is at � = 0.45,
the uppermost value of this overstable mode series. It has a
much higher mode number:  = 6. It can also be observed
that the z extent of mode (c) is substantially reduced. Its
amplitude decreases to zero at a position that is near the peak
of the shift-mode template, with only a small perturbation of
reversed polarity outside it. The eigenmode structure is nearly
a factor of 2 narrower in z than the shift-mode template.

We obtain from many simulations’ mode results like these
the real and imaginary parts of the mode frequency ωr and ωi,
and the dominant k during the linear growth phase. Figure 6
shows the normalized frequencies as a function of normalized
field. Analytic predictions of regions are indicated, sepa-
rated by the analytic stability thresholds for suppression of
the purely growing mode �/

√
ψ = 0.34, and the overstable

mode �/
√

ψ = 0.6. The normalization by
√

ψ brings the

FIG. 5. Examples of unstable potential modes in hole simula-
tions with ψ = 0.49. (a) � = 0.2,  = 1, purely growing. (b) � =
0.25,  = 2, oscillatory. (c) � = 0.45,  = 6, oscillatory. The left-
hand section 0 < t < 20 is replaced by the shift mode z profile for
comparison with the PIC results. The color bars at right indicate
mode amplitudes A. Only times prior to the onset of strongly
nonlinear behavior are displayed.

points representing PIC results for different ψ into approx-
imately universal curves. The overstable analytic growth rate
ωi/

√
ψ = 0.025 is shown by the horizontal dash-dot line. It is

in good agreement with the observed PIC growth rates (filled
points). The transition between pure growth and overstability
lies between the lowest two � values for each ψ and is in
good agreement with the analytic prediction (dashed line).
However, the overstable oscillations persist somewhat above
the predicted analytic threshold of stability (short-dashed
line). In this right-hand region, the growth rate falls until it
reaches (near) zero when � is 20–25% past the 0.6 threshold.

The real frequency ωr is shown by open points. The
comparison with the fit (7) to analytic results is provided by
the single numerals (denoting the observed ), placed at the
predicted frequency for that  value. The predictions expected
to agree with PIC observations are joined to the observed
ωr by vertical lines, whose relative shortness shows they

053209-5



I. H. HUTCHINSON PHYSICAL REVIEW E 99, 053209 (2019)

FIG. 6. Simulation observations of unstable real (open points)
and imaginary (filled points) frequencies as a function of magnetic
field strength. Analytic predictions are shown by dashed lines sep-
arating the three � regions and showing the growth rate of over-
stability. Single numerals, denoting the mode number  are placed
at the predicted real analytic frequency fit Eq. (7) for the dominant
k observed. When the real frequency is nonzero, they are joined
by vertical lines to the corresponding frequency ωr observed in the
simulation, to show the degree of agreement.

do indeed fit the observed frequencies well, considering the
discreteness of k enforced by the finite y extent. The lowest-�
(unconnected) points correspond to zero frequency purely
growing modes, so they do not fit. The highest-� cases show
a sudden jump down to  = 1, and hence much decreased

FIG. 7. Comparison of the real frequency dependence on k ob-
served in PIC simulations (points with the same coding as Fig. 6)
with the fit (line) of Eq. (7): ωr/

√
ψ � 0.45(k/

√
ψ )0.75.

ωr . They have extremely low ωi and are effectively stable in
respect to the modes treated here analytically.

In Fig. 7 is shown more directly a plot of all the nonzero
normalized real frequencies ωr in the PIC simulations versus
their normalized k. They agree well, within the uncertainties
of the simulations, with the scaling fit to the analytic results.
As Figs. 3 and 6 indicate, there is no simple systematic scaling
of the growth rate ωi with k.

V. DISCUSSION

In summary, the magnetic field suppression of the purely
growing instability of electron holes occurs in PIC simula-
tions at a value of cyclotron frequency � = 0.34

√
ψ ωp in

good agreement with shift-mode analytic theory. That theory,
extended to account for oscillatory modes, also agrees well
with the real and imaginary parts of observed frequency in the
overstable regime. However, the overstability in simulation
persists 20–25% beyond the � � 0.6

√
ψ ωp at which the shift

mode becomes analytically stable. Spatial narrowing of the
eigenmode compared with the assumed shift mode appears to
be the reason. Deviation from shift mode may also explain the
fact that no stable region is observed in simulations between
the pure-growth and overstable regions.

The instability of the high-frequency overstable modes
into the region above the threshold of stability of the shift-
mode analytic calculation can be understood qualitatively
as permitted by the reduction of the z width of the actual
unstable modes relative to the shift-mode shape. In Ref. [27]
it was shown that magnetic field stabilization of the shift
mode arises because for cyclotron harmonic |m| = 1 the
contributions from �m to the trapped particle momentum
change their sign across the resonance m� + ω = ωbounce,
where ωbounce is a function of the trapped particle total energy
(W‖), that is, of the particle depth in the potential energy
well. For a given value of m� + ω, particles bouncing slower
than this frequency do not contribute destabilizing trapped
momentum. As m� + ω increases and more trapped particles
cease contributing, eventually the balance between trapped
and passing momentum jetting is broken by this exclusion and
the instability is suppressed. However, the exact value of � at
which full suppression occurs depends on the z extent of the
eigenmode as well as on ω. A narrower-z eigenmode can sub-
stantially decrease the momentum perturbation contribution
from shallowly trapped and passing electrons, whose orbits
extend past the narrow eigenmode, while decreasing little the
contribution from deeply trapped particles, whose orbits do
not. This effect thus tends to make narrower eigenmodes more
unstable than the shift mode. So they can persist at magnetic
fields beyond the shift-mode threshold. This sort of consider-
ation also helps explain qualitatively why oscillatory modes
are unstable at higher � than modes of lower (or zero) ωr .
Instability is driven by particles and m satisfying |m� + ω| <

ωbounce. The lowest values of |m� + ω| occur for m = −1 and
highest ωr ; so higher ωr is liable to be more unstable because
more particles contribute to unstable trapped momentum
jetting.

Although using the Rayleigh quotient (total momentum
conservation) minimizes the dependence of the eigenvalue on
the assumed shape of the eigenmode, it does not suppress it
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entirely, especially when the deviation from the shift mode is
large. The present comparison shows that the shift-mode as-
sumption becomes quantitatively inadequate at high magnetic
field. The plasma always finds the most unstable mode, and
the shift mode is no longer exactly it.

The eigenmode structure of the coupled hole-wave (streak
or whistler) instability observed in simulations at even higher
magnetic fields, but unexplored here, deviates from the shift-
mode assumption in a different way. The shift mode pre-
sumes there is no net potential difference across the hole;
the wave coupling violates that assumption. The hole-wave
instability might therefore require a more complex eigen-
mode for its analysis, involving the ingredients described in
Ref. [28]. However, a more detailed analysis using the present

techniques for the pure shift mode has discovered some os-
cillatory modes with growth rates typically about 50 times
smaller than those found here, at effectively infinite B field.
They may prove to be the simulations’ hole-wave instability.
This topic will be reported elsewhere.
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