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ABSTRACT

A manufacturing system design can be described by a vector of numerical decision
variables x. The system’s performance may be characterized by a scalar y, which may be a
function of one or more performance measures. The manufacturing system design problem
may be viewed as finding a design x such that its performance y(x) achieves a goal value
Ygoal- This problem may be solved via an inverse model 1 such that x = f‘(ygoal). This
paper deals with two issues: first, the establishment of suitable decision variables and
performance measures; and second, an evaluation of neural networks as inverse models for
manufacturing systems design.

The results show that it is possible for an inverse neural network to provide a design
solution whose performance exceeds the best systems on which it is trained.

Thesis Supervisor: Professor George Chryssolouris



1. Introduction

There are a number of approaches to the difficult endeavor of designing manufacturing
systems. In the academic literature, the overall manufacturing system design problem has
usually been decomposed into sub-problems which are then treated independently
(Chryssolouris 1992). One common sub-problem is the resource requirements problem.
For this problem, the task is to determine the appropriate quantity of each type of
production resource (for example, machines or pallets) in a manufacturing system. The
objective is usually to minimize acquisition and operation costs or meet a given production
rate requirement (Miller and Davis 1977, Behnezhad and Khoshnevis 1988, Lee et al.
1989). The resource layout problem is the problem of locating a set of resources in a
constrained floor space. The objective is typically to minimize the costs of placing
particular resources at particular locations, and the costs of locating resources with a high
degree of interaction far away from each other (Carrie er al. 1978, Liggett 1981, Evans et
al. 1987). In material flow problems, the objective is to determine the layout of a material
handling system (e.g., an automated guided vehicle system with fixed travel paths) such
that the total distance travelled by material per unit time is minimized (Gaskins and
Tanchoco 1987, Rabeneck er al. 1989). The buffer capacity problem is concerned with the
allocation of work in process or storage capacity in a manufacturing system. Adequate
levels of work in process maximize machine utilization and production rate, but add to floor
space and inventory holding costs. The goal is to find an optimum trade-off between these
conflicting benefits and costs (Jafari and Shanthikumar 1989). The above sub-problems
are interrelated in the sense that the optimal solution of any one depends upon the solution
chosen for the others. For example, optimal buffer capacities depend on the number of
resources of each type in the system. The sub-problems are usually separately treated,
however, because important manufacturing system performance measures (e.g.,
production rate, work-in-process) are difficult to express analytically; separation of the sub-
problems overcomes this difficulty in two ways: 1) it allows surrogate, more easily
calculated performance measures (e.g., total material travel distance) to be used; 2) it may
restrict the design of the system to configurations whose performance measures are easier
to calculate (e.g., transfer lines with strictly serial material flow).

In industrial practice, trial and error remains the most frequently used design approach. In
this approach, a suitable manufacturing system design (values for an appropriate collection



of decision variables) is first guessed, and then the performance of the system design is
evaluated, typically via discrete-event simulation software. If the performance is
unsatisfactory, then the guess-and-evaluate design cycle is repeated. When designing a
large and complicated manufacturing system, many cycles may be required. Often,
however, the number of cycles is limited by the computational burden of the required
simulations. The success of the trial and error approach relies heavily on the skill of the
designer or “guesser”. Intuition and rules of thumb derived from experience are often
applied (Malde and Bafna 1986, Ballard et al. 1989).

The above approaches to manufacturing system design are characterized by the use of
forward models which relate manufacturing system designs to their performance. This
paper, in contrast, addresses the manufacturing system design problem with the help of
inverse models which map a desired performance goal Ygoal Onto a system design
(characterized by a vector of numerical decision variables x) that achieves that goal. This
paper seeks to: 1) provide a framework for evaluating the performance y(x) of a
manufacturing system; and 2) investigate methods of using neural networks to construct
inverse models of the mapping y(x) — that is, models which take desired y values as input
and produce x values as output.

2. An Evaluation Framework for Manufacturing Systems Design

In this paper, an evaluation framework encompasses the definition of manufacturing
system decision variables x and the definition of a performance index y(x) (Chryssolouris
et al. 1990). The evaluation framework proposed in this paper differs from existing
frameworks (Kaplan 1983, Suresh and Meredith 1985, Wabalickis 1988, Swamidass and
Waller 1990, Son 1991) primarily in the combination of specifically defined decision
variables x and the consideration of costs that occur over the anticipated life of the system,
particularly those due to part design changes. The latter are considered by quantifying the
flexibility requirements typically imposed upon modern manufacturing systems and the
ability of a system to accommodate these requirements.

In order to make the discussion less abstract, we will use the example of designing a
manufacturing system for multi-stage, high-volume machining. The manufacturing system
to be designed must take as input raw castings and output machined parts (Fig. 1) at a
given production rate. There is a single part type. Geometric features such as holes and
slots are produced in the parts via machining operations such as milling, drilling, tapping,
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and boring. If a given feature requires more than one type of operation, then precedence
constraints may apply (e.g., milling first, drilling second, tapping or boring third). The
operations may be divided into operation groups such that the operations in each operation
group can be performed simultaneously on the same part.

===
1

f geometric features implemented via
metal-cutting operations
(1 operation = 1 application of 1 cutting tool)

hole thread flat surface hole

N \Y

drilling tapping milling boring
precedence constraints:

tapping
—

\ .
boring

[ finished part ]

FIGURE 1. Required processing.

There are two generic machine classes for such a manufacturing system. A batch operation
machine (BOM, Fig. 2a) has tool heads with multiple, simultaneously operating tools.
These tools perform all the operations within an operation group simultaneously. Such a
machine is dedicated to a specific operation group of a vpecific part design because the
position of the tools relative to the tool head (and hence to the part) is fixed. If the design
of the part changes (e.g., if a hole is relocated), then the machine must be replaced or
substantially modified (e.g., via replacement of the tool head). A sequential operation



machine (SOM, Fig. 2b) has a single spindle which drives a single cutting tool. It
performs individual operations sequentially. The tool is changed automatically between
operations, if required, with unused tools being stored in a tool magazine. The movement
of the tool spindle is programmable. This class of machine is more flexible because it does
not have to be replaced when the part design changes; it only needs to be reprogrammed
and possibly stocked with new cutting tools. Each class of machine in a manufacturing
system (e.g., SOM) may be represented by multiple types (e.g., SOM}, SOM»), which are
distinguished on the basis of their acquisition costs, operation costs, cost of
accommodating part design changes, processing times, and so forth.

side view

tool head

top view top view

(a (b)

FIGURE 2. Schematics of the two generic machine classes: (a) batch operation machine, (b) sequential
operation machine.

Batch operation machines (BOMs) are arranged serially in a transfer line (Fig. 3a). Parts
pass from one end of the line to the other in a synchronous fashion, stopping at each
position along the line for machining. The length of the line is determined by the part
complexity, which determines the number of operation groups. There is one BOM per
operation group. The production rate of BOM systems is limited by the processing time of
the slowest machine in the line. This proessing time cannot exceed 1/PR, where PR is the
required production rate. Sequential operation machines (SOMs) are arranged in parallel
(Fig. 3b). Within a system, each SOM type processes the same operation groups. The
number of each SOM type is dictated by the required production rate PR, and by the
sequence in which the operations assigned to each machine type is performed. The



optimum operation sequence will minimize the processing time of a SOM (and hence the
number of them required) by minimizing the sum of spindle repositioning and tool change
times. Hybrid systems are also possible (Fig. 3c).
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FIGURE 3. Generic manufacturing system types.

Consider the general case in which there are M machine types, where each machine type
belongs to either the BOM class or the SOM class. Say that the part requires N operations,
which are divided into G groups. We can define numeric manufacturing system decision
variables as follows.



x; The number of operation groups processed by machine type i (i € [1, M-1], x; € [0,
G]). Only M-1 variables are necessary because the number of operation groups
processed by machine type M is determined by default from the expression G—

(x1+x2+...+x00-1).

sj The Jjth machine type that is encountered by a part as it travels through the
manufacturing system (je [1, M-I], sj€ [1, M]). As a part travels through the
system, the first machine type it encounters is 51, the next type it encounters is s, and
so on. If there are only k different machine types in the system, then Sg41, Sk42, ...
sM-1 are all set to 0. Within a system, machine type s} processes the first xg;
operation groups. Machine type s then processes the next xs7 operation groups, and
so on (Fig. 4).

Operation Sequence ——#

Group! Group2 Group3 Group Group5 Group6  Group 7 Group 8
1 1 |

i 1 | 1 1
w1r
8Ee %%EE% S
Nl il g G o SE R
J
T
First 4 operation Next 3 operation Last operation
groups processed by groups processed by  group processed by
machine type s1= machine type so=  machine type s3=
machine type 3 machine type 1 machine type 2
x3=4 x1=3 x9=1

Number of operations N= 32
Number of operation groups G = 8
Number of machine type M =3

FIGURE 4. An illustration of the x; and sj decision variables for a hypothetical manufacturing system for a
given operation sequence.

In order for the x; ard s; decision variables to uniquely identify which operation groups are
processed by which machine types, it is necessary to constrain the set of allowable
manufacturing systems to those in which each machine type processes only a single block
of operation groups. For example, in Figure 4, once machine type 3 is assigned to the



block of operation groups 1-4, it can no longer be assigned to any of the operation groups
5-8.

b  The capacity of the buffers within the system (b € [0, bmax]). It is assumed that
buffers within a system have equal capacities. Since the function of a buffer is to
decouple a manufacturing system, the maximum buffer capacity bmax may be
reasonably set to be the number of parts that would be accumulated in the buffer in the
event of a breakdown immediately downstream, or the number of parts that would be
drained from the buffer in the event of a breakdown immediately upstream, multiplied
by some safety factor.

S The frequency with which buffers occur within the system. This is defined to be the
number of buffers within the system divided by the number of potential buffer
locations within the system. Within a system, buffers may be located between any
two adjacent machines in the part flow.

For this general case, there are 2(M-1)+2 = 2M decision varizbles. This set of decision
variables has the advantage of being relatively compact. The number of variables grows
only linearly with the number of machine types M, one of the smaller parameiers of the
manufacturing system design problem; it does not, for instance, depend on the number of
operations N, which is substantially larger than M.

A manufacturing system is specified by the vector of decision variables x = [x1,x2 ..., xp.
15 51, 52, ..., SM-1; b; f1, and by the operation sequence of the SOMs. The latter determines
the processing time and hence the number of each SOM type in the system. The space of
decision variables can be represented as a tree in which a path from the start node to an end
node represents a particular manufacturing system design (Fig. 5).
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From this tree (Fig. 5) it is apparent that the sequence of the operations performed by
sequential operation machines is the most significant factor affecting the size of the solution
space. In this paper, the operation sequence is assumed to be given, an output of the
process planning function.

As an example of the application of these decision variables, consider a specific case, the
hybrid system (Fig. 3c), in which there are M = 4 available machine types: 1) SOMy, 2)
SOM3, 3) BOM3 and 4) BOMg. Let there also be G = 50 operation groups. Machine type
SOM3; processes the first 10 operation groups, machine type SOM processes the next 25,
and machine type BOM34 processes the remaining 15S. Machine type BOM3 does not appear
in the system, and therefore does not process any operation groups. There are 2M = 2¢4 =
8 decision variables. The first three are x; = 25, x3 = 10, x3 = 0, which are are the number
of operation groups processed by machine types 1, 2 and 3 respectively. The next three
decision variables are 51 =2, 52 = 1, 53 = 4, which indicates the sequence of the machine
types encountered by a part as it travels through the system. The seventh decision variable
is the capacity of the buffers, which is b = 30. Finally, there are 2 buffers and 3 buffer
locations, so the eighth decision variable, buffer frequency f, is 2/3.

The decision variable f establishes the number of buffers np, in a system to be the integer
closest to the product fnp;, where np; is the number of buffer locations. However, there are
no decision variables which explicitly specify buffer locations, and therefore these must be
set according to a consistent convention. The following convention is used. Buffers are
piaced every 8p = <npj/np>— spaces, where <+>- denotes the greatest integer less than or
equal to «. In the hybrid system (Fig. 3c), 8p = <3/2>~ = 1. The buffers are placed so that
the number of buffer locations np;_ before the first buffer is equal to (or one less than) the
number of buffer spaces npy, after the last buffer space.

Once the decision variables x are defined, an evaluation framework requires the definition
of a performance index y(x). The performance index used in this paper accounts for the
inputs to a manufacturing system in terms of the costs incurred over the life of the system —
particularly those related to part design change. Thus the evaluation framework considers
the flexibility of a manufacturing system. The performance index also accounts for the
output that is achieved by a manufacturing system, in terms of the number of parts that it
produces. This index y(x) is called efficiency, and has the general form output/input.
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number of good parts produced during system life cycle
total life cycle cost 1)

efficiency =e =

The units of this index are [parts/$]. If a figure for the revenue per part is available, then e
can be converted to a unitless efficiency. The denominator, the total life cycle cost,
consists of acquisition costs, operation costs and system modification costs due to part
design change. These costs are incurred over the life T of the system, which consists of n;
periods of duration ¢ (T = n,). The costs, described in detail below, are broken down by
period and are incurred at the beginning of each period.

System Acquisition Cost

This cost is incurred not only when the system is first implemenied, but also when
increased demand requires an expansion of system capacity.

M
Cdp)= Y, cni) nmdi, p)

i=1 (2)
Ca) = acquisition cost for period p
M = number of machine types
cmi) = acquisition cost of one unit of machine type i

nma(i, p) = number of machine type i acquired in period p

Operation costs are assumed to consist of labor, inventory and maintenance costs:

Labor Cost
PR(p)
Cp)=cit —=
Ci(p) = labor cost for period p
cl = labor cost rate

t

duration of each period

ni(p) = average number of workers at any given time during peiiod p
PR(p) = demanded production rate for period p

PA(p) = actual production rate for period p

12



The product cjtni(p) represents the nominal labor cost. The ratio PR(p)/PA(p) is an
adjustment factor which accounts for: 1) overtime costs if the demanded production rate
exceeds the systeni’s achieved production rate without overtime; 2) labor cost savings from
having to operate the system less than full time if the system’s achieved production rate is
greater than the demanded production rate.

Inventory Cost
Ci(p) = ci WIP(p) 4

Ci(p) = inventory cost for period p
Ci = inventory carrying cost per part per period

WIP(p) = average work in process for yeriod p

Maintenance Cost
M
CrP) = D, nmlis P) [cp + ¢, 1400)]
i=1 ()
Cm(p) = total maintenance cost in period p
M = number of machine types
nm(i, t) = number of machines of type i in period p
cp(i) = preventive maintenance cost of machine type i per period
cli) = repair cost rate for machine type i
1) = mean down time of machine type i per period

System Modification Cost Due To Part Design Change

The final cost considered in the evaluation of efficiency is the system modification cost due
to part design change. This cost is an important and new contribution of the efficiency
definition because it accounts for the flexibility of the system.

nwdp) ndj)
Cc(p, n4)= dP: nA) 2 [1 - (l _Pl.{jv k»:l ct(’)
j=1 k=1 (6)
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Cc(p, np) = part design change cost for period p if the number of periods per part
design change is na

o(p, ng) = 1ifa part design change occurs in period p, 0 otherwise

nm(p) = total number of machines in the system in period p, irrespective of type

r(j) = number of features worked on by the jth machine in the system

P.(j,k) = probability that the kth feature worked on by the jth machine will be
modified in a design change

cc(N = cost of modifying/replacing the jth machine to accommodate a part design
change

The term in the square brackets is an expression for the probability that at least one of the
features worked on by the jth machine in the system will be modified whenever the part
design changes. Referring to this probability as Pp,4(j), we see that it is a function of the
probabilities P.(j, k) of individual features k requiring change when the part design changes
and also of the number of features ng(j) processed by the machine. The greater these
quantities are, the greater the vaiue of P;0q(j). Multiplying Pmo4(j) by the cost of
modifying/replacing the jth machine, c.(j), yields an expected modification/replacement cost
for the j" machine. These expected modification/replacement costs are then summed over
all machines j in the system. Finally, the binary variable &p, n4) ensures that part design
change costs are incurred only in periods in which design changes actually occur. For
example, if part design changes occur every nj = 2 periods, they are assumed to occur at
the beginning of pericds 3, 5, 7, .... (There is no part design change at the beginning of
period 1, because that is when the initial design is first produced.) Therefore, §(3, 2) =
&5,2) = &7,2) = ... = 1, while all other &p, 2) = 0. In general:

_|1,if p=nui + 1, i a positive integer
&p na)= 0, otherwise )

Recognizing that the above acquisition, operation and system modification costs are
incurred over the life cycle T of the system in question and taking into account the time
value of money, the above costs may be combined into a single total life cycle cost.

Ciing= S, Cdp)+ Clp)+ Clp) + Calp) + Cdp, )

ool (1+r)r1! (8)
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C1(ny) = present value of total life cycle cost

na = number of periods per part design change

n; = number of periods in the life cycle of the system
Cap) = total machine acquisition cost for period p

Ci(p) = total labor cost for period p

Ci(p) = total inventory cost per period p
Cm() = total maintenance cost in period p
Cc(p, na) = part design change cost for period p
r = interest rate per period

The total life cycle cost is written as C1(na) because it depends on the interval nat between
part design changes that is imposed upon the system by external market demands.
(Specifically, the part design change cost component of C.(p, n4) is affected.) Since ny
cannot be predicted with certainty, the approach taken in calculating efficiency is to
associate probabilities P4(n4) with different values of ny4, and to evaluate efficiency as the
expected value:

ne
e= Z ’M.pd(,,A)

ny=1 Cr(ny) )
e = efficiency
na = number of periods between part design changes
n; = number of periods in the system’s life cycle
PA = production rate
PA T = number of parts produced in life cycle of duration T
C1(na) = total life cycle cost, given that the number of periods between part design

changes is np
PA(na) = probabiiity that the number of periods between part design changes will be

na

The probabilities P4(n4) are important because they define the flexibility requirements
imposed upon the system by external market forces. Coupled with the system modification
costs due to part design change (Eq. 6), which measure a system’s ability to accommodate
design changes, they ensure that the efficiency index (Eq. 9) accounts for both the system’s
ability to react to change and the extent to which this ability is required by the market in
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which the system operates. The intent is to give credit to flexible capabilities only if they
are indeed required (Chryssolouris and Lee 1992).

Equation 9 is the final definition of the performance index y(x) for the multi-stage, high-
volume machining problem.

The example problem addressed in this paper contains M = 2 machine types. The first
machine type is a dedicated transfer line station (TLS) of the batch operation (BOM) type.
The second machine is a more flexible CNC machining center (CNC) of the sequential
operation (SOM) type. The part to be processed contains 59 geometric features (e.g.,
holes, slots) requiring N = 126 operations for implementation. The number of operations
is approximately twice the number of geometric features because a feature may require
more than one operation. For example, a feature such as a hole might require a drilling
operation followed by a reaming operation. The operations have been grouped into G = 27
operation groups by process planners. The required production rate is 120 parts per hour
(one part every 30 seconds), making the annual demand approximately 500,000 parts per
year.

In accordance with the general evaluation framework defined earlier, the following 2M = 4
decision variables may be used to define alternative manufacturing system designs.

x  The number of operation groups implemented via TLS (0 < x < 27). The number of
operation groups implemented via CNC is 27-x.

Systems with many TLSs (high x) are likely to be preferred if the design of the part to be
machined changes very infrequently, due to the lower acquisition cost of the TLS. On the
other hand, if the part design changes frequently, then the lower change cost of the CNCs
(consisting only of reprogramming and retoohng costs) will tend to make systems with
many CNCs (low x) preferable.

s Machine type sequence (s € {1, 2}). s = 1 means that TLSs process the first x
operation groups, and CNCs process the remaining 27-x. s = 2 means that CNCs
process the first 27-x operation groups, and TLSs process the remaining x.

b The capacity of inventory storage buffers in the system (0 < b < 150).

16



0"'
{,...
2
Y1
27... 2 .
L\_,

'\s_‘
X Ly
[ | [
# of op. groups, buffer buffer
TLS capacity frequency

1st machine type
encountered by
part in system

17



Operation Group Proc Time
# Description TLS CNC
1 | Mill Diam F Face & ID Pad 17 7
2 {Rough Mill Surface P 14 13
3 |Finish Mill Surface P 17 0
4 | Drill 2 Holes 16 33
5 |Drill 7 Holes 17 61
6 |Dirill 10 Holes 17 68
7 |Drill 4 Holes 15 32
8 |Drill 6 Holes 16 42
9 |Rough Bore 4 Holes 17 58
10 |Finish Bore 7 Holes 17 82
11 {Finish Bore 4 Holes 17 46
12 [Mill Parking Pawl Slot 14 7
13 | Drill 2 Holes 15 24
14 | Drill 1 Hole 17 20
Ream 1 Hole
15 | Drill 1 Hole 14 13
16 | Spot Face 1 Hole 14 7
17 |Burnish 1 Hole 16 13
18 | Drill 1 Hole 16 9
19 [|Tap 1 Hole 17 7
20 | Spot Face 4 Holes 15 27
Drill 2 Holes
21 | Spot Face 4 Holes 17 63
End Mill 5 Holes
Ream 3 Holes
22 | Drill 17 Holes 17 71
23 |Bore 1 Hole 17 7
24 |Bore 3 Holes 17 36
25 | Tap 17 Holes 17 71
26 | Tap 6 Holes 16 30
27 | Tap 6 Holes 16 27

TABLE 1. Machine processing times for the example problem.

Other parameters and their assumed values are summarized in Table 2.

Name Description Value

M Number of machine types 2

MTBF,; Mean time between failures of TLS 10.0 [hours]
MTBF, Mean time between ?all_urcs of CNC 6.0 [hours]
MTTR; Mean time to repair of TLS 0.167 [hours]
MTIR2 Mean time to repair of CNC 0.500 [hours)

ny Number of periods in system life cycle 12

t Duration of each period 1 [yr] = 4,136

. [working hours]

 cm(1) Acquisition cost, TLS $220,000

cm(2) Acquisition cost, CNC $400,000 |
) Labor cost rate $30/[hour]

18



ni(p) Average number of workers during period p Number of
buffers in the
system
PR(p) Demanded production rate for period p 120 [parts/hour]
Ci Inventory carrying cost per part per period $5,000
cp(1) Preventive maintenance cost of 1 TLS per period $1,600
cp(2) Preventive maintenance cost of 1 CNC per period 3,500
crli) Repair cost rate for machine type i $50/[hour]
Pc@, k) Probability that the kth feature worked on by the jth
machine will be modified in a design change 0.90
ce(1) Cost of modifying/replacing 1 TLS to accommodate a
_ part design change _ $220,000
cc(2) Cost of modifying/replacing 1 CNC to accommodate a
part design change $12,000
r Interest rate per period 0.10
PAQ2) Probability that the number of periods between part
design changes will be 2 0.5
Pa(3) Probability that the number of periods between part
design changes will be 3 0.5
Probability that the number of periods between part
Palna#2,3) design chtgnges is neither 2 nor 3 0.0

TABLE 2. Assumed parameter values for the example problem.

It is assumed that the manufacturing system to be designed will require a relatively high
degree of flexibility. Part design changes are frequent: there is a 50% chance that the part
design will change every two years (Pa(2) = 0.5), and a 50% chance that the part design
will chance every three years (P(3) = 0.5). Furthermore, the extent of each design change
is large: 90% of the geometric features in the part are altered with each design change.

3. Approaches for Formulating Inverse Simulation Models

The above evaluation framework defines the decision variables x and the performance
index y(x) for a manufacturing system design problem in high-volume machining. We
now turn to the problem of constructing an inverse model ! such that x = f-1(y(x)), so
that given a desired performance index value Ygoal, the design that will achieve that
performance can be estimated by Xgoa = f1(Ygoai)-

There are a number of approaches for constructing the rejuired inverse model. The first is
to use a forward model f(x) = y(x) to construct a lookup table containing an entry for each

feasible design x; and its predicted performance f(x;). This table could then be searched
for an entry in which f(x;) = Ygoal, With the resulting prescribed design being x;. This

19



approach has one principal difficulty. Certain performance measures comprising f{x), such
as the production rate (Eq. 3, Eq. 9) and the average work-in-process (Eq. 4), are difficult
to express analytically as a function of the decision variables x. This is due principally to
the uncertain breakdown behavior of the machines in a system and the difficulty of
predicting the effect of finite buffer capacities (Gershwin e al., 1986). Discrete-event
Monte Carlo simulation offers an alternative way of evaluating the performance of a
manufacturing system. Simulation models, being discrete-event models, can incorporate
logical statements which govern a manufacturing system’s operation (e.g., the actions that
take place when 2 buffer becomes full, scheduling rules) Via random sampling, they also
account for stochastic events. However, their construction is a lengthy process and their
execution is computationally expensive, particularly if they are complex enough to reflect
reality to a high degree of accuracy. Therefore, the use of simuiation as a forward model
S(x) for this purpose is often infeasible because of excessive computational burden.

The remaining approaches to be investigated in this paper use discrete-event simulation in
conjunction with a class of nonlinear regression models known as neural networks. The
type of neural network models considered here are called multi-layer perceptrons
(Rumelhart et al. 1986). These networks consist of individual processing elements or
nodes that are arranged in layers: an input layer (layer 0), an output layer (layer L), and
perhaps a number of itermediate or hidden layers (Fig. 7). A network maps inputs u to
outputs v in the following way. The output of the ith node in the input layer (layer 0) is
clamped to the value of the ith component of the network input:

(0]

outg- = U; (10)
Uy
usz
e o 0
Up
input layer layer 1 layer L-1  output layer

(ngnodes) (n;nodes) (n L. hodes)  (n, nodes)
FIGURE 7. A multilayer perceptron neural network.

Beyond the input layer, a node j in layer m (m > 0) receives inputs in;{m] from all nodes i in
the previous layer, which it then aggregates into the net input
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[m] . [m]
net. = wiin. —Wjo
! ; 7 1)

where the wj;’s are the parameters or weights of the network model. If a node is in a
hidden layer, this net input is then passed through a non-linear sigmoidal function to yield
the node’s output, out;ml:

(m] _ 1
outj =

[m]
1 +ex —netj ) (12)

This output is then propagated forward to the next layer of the network. That is,

[m] _ . [m+1]

out;”" = in; (13)
If the node j is in the output layer (layer L), then the node’s output is taken to be the jth
component of the network output v, and is simply a copy of its net input:

(L]

vj = out; [E]

= net; (14)

A network’s weights wj; are adjusted on the basis of a number of training pairs {(u;”,
v1*), (u2*, v2*), ..., (us*, v5*)}, in a process called supervised training. The most widely
used training algorithm is the backprogagation algorithm (Rumelhart et al. 1986), which is
based on gradient descent. We use a version of backpropagation in which the training pairs
are presented one at a time, in a cyclical fashion. At each presentation of a training pair
(ug®, vi*), the vector ug* is input to the network, yielding the output vector vg. Each
weight wj; in the network is then adjusted according to the formula

AWj,'[t+l] = —ﬂaﬂ + aAw,-,-[t]
owji (15)

where Awjj[r+1] is the prescribed weight adjustment, Awiji[1] is the previous weight
adjustment, 7 and o are constants, and E is the squared error

Ex=L(vi- vl (vi - v (16)
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In Equation 15, the first term changes the weight in the direction of steepest descent of the
error surface. The second term is a momentum term that discourages large fluctuations in
the weight values. The intent is to minimize the total squared error

E=Y E (17)

Once trained (i.e., when the total squared error E falls below a predetermined level), the
network may be used as a model of the mapping v = g(u).

A second approach for constructing an inverse model f-1(y) is to generate via simulation a
number of input-output training pairs of the form {(y(x1*), x1%), (y(x2"), x2™), ...,
(¥(xs"), xs*)}. Each simuiation run generates one training pair. A neural network model £
1 js fit to to the training data, with the performance index values y(x;*) as the network
inputs u; and the designs x;"’s as the network output targets v;*. The model ! is used by
supplying it with a desired performance goal ygoal, and recording the prescribed design
Xgoal = f‘l(ygoa;). This approach, which we shall call the direct inverse approach, may
break down if the inverse function to be modeled is one-to-many, that is, if multiple
designs x;* have the same or very similar performance index values y(x;*). Consider such
a situation, as exemplified by the two training pairs ((y*, x1%), (", x2¥)}. Since the
neural network cannot produce different outputs for the same input, it must “choose” to
output either x;" or x2*, given y*. However, direct inverse supervised training would, in
this case, seek to minimize the total squared error

=%[(x'{ - x)T(x; —x)+ (x3 - x)T(xi - x)] (18)

where x is the network output given y* as input. This is minimized by the average design
x = (x1" + x2%)/2. Unfortunately, the performance index value y((x1* + x2*)/2) will not in
general be equal to the desired value y*.

In order to overcome the difficulty posed to direct inverse supervised training by one-to-

many inverse mappings, an approach called distal supervised learning may be applied
(Jordan 1992). In this approach, a neural network is first trained as a forward model f(x)
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of the mapping y(x) via a number of training pairs {(x1*, y(x1)), (x2¥, y(x2¥)), ..., (Xs*,
y(Xs*))} generated via simulation. This network is then appended to a second network
whose function it is to perform the inverse mapping y(x) — x (Fig. 8).

LY

Inverse Network Xk Forward Network | y,

f! f

FIGURE 8. Distal supervised learning.

The weights of this second network are adjusted by minimizing the squared error

Ee=10% -3 b7 - v (19)

where y;* is a particular desired manufacturing system performance index value. This
value is passed through the inverse network, resulting in a decision variable vector x.
This vector is then input to the forward network, which outputs a performance index value
Yk- The weights of the inverse network are then adjusted according to Equation 16. In this
case, the derivative dE/odwj; can be evaluated using the chain rule as:

JoE ox! o .
s ALY (Y S
awj; owj; OXy (20)

The two derivatives can be calculated from the known algebraic structures of the inverse
and forward networks, respectively. The important characteristic of this approach is that
the weight adjustments to the inverse network are not based on explicitly specified target
output vectors x;*. Rather, they are based on derivatives oyw/ox, which are functions of
the “distal” output of the forward network (as opposed to the more “proximal” output of the
inverse network itself). This has the effect of selecting a particular one-to-one mapping out
of the one-to-many inverse mappings at any point y;".
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One problem which may remain with the distal supervised learning is that the inverse
network, once trained, may output in response to a desired performance index value y;* a
design x¢" = [x¢1* xx2" ... x24*17T in which one or more of the decision variables are “out
of bounds.” For example, the meaning of the buffer frequency decision variable f
described in Section 2 is defined only within the range [0, 1]; any value outside this range
is out of bounds. Thus, even if the “out of bounds” design x¢, when input to the forward
neural network, results in an output y; which is close in value to the desired value y*, the
design cannot be meaningfully interpreted. In this scenario the distal supervised learning
method will have found a valid inverse mapping of the forward model, but not of the
physical system represented by the forward model. What is needed is a way of
constraining the inverse network outputs to acceptable ranges. This can be accomplished
by modifying the squared error to be minimized to include terms that are non-zero when the
components of the inverse network output x are out of bounds (Jordan 1992):

E=L0" 5P 0" )+ Lt - PRt =)+ L - B —x)

y = desired performance index value

design [x1 x2 ... xp)T output by the inverse network given y* as input
output of the forward network given x as input

x* = vector [x;* xot ... xp"']T of upper bounds on the decision variables [x; xp

e Xp]T
X~ = vector [x1—xo~ ... xp-]T of lower bounds on the decision variables [x] x2
v Xp)T
H* = diagonal matrix given by
1, if x; 2 x;f
wo 0, otherwise

H- = diagonal matrix given by
1, if x; < x;

ii

e

0, otherwise
In this equation, the subscript k from previous equations has been omitted for clarity. We
will refer to the distal supervised learning approach with the modified square error (Eq. 21)

as the distal supervised learning with constraints.

4. Application
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The direct inverse, distal supervised learning and distal supervised learning with constraints
methods were applied to the high-volume machining system design problem defined in
Section 2.

To evaluate the direct inverse method, 128 simulations were run to generate 128 training
pairs in which efficiency values y were the inputs and decision variable values x, s, b, f
were the outputs (Tbl. 3).

# INPUT OUTPUT
Samples y X s b f |
3, 10, 1, 0, 50, ]0.25,0.50,
128 17, 24 2 100, 150 { 0.75, 1.00

TABLE 3. Training pairs for the direct inverse method.

Before being used for neural network training, all decision variable values were normalized
to fall within the range [0, 1]. The efficiency values y fell in the range [0.0569, 0.2923].
A neural network with one node in the input layer, 4 nodes in the output layer and 2 hidden
layers with 10 nodes each (a 1-10-10-4 neural network) was trained with these data.
Training consisted of 50,000 cycles through the training data. The designs x; prescribed
by the trained network for a range of desired performance index values y;* are shown in
Table 4.

INPUT INVERSE NETWORK OUTPUT x |
k ij x s b Fi
1 0.20 0.910 0.860 0.248 0.417
2 0.22 0.909 0.803 0.187 0.400
3 0.24 0.894 0.732 0.132 0.392
_ 4 0.26 0.836 0.622 0.101 0.395
5 0.28 0.593 0.374 0.218 0.421
6 0.30 -0.554 -0.467 1.191 0.520
7 0.32 -4.365 -2.988 4.791 0.805
8 0.34 -8.736 -5.967 8.786 1.165
9 0.36 -10.520 | -7.544 9.892 1.420
10 0.38 -11.295 | -8.632 9.785 1.655
11 0.40 -11.877 | -9.626 9.446 1.886

TABLE 4. Designs output by a neural network trained via the direct inverse method.
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Since the process of generating training simulation data has already discovered a system
with a performance index value of 0.2923, the range of y;* values of interest is y;* >
0.2923. Looking at Table 4, most of the decision variable outputs produced for y¢* inputs
in this range (0.30, 0.32, etc.) are out of the interpretable range of [0, 1]. In addition, the
root mean squared error across all g (= 4) network outputs and all s (= 128) training pairs
at the end of training, as defined by

s 1
RMSE = [qls Y (vi-v)lvi - Vk)]z
k=1 (22)

where v;* is a g-component vector specifying the desired network outputs for the kth
training pair and v is the actual network output for the kth training pair input, is a relatively
large 0.3376 with respect to the desired output values, which are in the range [0, 1]. This
is evidence of the inability of the direct inverse method to drive the squared error (Eq. 17)
or equivalently the RMSE (Eq. 22) close to zero when one-to-many mappings are explicitly
specified in the training data.

In order to evaluate the distal supervised learning method, 72 simulations were run to
generate 72 training pairs in which decision variable values x, s, b, f were the inputs and
efficiency values y were the outputs (Tbl. 5).

# INPUT OUTPUT
Samples X s b f y
3, 10, 1, 0, 0.25,
72 17, 24 2 100, 150 | 0.75, 1.00

TABLE 5. Training pairs for the forward network in the distal supervised leaming method.

Before being used for neural network training, all decision variable values were normalized
to fall within the range [0, 1]. The efficiency values y fell in the range [0.0569, 0.2923].
A neural network with 4 nodes in the input layer, 1 node in the output layer and 2 hidden
layers with 10 nodes each (a 4-10-10-1 neural network) was trained with these data.
Training consisted of 1,021 cycles through the training data, resulting in a final RMSE (Eq.
22,q=1,5=72) of 0.02. This trained forward network was then used in the training of a
1-16-4 inverse network via the distal supervised learning method. Twenty-one
performance index values y;* were provided to the inverse network during the training
process, ranging from 0.0 to 0.4 in increments of 0.02. The designs x; prescribed by the
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trained inverse network for a range of desired performance index values y;* are shown in
Table 6.

INPUT INVERSE NETWORK OUTPUT x; __ | FORWARD NET |

k 73 x s b i OUTPUT y,
(1] 0.20 4.783 -4.507 -1.191 1.709 0.20

2 0.22 4.748 -4.512 -1.075 1.714 0.22

3 0.24 4712 -4.517 -0.959 1.719 0.24

4 0.26 4.677 -4.521 -0.844 1.724 0.26

5 0.28 4.642 -4.526 -0.729 1.729 0.29
6 | 0.30 4.606 -4.531 -0.615 1.733 0.30

7 | 0.32 4.572 -4.535 -0.5072 1.738 0.32

8 0.34 4.537 -4.540 -0.389 1.743 0.34

9 0.36 4.502 -4.545 -0.277 1.748 0.36

10| 0.38 4.468 -4.549 -N.166 1.752 0.38

11| 0.40 4.434 -4.553 -0.056 1.757 0.39

TABLE 6. Designs output by a neural network trained via the distal supervised learning method.

As with the direct inverse method, the decision variable values output by the inverse neural
network fall outside the interpretable range of [0, 1]. The last column of Table 6 shows the
outputs from the forward network, given the inverse network-prescribed designs as input.
The forward network outputs almost exactly match the desired performance index values
input to the inverse network. This shows that the distal supervised learning method is
forming a true inverse of the forward neural network model, albeit an inverse whose
outputs do not have a defined physical meaning.

In order to overcome this last difficulty, the distal supervised learning with constraints
method was applied. The procedure was identical to that of distal supervised learning, with
the exception of the squared error to be minimized during training of the inverse network.
The squared error used was of the form given in Equation 21, with the upper and lower
bounds of the decision variables set to 0 and 1 respectively. The designs x; prescribed by
the trained inverse network for a range of desired performance index values y;* are shown
in Table 7.
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INPUT INVERSE NETWORK OUTPUT xg FORWARD NET |

k et X s b 7 OUTPUT y
1| _0.20 0.435_ 1.000 0.444 0.453 0.20

2 0.22 0.384 1.000 0.393 0.402 0.22

3 0.24 0.333 1.000 0.343 0.353 0.23

4 0.26 0.284 1.000 0.294 0.304 0.25

51 0.28 0.235 1.000 0.246 0.257 0.26
6 0.30 0.188 1.000 0.199 0.210 0.27

7| 0.32 0.142 1.600 0.153 0.165 0.29

8 | 034 0.007 1.001 0.109 0.120 0.30

9 0.36 0.053 | 1.001 0.065 0.076 0.31

10| 0.38 0.010 1.001 0.022 0.034 0.32

11| 0.40 -0.032" | 1.002 -0.020 -0.008 0.32

TABLE 7. Designs output by a neural network trained via the distal supervised leaming with constraints

method.

In this case, the decision variable values prescribed by the inverse network do fall within
the physically interpretable range of [0, 1]. The forward model does not produce output
performance index values as high as the desired performance index values. If the forward

model is a sufficiently accurate Jescription of the actual design to performance index
relationship, this indicates that the maximum physically achievable performance index value
has been exceeded by the requested values. The design solution prescribed for the highest
desired performance index value y;*, 0.40,is, x =0, 5 =1,b=0,f=0. This is a coding
for a system with all CNC machines and no buffers (Fig. 9). The efficiency of this
system, as evaluated via simulation, is 0.2979, which exceeds the highest “known”
efficiency of 0.2923 by 1.2%.
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Figure 9. System prescribed by network tined via the distal supervised learning with constraints method.
5. Variable Part Change Frequency

Now that it has becn established that the neural network trained via the distal supervised
learning with constraints method is the best of the three methods discussed for predicting x
for a desired performance, an evaluation of how the network’s predictions change with
respect to the assumptions in Table 2 is necessary. Because the performance evaluation
used in this paper incorporates costs that occur over the life of the manufacturing system,
including those incurred due to part design changes, it is of particular importance that the
effect of design change frequency on the network output be examined.

Therefore two new sets of training pairs are generated with the same decision variables as
found in Table 5, and modified efficiency values y. In the first training data set, the
efficiency values y are modified such that P4(5) = 1.0 and P4(n4 # 5) = 0.0 (see Table 2).
All of the other parameters found in both tables 1 and 2 remain the same. Note that there is
no need to simulate the training data again because the actual simulation run is independent
of the design change frequency used in the calculation of the efficiency. This would not be
the case if a parameter suci as the mean time between failures, which is used in the
simulation, was altered.
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Again, all decision variables were normalized to fall within the range [0, 1]. The range of
the efficiency values y were [0.0608, 0.4127]. The training procedure was the same as in
the previous distal supervised learning with constraints method, with the exception of the
y&* values used in the training of the inverse network. Because the range of efficiency
values y exceeds 0.4000, the performance index values y* used in the inverse network
training were expanded to twenty-six values ranging from 0.0 to 0.5 in increments of 0.02.
The forward training consisted of 50,000 cycles through the training data, with the final
RMSE being 0.05. The designs xk prescribed by the trained inverse network for a range
of desired performance index values y;* are shown in Table 8.

INPUT INVERSE NETWORK OUTPUT x¢ FORWARD NET |

k yi* X s b Fi OUTPUT y
1 0.5'6—79173. 0.295 0.302 0.536 0.29
2 | 0.32 0.909 0.274 0.270 0.519 0.32
3 0.34 0916 | 0.253 0.239 0.502 0.34
4 0.36 0.922 0232 | 0.207 0.4386 0.36

5 0.38 0928 | 0.212 0.176 0.469 0.39
6 |_0.40 0.935 0.191 0.145_| 0452 0.41

7 0.42 0.941 0.171 0.114 | 0.436 0.43

8 | 044 0947 | 0.150 | 0.084 0.419_ 0.44

9 0.46 0.954 0.130 0.053 0.403 0.46

10| 0.48 0.960 0.110 | 0.023 0.387 0.48

11| 0.50 0.966 0.090 -0.007 0.371 0.49

TABLE 8. Designs output by a neural network trained via the distal supervised leaming with constraints
method. Part design change every five years.

The design solution prescribed for an efficiency of 0.5 is x =26,5 =0, b =0, f = .371.
Note that x has been multiplied by 27, the maximum number of operations, in order to
reverse the previous normalization. Since the buffer size is zero, the buffer frequency can
be effectively interpreted as f = 0. This solution is implemented as a system with the first
operation performed by the CNC, the remaining 26 performed by the TLS, and no buffers
(Fig. 10)...As expected, the TLS becomes more desirable as the part design frequency
decreases. The actual efficiency of the system, as determined by simulation, is 0.4282,
which exceeds the previous highest efficiency by 2.8%.
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Figure 10. System prescribed by network trained via the distal supervised leaming with constraints method.
Part design change every five years.

In the second set of data, efficiency values y were modified such that P4(10) = 1.0 and
PA(na # 10) = 0.0. The range of efficiency values y were [0.0629, 0.5575]. Using the
previous training procedure, but again expanding the y;* values to accommodate the
expanded range of y, the distal supervised learning with constraints method was applied.
In this case, y;* was thirty-one values ranging from 0.0 to 0.6 in increments of 0.02. The
forward training consisted of 50,000 cycles through the training data, with the final RMSE
being 0.004. The designs xi prescribed by the trained inverse network for a range of
desired performance index values y;* are shown in Table 9.
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INPUT INVERSE NETWORK OUTPUT Xk [ FORWARD NET |
s b f

e X OUTPUT y;
0.40 0.933 0.396 0.994 ~0.361 0.39

— 042 | 0933  0.360 0.997 0332 0.41
0.44 0.982 7 0.341 | 0.993 0.304 0.44
0.46 0.981 0.314 0.993 0.276 0.46

“%Tg 0.981 WT —_0.993 0.248 04
.50 0.980 | 0.261 0.993 0.221 0.5
052 170979 1 0735 0953 0.194 0.52__
05410579 | 0210 | 0993 __0.168 0.5
Wzr'f —_0.978 0.184 0. —_0.142 0.56
38 T 0977 | 0.159 | 0093 0.1186 0.57
0.60 0977 1 0.135 | 0.092 0.090 039

TABLE9. Designs output by a neural network trained via the distal supervised leaming with constraints
method. Part design change every ten years,

Qo

=

Un
N

(=)

:SwwﬁmuAuq—»

The design solution prescribed by the network for an efficiency of 0.6 is x = 26, s = 0,b=
0,f=0. The design variable s suggested by the network is not actually zero, but 0.135.
Yet the only valid values for s are 0 and 1, so some interpretation must be employed much
like the previous case when b was zero and f was not. Notice that this design solution is
the same as the design solution proposed by the network trained with part design changes
every five years (Fig. 10), the only difference being an achieved efficiency which is
substantially higher (Fig. 11). The actual efficiency of the system is 0.5784, which
exceeds the previous highest efficiency by 3.7%.
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Figure 11. System prescribed by network trained via the distal supervised leaming with constraints method.
Part design change ¢very ten years.

6. Conclusions

The inverse mapping formulation of the manufacturing system design problem, which
requires a mode! that takes as input a desired performance index value ygo4/ and outputs a
suitable manufacturing system design Xgo4, is difficult to address directly via empirical
modeling tools because of the one-to-many nature of the mapping. The distal supervised
learning with constraints method for training neural network models, however, is able to
overcome this difficulty by selectively implementing one of the one-to-many mappings in
accordance with given constraints on the mapping outputs. Systems prescribed by an
inverse neural network model trained using this method are able to exceed the performance
of the best systems with which they were trained.

An area of future research in this approach to manufacturing systems design is the
establishment of a method for estimating the appropriate desired performance index value

Ygoal-
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