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THE EXTRINSIC GEOMETRY OF DYNAMICAL SYSTEMS
TRACKING NONLINEAR MATRIX PROJECTIONS∗

FLORIAN FEPPON† AND PIERRE F. J. LERMUSIAUX†

Abstract. A generalization of the concepts of extrinsic curvature and Weingarten endomorphism
is introduced to study a class of nonlinear maps over embedded matrix manifolds. These (nonlinear)
oblique projections generalize (nonlinear) orthogonal projections, i.e., applications mapping a point
to its closest neighbor on a matrix manifold. Examples of such maps include the truncated SVD,
the polar decomposition, and functions mapping symmetric and nonsymmetric matrices to their lin-
ear eigenprojectors. This paper specifically investigates how oblique projections provide their image
manifolds with a canonical extrinsic differential structure, over which a generalization of the Wein-
garten identity is available. By diagonalization of the corresponding Weingarten endomorphism, the
manifold principal curvatures are explicitly characterized, which then enables us to (i) derive explicit
formulas for the differential of oblique projections and (ii) study the global stability of a governing
generic ordinary differential equation (ODE) computing their values. This methodology, exploited
for the truncated SVD in [Feppon and Lermusiaux, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 510–
538], is generalized to non-Euclidean settings and applied to the four other maps mentioned above
and their image manifolds: respectively, the Stiefel, the isospectral, and the Grassmann manifolds
and the manifold of fixed rank (nonorthogonal) linear projectors. In all cases studied, the oblique
projection of a target matrix is surprisingly the unique stable equilibrium point of the above gradient
flow. Three numerical applications concerned with ODEs tracking dominant eigenspaces involving
possibly multiple eigenvalues finally showcase the results.

Key words. Weingarten map, principal curvatures, polar decomposition, dynamic dominant
eigenspaces, Isospectral, normal bundle, Grassmann, and bi-Grassmann manifolds
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1. Introduction. Continuous time matrix algorithms have been receiving a
growing interest in a wide range of applications including data assimilation [43],
data processing [66], machine learning [26], and matrix completion [65]. In many
applications, a time-dependent matrix R(t) is given, for example, in the form of
the solution of an ODE, and one is interested in continuous algorithms tracking the
value of an algebraic operation ΠM (R(t)): in other words one wants to compute ef-
ficiently the update ΠM (R(t + ∆t)) at a later time t + ∆t from the knowledge of
ΠM (R(t)).

For such a purpose, a large number of works have focused on deriving dynamical
systems that, given an input matrix R, compute an algebraic operation ΠM (R), such
as eigenvalues, singular values, or polar decomposition [16, 9, 14, 58, 19, 31]. Typical
examples of maps ΠM specifically considered in this paper include the following:

1. The truncated singular value decomposition (SVD) mapping an l-by-mmatrix
R ∈ Ml,m to its best rank r approximation. Denoting σ1(R) ≥ σ2(R) ≥
· · · ≥ σrank(R) > 0 the singular values of R, and (ui), (vi) the corresponding
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DYNAMICAL SYSTEMS TRACKING MATRIX PROJECTIONS 815

orthonormal basis of right and left singular vectors, ΠM is the map

(1) R =

rank(R)∑
i=1

σi(R)uiv
T
i 7−→ ΠM (R) =

r∑
i=1

σi(R)uiv
T
i .

2. Given p ≤ n, the application mapping a full rank n-by-p matrix R ∈ Mn,p

to its polar part, i.e., the unique matrix P ∈ Mn,p such that PTP = I and
R = PS with S ∈ Symp, a symmetric positive definite p-by-p matrix:

(2) R =

p∑
i=1

σi(R)uiv
T
i 7−→ ΠM (R) =

p∑
i=1

uiv
T
i .

3. The application replacing all eigenvalues λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S) of a
n-by-n symmetric matrix S ∈ Symn with a prescribed sequence λ1 ≥ λ2 ≥
· · · ≥ λn. Denoting (ui) an orthonormal basis of eigenvectors of S,

(3) S =

n∑
i=1

λi(S)uiu
T
i 7−→ ΠM (S) =

n∑
i=1

λiuiu
T
i .

4. The application mapping a real n-by-n matrix R ∈ Mn,n to the linear or-
thogonal projector UUT ∈ Mn,n on the p dimensional, dominant invari-
ant subspace of R (invariant in the sense Span(RU) = Span(U)). Denote
λi(R) the eigenvalues of R ordered according to their real parts, <(λ1(R)) ≥
<(λ2(R)) ≥ · · · ≥ <(λn(R)), and (ui) and (vTi ) the bases of correspond-
ing right and left eigenvectors. Then, the p dimensional dominant invariant
subspace is Span(ui)1≤i≤p, i.e., the space spanned by the p eigenvectors of
maximal real parts. ΠM is the map

(4) R =

n∑
i=1

λi(R)uiv
T
i 7−→ ΠM (R) = UUT

for any U ∈Mn,p satisfying Span(U) = Span(ui)1≤i≤p and UTU = I.
5. The application mapping a real n-by-n matrix R to the linear projector

whose image is the p dimensional dominant invariant subspace Span(ui)1≤i≤p
and whose kernel is the complement invariant subspace (Span(vi)1≤i≤p)

⊥ =
Span(up+j)1≤j≤n−p:

(5) R =

n∑
i=1

λi(R)uiv
T
i 7−→ ΠM (R) =

p∑
i=1

uiv
T
i = UV T

for matrices U, V ∈Mn,p such that V TU = I Span(U) = Span(ui)1≤i≤p, and
Span(V )⊥ = Span(up+j)1≤j≤n−p.

Dynamical systems tracking the truncated SVD (1) have been used for efficient en-
semble forecasting and data assimilation [42, 7] and for realistic large-scale stochastic
field variability analysis [44]. Closed form differential systems were initially proposed
for such purposes in [40, 60] and further investigated in [22, 23] for dynamic model
order reduction of high dimensional matrix ODEs. Tracking the polar decomposition
(2) (with p = n) has been the interest of works in continuum mechanics [11, 59, 29].
The map (3) has been initially investigated by Brockett [10] and used in adaptive
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816 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

signal filtering [42]. Recently, a dynamical system that computes the map (4) has
been found in the fluid mechanics community by Babaee and Sapsis [6]. As for (5),
differential systems computing this map in the particular case of p = 1 have been
proposed by [28] for efficient evaluations of ε-pseudospectra of real matrices.

A main contribution of this paper is to develop a unified view for analyzing
the above maps ΠM and deriving dynamical systems for computing or tracking their
values. As we shall detail, each of the above maps ΠM : E →M can be geometrically
interpreted as a (nonlinear) projection from an ambient Euclidean space of matrices
E onto a matrix submanifold M ⊂ E: for instance, E = Ml,m and M = {R ∈
Ml,m | rank(R) = r} is the fixed rank manifold for the map (1). The maps (1)–(3)
turn to be orthogonal projections, in that ΠM (R) minimizes some Euclidean distance
‖ · ‖ from R ∈ E to M :

(6) ‖R−ΠM (R)‖ = min
R∈M

‖R−R‖.

The maps (4) and (5) do not satisfy such a property but still share common math-
ematical structures; in this paper, we more generally refer to them as (nonlinear)
oblique projections.

We are concerned with two kinds of ODEs. For a smooth trajectory R(t), it is
first natural to look for the dynamics satisfied by ΠM (R(t)) itself:

(7)

 Ṙ =
d

dt
ΠM (R(t)),

R(0) = ΠM (R(0)).

The explicit computation of the right-hand side dΠM (R(t))/dt requires the differ-
ential of ΠM . In the literature, its expression is most often sought from algebraic
manipulations, using, e.g., derivatives of eigenvectors that unavoidably require sim-
plicity assumptions for the eigenvalues [18, 14, 15]. As will be detailed further on, it
is, however, possible to show that (1)–(5) are differentiable on the domains where they
are nonambiguously defined, including cases with multiple eigenvalues: for example,
(1) is differentiable as soon as σr(R) > σr+1(R), even if σi(R) = σj(R) for some
i < j ≤ r [22]. Differentiating eigenvectors is expected to be an even more difficult
strategy for (4), since it includes implicit reorthonormalization of the basis (ui)1≤i≤p.

Second, if a fixed input matrix R is given, we shall see that ΠM (R) can be
obtained as an asymptotically stable equilibrium of the following dynamical system:

(8) Ṙ = ΠT (R)(R−R),

where ΠT (R) : E → T (R) is a relevant linear projection operator onto the tangent
space T (R) at R ∈M . If ΠM is an orthogonal projection, then (8) coincides with a
gradient flow solving the minimization problem (6), and hence R(t) converges asymp-
totically to ΠM (R) for sufficiently close initializations R(0). In the general, oblique
case, (8) is not a gradient flow but we shall show that ΠM (R) still remains a stable
equilibrium point. A question of practical interest regarding the robustness of (8) lies
in determining whether ΠM (R) is globally stable.

In this work, we highlight that both the explicit derivation of (7) and the stabil-
ity analysis of (8) can be obtained from the spectral decomposition of a single linear
operator LR(N) called the Weingarten map (respectively, in Propositions 5 and 6
below). In the Euclidean case, LR(N) is a standard object of differential geometry
whose eigenvalues κi(N) characterize the extrinsic curvatures of the embedded mani-
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DYNAMICAL SYSTEMS TRACKING MATRIX PROJECTIONS 817

fold M [39, 62]. The relevance of the Weingarten maps LR(N) for matrix manifolds in
relation to the minimum distance problem (6) has been initially observed by Hendriks
and Landsman [32, 33] and later by Absil, Mahony, and Trumpf [3] for computing
Riemannian Hessians. In the less standard, non-Euclidean case, it turns out that
an oblique projection ΠM provides intrinsically a differential structure on its image
manifold M and a generalization of LR(N) sharing analogous properties.

In fact, this paper is an extension of our recent work concerned with the trun-
cated SVD (1): in [22], the eigendecomposition of LR(N) is computed explicitly for
the fixed rank manifold, which yields an explicit expression for (7) and a global stabil-
ity result for (8). Here, we further investigate explicit spectral decompositions of the
Weingarten map for relevant matrix manifolds related to the maps (2)–(5), and we
use these to obtain (i) the Fréchet derivatives of the corresponding matrix decompo-
sitions as well as (ii) the stability analysis of the dynamical system (8) for computing
them. We shall highlight in particular how this unified view sheds new light on some
previous convergence results [9, 31, 6, 28] or previous formulas available for the dif-
ferential of matrix decompositions [11, 18], which become elementary consequences of
the curvature analysis of their related manifolds.

The paper is organized as follows. Definitions and properties of abstract oblique
projections are stated in section 2 and the differences with the more standard orthog-
onal case are highlighted. We introduce our generalization of the Weingarten map
to non-Euclidean ambient spaces before making explicit the link between its spectral
decompositions and the ODEs (7) and (8).

The subsequent three sections then examine the value of the Weingarten maps
LR(N) and of the curvatures κi(N) more specifically for the each of the four maps
above. Sections 3 and 4 are, respectively, concerned with (2) and (3), which are
orthogonal projections onto their manifold M . These are, respectively, the Stiefel
manifold (the set of n-by-p orthogonal matrices) and the isospectral manifold (the set
of symmetric matrices with a prescribed spectrum). The application of Proposition 5
below then allows obtaining explicit expressions for the Fréchet derivatives of the
polar decomposition (2) and of the map (3) or equivalently of the projectors over the
invariant spaces spanned by a selected number of eigenvectors. The gradient flow (8)
for computing these maps is then made explicit, and global convergence is obtained
for almost every initial data (located in the right-connected component for (2) with
n = p). We relate our analysis of the isospectral manifold to the popular Brockett
flow introduced in the seminal paper [9] and to some works of Chu and Driessel [13]
and Absil and Malick [4].

The non-Euclidean framework is then applied in section 5 in order to study the
maps (4) and (5). The image manifold M of (4) is the set of orthogonal linear rank
p linear projectors, which is again the Grassmann manifold, but embedded in Mn,n

instead of Symn. For (5), M is the set of rank p linear projectors (not necessarily
orthogonal), referred to as “bi-Grassmann” manifold in this paper, since it can also
be interpreted as the set of all possible pairs of two supplementary p dimensional sub-
spaces. Generalized Weingarten maps and their spectral decompositions are obtained
explicitly, yielding fully explicit formulas for their differential. The flow (8) is then
derived and again found to admit only ΠM (R) as a locally stable equilibrium point.

Finally, three numerical applications are investigated in section 6. First, we show
how gradient flows on the isospectral manifold can be used for tracking symmet-
ric eigenspaces involving possibly eigenvalue crossings. Then we examine a reduced
method which generalizes the dynamical low rank or DO method of [40, 22] on the
isospectral manifold. This method allows approximating the dynamic of eigenspaces
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818 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

of clustered eigenvalues of a symmetric matrix S(t). Finally, we discuss the corre-
spondence with iterative algorithms and the loss of global convergence issues for the
non-Euclidean setting of the map (5).

Notation used in this paper is summarized in Appendix A. It is important, though,
to state here those used for differentials. As in [22], the differential of a smooth
function f at the point R belonging to some manifold M embedded in a space E
(this includes M = E) in the direction X ∈ T (R), is denoted DXf(R):

DXf(R) =
d

dt
f(R(t))

∣∣∣∣
t=0

= lim
∆t→0

f(R(t+ ∆t))− f(R(t))

∆t
,

where R(t) is a curve of M such that R(0) = R and Ṙ(0) = X. The differential of
a linear projection operator R 7→ ΠT (R) at R ∈ M , in the direction X ∈ T (R) and
applied to Y ∈ E, is denoted DΠT (R)(X) · Y :

DΠT (R)(X) · Y =

[
d

dt
ΠT (R(t))

∣∣∣∣
t=0

]
(Y ) =

[
lim

∆t→0

ΠT (R(t+∆t)) −ΠT (R(t))

∆t

]
(Y ).

2. Oblique projections. This section develops oblique projections and their
main properties in relation with the differential geometry of their image manifold. A
smooth manifold M ⊂ E embedded in a finite dimensional vector space E is given,
where E is not necessarily assumed to be Euclidean (i.e., equipped with a scalar
product).

Definition 1. An application ΠM : V → M defined on an open neighborhood
V such that M ⊂ V ⊂ E is said to be an oblique projection onto M if at each point
R ∈M is attached a (normal) vector space N (R) ⊂ E such that the portion of affine
subspace V ∩ (R+N (R)) is invariant by ΠM :

∀R ∈ V such that R = R+N with N ∈ N (R),ΠM (R) = R.

The concepts of oblique projection, normal space N (R), and neighborhood V,
where ΠM is defined, are illustrated on Figure 1. Geometrically, ΠM maps all points
of the portion of affine subspace R +N (R) sufficiently close to R onto R. Formally,
the bundle of normal spaces N (R) can be understood as a set of straight “hairs” on
the manifolds, and ΠM maps a point R of the hair to its root R on the manifold.
When two (affine) normal spaces intersect (i.e., on the skeleton in the Euclidean case;
see [17, 22]), there is an ambiguity in the definition of ΠM (R), which explains why
the domain where ΠM is defined is restricted to a neighborhood V.

In the previous definition, nothing is required regarding the dimension of the nor-
mal spaces N (R). A first elementary but essential remark is that these are necessarily
in direct sum with the tangent spaces T (R). (See [21, Proposition 2.4] for the proof.)

Proposition 2. If ΠM is a differentiable oblique projection, then for any R ∈
M , the direct sum decomposition E = T (R)⊕N (R) holds, and

ΠT (R) : X 7→ DXΠM (R),
E → T (R)

is the linear projector whose image is T (R) and whose kernel is N (R).

Conversely, it is possible to construct a unique oblique projection ΠM associated
to any smooth bundle of normal spaces R 7→ N (R) satisfying E = T (R) ⊕ N (R)
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DYNAMICAL SYSTEMS TRACKING MATRIX PROJECTIONS 819

Fig. 1. An embedded manifold M ⊂ E with its tangent spaces T (R) and a given bundle of
normal spaces N (R). The associated oblique projection ΠM defined on an open neighborhood V
maps all points R of the portion of the normal affine space (the “hair”) V ∩ (R+N (R)) to the point
R on the manifold (the “root”).

[21, Proposition 2.7], by using a variant of the tubular neighborhood theorem [8].
The following proposition shows that oblique linear projectors R 7→ ΠT (R) onto the
decompositions T (R)⊕N (R) define a relevant differential structure on M .

Proposition 3. Let M ⊂ E be an embedded smooth manifold equipped with
a differentiable map R 7→ ΠT (R) of linear projectors over the tangent spaces at M .
Consider X and Y two differentiable tangent vector fields in a neighborhood of R ∈M .
Then ΠT (R) defines a covariant derivative [62] on M by the formula

(9) ∀X,Y ∈ T (R), ∇XY = ΠT (R)(DXY ).

One has the Gauss formula

∀X,Y ∈ T (R), ∇XY = DXY + Γ(X,Y ),

where the Christoffel symbol Γ(X,Y ) depends only on the values of X and Y at R
and satisfies

∀X,Y ∈ T (R), Γ(X,Y ) = Γ(Y,X) = −DΠT (R)(X) · Y ∈ N (R).

For any normal vector N ∈ N (R), the Weingarten map LR(N) defined by

(10) ∀X ∈ T (R), LR(N)X = DΠT (R)(X) ·N ∈ T (R)

is a linear application of the tangent space T (R) into itself.

Proof. These properties, classical for ΠT (R) being an orthogonal projection oper-
ator [62], are easily obtained for the non-Euclidean case by differentiating ΠT (R)(Y ) =
Y and ΠT (R)(N) = 0 with respect to X for given tangent and normal vector fields Y
and N , and by using the fact that the Lie bracket is a tangent vector.
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820 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

It is not clear that one can find a Riemannian metric associated with the torsion-
free connection ∇ defined from ΠT (R) (see [61] about this question), and hence this
setting is fundamentally different than the one of fully intrinsic approaches, e.g.,
[2, 54]. Nevertheless, we find that the duality bracket 〈 · , ·〉 over E plays the role
of the metric in this embedded setting, as shown in the next proposition. In the
following, the dual space of E is denoted E∗, and it is recalled that the adjoint A∗ of
a linear operator A : E → E is defined by ∀v ∈ E∗,∀x ∈ E, 〈A∗v, x〉 = 〈v,Ax〉.

Proposition 4. For any R ∈ M , the direct sum E∗ = T (R)
∗ ⊕ N (R)

∗
holds

where T (R)
∗

= Π∗T (R)E
∗ and N (R)

∗
= (I − Π∗T (R))E

∗. In particular, Π∗T (R) is the

linear projector whose image is T (R)
∗

and kernel is N (R)
∗
. The map of projections

R 7→ Π∗T (R) induces a connection over the dual bundle R 7→ T (R)
∗

by the formula

(11) ∀V ∈ T (R)
∗

and ∀X ∈ T (R), ∇XV = Π∗T (R)(DXV ) .

The connection ∇ defined by (9) and (11) is compatible with the duality bracket:

∀X,Y ∈ T (R) and ∀V ∈ T (R)
∗
, DX〈V, Y 〉 = 〈∇XV, Y 〉+ 〈V,∇XY 〉.

One has the Gauss formula

∀V ∈ T (R)
∗

and ∀X ∈ T (R), ∇XV = DXV + Γ(X,V ) ,

where the Christoffel symbol depends only on the value of the tangent vector and dual
fields X and V at R and satisfies

∀X ∈ T (R) and ∀V ∈ T (R)
∗
, Γ(X,V ) = −DΠ∗T (R)(X) · V ∈ N (R)

∗
.

For any normal dual vector N ∈ N (R)
∗
, the dual Weingarten map L∗R(N) defined by

(12) ∀X ∈ T (R), L∗R(N)X = DΠ∗T (R)(X) ·N

defines a linear application of the tangent space T (R) into its dual T (R)
∗

and the
following Weingarten identities hold:

∀X,Y ∈ T (R), N ∈ N (R)
∗
, 〈N,DΠT (R)(X) · Y 〉 = 〈DΠ∗T (R)(X) ·N,Y 〉,(13)

∀V ∈ T (R)
∗
, X ∈ T (R), N ∈ N (R), 〈DΠ∗T (R)(X) · V,N〉 = 〈V,DΠT (R)(X) ·N〉.

(14)

Proof. The proof is a straightforward adaptation of the one of [62, Theorem 8].
For example, the Weingarten identities (13) and (14) are obtained by differentiating
the relations 〈N,X〉 = 0 for N ∈ N (R)

∗
, X ∈ T (R), and 〈V,N〉 = 0 for V ∈ T (R)

∗

and N ∈ N (R).

If E is Euclidean, then the dual space E∗ can be identified to E by replacing
the duality bracket with the scalar product over E. Then Propositions 3 and 4 are
redundant and express the classical Euclidean setting [62, 39, 32], where identity
(13) states that the Weingarten map LR(N) = L∗R(N) (equations (10) and (12)) is
symmetric. In that case, it admits an orthonormal basis of real eigenvectors (Φi) and
eigenvalues κi(N) called principal directions and principal curvatures in the normal
direction N ∈ N (R).

The following two propositions state how the Weingarten map LR(N) (equa-
tion (10)) is related to (i) the differential of the oblique projection ΠM and (ii) the
stability analysis of a dynamical system for which ΠM (R) is a stable equilibrium
point.
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Proposition 5. If M is compact, ΠM is continuous, and R 7→ ΠT (R) is dif-
ferentiable, then there exists an open neighborhood V ⊂ E of M over which ΠM is
differentiable with 1 /∈ sp(LR(N)) for any R ∈M , N ∈ N (R) such that R + N ∈ V.
The differential of ΠM at R = R+N ∈ V is given by

(15) X 7→ DXΠM (R) = (I − LR(N))−1ΠT (R)(X).

In particular, if LR(N) is diagonalizable in C, and if one denotes by κi(N), (Φi),
and (Φ∗i ), respectively, the eigenvalues, a basis of respective eigenvectors, and its dual
basis, then

(16) ∀X ∈ E, DXΠM (R) =
∑
i

1

1− κi(N)
〈Φ∗i ,ΠT (R)X〉Φi.

Proof. The proof is done in three steps; see [21, Proposition 2.7 and Theorem 2.2]
for details. First, one obtains from the constant rank theorem that Q = {(R,N) ∈
M × E|N ∈ N (R)} is a manifold. Then one checks that the differential of the map

Φ : Q → E
(R,N) 7→ R+N

is invertible provided 1 /∈ sp(I−LR(N)). The local inversion theorem and an adapta-
tion of the proof of the tubular neighborhood theorem (see, e.g., [48, Lemma 4]) allows
one to obtain that Φ is a diffeomorphism from a neighborhood of Q onto a neighbor-
hood V of M in E. The continuity of ΠM implies that R 7→ (ΠM (R),R− ΠM (R))
is the inverse map of this diffeomorphism and hence is differentiable. Finally, (16)
follows by differentiating ΠT (ΠM (R))(R−ΠM (R)) = ΠM (R) with respect to X, from
which (15) is obtained exactly as in [32, 22].

Remark 1. Stronger results hold in the Euclidean case, for which N (R) and T (R)
are mutually orthogonal. In that case, ΠM is equivalently defined by the minimization
principle (6) at all points R ∈ E yielding a unique minimizer R = ΠM (R) and is
automatically continuous on its domain (see [32, 5, 22]).

Proposition 6. Consider a given R ∈ E. The dynamical system

(17) Ṙ = ΠT (R)(R−R)

satisfies the following properties:
1. Trajectories of (17) lie on the manifold M : R(0) ∈M ⇒ ∀t ≥ 0, R(t) ∈M .
2. Equilibrium points of (17) are all R ∈ M such that N = R − R ∈ N (R).

The linearized dynamics around such equilibria reads

Ẋ = (LR(N)− I)X.

Hence R is stable if <(κi(N)) < 1 holds for all eigenvalues κi(N) of LR(N).
3. There exists an open neighborhood V of M such that for any R ∈ V, ΠM (R)

is a stable equilibrium point of (17).

Proof. Item 1 is a consequence of ΠT (R)(R−R) ∈ T (R). Item 2 is a restatement
of ΠT (R)(R − R) = 0 ⇔ R − R ∈ N (R). The linearized dynamics is obtained by
differentiating (17) with respect to R along a tangent vector X ∈ T (R). Item 3 is a
mere consequence of the continuity of the eigenvalues of LR(N) with respect to N ,
noticing that for N = 0, the linearized dynamics is Ẋ = −X and hence is stable.

D
ow

nl
oa

de
d 

02
/1

1/
20

 to
 1

8.
10

.2
9.

25
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

822 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

The local stability of the dynamical system (17) is a powerful result, as it yields
systematically a continuous time algorithm to find the value of ΠM (R+δR) given the
knowledge of ΠM (R) and a small perturbation δR (see subsection 6.1 for numerical
applications). It may become global if R = ΠM (R) is the only point satisfying

(18) N = R−R ∈ N (R) and <(κi(N)) < 1 for all eigenvalues κi(N) of LR(N).

Indeed, in that case ΠM (R) is the only asymptotically stable equilibrium among
all stationary points of (17). In the Euclidean case, (17) is a gradient descent and
Morse theory [36] ensures then the global convergence of the trajectories to ΠM (R)
for almost every initialization R(0). In the non-Euclidean case, such a result is not
an automatic consequence of (18) and an additional boundedness assumption on M
must hold, as we shall illustrate in section 5.

In the next sections, the above results are utilized to study the maps (2)–(5) and
the matrix manifolds they are related to. The Euclidean case is used to study the
maps (2) and (3): the relevant manifolds are introduced first, and it is shown that (2)
and (3) are indeed the applications defined by the minimization principle (6). For the
maps (4) and (5), there is no ambient scalar product making the bundle of normal
spaces N (R) orthogonal to the tangent spaces T (R), and hence the generalization of
oblique projections is used: the manifold M and the decomposition T (R)⊕N (R) are
first identified, which allows obtaining the corresponding linear projection ΠT (R) and
the Weingarten map LR(N).

3. Stiefel manifold and differentiability of the polar decomposition. In
the following, n and p are two given integers satisfying n ≥ 2 and p ≤ n. The Stiefel
manifold is the set M of orthonormal n-by-p matrices embedded in E =Mn,p:

M = {U ∈Mn,p|UTU = I}.

The extrinsic geometry of this manifold has been previously studied by a variety of
authors [20, 3, 32]. M is a smooth manifold of dimension np − p2 + p(p − 1)/2. Its
tangent spaces T (U) at U ∈M are the sets

(19)
T (U) = {X ∈Mn,p|XTU +XUT = 0}

= {∆ + UΩ|∆ ∈Mn,p, Ω ∈Mp,p and ∆TU = 0, ΩT = −Ω}.

The orthogonal projection ΠT (U) on T (U) is the map

ΠT (U) : Mn,p −→ T (U),
X 7−→ (I − UUT )X + Uskew(UTX),

where skew(X) = (X− XT )/2. The normal space at U ∈M is

N (U) = {UT |T ∈ Symp}.

It is well known since Grioli [27, 64, 32, 56] that the map ΠM defined by (2) is
the nonlinear orthogonal projection operator on the Stiefel manifold M . In other
words, if R ∈ Mn,p is a full-rank n-by-p matrix, the matrix P ∈ M in the polar
decomposition R = PS with S ∈ Mp,p symmetric positive definite minimizes the
distance U 7→ ‖R − U‖ for U ∈ M (see also [21, Proposition 2.22] for a geometric
proof). The Weingarten map LR(N) has been computed in [3] and even diagonalized
in the case p = n in [32, 33]. The following proposition provides its expression and
its spectral decomposition for the general case p ≤ n. In the following, it is assumed
in the notation X = ∆ + UΩ ∈ T (U) (equation (19)) that ∆TU = 0 and ΩT = −Ω.
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Proposition 7. Let N = UT ∈ N (U) be a normal vector where the eigenvalue
decomposition of the matrix T ∈ Symp is given by T =

∑p
i=1 λi(T )viv

T
i . The Wein-

garten map of M with respect to the normal direction N is the application

(20)
LU (N) : T (U) −→ T (U),

∆ + UΩ 7−→ −∆T − U(ΩT + TΩ)/2.

The principal curvatures in the direction N are the p(p− 1)/2 real numbers

∀{i, j} ⊂ {1, . . . , p}, κij(T ) = −λi(T ) + λj(T )

2
,

associated with the normalized eigenvectors

Φij =
U√

2
(viv

T
j − vjvTi ),

and, if p < n, the p real numbers

∀1 ≤ i ≤ p, κi(T ) = −λi(T ),

associated with the n− p dimensional eigenspaces

{vvTi |v ∈ Span(U)⊥}.

Proof. One differentiates ΠT (U)X with respect to U in the direction X = ∆+UΩ
before setting X = N to obtain

DΠT (U)(X) ·N
= −2sym((∆ + UΩ)UT )N + (∆ + UΩ)skew(UTN) + Uskew((∆ + UΩ)TN)

= −(∆UT + U∆T )N − Uskew(ΩT ),

which yields (20) by setting N = UT . (This expression also coincides with the one
found in [3].) Therefore an eigenvector X = ∆+UΩ ∈ T (U) of LU (N) with eigenvalue
λ satisfies −∆T = λ∆ and − 1

2 (ΩT + TΩ) = λΩ. One then checks that the solutions

(∆,Ω) are (vvTi , 0) with v a vector in Span(U)⊥ and (0, (viv
T
j − vjv

T
i )/
√

2) with
the eigenvalues claimed. Because the total dimension formed by these eigenspaces
coincides with the dimension of the tangent space, there exist no other eigenvalues.

As a direct application, a fully explicit expression for the differential of the po-
lar decomposition is obtained. The proposition below provides a generalization of
the formula initially obtained by Chen and Wheeler [11] and later by Hendriks and
Landsman [32] for the particular case of the orthogonal group (p = n).

Proposition 8. Let R = PS denote the polar decomposition of a full rank matrix
R ∈ Mn,p with S ∈ Symp positive definite and P ∈ M , and S =

∑p
i=1 σi(R)viv

T
i

the eigendecomposition of S. The orthogonal projection ΠM , namely, the application
R 7→ P , is differentiable at R and the derivative in the direction X is given by the
formula

(21)

DXΠM (R) =
∑
i<j

2

σi(R) + σj(R)

(
vTi skew(PTX)vj

)
P (viv

T
j − vjvTi )

+

p∑
i=1

1

σi(R)
(I − PPT )Xviv

T
i .
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Proof. The result is immediately obtained by applying (16) with the normal vector
N = R− P = P (S − I), for which one finds

1− κi(N) = 1− (1− σi(R)) = σi(R),

1− κij(N) = 1−
(
1− (σi(R) + σj(R))/2) = (σi(R) + σj(R))/2,

〈Φij ,X〉Φij = 〈P skew(viv
T
j ),X〉P (viv

T
j − vjvTi )

= 〈vivTj , skew(PTX)〉P (viv
T
j − vjvTi ),

and denoting (ej) an orthonormal basis of Span(P )⊥,∑
j

〈X, ejvTi 〉ejvTi =
∑
j

(
(eTj Xvi)ej

)
vTi = (I − PPT )Xviv

T
i .

Remark 2. The derivative (21) has already been obtained in some previous works
(e.g., [18, equation (2.19)] or [35, equation (10.2.7)]), albeit in a less explicit form
featuring the solution Ω of the Sylvester equation (S⊕S)Ω = SΩ+ΩS = PTX−XTP .
Let us observe that the operator S ⊕ S is enclosed in the Weingarten map (20), and
its explicit inverse is found from the spectral decomposition of Proposition 7.

Applying Proposition 6, we obtain a dynamical system that achieves the polar
decomposition and that satisfies global convergence for the gradient descent. Other
dynamical systems satisfying related properties can also be found in [24] (without
global convergence) and [31] (for p = n with a gradient flow on the larger manifold
M × Sn).

Proposition 9. Consider a full rank matrix R ∈ Mn,p whose singular value
decomposition is written R =

∑p
i=1 σi(R)uiv

T
i .

• If p < n, then ΠM (R) is the unique local minimum of the distance function
J : U 7→ 1

2‖R − U‖
2, and therefore, for almost any initial data U(0) ∈ M ,

the solution U(t) of the gradient flow

(22) U̇ = R− 1

2
(UUTR + URTU)

converges to the polar part ΠM (R) =
∑p
i=1 uiv

T
i of R.

• If n = p, then J admits other local minima that are the matrices

(23) U =

n−1∑
i=1

uiv
T
i − unvTn ∈M ,

where un is an arbitrary singular vector corresponding to the smallest singular
value σn(R). Therefore any solution U(t) of the gradient flow (22) converges
almost surely to the polar part ΠM (R) provided the initial data U(0) lies
in the same connected component of On. Otherwise, U(t) converges almost
surely toward an element U ∈ On of the form (23).

Proof. A necessary condition for U ∈M to be a minimizer is that N = R−U ∈
N (U), i.e., N = UT with T ∈ Symp. Then R = (I + U)T and the eigenvalues of
T satisfy λi(T ) = σi(R) − 1 or λi(T ) = −(σi(R) + 1). If p < n, then the condition,
∀1 ≤ i ≤ p, κi(N) = −λi(T ) ≤ 1, required for U to be a local minimum cannot be
satisfied if there exists i such that λi(T ) = −(σi(R) + 1). This proves that the only
local minimum is achieved by ΠM (R).
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If p = n, then this condition reads κij(N) = − 1
2 (λi(T ) + λj(T )) ≤ 1 for all

pairs {i, j}, which cannot be satisfied if there exists at least two indices i and j such
that λi(T ) = −(σi(R) + 1) and λj(T ) = −(σj(R) + 1). If i is an index such that
λi(T ) = −(σi(R) + 1), then κij(N) ≤ 1 implies ∀j 6= i, σi(R) ≤ σj(R) and therefore
i = n and U is of the form (23). Finally, the gradient flow is obtained by making (8)
explicit with ΠT (U)(R− U) = (I − UUT )(U −R) + Uskew(UT (U −R)).

4. The isospectral manifold, the Grassmannian, and the geometry of
mutually orthogonal subspaces. This section now considers the map (3) and its
image manifold which is the set of symmetric matrices S ∈ Symn having m prescribed
eigenvalues λ1 > · · · > λm with multiplicities n1, . . . , nm. The set of such symmetric
matrices has been called an isospectral or “spectral” manifold by [9, 14, 13, 4]. De-
noting Λ a reference matrix with such a spectrum, the isospectral manifold M admits
the following parameterizations:

(24)

M = {PΛPT |P ∈ On}

=

{
m∑
i=1

λiUiU
T
i |Ui ∈Mn,ni , U

T
i Uj = δij

}
.

There is a motivation for examining M in its own right: identifying the linear
eigenprojector UiU

T
i with the eigenspace Vi = Span(Ui), the isospectral manifold

models the set of all collections V1, V2, . . . , Vm ⊂ V of m subspaces of a n dimen-
sional Euclidean space V with prescribed dimensions n1, . . . , nm, and orthogonal
to each other (n = n1 + · · · + nm and V1 ⊕ · · · ⊕ Vm = V ). This allows one to
include in this analysis an embedded definition of the Grassmann manifold (the
set of all p dimensional subspace embedded in a n dimensional space), as the set
{UUT ∈ Symn|UTU = I and U ∈ Mn,p} of all rank p orthogonal linear projectors.
This approach, which has also been favored by some other authors [53, 30], stands in
contrast with the more usual intrinsic definitions of the Grassmannian via quotient
manifolds [20, 1, 2].

In the following, the set of m matrices Ui ∈ Mn,ni is used to describe points
on the manifold M , where each Ui represents the eigenspace Span(Ui). The time
derivative of a trajectory Ui(t) can be decomposed along the basis given by the union
of the Uk as U̇i =

∑m
j=1 Uj∆

j
i with ∆j

i ∈ Mnj ,ni
. The matrix ∆j

i can be interpreted
as the magnitude of the rotation of the subspace Span(Ui) around the axis given
by the subspace Span(Uj). To remain orthogonal to one another, the antisymmetry

condition ∆j
i = −(∆j

i )
T must be satisfied by the ∆j

i .

Proposition 10. The tangent space T (S) at S ∈M is the set

(25)

T (S) = {[Ω, S] = ΩS − SΩ|Ω ∈Mn,n, ΩT = −Ω}

=

∑
i6=j

(λi − λj)Uj∆j
iU

T
i

∣∣∣∣∆j
i ∈Mnj ,ni

, ∆i
j = −(∆j

i )
T

 .

The ∆j
i defined in the above expressions for each pair {i, j} ⊂ {1, . . . ,m} parameterize

uniquely the tangent space T (S). Therefore M is a smooth manifold of dimension
(n2 −

∑m
i=1 n

2
i )/2.

Proof. The first equality and the dimension of M can be found in [14]. Consider
S =

∑m
i=1 λiUiU

T
i with Ui ∈ Mn,ni

and UTi Uj = δij . Differentiating the constraint
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826 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

UTi Uj = 0 yields (∆j
i )
T = −∆i

j , which implies that tangent vectors are of the form

X =
∑m
i,j=1 λi(Uj∆

j
iU

T
i − Ui∆i

jU
T
j ), giving the other equality. Finally, if X ∈ T (S),

the formula ∆j
i = UTj XUi/(λi − λj) determines uniquely ∆j

i .

By analogy to the vocabulary of quotient manifolds [2], we call horizontal space
the set H = {(∆j

i )i,j |∆
j
i ∈ Mnj ,ni , ∆j

i = −(∆j
i )
T } as it parameterizes uniquely

T (S). In the following, one denotes (∆X)ji ∈ H the coordinates of a tangent vector
X ∈ T (S).

Proposition 11. The projection ΠT (S) on the tangent space T (S) is the map

ΠT (S) : Symn −→ T (S),
X 7−→

∑
{i,j}⊂{1,...,m}

(UjU
T
j XUiU

T
i + UiU

T
i XUjU

T
j ),

that is, with the coordinates of the horizontal space, ∆j
i = UTj XUi/(λi−λj). Therefore

the normal space N (S) at S is the set of all symmetric matrices N that let invariant
each eigenspace Span(Ui) of S:

N (S) =

{
m∑
i=1

UiU
T
i XUiU

T
i |X ∈ Symn

}
.

In other words, it is the set of all matrices N ∈ Symn of the form

(26) N =

m∑
i=1

ni∑
a=1

λi,a(N)ui,au
T
i,a ,

where for each 1 ≤ i ≤ m, λi,a(N)1≤a≤ni
is a set of ni real eigenvalues associated

with ni eigenvectors (ui,a)1≤a≤ni
forming a basis of the eigenspace Span(Ui).

Proof. This is obtained by differentiating ‖X − X‖2 with respect to ∆j
i for a

tangent vector X ∈ H written with the coordinates ∆j
i of the horizontal space. The

normal space is obtained from the equality N (S) = {(I −ΠT (S))X|X ∈ Symn}.
Absil and Malick proved that ΠM (S) as defined by (3) is the orthogonal projection

operator on M for matrices S in a small neighborhood around M [4, Theorem 3.9].
We propose below a short proof showing this result holds in fact for almost any
S ∈ Symn using the above geometric analysis of normal and tangent spaces.

Proposition 12. Let S ∈ Symn and denote S =
∑m
i=1

∑ni

a=1 λi,a(S)ui,au
T
i,a its

eigenvalue decomposition, where the eigenvalues have been ordered decreasingly, i.e.,

∀1 ≤ ai ≤ ni, λ1,a1 ≥ λ2,a2 ≥ · · · ≥ λm,am ,
∀1 ≤ i ≤ m,λi,1 ≥ λi,2 ≥ · · · ≥ λi,ni

.

If for any 1 ≤ i ≤ m − 1, λi+1,1(S) > λi,ni(S), i.e., if the eigenspaces of S are well
separated relative to the ordering given by Λ, then the matrix ΠM (S) obtained by
replacing the eigenvalues of S by those of Λ in the same order,

ΠM (S) =

m∑
i=1

ni∑
a=1

λiui,au
T
i,a ,

minimizes the distance S 7→ ‖S − S‖ from S to M . Furthermore, the minimum
distance is given by ‖S−ΠM (S)‖2 =

∑m
i=1

∑ni

a=1(λi,a − λi)2.
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Proof. For a given S ∈ M , N = S − S is a normal vector at S if S = S + N ,
where S and N can be diagonalized by a similar orthonormal basis. Denoting by
S =

∑n
l=1 λl(S)ulu

T
l the eigendecomposition of S (no ordering assumed), one has

N =
∑n
l=1(λl(S) − Λσ(l))ulu

T
l , where the Λ1 ≥ Λ2 ≥ · · · ≥ Λn are the eigenvalues

λi of Λ (including multiplicities), and σ a permutation. Since for any given numbers
satisfying a < b and c < d, (a − c)2 + (b − d)2 < (a − d)2 + (b − c)2 holds, the norm
of N is minimized by selecting the permutation σ to be the identity.

The Weingarten map and its spectral decomposition are now explicitly derived.
This allows one to obtain an explicit formula for the differential of the map (4) in
Proposition 14 and Corollary 15, and the global convergence property of gradient
flows associated with the minimization principle (6) in Proposition 16.

Proposition 13. Let N =
∑m
i=1

∑ni

a=1 λi,a(N)ui,au
T
i,a ∈ N (S) be a normal vec-

tor decomposed as in (26). The Weingarten map at S ∈M in the direction N is

(27)
LS(N) : H −→ H,

(∆j
i ) 7−→

(
1

λi−λj
(UTj NUj∆

j
i −∆j

iU
T
i NUi)

)j
i
.

The principal curvatures are the real numbers

κj,bi,a =
λj,b(N)− λi,a(N)

λi − λj

for all pairs {i, j} ⊂ {1, . . . ,m} and couples (a, b) with 1 ≤ a ≤ ni and 1 ≤ b ≤ nj.
Corresponding normalized eigendirections are the tangent vectors

Φj,bi,a =
1√
2

(ui,au
T
j,b + uj,bu

T
i,a).

Proof. Differentiating ΠT (S)N with respect to ∆j
i ∈ H yields

DΠT (S)(X) ·N =
∑
i6=j

[
(Uk∆k

jU
T
j −Uj∆

j
kU

T
k )NUiU

T
i +UjU

T
j N(Uk∆k

i U
T
i −Ui∆i

kU
T
k )

]

with summation over repeated indices k. The fact that N is a normal vector implies

DΠT (S)(X) ·N =
∑
i 6=j

[
− Uj∆j

iU
T
i NUiU

T
i + UjU

T
j NUj∆

j
iU

T
i

]
.

Expression (27) follows from (∆DΠT (S)(X)·N )ji = UTj (DΠT (S)(X)·N)Ui/(λi−λj). One

checks that ∆j,b
i,a = UTj uj,bu

T
i,aUi is a basis of eigenvectors with eigenvalues κj,bi,a.

Proposition 14. Let S ∈ Symn be a symmetric matrix satisfying the conditions
of Proposition 12. The projection onto M is differentiable at S and the derivative in
a direction X ∈ Symn is given by

(28) DXΠM (S) =
∑

{i,j}⊂{1,...,m}
1≤a≤ni
1≤b≤nj

λi − λj
λi,a(S)− λj,b(S)

(uTi,aXuj,b)(ui,au
T
j,b + uj,bu

T
i,a).D
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828 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

Proof. One applies Proposition 5 with N =
∑m
i=1

∑ni

a=1(λi,a(S)−λi)ui,auTi,a. The
expression claimed is found from the equalities

1− κj,bi,a(N) =
λj,b(S)− λi,a(S)

λi − λj
,

〈X,Φj,bi,a〉Φ
j,b
i,a =

1

2
〈X, 2 sym(ui,au

T
j,b)〉(ui,auTj,b + uj,bu

T
i,a).

As an application, a formula is found for the derivative of the subspace spanned by
the first p < n eigenvectors Span(ui)1≤i≤p of a time-dependent matrix S(t) ∈ Symn.
As far as we know, this formula is original in the sense that no simplicity assumption is
required for the eigenvalues (only the condition λp(t) < λp+1(t)), although the reader
may find related results using resolvents in [37]. It is remarkable that a smooth
evolution of Span(ui(t)) is obtained as long as the eigenvalues of order p and p +
1 do not cross, although crossing of eigenvalues (and hence discontinuities of the
eigenvectors ui(t) themselves) may occur within the eigenspace.

Corollary 15. Consider S(t) =
∑n
i=1 λi(t)ui(t)ui(t)

T the eigendecomposition
of a smoothly varying symmetric matrix. Let p < n and assume λp(t) < λp+1(t).
Then the projector

∑p
i=1 ui(t)ui(t)

T over Span(ui(t))1≤i≤p is differentiable, and an
ODE for the evolution of an orthonormal basis U(t) ∈Mn,p satisfying Span(U(t)) =
Span(ui(t))1≤i≤p is

(29) U̇ =
∑

1≤i≤p
p+1≤j≤n

1

λi(t)− λj(t)
(uTi Ṡuj)uju

T
i U.

Proof. This is immediately obtained by applying (28) to the particular case where
M is the Grassmann manifold, i.e., with m = 2, λ1 = 1, and λ2 = 0.

The dynamical system (8) that finds the dominant subspaces of a symmetric
matrix or equivalently computes the map (3) is now provided.

Proposition 16. Consider S =
∑m
i=1

∑ni

a=1 λi,a(S)ui,au
T
i,a ∈ Symn satisfying

the conditions of Proposition 18. The distance functional S 7→ ‖S − S‖2 admits
no local minimum on M other than ΠM (S). Therefore, for almost any initial data
S(0) ∈ Symn, the solution S(t) =

∑m
i=1 λiUiU

T
i of the gradient flow

(30) U̇i =
∑
j 6=i

1

λi − λj
UjU

T
j SUi

converges to ΠM (S), or in other words, each of the matrices Ui(t) converges to a
matrix spanning the same subspace as Span(ui,a)1≤a≤ni .

Proof. Denote N = S− S the residual normal vector of a critical point S of the
distance functional. The condition for S to be a local minimum is that all curvatures in
the direction N satisfy κj,bi,a(N) ≤ 1, which is equivalent to the condition

λi,a−λj,b

λi−λj
≥ 0.

This condition can be satisfied only for S = ΠM (S).

Remark 3. Proposition 16 is a reformulation and an improvement of the conver-
gence result for the Brockett flow Ḣ = [H, [H,S]] as introduced in the seminal paper
[9], where the eigenvalues of S were assumed distinct. The Brockett flow is a gradient
descent for the functional J(P ) = ‖PΛPT −S‖2 with respect to P ∈ On [9, 14]. The
corresponding expression in horizontal coordinates is U̇i =

∑
j 6=i(λi − λj)UjUTj SUi,
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DYNAMICAL SYSTEMS TRACKING MATRIX PROJECTIONS 829

hence a rescaling of (30) by multiplication of all components of the covariant gradient
by the positive numbers (λi − λj)2.

Applying this result to the particular case of the Grassmann manifold, one obtains
that for almost any initial data U(0) ∈ Mn,p with U(0)TU(0) = I, the solution U(t)

of the gradient flow U̇ = (I−UUT )SU converges to a matrix U whose columns spans
the p dimensional dominant subspace of S. In fact, Babaee and Sapsis have found
that this result still holds for the general case of real matrices: the limit U then
spans the p dimensional subspace spanned by the eigenvectors associated with the p
eigenvalues of maximal real parts [6, Theorem 2.3]. In the next section, it is shown
how this result is related to the map (4) and can in fact be obtained and generalized
within the framework of oblique projections of section 2.

5. Non-Euclidean Grassmannian, bi-Grassmann manifold, and deriva-
tives of eigenspaces of nonsymmetric matrices. This section focuses on the
maps (4) and (5), mapping n-by-n matrices R ∈ Mn,n to, respectively, the orthog-
onal projector UUT onto the dominant p dimensional invariant subspace and to the
linear projector UV T onto this subspace whose kernel is the complementary invariant
subspace. These two maps are studied, respectively, in subsections 5.1 and 5.2. Fol-
lowing section 2, the normal bundles N (R) and the respective oblique linear tangent
projectors ΠT (R) are first identified, which allows one to compute Weingarten maps.
In both cases, we are able to provide explicit (complex) spectral decompositions and
therefore the differential of these maps and the stability analysis of the dynamical
system (17) to compute them. For the map (4), this dynamical system is found to co-
incide with the one introduced by Babaee and Sapsis [6], and we retrieve a direct proof
of their result as a corollary of the computation of (complex) extrinsic curvatures.

Let us note that different dynamical system approaches have also been proposed
for solving related nonsymmetric eigenvalue problems [19, 34, 28, 12].

5.1. Oblique projection on the Grassmann manifold. The image manifold
of (4) is the Grassmann manifold

M = {UUT ∈Mn,n|U ∈Mn,p and UTU = I},

embedded this time in Mn,n instead of Symn. From the previous section (equa-
tion (19)), its tangent spaces are given by T (UUT ) = {U∆T+∆UT |∆ ∈Mn,p, U

T∆ =
0}. Following section 2, the first step to study (4) is to characterize the normal bundle
N (UUT ) of the candidate oblique projection ΠM .

Proposition 17. ΠM defined as in (4) is an oblique projection on M , and the
respective normal space N (UUT ) at UUT ∈ M is the set of matrices N ∈ Mn,n

under which the subspace Span(U) is invariant:

N (UUT ) = {N ∈Mn,n|Span(NU) ⊂ Span(U)}
= {N ∈Mn,n|(I − UUT )NUUT = 0}.

Proof. One checks the conditions of Definition 1. The continuity of the eigenvalues
of a matrix implies that ΠM is unambiguously defined on an open neighborhood V ⊂
Mn,n containing M . It is clear that ΠM (UUT ) = UUT and that if N ∈ V satisfies
ΠM (UUT +N) = UUT , then the subspace spanned by U must be invariant by N =
(N + UUT ) − UUT . Reciprocally consider N ∈ N (UUT ) and denote (λi(N))1≤i≤n
the eigenvalues of N where the first p are associated with the invariant subspace
Span(U). Span(U) is invariant by N+UUT , with eigenvalues λi(N)+1 for 1 ≤ i ≤ p,
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830 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

while Span(U)⊥ is invariant by NT + UUT , with associated eigenvalues λp+j(N) for
1 ≤ j−p ≤ n−p. SinceNT+UUT andN+UUT share the same eigenvalues, it is found
by continuity that for N ∈ N (R) in a neighborhood of 0, <(1+λi(N)) > <(λp+j(N))
for 1 ≤ i ≤ p and 1 ≤ j ≤ n− p. Hence ΠM (UUT +N) = UUT .

Proposition 18. The linear projector ΠT (UUT ) whose image is the tangent space

T (UUT ) and whose kernel is N (UUT ) is given by

(31)
ΠT (UUT ) : Mn,n → T (UUT ),

X 7→ (I − UUT )XUUT + UUTXT (I − UUT ).

Proof. The relation ΠT (UUT ) = ΠT (UUT )◦ΠT (UUT ) shows that ΠT (UUT ) is a linear

projector. One then checks that Ker(ΠT (UUT )) = N (UUT ) and Span(ΠT (UUT )) ⊂
T (UUT ). The result follows by noticing that T (UUT ) ∩ N (UUT ) = {0}, which
implies Span(ΠT (UUT )) = T (UUT ).

The knowledge of ΠT (UUT ) then allows one to compute the Weingarten map and
its spectral decomposition.

Proposition 19. The Weingarten map in a direction N ∈ N (UUT ) for the
manifold M equipped with the map of projectors UUT 7→ ΠT (UUT ) is given by

LUUT (N) : T (UUT ) → T (UUT ),
X 7→ 2× sym((I − UUT )NXUUT −XUUTNUUT ).

If N =
∑n
i=1 λiuiv

T
i is diagonalizable and Span(U) = Span(ui)1≤i≤p, then LUUT (N)

is also diagonalizable and the p(n− p) eigenvalues are given by

κi(p+j)(N) = λp+j(N)− λi(N), 1 ≤ i ≤ p, and 1 ≤ j ≤ n− p.

A corresponding basis of eigenvectors Φij ∈ T (UUT ) is given by

Φi(p+j) = UUT viu
T
p+j(I − UUT ) + (I − UUT )up+jv

T
i UU

T ,

associated with the dual basis of left eigenvectors defined by

∀X ∈ T (R), 〈Φ∗i(p+j), X〉 = vTp+jXui.

Proof. The derivation of the expression of the Weingarten map is analogous to
Proposition 13 and is omitted. It is straightforward to check that the Φij are indeed
eigenvectors of LUUT (N). The dual basis is found by considering a linear combination
X =

∑
ij αijΦij ∈ T (UUT ) and by checking that αij = vTj Xui as claimed.

As a corollary, one obtains a dynamical system satisfied by the subspace spanned
by a fixed number of dominant eigenvectors of nonsymmetric matrices, which includes
instantaneous reorthonormalization of a representing basis.

Corollary 20. Let R(t) =
∑n
i=1 λi(t)uiv

T
i ∈ Mn,n be the spectral decomposi-

tion of a time-dependent diagonalizable matrix with eigenvalues λi(t) ordered such that
<(λ1(t)) ≥ · · · ≥ <(λn(t)). If <(λp(t)) > <(λp+1(t)), then the p dimensional dom-
inant invariant subspace U(t) = Span(ui)1≤i≤p of R(t) is differentiable with respect
to t and an ODE for the evolution of a corresponding orthonormal basis of vectors
U(t) ∈Mn,p satisfying Span(U(t)) = Span(ui)1≤i≤p and U(t)TU(t) = I is

(32) U̇ =
∑

1≤i≤p
1≤j≤n−p

1

λi − λp+j

[
vTp+jṘui

]
(I − UUT )fp+jg

T
i U,
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where (fi)1≤i≤n and (gi)1≤i≤n are the right and left eigenvectors of R(t)−U(t)U(t)T ,
associated with the eigenvalues λi(t)− 1 for 1 ≤ i ≤ p and λp+j(t) for 1 ≤ j ≤ n− p.

Proof. Proposition 5 (and in particular the implicit function theorem) ensures the
existence of a differentiable trajectory V (t)V T (t) such that V (t) is invariant by R(t)
and V (0) = U(0). The continuity of eigenvalues implies V (t)V (t)T = U(t)U(t)T =
ΠM (R(t)). Formula (32) follows identically as in Corollary 15.

Remark 4. Note that in (32), (ui)1≤i≤p and (vTp+j)1≤j≤n−p are also right and left

eigenvectors of R(t)− U(t)U(t)T , but not (up+j)1≤j≤n−p and (vTi )1≤i≤p.

Applying now Proposition 6 and examining the eigenvalues of the Weingarten
map, we retrieve [6, Theorem 2.3], that is, that ΠM (R) is the unique stable equilib-
rium point and the generalization of (30) to nonsymmetric matrices.

Corollary 21 (see also [6]). Let R =
∑n
i=1 λi(R)uiv

T
i ∈ Mn,n be a diagonal-

izable matrix satisfying <(λp(R)) > <(λp+1(R)). Then ΠM (R) as defined by (4) is
the unique stable equilibrium point of the dynamical system (17), which can be written
as an ODE for a representing basis U(t) as

(33) U̇ = (I − UUT )RU.

Proof. Equation (33) is obtained by writing (17) with ΠT (UUT ) being given by

(31). Equilibrium points UUT are those for which N = R − UUT ∈ N (UUT ), i.e.,
such that Span(U) is a subspace of R spanned by p eigenvectors. Denote (λi)1≤i≤p
the eigenvalues of R within Span(U) and (λp+j)1≤j≤n−p the remaining ones. Then
the eigenvalues of the Weingarten map are κi(p+j)(N) = λp+j−(λi−1). The stability
condition <(κi(p+j)(N)) < 1 is therefore satisfied for all eigenvalues only if UUT =
ΠM (R).

Note that global convergence, although expected because of the boundedness of
M , is not completely clear since (33) is not a gradient flow.

5.2. Oblique projection on the bi-Grassmann manifold. The focus is now
on map (5), whose image manifold is the set of linear projectors (not necessary or-
thogonal) over a p dimensional subspace. Next, we rely on the remark that any rank
p projector can be factorized as R = UV T , where U, V ∈ Mn,p are n-by-p matrices
satisfying the orthogonality condition V TU = I. Such matrices U and V can be
obtained from any basis of, respectively, right and left eigenvectors of R. UV T is
then the unique projector whose image is Span(UV T ) = Span(U) and whose kernel
is Ker(UV T ) = Span(V )⊥. Since this set identifies a rank p projector to a pair of p-
dimensional subspaces of a n dimensional vector space, we refer to it as bi-Grassmann
manifold.

Definition 22. The bi-Grassmann manifold is the set M of rank-p linear pro-
jectors of Mn,n:

(34)
M = {R ∈Mn,n|R2 = R and rank(R) = p}

= {UV T |U ∈Mn,p, V ∈Mn,p, V
TU = I}.

A tangent vector X ∈ T (UV T ) can be written as X = XUV
T +UXT

V , where XU

and XV can be understood as the time derivatives of the matrices U and V . Similarly
to the case of the Grassmann manifold, a gauge condition (analogous to that of the
fixed rank manifold; see [22]) is required on the matrices XU and XV to uniquely
parameterize the tangent spaces of M .
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832 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

Proposition 23. The tangent space of M is

T (UV T ) = {XUV
T + UXT

V |XU ∈Mn,p, XV ∈Mn,p , V
TXU + UTXV = 0}

= {XUV
T + UXT

V |XU ∈Mn,p, XV ∈Mn,p , V
TXU = UTXV = 0}.

The set HUV T = {(XU , XV ) ∈Mn,p ×Mn,p|XT
UV = XT

V U = 0} is referred to as the
horizontal space at R = UV T . The map (XU , XV ) 7→ XUV

T + UXT
V from HUV T to

T (UV T ) is an isomorphism. Hence M is a smooth manifold of dimension 2p(n− p).

Proof. Only the inclusion ⊂ is proved, the inclusion ⊃ being obvious. Consider
two matrices XU , XV ∈Mn,p such that V TXU + UTXV = 0. One can always write{

XU = (I − UV T )XU + UΩ,

XV = (I − V UT )XV − V ΩT ,

where Ω = V TXU = −UTXV . Denote now X ′U = (I − UV T )XU and X ′V = (I −
V UT )XV . Since V TX ′U = UTX ′V = 0 and XUV

T + UXT
V = X ′UV

T + U(X ′V )T , one
obtains the inclusion ⊂. Now, if X = XUV

T + UXT
V with UTXV = V TXU = 0, one

obtains XU = XU and XV = XTV showing the uniqueness of the parameterization
by the horizontal space.

The next step is to identify the normal space of the candidate oblique projection
(5).

Proposition 24. Consider ΠM as defined by (5). ΠM is an oblique projection
on M , and the corresponding normal space N (UV T ) at R = UV T ∈M is the set of
matrices R ∈Mn,n letting both subspaces Span(U) and Span(V )⊥ be invariant:

N (UV T ) = {N ∈Mn,n|Span(NU) ⊂ Span(U) and N [Span(V )⊥] ⊂ Span(V )⊥}
= {N ∈Mn,n|N = (I − UV T )N(I − UV T ) + UV TNUV T }.

In the following, results analogous to Proposition 19 and Corollaries 20 and 21
are derived for the bi-Grassmann manifold equipped with the bundle of normal spaces
of the map (5). The proofs are almost strictly identical and are omitted.

Proposition 25. The linear projector ΠT (UV T ) whose image is the tangent space

T (UV T ) and whose kernel is N (UV T ) is given by

(35)
ΠT (UV T ) : Mn,n → T (UV T ),

X 7→ (I − UV T )XUV T + UV TX(I − UV T ),

or in the horizontal coordinates, XU = (I − UV T )XU and XV = (I − V UT )XTV .

Remark 5. In [28], the word “oblique projection” is used to refer to the linear
tangent projection ΠT (UV T ) while ours refers to the nonlinear map ΠM .

Proposition 26. The Weingarten map LUV T (N) with respect to a normal vector
N ∈ N (UV T ) is given by

LUV T (N) : X 7→ NXUV T + UV TXN −XUV TNUV T − UV TNUV TX.

If N is diagonalizable over C and N =
∑n
i=1 λi(N)uiv

T
i denotes its eigendecomposi-

tion, written such that UV T =
∑p
i=1 uiv

T
i , then LUV T (N) is diagonalizable and its

eigenvalues are the n(n− p) numbers

κij = λj(N)− λi(N) ∀1 ≤ i ≤ p, p+ 1 ≤ j ≤ n.
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Each eigenvalue is associated with two independent eigenvectors,

Φij,U = uiv
T
j , Φij,V = ujv

T
i ,

with their respective dual eigenvectors

∀X ∈ T (UV T ), 〈Φ∗ij,U , X〉 = vTi Xuj , 〈Φ∗ij,V , X〉 = vTj Xui.

As a result, another generalization of (29) to nonsymmetric matrices is obtained.

Corollary 27. Let R(t) =
∑n
i=1 λi(t)uiv

T
i ∈ Mn,n be the spectral decomposi-

tion of a diagonalizable time-dependent matrix with <(λ1(t)) ≥ · · · ≥ <(λn(t)). If
<(λp(t)) > <(λp+1(t)), then the p dimensional dominant invariant subspace U(t) of
R(t) and its invariant complement V(t) are differentiable with respect to t. An ODE
for the evolution of corresponding bases U(t), V (t) ∈ Mn,p satisfying Span(U(t)) =
U(t) and Span(V (t))⊥ = V(t) is

(36)



U̇ =
∑

1≤i≤p
1≤j≤n−p

1

λi(t)− λp+j(t)
(vTp+jṘui)up+jv

T
i U,

V̇ =
∑

1≤i≤p
1≤j≤n−p

1

λi(t)− λp+j(t)
(vTi Ṙup+j)vp+ju

T
i V.

Finally, the dynamical system (17) that allows one to compute the invariant
subspaces U and V is made explicit, before investigating its numerical implementation
in section 6.

Corollary 28. If R =
∑n
i=1 λi(R)uiv

T
i is a real matrix diagonalizable in C and

such that <(λp(R)) > <(λp+1(R)), then UV T =
∑p
i=1 uiv

T
i = ΠM (R) is the unique

asymptotically stable equilibrium point of the dynamical system

(37)

{
U̇ = (I − UV T )RU,

V̇ = (I − V UT )RTV.

It is important to note that the above corollary does not guarantee, in contrast
with the previously derived dynamical systems, global convergence almost everywhere.
Indeed, the bi-Grassmann manifold is unbounded (for example, any matrix of the
form R = UUT + UWT with U,W ∈ Mn,p, U

TU = I, and WTU = 0 belongs
to M ). Nevertheless convergence toward ΠM (R) holds as soon as the initial point
is sufficiently close, which may be acceptable in numerical algorithms for smoothly
evolving two matrices U(t) and V (t) such that U(t)V (t)T = ΠM (R(t)).

6. Three numerical applications. We now present numerical examples that
illustrate how the extrinsic framework provides tools for numerically tracking the val-
ues ΠM (R(t)) of oblique projections (2)–(5) on evolving matrices R(t). We showcase
generalizable methods on three applications: two on the isospectral manifold con-
cerned, respectively, with the gradient flow (8) and an approximation of the exact
dynamic (17), and one on the “bi-Grassmann” manifold concerned with convergence
issues and the conversion of the local dynamic (37) to a convergent iterative algo-
rithms.

Note that we do not make any efficiency claim about the above dynamical sys-
tems over more classical iterative algorithms [25] which can also make use of good
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834 FLORIAN FEPPON AND PIERRE F. J. LERMUSIAUX

initial guesses. A useful feature of these continuous methods, though, is that they
guarantee smooth evolution of their values, for example, when tracking a basis U(t)
of eigenvectors representing a subspace as in (30). This property can be very impor-
tant, e.g., when integrated with high-order time discretizations of dynamical systems
which require smooth evolutions of U(t) (see, e.g., [23]).

6.1. Example 1: Revisiting the Brockett flow. We illustrate here the use
of the gradient flow (8). Denote S(t) =

∑n
i=1 λi(t)ui(t)ui(t)

T the eigendecomposition
as in Corollary 15 with λ1(t) > · · · > λn(t). The objective is to track an eigenspace
decomposition Rn = ⊕mi Vi(t) of m smoothly evolving subspaces Vi(t) spanned by
successive eigenvectors ui(t) and with fixed given dimensions ni:

(38) Vi(t) = Span(uj(t))j∈Ii with Ii = {1 + n1 + · · ·+ ni−1 ≤ j ≤ n1 + · · ·+ ni}.

Following section 4, we label the eigenspaces Vi(t) with m distinct real numbers
λ1 > · · · > λm, and we consider M the isospectral manifold of symmetric matri-
ces S with prescribed eigenvalues λi of multiplicities ni (definition (24)). Tracking
the subspaces Vi(t) then becomes equivalent to tracking the orthogonal projection
ΠM (S(t)) =

∑m
i=1 λiUi(t)Ui(t)

T , where Ui(t) are n-by-ni orthonormal matrices sat-
isfying Span(Ui(t)) = Vi(t).

Let n = 10, T = 1, and define, for t ∈ [0, T ],

(39)

dk(t) =


sin

(
3π

4
t+

2kπ

n

)
for 1 ≤ k ≤ 5,

1− k

2
− 1

2
sin(πt), for 6 ≤ k ≤ 10,

D(t) = diag(dk(t)),

P (t) = exp(8πtΩ)

for a given antisymmetric matrix Ω taken as random. Since P (t) is an orthonormal
matrix, we obtain a time-dependent symmetric matrix S(t) whose eigenvalues are the
dk(t) associated with rotating eigenvectors P (t) by setting S(t) = P (t)D(t)P (t)T . No-
tably, S(t) has been especially designed for admitting crossing eigenvalues at various
times as visible in Figure 2. We consider the following two settings:
Case 1: Rn = V1(t)⊕ V2(t)⊕ V3(t)⊕ V4(t)

with (λ1, λ2, λ3, λ4) = (3, 2, 1, 0) and (n1, n2, n3, n4) = (1, 1, 3, 5):

(40)


V1(t) = Span(u1(t)),

V2(t) = Span(u2(t)),

V3(t) = Span(u3(t), u4(t), u5(t)),

V4(t) = Span(u6(t), . . . , u,10(t)).

Case 2: Rn = V1(t)⊕ V2(t)⊕ V3(t)
with (λ1, λ2, λ3) = (2, 1, 0) and (n1, n2, n3) = (2, 3, 5):

(41)


V1(t) = Span(u1(t), u2(t)),

V2(t) = Span(u3(t), u4(t), u5(t)),

V3(t) = Span(u6(t), . . . , u10(t)).

We report in Figure 3 the convergence of a single performance of the gradient flow (30)
for fixed S = S(T ), solved on a pseudotime window s ∈ [0, 20] with Euler step ∆s = 0.1
and initialized with some orthonormal matrices Ui(0) satisfying Span(Ui(0)) = Vi(0).
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0.0 0.2 0.4 0.6 0.8 1.0
Time t

−4

−3

−2

−1

0

1 λ1
λ2
λ3
λ4
λ5
λ6
λ7
λ8
λ9
λ10

(a) Ordered eigenvalues λi(t): λ1(t) ≥ λ2(t) ≥
· · · ≥ λ10(t) and {λ1(t), . . . , λ10(t)} =
{d1(t), . . . , d10(t)}.

0.0 0.2 0.4 0.6 0.8 1.0
Time t

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

u1[1]
u2[1]

(b) Trajectories of the first coordinate
of the eigenvectors u1(t) and u2(t) (ob-
tained from (39)). These are discontinu-
ous when λ1(t) = λ2(t) or λ2(t) = λ3(t).

Fig. 2. Variations of the ordered spectrum of S(t) = P (t)D(t)P (t)T (equation (39)). Non-
smooth behaviors occur when eigenvalues become multiple.

0 5 10 15 20
Pseudo-time s

6.75

7.00

7.25

7.50

7.75

8.00

(a) Distance ‖S(s)− S‖

0 5 10 15 20
Pseudo-time s

0.0

0.2

0.4

0.6

0.8

1.0 U1[1,1]
U1[2,1]
U1[3,1]

(b) Coefficients U1[k, 1](s) for k ∈ {1, 2, 3}

Fig. 3. Convergence of the gradient descent (30) on the isospectral manifold M (24) for the
fixed symmetric matrix S = S(T ). The distance function S 7→ ‖S − S‖ is minimized on M , by
evolving smoothly basis matrices Ui(s) which align at convergence with eigenspaces of S.

Figure 3(b) illustrates how the pseudotime solutions Ui(s) smoothly align on the
eigendecomposition of S = S(T ).

Regarding the numerical discretization of the flow (30), the only difficulty is
to maintain the orthogonality UTi (t)Ui(t) = I which is not preserved after a stan-
dard Euler time step. This issue is addressed by the introduction of suitable retrac-
tions during the time stepping [2, 4]. For our purpose, maintaining the orthogonality
Ui(t)

TUi(t) = I for U ∈Mn,r can be directly addressed by various reorthonormaliza-
tion procedures preserving the continuous evolution of the matrices Ui(t) [4, 23, 49].
Note that in general, the time step of the discretization of ODEs such as (8) must be
selected sufficiently small with respect to the Lipschitz constant of the right-hand side
vector field. A simple rule of thumb used, e.g., in [23], is to scale it proportionally
to the inverse of the curvature locally experienced on the manifold. More elaborate
schemes can also be used to specifically address such issues [52, 38].

We then use this gradient flow to smoothly evolve bases Ui(t) representing the pro-
jection ΠM (S(t)). The time interval [0, T ] is discretized into time steps tk = k∆T for
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0.0 0.2 0.4 0.6 0.8 1.0
Time t

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75 U1[1,1]
U2[1,1]

(a) Case 1: V1(t) = Span(u1(t)) and
V2(t) = Span(u2(t)). Discontinuities occur
whenever λ1(t) = λ2(t) or λ2(t) = λ3(t).

0.0 0.2 0.4 0.6 0.8 1.0
Time t

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6 U1[1, 1]

U1[1, 2]

(b) Case 2: V1(t) = Span(u1(t), u2(t)).
Discontinuities occur only when λ2(t) =
λ3(t).

0.0 0.2 0.4 0.6 0.8 1.0
Time t

0

2000

4000

6000

8000

10000

(c) Intermediate gradient iterations: Case 1.

0.0 0.2 0.4 0.6 0.8 1.0
Time t

0

2000

4000

6000

8000

10000

(d) Intermediate gradient iterations:
Case 2.

Fig. 4. Tracking dominant eigenspaces of S(t) = P (t)D(t)P (t)T (39) by successive converged
solutions U(t) of the gradient flow (30). The number of iterations required for convergence shown
in panels (c)–(d) confirms that it is slower at discontinuities of V1(t)/ V2(t).

a uniform increment ∆t = T/300. From the knowledge at time tk of orthonormal ma-
trices Ui(t

k) satisfying Span(Ui(t
k)) = Vi(t

k), we obtain continuous updates Ui(t
k+1)

as converged solutions of inner-iterations of the gradient flow (30) with S = S(tk+1).
Results are reported in Figure 4. As expected, we observe that the matrices Ui(t)
(or equivalently, the projection ΠM (S(t))) become discontinuous at the exact in-
stants where crossing of specific eigenvalues occurs in between the eigenspaces Vi(t),
for which the decomposition Rn = ⊕mi=1Vi(t) becomes ill-defined. (Eigenvectors ui(t)
corresponding to crossed eigenvalues could be attributed indistinctly to two different
Vi(t).) Near these instants, the gradient flow (30) converges more and more slowly.
Nevertheless and importantly, crossings of eigenvalues are not an issue when they oc-
cur within the eigenspaces Vi(t): Vi(t) and its representing basis Ui(t) evolve smoothly,
and the convergence of the gradient flow is not altered, as visible in Figure 4(d). For
example, the crossing of λ1(t) and λ2(t) near t = 0.4 is not felt in Case 2, designed to
track the subspace spanned by the first two eigenvectors without tracking specifically
the individual trajectories of u1(t) and u2(t). Interestingly, global convergence of the
gradient flow (30) allows one to recapture correct bases Ui(t) after passing through
such discontinuities (which could not have been done using, e.g., the ODE (28)), al-
though the use here of an iterative algorithm reinitializing directly the matrices Ui(t)
would certainly prove more efficient computationally.
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6.2. Example 2: Dynamic approximation on the isospectral manifold.
In this part, we assume the trajectory S(t) is given by an ODE

(42) Ṡ = L(t,S)

for some smooth symmetric vector field L. Suppose it is known a priori that the
trajectory S(t) lies close to some isospectral manifold M , in the sense that the eigen-
values λi(t) of S(t) are organized in m fixed clusters of size n1, . . . , nm centered around
fixed reals λ1 > · · · > λm. If the objective is to track these clustered eigenspaces Vi(t)
but not the precise, potentially discontinuous, trajectories of each eigenvector of S(t),
then a possible solution is to approximate the ODE (29) satisfied by ΠM (S(t)) by
projected dynamical systems on the isospectral manifold:

(43) (a)

{
Ṡ = ΠT (S(t))(L(t, S(t))),

S(0) = ΠM (S(0))
or (b)

{
Ṡ = ΠT (S(t))(Ṡ),

S(0) = ΠM (S(0)).

The autonomous dynamical system (43)(a) is known as the DO approximation [22] or
dynamical low-rank [40] method when M is the fixed rank manifold, while the nonau-
tonomous (43)(b) offers a slightly better approximation if one has direct access to the
derivative Ṡ of the nonreduced dynamic Ṡ = L(t,S), i.e., (42). Equation (43)(b) is
obtained by assuming the normal component can be neglected in (16) (‖N‖ ' 0), and
(43)(a) by additionally approximating L(t,S) by L(t, S). Each offers a convenient ap-
proximation of the true dynamic (7) of ΠM (S(t)) which avoids computing and storing
the full spectral decomposition κi(N),Φi of the Weingarten map. For the isospectral
manifold, one solves the coupled system of ODEs for the trajectories of representing
n-by-ni matrices Ui(t) such that S(t) =

∑m
i=1 λiUi(t)Ui(t)

T (Proposition 11), which
in the case of (43)(b) writes as

(44) U̇i =
∑
j 6=i

1

λi − λj
UjU

T
j ṠUi.

Note that (44) is a generalization of the “OTD” equation proposed by [6]. In this
Euclidean setting, it is possible to show that error ‖S(t)−ΠM (S(t))‖ remains “con-
trolled” as long as the projection ΠM (S(t)) stays continuous. (We refer the reader
to [22, 21] for precise statements on this topic.) This means that one can expect
the approximation Span(Ui(t)) ' Vi(t) to hold if the eigenvalues of S(t) do not cross
inbetween the spaces Vi(t). As a numerical example, we consider the same setting as
subsection 6.1, but with

(45) dk(t) =



1 + 0.05 sin

(
4πt+

2kπ

n

)
for 1 ≤ k ≤ 5,

0.05 sin

(
4πt+

2kπ

n

)
for 6 ≤ k ≤ 9,

1.2 exp(−(t− 0.5)2/0.04) for k = 10 .

The corresponding trajectories of the eigenvalues dk(t), clustered near 0 and 1, are
plotted on Figure 5(a). We aim at tracking the decomposition

(46) Rn = V1(t)⊕ V2(t) with

{
V1(t) = Span(u1(t), . . . , u5(t)),

V2(t) = Span(u6(t), . . . , u10(t)),

which corresponds to the setting m = 2, (λ1, λ2) = (1, 0), and (n1, n2) = (5, 5). In
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(a) Reordered eigenvalues λi(t).

0.0 0.2 0.4 0.6 0.8 1.0
Time t
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0.6

0.8
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1.2

1.4

||S(t) − Π(S(t)||

(b) Approximation error with respect
to the exact reduction ΠM (S(t)): i.e.,
‖S(t)−ΠM (S(t))‖.

0.0 0.2 0.4 0.6 0.8 1.0
Time t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ||S(t) − S(t)||
||S(t) − Π(S(t))||

(c) Errors with respect to the full S(t):
dynamical error (blue) vs. best achievable
error (orange).

Fig. 5. “Dynamic approximation” method (43)(b) on the isospectral manifold M for tracking
dynamic eigenspaces associated with clustered eigenvalues around 0 and 1.

our implementation, we use of the approximate dynamics (44) with the analytical
value of Ṡ. We report in Figure 5(b) the time evolution of the approximation error
‖ΠM (S(t)) − S(t)‖. As observed in [55, 22], for approximate dynamics on the fixed
rank manifold, the approximation S(t) ' ΠM (S(t)) holds till a discontinuity of the
projection ΠM (S(t)) occurs, which cannot be captured by the continuous evolution
of S(t). For this example, this happens at the exact instants t where λ5(t) = λ6(t).
Figure 5(c) displays the evolution of the best achievable error ‖S(t)−ΠM (S(t))‖ be-
tween the nonreduced matrix S(t) and its projection ΠM (S(t)), versus the dynamical
error ‖S(t)− S(t)‖, which further illustrates the somewhat independent evolution of
the approximate solution S(t) after the first discontinuity.

6.3. Application 3: Issues with the non-Euclidean bi-Grassmann man-
ifold. The ODE (37) associated with the map (5) is of interest for tracking the dual
subspaces of dominant left and right eigenvectors of a dynamic matrix R(t). How-
ever, (37) does not behave as smoothly for reasons examined now and related to the
nonboundedness of the bi-Grassmann manifold. We will still show how this problem
can be fixed, since its discretization allows guessing a convergent iterative algorithm
of equivalent complexity. (Note that we will not prove here the “convergence” claim.)

Going back to the setting and the notations of subsection 5.2, a first issue oc-
curring when discretizing the dynamical system (37) for n-by-p matrices U(t) and
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V (t) is maintaining the property V TU = I during the time discretization. For this,
we propose a simple retraction for the biorthogonal manifold. (We refer to [4] for a
precise definition of retraction).

Proposition 29. For U, V ∈Mn,p with V TU = I, the map

(47)
ρUV T : HUV T −→ M ,

(XU , XV ) 7−→ (U +XU )[(V +XV )T (U +XU )]−1(V +XV )T

is a retraction on the biorthogonal manifold M .

Proof. First, denoting U1 = U+XU and V1 = (V +XV )[(V +XV )T (U+XU )]−T ,
one has ρUV T (XU , XV ) = U1V

T
1 with U1, V1 ∈ Mn,p and V T1 U1 = I, ensuring

ρUV T (XU , XV ) ∈M . Since V TU = I and for (XU , XV ) ∈ HUV T , XT
V U = XT

UV = 0,
one can write ρUV T (XU , XV ) = (U + XU )(I + XT

VXU )−1(V + XV )T . Hence the
following asymptotic expansion holds:

(48)
ρUV T (tXU , tXV ) = (U + tXU )(I − t2XT

VXU + o(t2))(V T + tXV )

= UV T + t(XUV
T + UXT

V ) + o(t2),

which implies that ρUV T is a first-order retraction.

The above retraction ρUV T can be used to obtain a discretization of (37) preserv-
ing the property V TU = I. At a time step k, the time derivatives U̇k and V̇k given
by (37) are first computed according to

(49)

U̇k = RUk − Uk(V Tk RUk),

V̇k = RTVk − Vk(UTk R
TVk) ,

where parentheses highlight products rendering the evaluation efficient (e.g., for n
possibly much greater than p; see [44]). A possible discretization of (37) using a
first-order Euler scheme and the retraction ρUV T (47) could therefore be

(50)


Uk+1 = Uk + ∆tU̇k,

Vk+1 = (Vk + ∆tV̇k)A−Tk ,

Ak = (Vk + ∆tV̇k)T (Uk + ∆tU̇k) = I + ∆t2V̇ Tk U̇k.

We observe that the use of the retraction (47) induces only a second-order correction
on the first-order Euler scheme, necessary to ensure consistency and the smooth evo-
lutions of the matrices U and V . The computation of the inverse matrix A−Tk ∈Mp,p

is not costly for moderate values of p. Nevertheless the implementation of (50) can be
numerically unstable for initial values U0 and V0 too far from the equilibrium point
(confirmed numerically; not shown here). This is no surprise, because in spite of
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ΠM (R) being the unique stable equilibrium point of the flow (37), trajectories can
possibly escape to infinity. This lack of global convergence emphasizes that the benefit
of the approach mainly holds to find small corrections to add to sufficiently good initial
guesses U0, V0 such that U0V

T
0 ' ΠM (R). For one shot computations or if continuous

updates are not required, one may rather rely on direct iterative algorithms such as
the one we propose now and detailed in Algorithm 1. The discretization (49) featur-
ing matrix vector products RUk and RTVk suggests a variant of the power method
for computing left and right eigenvectors; our Algorithm 1 implements this idea with
a computational complexity analogous to that of (50). Here, numerical stability is
obtained by adding the normalization step (51) (results confirmed in examples; not
shown here). We note that Guglielmi and Lubich [28] relied on restarting procedures
in their implementation of a dynamical system analogous to (37).

Algorithm 1 Computing dominant invariant subspaces of nonsymmetric matrices.

Given a real matrix R ∈Mn,p:

1: Grow the part of the p dominant subspace already present in Uk, Vk:

Uk+1 = RUk, Vk+1 = RTVk

2: Rotate the columns of Vk+1 such that V Tk+1Uk+1 = I:

(51) Vk+1 ← Vk+1(UTk+1Vk+1)−1

3: Normalize Uk+1 and Vk+1 such that UTk+1Uk+1 = I and V Tk+1Uk+1 = I:

(52)


Ak+1 = UTk+1Uk+1,

Vk+1 ← Vk+1A
1
2 ,

Uk+1 ← Uk+1A
− 1

2 .

Hence Uk+1 and V Tk+1 are normalized such that Uk+1V
T
k+1 is a rank-p projector,

where ‖Uk+1‖2 = p and ‖Vk+1‖2 = ‖Uk+1V
T
k+1‖2 (‖ · ‖ is the Frobenius norm).

7. Conclusion. A geometric framework was introduced for studying the differ-
entiability of (nonlinear) oblique projections and dynamical systems that allow their
efficient tracking on smoothly varying matrices. This was achieved by obtaining ex-
plicitly the spectral decomposition of the Weingarten map for various image manifolds
equipped with the natural extrinsic differential structure associated with the oblique
projection. The nonrequirement of the ambient space to be Euclidean allowed study-
ing nonsymmetric matrix maps that are not characterized by a minimization problem.
Popular matrix manifolds were studied with respect to a natural embedding yielding
new interpretations. Global stability analysis of the dynamical systems that compute
oblique projections was performed for all these manifolds. Their relevance and nu-
merical implementations for tracking smooth decompositions was discussed. Possible
future applications of the derived dynamic matrix equations abound over a rich spec-
trum of needs, from dynamic reduced-order modeling [57, 22] and data sciences [41]
to adaptive data assimilation [45, 7, 51] and adaptive path planning and sampling
[50, 63, 46, 47].
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Appendix A. Notation.

E Finite dimensional ambient space
E∗ Dual space of E
A∗ Dual operator of a linear map A
sp(A) Set of (complex) eigenvalues of

a linear map A
M Embedded manifold M ⊂ E
R ∈ E Point of the ambient space
R ∈M Point of the manifold
T (R) Tangent space at R
N (R) Normal space at R
X ∈ E Vector of the ambient space E
X ∈ T (R) Tangent vector X at R
Ker(A) Kernel of a linear operator A
Span(A) Image of a linear operator A
ΠT (R) Linear projector with Span(ΠT (R)) = T (R)

and Ker(ΠT (R)) = N (R)
LR(N) Weingarten map at R ∈M in the

direction N ∈ N (R)
〈 , 〉 Duality bracket or scalar product on E

‖ ‖ =
√
〈 , 〉 Euclidean norm

ΠM Oblique projection onto M
I Identity mapping
Mn,p Space of n-by-p matrices
Symn Space of n-by-n symmetric matrices
AT Transpose of a square matrix A
〈A,B〉 = Tr(ATB) Frobenius matrix scalar product
‖A‖ = Tr(ATA)1/2 Frobenius norm
σ1(A) ≥ · · · ≥ σrank(A)(A) Nonzeros singular values of A ∈Mn,p

(λi(A))1≤i≤n Eigenvalues of an n-by-n matrix A ordered
<(λ1(A)) ≥ <(λ2(A)) ≥ · · · ≥ <(λn(A)) according to their real parts
sym(X) = (X + XT )/2 Symmetric part of a square matrix X
skew(X) = (X− XT )/2 Skew-symmetric part of a square matrix X
δij Kronecker symbol; δii = I and δij = 0

for i 6= j

Ṙ = dR/dt Time derivative of a trajectory R(t)
DXf(R) Differential of a function f in direction X
DΠT (R)(X) · Y Differential of the projection operator

ΠT (R) applied to Y
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