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We demonstrate that nonconvex Lagrangians, as contemplated
in the theory of time crystals, can arise in the effective descrip-
tion of conventional, physically realizable systems. Such embed-
dings resolve dynamical singularities which arise in the reduced
description. Microstructure featuring intervals of fixed velocity
interrupted by quick resets—“Sisyphus dynamics”—is a generic
consequence. In quantum mechanics, this microstructure can be
blurred, leaving entirely regular behavior.

time crystal | microstructure | Lagrangian

The concept of “time crystals” (refs. 1 and 2; for a recent
review and references, see ref. 3) has attracted great interest

recently, both theoretical (4–12) and experimental (13–15). Most
of the recent activity concerns many-body physics and the possi-
bility to break time-translation symmetry in ways that retain as
much as possible of the structure which physicists have come to
associate with spontaneous symmetry breaking in other contexts,
such as sharp phase transitions, order parameters, and general-
ized rigidity (e.g., ref. 16). Here, we will explore a different but
complementary aspect: effective dynamics.

To be concrete, let us consider adding a potential to the mini-
mal time-crystal Lagrangian for a single degree of freedom [1]:

L=
1

12
ẏ4− 1

2
ẏ2−V (y). [1]

Aside from its connection to time crystals, we can motivate
Eq. 1 in the spirit of Landau’s philosophy of effective field the-
ory, wherein one considers the coefficients of plausible interac-
tion terms—in practice, low-order polynomials—as parameters,
which can vary with external conditions such as temperature.
Often, interesting behaviors—changes in phase or in pattern—
arise when the coefficient of some term changes sign. Conven-
tionally, this level of generality is applied to potential energy
terms, but, in principle, one should bring in kinetic energy terms.
This leads us to Eq. 1 as the simplest nontrivial example.

This Lagrangian leads to the energy—that is, the constant of
the motion which is connected by Noether’s theorem to time-
translation symmetry—

E =
1

4
(ẏ2− 1)2 +V (y)− 1

4
. [2]

If V (y) has an isolated minimum, then minimizing this energy
leads, on the face of it, to a mathematical contradiction. Indeed,
minimizing the potential energy leads us to a fixed value of
y , while minimizing the kinetic energy leads us to a nonzero
velocity. No regular function can have both a fixed value and non-
vanishing derivatives. Note that similar mathematical problems
arise in a purely spatial context, if we try to minimize following
energy function for a one-dimensional system:

Espatial =

∫
dx

[((
∂φ

∂x

)2
− 1

)2

+U (φ)

]
. [3]

Energy integrals of this type are the subject of a substantial
mathematical literature (17) and also arise in models of mate-

rials (18, 19). Our treatment of the time-crystal problem suggests
opportunities in those areas, as we shall discuss further below.

We can gain a more general perspective by considering
not only the (problematic) ground state, but solutions of the
equations of motion more generally. In the equation of motion

(ẏ2− 1)ÿ =−V ′(y), [4]

we see that the effective mass, ẏ2− 1, can vanish and change sign.
Negative effective mass is unusual, though perhaps not problem-
atic in itself, at the level of differential equations. But vanish-
ing effective mass, in the framework of Newtonian mechanics,
signals that the evolution equation becomes either trivial or ill-
defined. For that reason, one might be inclined to think that
the behavior implied by Eq. 1 is inherently pathological and
physically unrealizable.

Here, however, we will demonstrate that, to the contrary,
Eq. 1 arises as the effective description of a realistic physi-
cal system in an appropriate limit. The realization implies a
specific regularization of the singular behavior. As the limit is
approached, Eq. 1 governs the behavior of the system accurately,
except during brief intervals.

More specifically, let us suppose that V (y) = 1
2
y2 and that

we choose the energy near its absolute minimum − 1
4

. Then, as
long as Eq. 2 applies, the system must have velocity near ẏ = 1
(or −1), yet stay close to y = 0. It can do this most of the
time, if during very brief intervals the regulator comes into
play, and allows a quick transit between small positive and
small negative values of y . Alluding to the famous myth, we
call this “Sisyphus dynamics.” It is the behavior we will find
to occur.

Significance

Crystals—an extremely common and important class of states
of matter—have been studied intensely and fruitfully for
many years. Recently, the possibility of “time crystals,” which
self-organize into regular patterns of behavior in time, was
proposed theoretically and has inspired important experimen-
tal discoveries. This qualitatively new class of states of matter
plausibly will lead, among other things, to better clocks. New
concepts are needed to describe time (or space-time) crystals,
because the most straightforward attempts lead to mathe-
matical singularities. Here, we show how an enriched version
of the simplest proposed time-crystal model can be realized
as a limiting case of a conventional, fully nonsingular physical
system. This firmer foundation predicts characteristic behavior
and should support wide-ranging generalizations.
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Fig. 1. Numerical solution of Eqs. 9 and 10 with µ= 10−5, x(0) =
0.9, ẋ(0) = 0.25 . The upper (gold) curve represents x(t); the middle (red)
curve represents y(t); and the lower (blue) curve represents E. The behav-
ior of y(t) exhibits the characteristic temporal microstructure discussed in
the text, with near-constant velocity often, but briefly, interrupted by small,
sudden jumps.

Thus, we discover that, close to its energy minimum, solutions
of the minimal time-crystal Lagrangian, appropriately regulated,
feature characteristic low-amplitude, high-frequency oscillations.
The system behaves, in other words, as a tunable, nondissipative
relaxation oscillator, exhibiting temporal microstructure. Here,
we analyze concrete problems involving a charged particle in spe-
cial magnetic and electric fields, but since the underlying math-
ematical mechanism is simple and general, we anticipate that
Sisyphus dynamics will emerge, through the same mathematical
mechanism, in other contexts.

Model: Planar Charge in External Fields
Consider the Lagrangian

L=
µ

2
ẋ2 + f (x )ẏ − g(x )−V (y). [5]

This corresponds to a planar charged particle subjected to the
magnetic field Bz = f ′(x ) and the electric potential g(x ) +V (y).
(For simplicity, we assume here an asymmetric mass parame-
ter, which vanishes in the y direction.) We have the equations
of motion

µẍ = f ′(x )ẏ − g ′(x ), [6]

ẋ f ′(x ) =−V ′(y). [7]

Now, let us consider the idealization µ→ 0, which can be appro-
priate for strong magnetic fields. Then, we have, from Eq. 6,
formally

ẏ = g ′/f ′. [8]

Choosing f (x ) = 1
3
x3− x , g(x ) = 1

4
x4− 1

2
x2, this becomes sim-

ply ẏ = x . Replacing x by ẏ in the remaining equation of motion
Eq. 7 then reproduces Eq. 4.

Alternatively, we can use Eq. 6 to eliminate x from Eq. 5
(with µ= 0) to arrive at Eq. 1 directly. (This demonstrates, inter
alia, that our neglect of the mass parameter in the y direc-
tion is inessential in the time-crystal regime, since Eq. 1 already
includes a term of the form it generates. Including such a term
explicitly shifts the critical velocity from 1 to

√
1−µ. More

notably, by making y dynamical, we also enlarge the phase space.
With that enlarged space, the time-crystal effective theory of
[1] governs a robust, but limited, range of choices of initial
conditions for x and y .)

The sensitive point in this derivation is that in “deducing”
Eq. 8, we will, when f ′= 0, have divided by zero. Physically,
this occurs at points where the magnetic field vanishes. At such
points, we cannot neglect the mass µ, even if it parametrically
small.

Conversely, we see that including a small positive µ acts as a
regulator for the dynamical system defined by Eq. 1. In this way,
we have realized the minimal classical time crystal, including a
potential, with a well-defined regulator, as a reduced descrip-
tion (effective theory) of a reasonably simple, physically realistic
dynamical system. When we pass to quantum mechanics, below,
this regulator can be removed. It is an interesting question,
whether there are alternative, significantly different regulators
of comparable simplicity.

Sisyphus Dynamics: Microstructure and Ratcheting
Our system

µẍ = (x2− 1)(ẏ − x ), [9]

ẋ (x2− 1) =−y , [10]

[with V (y) = 1
2
y2] is readily amenable to numerical study, which

proves very revealing. Note that we can put this system into
a more conventional form by using the time derivative of the
second equation to eliminate ẏ from the first.

Before we display that characteristic behavior graphically,
some interpretive comments are in order:

• The initial value problem is well-posed with the specification of
x and ẋ at some initial time. In this formulation, y is a particu-
larly interesting dependent variable, because we expect that it
should reflect the time-crystal dynamics directly.

• The energy function is

E =
µ

2
ẋ2 +

1

4
x4− 1

2
x2 +

1

2
y2. [11]

It is minimized by x =±1 and y = 0, independent of time. At the
minima, the energy is E =− 1

4
.

• The characteristic “time-crystal” temporal microstructure
arises when the energy approaches, but is not equal to, that
minimum value. Fig. 1, the result of a numerical calculation
using Mathematica, displays that behavior graphically. Note
that the contribution 1

2
µẋ2 of the regulator to the energy is

very small.
• As one considers solutions whose energy approaches the

minimum, the frequency of the oscillations in y increases,
while their amplitude decreases. The approach to the limit
is, qualitatively, highly nonuniform. Quantitatively, although
it is continuous in the norm Max |y |, it is not continuous

Fig. 2. Numerical solution of Eqs. 9 and 10 with µ= 10−3, x(0) =
0.7, ẋ(0) = 1.0 . The color scheme is the same as in Fig. 1, except that the
blue curve now displays the total energy minus the regulator contribution
µ
2 ẋ2. (In Fig. 1, this was indistinguishable from the total energy.) The behav-
ior of y(t) exhibits the characteristic ratcheting discussed in the text, with
intervals of positive velocity interrupted by sudden jumps. Note the spikes
in the blue curve during the jumps in y(t); this behavior, reflecting regulator
contributions to the energy, is more visible in Fig. 3.
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Fig. 3. Numerical solution of Eqs. 9 and 10 with µ= .1, x(0) = 1.0,
ẋ(0) = .95. The color scheme is the same as in Fig. 2, with a horizontal light
green line now indicating the total energy. The behavior of y(t) exhibits
the characteristic ratcheting discussed in the text, with intervals of positive
velocity interrupted by jumps, but the jumps are now less abrupt.

(for instance) in the norm Max |y |+ Max |ẏ |, nor in simple
Sobolev norms.

More generally, within the effective theory, a significant
energy barrier separates the positive velocity from the negative
velocity region in velocity space. Thus, when the energy is too
small to bridge the gap, the velocity will maintain a constant sign.
But that leads, as before, to trouble with the potential energy. So
we might expect, in this more general situation, that the velocity
is almost always positive (or almost always negative), interrupted
by brief intervals when the effective theory breaks down, and the
position gets reset. That behavior is indeed evident in the numer-
ical simulations, as exemplified in Fig. 2. Prominent in Fig. 2, but
also subtly present in Fig. 1, is a diphasic structure in y(t): The
positive velocity evolves with two distinct patterns, depending
upon whether x is greater than or less than unity.

It is also instructive to consider Fig. 3, which displays a numer-
ical solution near the energy minimum with a much larger value
of the regulator. We see similar qualitative features—incipient
Sisyphus dynamics—but with less abrupt switching.

Quantization
Suppression of small-amplitude, high-frequency oscillations, in
Planck’s theory of black-body radiation, was the first mission of

Fig. 4. Comparison of the parameter-free semiclassical predictions with
numerically calculated values of the first 25 eigenvalues of Eqs. 14 and
15 with ~= .0005, µ= 10−7. The horizontal axis represents the level num-
ber n. The black dots are the numerical calculations; the gold curve is the
semiclassical prediction of Eq. 12.
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Fig. 5. In Left are two parabolas, one being simply a simple quadratic. In
Right, in blue is their product f (defined above), featuring a nondegenerate
positive minimum. When the value of f lies between the green and orange
horizontal lines, representing the upper and lower bounds in Eq. 21, only
positive values of the abscissa ux appear between them. As explained in the
text, this leads to Sisyphus behavior.

quantum theory. Thus, it is appropriate to explore the quan-
tum version of our model, to see how quantization reflects and
modifies the (classical) temporal microstructure.

Since the classical singularity occurs near the energy minimum,
the most salient issue is the spectrum of bound states localized
near the potential minimum. A first, heuristic step is to consider
the semiclassical Bohr–Sommerfeld condition. It proves conve-
nient to write this in its phase-space form, according to which
the area An associated with energies less than the nth eigen-
energy En is ∼2π~n , for n not too small. We have evaluated
this condition in both the original time-crystal (y) picture and
the regulated (x ) picture for small µ, assuming energy close to
the classical minimum − 1

4
, with the concordant result

En +
1

4
=

(
3π~n
4
√

2

)2
3

. [12]

Similar reasoning can be used to show that large, positive energy
levels scale with a different power of n: En ∼n4/5 as n→∞.

For rigorous quantization (20, 21), we must pass to the reg-
ulated theory, and to a Hamiltonian formulation. For that pur-
pose, it is convenient to add a total derivative to Eq. 5, so that
f (x )ẏ→−yf ′(x )ẋ , and express everything in terms of x . Thus,
we find

H =
p2

2(µ+ (1− x2)2)
+

1

4
x4− 1

2
x2. [13]

Now, in passing to the quantum theory, we meet an ordering
ambiguity, since p and x do not commute. We will adopt the
ordering

H =−~2

2
ρ−

1
4
∂

∂x
ρ−

1
2
∂

∂x
ρ−

1
4 +

1

4
x4− 1

2
x2, [14]

ρ≡µ+ (1− x2)2, [15]

as a simple prescription which leads to a Hermitian Hamilto-
nian. As a formal matter, we can vary the numerical value of ~
to reflect the relationships between other dimensional param-
eters we might have included (but did not) in Eq. 1 and its
descendants. Small values of ~ will emphasize the potential terms
over the kinetic (gradient) terms and thus deemphasize the
importance of the commutation relations, giving us the semiclas-
sical limit. Large values of ~, conversely, take us into the deep
quantum regime.

The same Hamiltonian (with µ= 0) was obtained in ref. 22 by
treating the Lagrangian of Eq. 1 canonically, as a constrained
system.

It is entirely practical to solve for the eigenvalues and eigen-
functions of Eq. 14 numerically. (Indeed, the Mathematica
command “NDEigensystem” makes it easy.) An important
qualitative result that emerges is that the spectrum remains

18774 | www.pnas.org/cgi/doi/10.1073/pnas.1908758116 Shapere and Wilczek
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Fig. 6. Similar to Fig. 5, but now both positive and negative values of the
abscissa arise between the lines.

stable as µ→ 0. Thus, quantum mechanics itself regularizes the
time-crystal singularity, as anticipated. We can also see this strik-
ing result emerging directly, without detailed calculation, by
considering the behavior of the potentially singular contribu-
tions to Eq. 14 explicitly. With µ→ 0, the dangerous operator
is the first term, in its behavior near x =±1. Considering for
definiteness x ≈ 1, we find for the most singular behavior

p2

2(µ+ (1− x2)2)
→−1

8

(
∂

∂x

)2(
1

1− x

)2
∼

−1

8

(
∂

∂x2

)2
x=1

. [16]

Thus, using an appropriate variable, we can see that it is not sin-
gular after all. (Note that the potential is also quadratic around
this point.)

For a more quantitative test, we can compare the low-lying
eigenvalues of Eq. 14 with the semiclassical result Eq. 12, which,
we recall, was derived directly from the time-crystal Lagrangian.
Fig. 4 displays a representative result.

Discussion
1. The new variable x which is introduced in our regulation Eq.

5 of the time-crystal Lagrangian enters through a unique term
involving ẏ , which is linear in ẏ . Thus, it is a function of the
momentum conjugate to y . In particular, it does not introduce
new degrees of freedom. This should be contrasted with
the (superficially) more straightforward approach of reg-
ulating singular behavior by adding higher derivatives
(18, 19), i.e.,

∆L= εÿ2. [17]

While that procedure manifestly overrides difficulties asso-
ciated with vanishing coefficients in the highest-order terms
in the equations of motion, it brings in other difficulties.
Besides implicitly introducing new degrees of freedom, it also
introduces instabilities (23).

2. We can introduce dissipation by adding a friction term −γẋ
on the right-hand side of Eq. 6. With this addition, the system
generically evolves toward the energy minimum.

3. As mentioned earlier, we can also encounter a form of Sisy-
phus dynamics in the purely spatial domain. Indeed, consider

a time-independent system governed by the Hamiltonian (=−
Lagrangian) density

H =
1

12
u4
x +

b

6
u3
x +

c

2
u2
x +

1

2
u2. [18]

We can regulate it using the same device as we used above for
time-crystal dynamics.

Varying, we find the stress equation

∂xT = 0, [19]

T ≡ u2
x

(
1

4
u2
x +

b

3
ux +

c

2

)
− 1

2
u2. [20]

For a given solution, let 〈T 〉 be the constant value of T , and
let us suppose that u2

Max is the maximum value of u2. (Since
u2 is energetically costly, the most interesting solutions are
bounded in u2.) Then, f ≡ u2

x

(
1
4
u2
x + b

3
ux + c

2

)
satisfies

〈T 〉≤ f ≤〈T 〉+ 1

2
u2

Max. [21]

Now, f , regarded as a function of ux , defines the product
of two parabolas (Fig. 5). As is evident from that figure, for
some choices of the parameters b, c, 〈T 〉, u2

Max, the values of
ux consistent with Eq. 21 will be confined to one or two small,
positive intervals, leading unambiguously to Sisyphus dynam-
ics. For other values of b, c, the allowed intervals may support
both positive and negative values of ux (Fig. 6). This opens
up the possibility, commonly adopted in the calculus of vari-
ations and micromaterials literature (18, 19), to keep u small
by switching between positive and negative values of ux , with
appropriate joining prescriptions, e.g., by using an εu2

xx regu-
lator. Our regulator suggests that Sisyphus dynamics, in effect
allowing jumps in u rather than ux , is a viable alternative
here too.

4. The Lagrangian L= x (ẏ2− a)− 1
2
x2−V (y) represents a

kind of self-consistent effective mass for y , together with
an effective potential. Formally eliminating x now leads to
the reduced Lagrangian 1

2
(ẏ2− a)2−V (y), similar to what

we had above. This illustrates that the emergence of “time-
crystal” effective Lagrangians is more general than the specific
model which we analyzed in detail above.

5. We can consider a variation on Eq. 5 using trigonometric func-
tions. Taking f = 1

3
sin3 x − sin x , g = 1

4
sin4 x − 1

2
sin2 x , and

µ= 0, we recover Eq. 1. One can insert an appropriate regu-
lator, and a parallel analysis then applies. Lagrangians of this
sort describe periodic structures and might also arise in the
description of circuits including Josephson junctions. Those
possibilities merit further investigation.
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