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Abstract

In this thesis, I re-establish the fact that conventional net present value method used
to evaluate investment opportunities in the oil industry, is inaccurate. I present the
random-walk model, employing stochastic processes, option pricing theory, and the
contingent claims analysis as an alternative approach, At the same time, two mean-
reversion models are developed to account for the inadequacies of the random walk
model that is, of its failure to account for the mean reverting properties of oil prices, A
study of the effects of mean reversion on investment decisions leads to the conclusion
that mean reversion does affect both the valuation of undeveloped oil reserves and
the optimal investment rules in significant ways,

Thesis Supervisor: Robert Pindyck
Title; Mitsubishi Bank Professor In Economics & Finance



Acknowledgements

I would like to thank Professor Morris Adelman and Dr, Michael Lynch for providing
me with invaluable data and advise. I would also like to thank Professor Robert

Pindyck for being a supportive and superb UROP /thesis advisor over the past year,



Contents

1 Introduction

1.1 An Overview e e e e e e e e e

2 Valuation Model

2'1 variables ''''' L e L e L R R S T S

2.1.1 Real Risk-Free Interest Rate (r) « ...
2.1.2 Expected Rate of Return on Investments (7 I

LI ] A L] . . L I B B )

2.1.3 PayoutRate (6) ., ............. ' Ve
2.14  Value of Developed Reserve (V) , . .. .., . C e e e
2.1.5 Volatility (¢) . ... .............. e o
2.1.6 Initial Cost of Investment (I) . .. .,.......... o
2.2 Modeling Uncertainty . . .., ..,..... e e o
2.2.1 Random Walk Process . .. ......... G
2.2.2  Mean-Reversion as an Alternative ., . . . Ve
2.3 Solution through Contingent Claim Analysis , , . , e e
2.3.1 Geometric Brownian Process . . . ., . ... ... ... e

2,3.2  First Order Mean Reverting Process
2.3.3  Second Order Mean Reverting Process

3 Explanation of Solution
3.1 Geometric Brownian Process , , , , ., .. ..

3.2 First Order Mean Reverting Process . , , , ,

LI )

3.3 Second Order Mean Reverting Process . . . . . .

12
12
12
12
13
13
14
15
15
15
17
19
20
22
24

27
27
31
34



Mean-Reversion in Oil Investment Analysis

4.1 Modeling Oil Prices . . . ... ..........

4.2 The Significance of Mean-Reversion . , . , ,

Conclusion & Suggestion for Future Research

5.1 QConclusion , . . . . . . . v v e e

5.2 Suggestions for Future Research , , , ., , . .,
Volatility of Oil Prices
Unit Root Test on Oil Prices

Runge-Kutta Method of Fouth Order

LI ]

38
38
40

44
44
45

46

48

51



List of Figures

2-1
2-2
2-3
2-4
2-5

3-10
3-11
3-12
3-13

4-1
4-2

Plot of Crude Oil Value to Price Ratio (%) . . . .. ...... o
Plot of Oil Prices from 1870 to 1990 (1967 dollars) . . , . .. ..., .
Ratio of Value to Cost of Investment per barrel of oil from 1959-1986

Behavior of prices when P =5F, .., ... ..., P e e
Behavior of prices when 2P =Py, .. ..., .., G e
Plot of F(V) vs V for the geometric Brownian Model ., , , .. ...,

Plot of F(V) vs V for different § . . ... ..,.., f v ht e e
Plotof V*vsé ., ......... P e e ey
Plotof Vevsr . i
Plot of F(V)vs Vfor A=0.02 .. ......,.........

Plot of F(V)vs V for A =005 .. ..,.. e e e
Plot of V*vs Afor V. =05,1.0,1.5 . ... ..., ...
Plot of V* vs pfor A\=0.1and 05 .. .,.,.,., Cee e e
Plot of F(V)vs Vforn=005 ........,. e e .
Plot of F(V)vs Vforn=01 ............... ......
Plot of V*vs pfor p =008 .. ............ Vr e
Plotof V*vspforp =004 ., ... ... ..., .. .v...,
Plot of Vevsp ., .. ..... P e e G
Absolute rate of change, \ =9 =03and P =429 ., ...,.,...

The geometric Brownian model and the second order mean-reversion

model ..., ., e e e e e e e e e e

14
16
16
18
18

28
29
30
30
31
32
33
33
34
36
36
36
37

39



A-1 Plot of annual rate of change, r, from 1870-1990 , . . .

L}

47



Chapter 1

Introduction

Two important questions related to the oil industry’s investment decisions are often
asked. First, what is the value of a discovered but undeveloped oil and gas reserve?
And second, when is the best time to begin its development?

These questions have been answered in the past through the use of a random
walk model developed from option pricing theory, stochastic calculus, and contingent
claims analysis ([5] Paddock, Siegel, Smith, and [6] Pindyck), However, oil prices,
crucial to the valuation process seem to be mean-reverting in nature. The failure
of the random walk model to account for this important mean-reverting property
leads us to wonder if the results offered by the random walk representation would
change when mean-reversion is taken into account. In this thesis, I propose two
mean-reverting models as alternatives to the random walk model and attempt to
show that mean-reversion is important to the valuation process and should not be
disregarded,

Chapter One describes the inadequacies associated with the conventional method
of evaluating petroleum properties.

Chapter Two discusses the derivation of the three different models used in an-
alyzing investment projects — the geometric Brownian model, the first order mean-
reverting model, and the second order mean-reverting model. The chapter begins
with a detailed discussion of the various parameters necessary to the valuation pro-

cess. This is followed by a test on the hypothesis that oil prices are mean-reverting,



Finally, the step by step derivation of the three models are presented,

Chapter Three presents the results of the three different models and discusses
their general implications,

Chapter Four discusses the important issues related to mean-reversion, First, an
estimate for the rate of mea.n'-reversion is obtained. This is followed by a comparison
between the two mean-reverting models. Finally, we study the significance of includ-
ing mean-reversion in the evaluation of undeveloped oil reserves and in obtaining the
optimal investment rules,

Chapter Five concludes with an identiﬁcaiion of possible problems and suggestions

for future research,

1.1 An Overview

The Net Present Value (NPV) approach to valuing petroleum properties makes use
of discounted cash flow analysis or the capitalization of income. First, the future
income from a property or project is forecasted. The value of the property is then
calculated to be the net present value of the cash flow it generates over the lifetime

of the project.

Gy C, Cs
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where (), is the cash flow for the period n, and r, is the discount rate associated
with the period n.

This method presents many problems, First, it is inaccurate because its founda-
tion lies in the forecasting of uncertain cash flow. At the same time, the choice of
a discount rate is questionable since it is usually based on the capital asset pricing
model (CAPM), which makes certain assumptions, such as a fixed scenario. Further
discussion of the difficulties associated with the NPV approach can be found in many

articles ([1] Lehman 1989, (2] Brealey and Myers, 1988). Secondly, the NPV method



fails to take into consideration some very important characteristics of the investment
problem, For instance, it usually ignores the value added to the project through a
firm’s ability to make operating decisions during the life of the project in order to
adjust the investment to existing market conditions, or to delay investment decisions
in exchange for additional ma',rket information.

For a firm to make investment decisions more effectively, an alternative tool, free
from all the above difficulties, is necessary. To begin developing such a tool, I must
identify the various characteristics of investment decisions made by oil companies.

A petroleum company operates in the foll;wing manner, Oil exploration projects
are carried out in an effort to search for oil, About 50% of the time, dry wells are
found. However, when a potential well is located, and an estimate of its production
capabilities is obtained, the company must then decide when to develop the well, The
NPV method seems to suggest that as long as value exceeds costs, the firm should
invest, but the method offers no clue as to when the development should start,

When a firm decides to develop a discovered, but undeveloped reserve, the cost
of developing the reserve, once spent cannot be retrieved should the well be aban.
doned. We must therefore assume that such a decision is irreversible. Although the
development is irreversible, it can certainly be halted before completion should the
economic conditions become unfavorable, and restarted again at a later date.

Uncertainty exists in all forms of investments, In the development of oil reserves,
there are two types of uncertainty, The first is technical uncertainty that can only
be resolved when the project has begun. This is especially relevant in the oil industry
where the size of the oil reserve is only an estimate and no one is really sure how
much time, effort or materials will be needed until the development of the reserve
is well underway. Technical uncertainty can be minimized with experience, and also
with the aid of technology. However, it will not be considered for the purpose of this
thesis, The second type of uncertainty is emternal uncertainty, and as the name
implies, external uncertainty is external to the firm’s operations, The unpredictable
nature of oil prices fluctuations due to unpredictable changes in world politics is an

example. Uncertainty in oil prices can affect the results of the investment analysis
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process significantly,

The main concern of this thesis lies in the observation that any huge fluctuations in
oil prices are only temporary. This observation lead us to suspect that oil prices may
indeed be mean - reverting in nature, In the remaining chapters of this thesis, I will
study the effects of including. mean-reversion in the investment analysis process, By
comparing the results of the different investment models, I will draw some conclusion
as to the importance of taking mean-reversion into account,

We begin the next chapter by discussing about the parameters necessary for the
investment analysis. This is followed by the derivation of three different investment
models, and an explanation of the implications of their solution, Results from the
different models are compared, and the thesis concludes by identifying and suggesting

areas for future research,
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Chapter 2

Valuation Model .

2.1 Variables

Before I proceed with the model, it is important to briefly discuss the variables in-

volved. In particular, how they are derived, and how they are related to each other.

2.1.1 Real Risk-Free Interest Rate (r)

The risk free interest rate, r, is a measure of the rate of return of an investment that is
'risk free’. The most 'risk free’ investments are the U.S. Treasury bills, In the United
States, a standard measure of the nominal interest rate is the yield on 3 months U.S,
Treasury bills. The risk free interest rate, r, is the nominal interest rate less inflation,

For the purpose of this thesis, we shall assume r = 4% or 0.04 unless otherwise noted,

2.1.2 Expected Rate of Return on Investments (u)

Return on an investment in the oil industry comes in two ways - capital gain and
dividend received. Capital gain is the result of a rise in the value of the investment,
while dividends are cash payouts . The expected rate of return, u, on any investment
is thus the sum of the expected rate of capital gain, a, and the rate of dividend
received, §. For investments whose value, V, is mean-reverting, the rate of capital

gain is given by some function of V.

12



2.1.3 Payout Rate ()

An investor who invests in developed petroleum reserves would demand a return
on his/her investment equal to any other form of investments with the same risk,
Developed reserves may offer some expected capital gain, which may not meet the
rate of return expected by the investor, For a rational investor to hold developed
petroleum reserves, there must be an additional return to make up for this difference,
This difference is furnished by the payout rate, §, given by § = u — a.,

§ can also be viewed as the opportunity ccst associated with delaying the devel-
opment of the reserves. When § > 0, there is an opportunity cost to keep the option
alive, or to delay the development of the reserve, When é = 0, the value of the option
is large and there would be no incentive to develop the reserve since a = p, When
§ — oo, the value of the option becomes very small, and it costs too much to keep
the option alive. Essentially, the bigger § gets, the less longer we would want to keep

the option open.

2.1.4 Value of Developed Reserve (V)

The value of any developed oil reserve is directly proportional to the current and
expected future prices of oil. This relationship is expected since the value of any
reserve depends directly on the amonnt of oil it can produce and on the price the
oil can fetch. In this study, we shall refer to the value of a unit of developed reserve
as V. Not much published, verifiable information on the value of developed reserves
exists, The data for V used in this thesis have been obtained from (3] Adelman, a
paper which deals with estimates of cosct per barrel of reserves block.

Figure 2.1 shows the relationship between value and price. In general the value
of any long-lived asset rises when the market expects an increase in the prices of the
goods the assets will produce in the future, Thus V must reflect the expected rise
or fall of P, For the 1946-1986 period, the ratio of V' to P averages about 0.302,
with a standard deviation of 0,037. Thus, the 95% confidence interval for -‘-’,; is 0,302

4+ 0.075.We must note however, that deviations from the mean can occur due to a

13
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Figure 2-1: Plot of Crude Oil Value to Price Ratio (%)

change in the numerator caused by the expected rise or fall of oil prices, as well as
a change in the denominator caused by the inclusion of commitments made years
before. On the whole, the relationship V = 0.3P, is a good approximation, and will

be assumed throughout this thesis.

2.1.5 Volatility (o)

The measure of volatility, o, related to the value of developed reserve is the measure
of the standard deviation of the annual rate of change in oil prices, P, Figure 2,2
shows a plot of oil prices over the past 120 years.

For the period 1870 - 1990, the volatility is 21.2% (Please refer to Appendix A for
a description on how the volatility is calculated), Another calculation using quarterly
price data for the period 1985 to 1990, gives a volatility of 22.8%. Thus, volatility

associated with oil investments is in the range of 20% . In this thesis, we shall assume

o = 0.2 unless otherwise stated.
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Figure 2-2: Plot of Oil Prices from 1870 to 1990 (1967 dollars)

2.1.6 Initial Cost of Investment (I)

The initial cost of investment, I, is the development cost of oil reserves measured
in dollars per barrel ([7] Adelman 1988). Figure 2.3 shows the relation of value to
investment of a typical oil reserve in the United States from the period 1959 to 1986.
From 1959 to 1986, the ratio of value to investment cost per barrel averages 1.302
with a standard deviation of 0.472. This ratio may seem to be very high, since in
the long run equilibrium, we expect the ratio to tend towards unity, This difference

between value and development cost is the incentive to seek for new reserves.

2.2 Modeling Uncertainty

2.2.1 Random Walk Process

In the case of the oil industry, the value of an undeveloped reserve is most sensitive

to uncertainty associated with oil prices. The price of oil, on the other hand, can be
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Figure 2-3: Ratio of Value to Cost of Investment per barrel of oil from 1959-1986

considered to follow an Ito process.

Ito process is a generalization of the Brownian motion, or Wiener process - a
continuous-time stochastic process with three important properties. First, it is a
Markov process. Thus future prices depend only on its current value and is indepen-
dent of its past values. Second, changes in prices over any finite time interval are
normally distributed. Third, the probability distribution for price changes over any
two non-overlapping time interval are independent of each other,

Thus if z follows a Wiener process, we can relate a change in z, dz, over the time

interval dt by

dP = ¢, Vdt (2.1)

where ¢, is randomly distributed with 0 mean and unit standard deviation. We
also note that E[dz] = 0 and E[(dz)?] = dt.

Next, we model the price of oil, P, to follow a geometric Brownian motion with

16




drift, as represented by the following equation

dP = af(P)dt + o Pdz (2.2)

Although oil prices do fluctuate randomly in the short run (in response to war in
oil producing countries, or due to activities associated with the OPEC cartel), in the
long run, it tends to be drawn towards a value that is related to the marginal cost of
producing oil. In such circumstances, the price of oil, P, would be best modeled as a

mean-reverting process.

'

2.2.2 Mean-Reversion as an Alternative

In this thesis, we shali consider two such mean-reverting process. The first , which I

shall refer to as the first order mean-reverting process, is given by

dP = \(P — P)dt + o Pdz (2.3)

The second mean-reverting process, which I shall refer to as the second order

mean-reverting process, is given by

dP = (P — P)Pdt + o Pdz (2.4)

Where P is the mean, and A is the sensitivity constant, measuring the rate of
reversion,

Figures 2.4 and 2.5, shows how fast the price, starting at P, at year 0, reverts to
its mean value, P for various A and 7. When Py > P, (in figure 2.4, P = 5F,) as
expected, the second order mean-reverting process exerts a greater pull than the first
order case. When P, < P, (in figure 2.5, P = 1P,) the first order case now exerts a
greater pull, and it takes a shorter time for the price to revert to its mean.

However, we need to return to the question of whether the price of oil is best
modeled by the above equations, and if so, which one. First, we need to ans.wer the

more fundamental question of whether we could reject the hypothesis that oil prices

17
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follows a random walk. To do so, we employ the unit root test (introduced by David
Dickey and Wayne Fuller) for the price of crude oil over the last 120 years.

The test, as documented in appendix B, confirms that prices are mean reverting
at a 99% confidence level. We note that this test requires many years of data so to
give us some degree of conﬁdlence as to whether price is really mean-reverting. Thus,
when the unit root test is performed for prices over the last 40 years, we fail to reject
the hypothesis that oil prices follow a random walk, even at a 90% level of confidence.
Although the latter test may be less accurate due to limited data, it suggests that oil
prices are only slightly mean-reverting. ‘

The decision of whether to model oil prices as a mean-reverting process is essen-
tially the main theme of this thesis. To help in answering the question, we must
study the process of valuing an oil development project and solving for the optimal
investment rule, Would modeling oil prices as mean-reverting rather than the simpler
geometric Brownian motion lead to a very different solution, and further complicate

the computation process?

2.3 Soiution through Contingent Claim Analysis

There are two ways of obtaining the solution to our problems, The dynamic pro-
gramming approach, and the contingent claims analysis approach. Both techniques
are closely related since they lead to the same results. However, they make different
assumptions about the financial markets and about the discount rates that firms use
to value future cash flow.

In this thesis, I will employ the contingent claims analysis to analyze the three
different models ~ the geometric Brownian model, the first order mean-reverting, and
the second order mean-reverting model,

The basis of the contingent claims analysis is built from ideas in financial eco-
nomics. The technique starts by looking at the investment opportunity as described
by its stream of costs and benefits through time, and on the unfolding of uncertain

events. By treating the opportunity to invest as an asset, the option is given an
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implicit value. The value of the option to invest can be quantified by equating it to
the total value of the combination of traded assets that exactly replicate the pattern
of returns from the investment project. In doing so, the stochastic changes in the
value of the firm’s option to invest is completely spanned by existing assets in the
economy, Once the value of tl;e investment opportunity, F'(V), (in our case, the value
of discovered but undeveloped oil reserves) is obtained, optimal investment policy in
terms of the size, and timing of the investment can be found.

It is important to note that contingent claim analysis rests on the assumption that
the uncertainty over the future value of the i;lvcstment opportunity can be spanned
and replicated by existing assets. Since oil prices (existing asset) is correlated to the

value of the developed reserves, this assumpticn holds true. (Section 2.1.4)

2.3.1 Geometric Brownian Process

We restate the equation for the geometric Brownian process,

dP = aPdt + o Pd:z (2.5)

where « is the rate of expected capital gain. Since V ~ 0.3P, we can rewrite the
equation as,

dV = oVdt + oVdz (2.6)

The next step requires the construction of a portfolio, which involves holding the
option to invest (owning a discovered but undeveloped oil reserve), valued at F(V),
and going short on j—{}' = Fy units of developed oil reserves, which has a value of V

per unit. The value of this portfolio is thus given by

®=F-VFy (2.7)

This portfolio is dynamic since V changes with time, leading to constant changes

in Fy. To hold a short position in this portfolio, one has to make payments of §V Fy

20



per time period. The reason for this payment lies in that no rational investor would
hold a long position in the developed oil reserves without getting the full risk adjusted
expected return on the reserve, which is ¢ = a+p. Taking this payment into account,
the instantaneous change in the value of this portfolio is given by,

d® = dF — FydV — 6V Fydt (2.8)

To obtain an expression for dF', we employ Ito’s Lemma, which expands dF' as a
Taylor series. Dropping the insignificant terms of order higher than (dV')?, we arrive

at

dF = FydV + %Fvv(dV)z (2.9)

Substituting this into equation (2.8) and using the relation (dV')* = o2V 2dt, which

we can derive from equation (2.6), we obtain

d® = %a”VZFyydt ~ 6V Fydt (2.10)

Since the return, d®, is risk free, it must equal r®dt = r(F — V Fy)dt to prevent

arbitrage opportunities from arising. Equating them,

P(F ~ VEy)dt = 50"V Fyydi - 8V Fyde (2.11)

and simplifying, we arrive at the differential equation which F(V) must satisfy,

1
50V Fyvy + (r = OV Fy —rF =0 (2.12)

In addition, F'(V) must satisfy the following boundary conditions:

F(0) =0 (2.13)
F(V*)=V*® -1 (2.14)
Fy(V*) =1 (2.15)



Condition (2.13) states that if V goes to zero, it will stay at zero, as required
by equation (2.6). Since the value of developed reserve will always remain at zero,
the option to invest has no value. Condition (2.14) states that upon investing at the
optimal value, V*, the firm will receive a net payoff of V* - 1. Finally, condition (2.15)
requires that F(V) be contin;mus and smooth at the optimal investment point V*,
for if it were not so, one could do better by exercising at another point and V* would
no longer be optimal. The solution to equation (2.12) subjected to these boundary

conditions are easy to find, and one can verify that it is given by

F(V) =aV?P (2.16)

where a is a constant, Condition (1) requires that B be the positive root of the

quadratic equation

39BB— 1)+ (r =68 -1 =0 (2.17)
Thus,

Using conditions (2) and (3), we obiain the expression for a and Ve,

ve- B (2.19)

Ve—-1 (B - 1)P-!
(VP = T

a ==

(2.20)

Equation (2.16) gives us the value of the undeveloped oil reserve, while equation
(2.19) gives us the optimal investment rule. The behavior of the solution will be

discussed in the next chapter.

2.3.2  First Order Mean-Reverting Process

By modeling the price to follow a first order mean-reverting process, the unit value

of developed oil reserves, V, exhibits the behavior as described by

22



dV = /\(V - V)dt +oVdz (2.21)

As before, we proceed with the contingent claims analysis. The expected percent-
age rate of change of V|
V-v

1 dV ,
ZEIZ] = A=) (2.22)

which leads to 6,
V-V
b=p— A(K-T/-—-) (2.23)

By substituting this expression for delta into equation (2.12), we arrive at the

differential equation which F(V) must satisfy,

%szszv+[r—}t~A]VFV -+ AVFV ~rf =0 (2.24)

and also the boundary conditions (2.14 - 2.15). The boundary condition (2.13) no
longer applies. In fact F(0) = 0 only when A = 0 since V always remain at zero as
required by equation (2.21). When A > 0, we expect V to revert to V, and thus the
option to invest will have some value, F(0) > 0. By substituting V = 0 into equation

(2.24), we get the last two boundary conditions,

F(0) =0 (2.25)
when A =0, and
F(0
Fy(0) = r/\i-,) (2.26)
when A > 0.

To solve equation(2.24), we assume that the solution takes the general form:

FVv)=V* i a,v" (2.27)

n=0

Substituting this into equation (2.24),
302(s(s + 1)CoV?* + s(s + 1)CL Vo (s + 1)(s + 2)CoVor? L+
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(r=p=A)[sCoV* + (s +1)Ch1Vs+ 14 (s+2)C2Vs + 2+ ...]+
AV([sCoVs — 1 + (s +1)C\V* + (s + 2)Co Vot 4 ., |-
T[OOV‘ + 01V8 +1 -+ C’zVS + 2 + ....] =0

Summing the coefficients of the same order of V to zero, we obtain the following

relations:

=0 (2.28)
Ci = %%9 (2.29)
C, = (%;‘7)'—)01 (2.30)
, _r=mr—p=2)=gm(m—1)d?)
gt = T Crm (2.31)

for all integer m > 2.

Thus, the solution to equation (2.24) is given by

F(V) =S Cvm (2.32)

n=0

where () is selected so that the boundary conditions are satisfied.

The series representation is not very useful for our purpose, since it diverges, and
does not provide a way to generate numerical solutions. To study the characteristics
of this model, the numerical solution of the reserve value, and the optimal investment
rules have been computed numerically by using the 4th order Runge-Kutta method.

(Appendix C)

2.3.3 Second Order Mean-Reverting Process

When the value of developed reserves follow a second order mean-reverting process,

we mean that
dV =n(V - V)Vdt + aVd: (2.33)
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To obtain the optimal investment rule, we employ the contingent claims analysis

as before. First, calculate the expected percentage rate of change in V which is given

by,

B =7 V) (234

Like before, § is given by the difference between g, the risk-adjusted discount rate,

and the rate of change in V,

§=p—-n(V-V) (2.35)

Next, substitute this equation into the differential equation (2.12). F(V) must

satisfy

1 _
EazszVV +r—p+nV - V)]VFV —rF =0, (2.36)
and also the boundary conditions (2.13 - 2.15).
To solve for equation (2.36), we begin by assuming a solution of the form
F(V) = AV®R(V), (2.37)

where A and @ are constants and (V') is a function in V to be determined. We

substitute this expression into equation (2.36) and arrive at

1620(0 — 1)+ (r — p + V)8 — r|VOR(V)+
[%a’z‘/hVV(V) + (0% + 1 —mu+ ¥V =V )ho(V) = nR(V)IV*H =0 (2.38)

This equation must hold true for all values of V, thus both the bracketed expression
must equal zero. The first expression lead us to a value for § which has to be positive

in order to satisfy the boundary condition, F'(0) = 0,

1 _
5020(0 ~1)+(r—p+9V)d-r=0 (2.39)
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1 ~r =7V —p+nV) 1, 2
0=_+(#r—v>+\/[(r_f;#,§]z+_t (2.40)

2 o? o?

The second expression of equation (2.38) allow us to compute h(V),

%a”VhVV(V) + (0% + 71— p+0V —gV)hy(V) - n0h(V) = 0 (2.41)

By letting S = 2V, we can rewrite h(V) as g(5) and equation (2.41) becomes

S59s5(5) + (b= S)gs(5) - 09(5) = 0 (2.42)

where b = 26 + 21%;“"—9).
Equation (2.42) is known as the Kummer’s Equation, and it has as its solution

the confluent hypergeometric function, given by:

0(8+1)S* _ 6(8+1)(0 +2)5°
G TEr G 3 T

Thus the solution to equation (2.36), which gives us the value of the discovered

H(S;0;b) =1+ — s+ (2.43)

but undeveloped oil reserve, is

F(V) = AV”H(%’%V;o;b) (2.44)

where A is a constant to be determined. Both A and V*, can be found using the
remaining two boundary conditions (2.14) and (2.15). Since the confluent hyperge-
ometric function converges, numerical solutions can be computed directly from the

analytical expression (2.44).

26



Chapter 3

Explanation of Solution

This chapter describes the behavior of the optimal investment rules, and the value of
the undeveloped oil reserves, with respect to the various parameters. By varying the
parameters, I will establish a link between our model and the real world situation. At
the same time, I will elaborate on the inadequacy of the Net Present Value method,
and thus the need to introduce a more effective tool to aid in the firm’s decision

making process.

3.1 Geometric Brownian Process

To begin the study, I will set I = 1, r = 0.04, 0 = 0.2, § = 0.04 (where p— o = §),
unless otherwise stated.

The Net Present Value rule states that a firm should invest when the net present
value of the developed reserves, V, exceeds the invested amount, I. So, as long as
V > 1 =1, the firm should invest,

In contrast, we look at figure 3.1 which gives the solution to the geormetric Brow-

nian model. In this case,

F(V)=3V*forV <2
F(V)=V ~TIforV >2

where 8 = 2, V* = 2 = 2], and @ = }. Since (V — I) is the net payoff a firm
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Figure 3-1: Plot of F(V) vs V for the geometric Brownian Model

receives when it invests at V, the optimal investment rule states that the firm should
invest only when V > V*, so to minimize any foregone value, F(V) — (V = I). This
foregone value is the opportunity cost in deciding to invest now rather than waiting.
In the same figure 3.1, we observe the plot of F(V) vs Vioro=0ando =03
The critical value, V'*, which occurs at the point of tangency between F(V)and V-1,
increases as o increases. This occurs because the option to wait becomes more valu-
able when there is greater uncertainty. In the real world situation, this relation imply
that uncertainty over future oil prices tend to increase the value of a firm’s investment
opportunities, F(V), and decreasing the actual amount of investment made by the
firm. Thus an increase in volatility associated with economic conditions should lead
to an increase in the firm’s market value, while reducing reserve development and
production. To check for the validity of this relationship, one can perform a study
on the correlation between the stock prices of various oil companies, the volatility
associated with that period, and the number of development projects undertaken,

We conclude that an increase in o will always lead to an increase in V* even if the
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Figure 3-2: Plot of F(V) vs V for different §

firm is risk neutral, and even if the stochastic changes in V' is completely diversifiable.

Figures 3.2 and 3.3 lead us to a discussion on the effect of changing the payout
rate, 6. Note that an increase in § leads to a decrease in V*, as mentioned in section
2.1.3. The reason is that as § increases, it becomes more expensive to wait, since the
firm has to pay 6V to hold onto the option to develop.

Figure 3.4 shows that an increase in the risk free rate, r, increases F'(V) and V*.
Since the investment expenditure rade at a later time T has a present value of, Ie™"7,
an i.ncrease in r leads to a lower cost of investment, giving the firm a greater incentive
to wait longer. At the same time, we note that the present value of the developed
reserve remains at Ve~3T, and there is no reduction in the expected payoff as long
as § is fixed, Thus the Geometric Brownian model predicts an increase in the value
of undeveloped oil reserves, and a decrease in actual development when the risk free
rate, 7, increases.

To conclude this section, note that the different parameters discussed are usually

dependent on each other. Thus, it is important to be careful when interpreting
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Figure 3-5: Plot of F(V) vs V for A = 0.02

comparative static results. An increase in the risk-free rate, r, could very well lead
to an increase in the risk-adjusted interest rate, p, which in turn could lead to an
increase in the payout rate, §. We have to keep in mind such interdependencies when
analyzing how a change in some market-driven parameter will affect the value of the

undeveloped oil reserves and the optimal investment rules.

3.2 First Order Mean-Reverting Process

To begin our study of the numerical solution of the first order mean reverting model,
assume [ = 1, 7 = 0.04, . = 0.08, and o = 0.2, unless otherwise stated, Observe how
the optimal investment rules behave when we vary the rate of mean-reversion, \, and
the value it reverts to, V.

The first two graph, figure 3.5 and 3.6, shows a plot of F(V) vs V for three
different ¥ = 0.5, 1, and 1.5. An increase in V leads to an increase in V*, and at

the same time raises the value of the option to invest, F(V). The logic behind such
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Figure 3-6: Plot of F(V) vs V for A = 0.05

a result is clear. When firms expect the price of oil to revert to a higher value, they
would naturally find it beneficial to wait for a higher price before investing.

In figure 3.7, we observe how V* varies with respect to the rate of mean reversion,
A, for various V. For V > I, a greater ) implies a greater pull towards a higher value.
This would natarally increase the value of the option to wait, since the value of the
project will increase faster and sooner. However, V* levels off as A increases and as
V* exceeds V. For a V < I, the effect is opposite. An increase in ) will tend to pull
the project value down, leading to a decrease in V*. In this situation when a firm
expects the price to drop to a mean value below the cost of investment, the option to
wait becomes less valuable,

The next figure 3.8, illustrates the effects of A and p, on V*, For a lower ),
implying weaker mean-reversion, V* starts at a higher value and decreases to a lower
value as p increases. This behavior can be explained as follows. A lower yx, and
thus a lower 8, means that it costs the firm less to wait. A smaller rate of mean-

reversion implies that the value of the project, V, is affected less by mean-reversion,
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Figure 3-9: Plot of F(V) vs V for n = 0.05

and more by any sudden increase. In the presence of greater uncertainty, low §, and
low A, the firm would find waiting a more attractive option, and thus V* is higher,
As p increases, and so does the cost of waiting, such an option to wait becomes less

valuable.

3.3 Second Order Mean-Reverting Process

Assume that all parameters have similar values as before. The effects of mean-
reversion on the optimal investment rules should essentially be the same as in the
first order case, except that a second order mean-reverting process asserts a pull pro-
portional to P — P as well as to P. This means that the pull towards a high mean,
when P is low, decreases as P drops. The main difference lies in the boundary condi-
tion requiring F'(0) = 0. This difference is noticed when we compare figure 3.6 with

figure 3.9.

For the second order case, as P approaches zero, the value of the option to wait is
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Figure 3-10: Plot of F(V) vs V for n = 0.1

driven down to zero. This is because of the nature of the second order mean-reverting
equation, which states that the rate of change towards the the mean value decreases
as P drops, and when P finally hits zero, it will remain at zero. The value curve,
F(V), is concave in shape when 7 is small. However, as we increase 7, even a small P
can lead to a large pull towards the mean. To explain for this behavior, the shape of
F(V) must now be convex, as shown in figure 3.10. In the first order case, the option
to wait can have a value greater than zero even if P were to fall to zero. This added
flexibility may seem more realistic, since it would be unthinkable if oil prices drops
to zero one day and remains that way forever. However, one must not immediately
dismiss the second order model, since it may still give a good approximation of the
real world situation when prices of oil remain in a reasonable range, close to its mean
value.

Figure 3.11, which shows how the critical value, V*, varies with 7, can essentially
be explain as in the first order case. However, when p is decreased to a value of 0.04,

we arrive at figure 3.12, which shows a change in behavior from our original graph.
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Figure 3-12: Plot of V* vs 5 for u = 0.04
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Figure 3-13: Plot of V* vs p

A smaller p leads to a smaller payoff, §, whose effect have been explained in the
previous section. All things equal, an increase in g will lead to a higher F(V) and
thus a higher V* when A = 0. Since this critical investment value, VV* when A = 0, is
now higher than before, an increase in A would lead to a decrease in V*, unless V is
large enough so that it exceeds V* when A = 0.

The last figure 3.13, shows a siinilar behavior as in the first order case. However,

we note that there is a greater pull towards ¥V = 1.5, which lends itself to a higher

V.
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Chapter 4

Mean-Reversion in Qil Investment

Analysis

In this chapter, I discuss the significance and problems related to including mean-
reversion in the investment analysis. In the first section, I discuss which of the two
mean-reversion processes best models the market behavior of oil prices, and I attempt
to estimate n and A. In the second section, I compare the results of the random walk
simulation to the results of the mean-reversion case, to see if the valuation process

and the optimal investment rules are sigaificantly affected by mean-reversion.

4.1 Modeling Oil Prices

To see if the first and the second order mean-reversion process sufficiently models
the real world movement of oil prices, we start by estimating a value for 5 and ).
Industry experts generally agree that it takes about 4-5 years for any huge changes
in oil prices to revert back to its mean. Using that estimate, we search for trends of
mean-reversion using the 120 years of market data. We can calculate A and 7 from

the following equations,
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and
1, P(0)(P(t) - P)
n= "Z’"[P(t)(P(o) ~ P)] (4.2)

The 1980-1985 period is a good example, when prices fell from 13.94 to 5.46 in 5
years. Plugging into equation 4.1 and 4.2, we obtain A s 0.42 and 7 ~ 0.23, We also
noticed that on many occasions when prices falls below the mean to about 2 dollars,
and takes about 3 years to recover. That approximation would give us an estimate
for A~ 0.25 and n = 0.3. I will therefore assume that A = 5§ ~ 0.3 without proof.

To more fully understand the behavior of the two mean-reverting processes, we
plot the ébsolute rate of change as a function of P (Figure 4.1). Notice that the
first order mean-reverting process exerts a linear pull proportional to the difference
between P and P. The second order process, on the other hand exerts a pull which
is a quadratic function in P.

In deciding which model best describes the behavior of oil prices, one can study

the consistency of the value of 7 and A. The simple calculation above seems to suggest
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that the second mean reverting process is a better model, This method of evaluation
can be extended by looking at oil price data from the past 120 years. Notice that
any decrease in oil prices was always followed by a gradual recovery path, Any sharp
increase in oil prices, on the other hand, was always followed by a steep decline that
could not be accounted for by'the first order model. However, due to insufficient data
on oil prices, we cannot conclusively test the validity of either models. What could be
said though, is that given the usual range of oil prices (1.5 — 14 dollars), the second

model is a better approximation of the real world situation than the first.

4.2 The Significance of Mean-Reversion

For the purpose of comparing the results of the geometric Brownian model and the
second order mean-reversion model, we begin this section by setting values for the

variables:

r = 0.04
p=0.10
o=0.2

I = % = 3.75 (assuming mean oil price of $§20 per barrel)
For the geometric Brownian model, we select
a=0

For the second order mean-reversion model, we select

P =20
V=03P=6
n =03

We observe from figure 4.2 that generally, including mean-reversion in the invest-
ment analysis of oil reserves brings about two changes. First, in the evaluation of
undeveloped oil reserves, mean-reversion leads to an increase in the value of reserves,
provided V¥ is high enough. Second, in the optimal investment rule, the inclusion of

mean-reversion means a higher optimal investment value, V",
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Figure 4-2: The geometric Brownian model and the second order mean-reversion
model

However, we note that the results shown by figure 4.2 is only true under the
assumed values for the different variables. We need to more fully understand the
extent of influence of mean-reversion on the value of the reserves and on the optimal
investment rules even as the variables change. Tables 4.1a and 4.2a show percentage
change in the optimal investment value of the second order mean-reversion model
relative to the geometric Brownian model(where the subscript 7w stands for random

walk and the subscript mr stands for mean-reversion):

Change = l’m{-,%vfr"‘ x 100%

Tables 4.1b and 4.2b show the percentage change in the value of the undeveloped

oil reserves at V = V3 for the mean-reversion case with respect to the random walk

model. We omit cases when V,}, is greater than V; .

Change = Eme VF‘,..,_VI;:,,W Yeud % 100%
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n=005|7p=03|7=0.9
p = 0.08 | 33.07% 36.01% | 37.94%
p = 0.10 | 356.50% | 45.10% | 48.156%
po=0.12 | 34.24% | 50.75% | 54.97%

Table 4,1a: Percentage change in Optimal Investment Value

7 =10.05|np=03|n=0.9
p = 0.08 | 47.88% | 89.86% | 105.26%
p = 0.10 | 66.40% | 147.36% | 173.32%
po=0.12 | 76.58% | 204.44% | 243.08%

Table 4.1b: Percentage change in Value of Oil Reserve

Tables 4.1a and 4.1b compares the results of the two models as we vary 1), the rate
of mean-reversion, and p. Since V = 6, we note that as the rate of mean-reversion
V) and

rw

increases, the pull towards V = 6 grows, thus pushing the values of F,.(

V.». higher. This explains the increase in percentage change when 7 increases.

V=4 |V=86|V=28
p = 0.08 | —4.06% | 36.01% | 78.57%
p = 0.10 | 2.09% | 45.10% | 90.94%
po=0.12 | 581% |50.75% | 98.82%

Table 4,2a: Percentage change in Optimal Investment Value

V=4|V=6 |V =8
it = 0.08 | na 89.86% | 224.74%
po=0.10 | 1.25% | 147.36% | 329.57%
po=0.12 | 581% | 204.44% | 435.45%

Table 4.2b: Percentage change in Value of Oil Reserve
Tables 4.2a and 4.2b compares the results of the two models by varying V. As

expected, a higher mean-reverting value leads to an increase in value of oil reserves

as well as in the optimal invesment value,
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In figure 4.2, the percentage change in the optimal investment value is 45.01%,
while the percentage change in value of oil reserves is 147.36%. When mean-reversion
is included in the analysis, and as we vary 7, i, and V, we see that the results differ
significantly from the random walk model.

This simple comnparison ’we have performed suggests that mean-reversion is an
important aspect of the investment model that should not be ignored. Just as the
Net Present Value model fails to account for the value of the option to wait, the
random walk model fails to account for the value added due to the mean-raverting

properties of oil prices.
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Chapter 5

Conclusion & Suggestion for

Future Research

5.1 Conclusion

Oil companys’ valuation of an undeveloped oil reserve, and their decision of when
to develop the reserve, depends heavily on the behavior of oil prices. High volatility
in oil prices increases the value of a firm’s option to wait before developing. The
random walk model was suggested by Paddock, Siegel, and Smith, as a replacement
for the conventional net present value approach. Although the random walk model
takes the volatility of oil prices into consideration, it fails to take the mean-reversion
of oil prices into account.

In this thesis, we studied the implications of including mean-reversion into the in-
vestment analysis process, and we found that mean-reversion does significantly change
the results obtained by the random walk model. This difference can mean a whole lot
to the oil companies, especially in the evaluation of undeveloped oil reserves. A 150%
difference in value as suggested by the second order mean-reversion model implies a
miscalculation of value in the order of thousand of dollars.

There is of course a trade-off when we include mean-reversion into the investment
analysis process. Mean-reversion leads to a more complicated evaluation process.

Solutions obtained usually cannot be expressed analytically, and must be generated
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numerically. Such a trade-off in including mean-reversion may afterall be worthwhile
and necessary, because mean-reversion leads to a significant change in the results.
With the increasing power and availability of desk-top computers, such a trade-off is
made even more attractive.

However, future research is necessary to determine if the mean-reversion property
of oil prices should be included into the investment analysis process, and if so, what

is the best way it should be done.

5.2 Suggestions for Future Research

First, the models presented in this thesis is by no means complete representation of
the real world situation. In fact, parameters are not static in reality, This problem
can be overcomed by representing the parameters as functions in terms of time, ¢.
Thus r and o can be replaced by r(t) and o(t) in our model. Of course this will
lead to a more complex problem and the value of investment opportunity will then
be expressed as a function of V and t. Another problem one will face is in finding
the correct function for each of the parameters.

Second, although we were able to verify that oil prices follow a mean-reversion pro-
cess, limited market data makes the task of an accurate description difficult. Future
research should focus on this problem of identifying a simple and accurate represen-
tation of mean-reversion, typical to oil prices, that could be easily applied to valuate
petroleum properties and the associated optimal investment rules.

Finally, values for 7 and A quoted in this thesis were rough estimates, There is a

need to more accurately measure the rate of mean-reversion of oil prices.
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Appendix A
Volatility of Oil Prices

The measure of volatility , o, of oil prices is the measure of standard deviation of the
annual rate of change in oil prices. Thus at year ¢, the rate of change in oil prices,

R, is given by

R = 2Bt 00y (A.1)
Py

Figure A-1 shows a plot of R for the period 1870-1990. The standard deviation
of R for that period is found to be 21.2%.
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Figure A-1: Plot of annual rate of change, R, from 1870-1990
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Appendix B
Unit Root Test on Oil Prices

Let’s assume the oil prices is a random walk process, and can be described by the

following equation:

Pg =a+bt+cP¢_1 +dAP¢_1 + € (B.l)

where AP,_; = P,_; — P,_;, which accounts for the possible lag effect. A simple
F test is performed to test the random walk hypothesis (if ¢ is significantly different

from 1). F is calculated as follows:

P (N — k)(ESSr — ESSur)
q(ESSur)

(B.2)

where N is the number of observations, k is the number of estimated parameters in
the unrestricted regression, g is the number of estimated parameters in the restricted
regression, while ESSgr and ESSyp are the sum of squared residuals in the restricted
and unrestricted regression.

Using 120 years of data, we test the hypothesis that the price of oil is a random
walk process, i.e b = 0, ¢ = 1. Using the Ordinary Least Squares method, we run an

unrestricted regression

R - 4Pt—1 =a + bt + (C - I)Pg_l + dAI)t—-l (B.3)
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which gives an Error Sum of Squares (ESSuyr) of 114.133:

Variable | Parameter | Standard | T for HO:
Estimate | Error Parameter=0

intercept | 0.4086 0.2284 1.789

t 0.0071 0.0028 2.538

) -0.1981 0.0463 -4.269

AP, , 0.2266 0.087621 2.586

The restricted regression

P~ Py =a+dAP, (B.4)

gives an Error Sum of Squares (ESSg) of 133.200

Variable | Parameter | Standard | T for HO:
Estimate | Error Parameter=0

intercept | -0.0054 0.0970 -0.055

AP, , 0.1588 0.0915 1.734

F = 9.689. Thus, according to the Table below, we can reject the hypothesis that

oil prices follow a random walk process (i.e. b =0 and ¢ = 1) at a 1% level,

Sample Size | Prob = 0.90 | Prob = 0.95 | Prob = 0.99
25 5.91 7.24 10.61

50 5.61 6.73 9.31

100 5.47 6.49 8.73

250 5.39 6.34 8.43

(Table obtained from Dickey and Fuller, pg 1063 1981)
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Reapeating the test for the last 40 years, we obtain for the unrestricted regression

an ESSyR = 51.05501:

Variable | Parameter | Standard | T for HO:
Estimate | Error Parameter=0

intercept | -2.2809 1.7699 -1.289

t 0.0368 0.0206 1.788

P, 0.2929 0.1599 1.832

AP, _, -0.2404 0.0950 -2.529

For the restricted case, we obtain ESSp = 59.91360:

Variable | Parameter | Standard | T for HO:
Estimate | Error Parameter=0

intercept | 0.0745 0.1937 0.385

AP, 0.1661 0.1602 1.037

a random walk process, even at a 10% level.
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This gives an F' = 3.123, and we cannot reject the hypothesis that oil prices follow




Appendix C

Runge-Kutta Method of Fouth
Order

The following is the algorithm that computes the solution of the initial value problem
y' = f(z,y), and y(zo) = yo at equidistant points, ie.

z, = zo + nh where 0 <n < N.

Note that f is such that the problem has a unique solution on the interval [z¢,zy].
We begin by stating the initial values zo, yo, stepsize h, and the number of steps N,
Then, we approximate y,41 to the solution y(z,41) at T4y = @o + (n + 1)k, where
n=0,1,...,N—1 |

Forn =0,1,...., N — 1, we perform the following:

ky = hf(zn,yn)

ky = hf(zn + 3h,yn + %kx)

ks = hf(zn + 3h,yn + 3k2)

ks = hf(zn + 3R, Yn + ks)

Tppl =Tn+h

Ynt1 = Un + 5 (k1 + 2k2 + 2ks + ks)

The step size h should not be greater than a certain value which depends on the
desired accuracy. h should be small such that x = AKX lies between 0.01 and 0.05, K
is the close upper bound for I%I. For the fourth order method,
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ka-—-kz|
ky —hky "

(C.1)

K~ 2|

To apply the Runge-Kutta Method to the second order equation (2.24), we have
to write the equation as a combination of two first order equations. By introducing

the variable Z, and representing f, = F(V,)we have

f’ = Zn (0'2)
and

2
o e

We perform the Runge-Kutta for both equations with the starting values V5 = V*,

frlt, = [rfn - (‘I‘ — K A)Vrth - /\VZn] (0.3)

fo=V* -1, Zy =1, and stepsize h, where h < 0. At z,, = 0, we check that f, and
Z, satisfies the boundary conditions (2.25) and (2.26). In other words, a shooting
algorithm should be employed to select the correct starting value V* that would lead

us to a solution satisfying all boundary conditions.
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