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Abstract—A fundamental requirement for legged robots is
to maintain balance and prevent potentially damaging falls
whenever possible. As a response to outside disturbances, fall
prevention can be achieved by a combination of active balancing
actions, e.g. through ankle torques and upper-body motion, and
through reactive step placement. While it is widely accepted
that stepping is required to respond to large disturbances,
the limits of active motions on balancing and step recovery
are only well understood for the simplest of walking models.
Recent advances in convex optimization-based verification and
control techniques enable a more complete understanding of
the limits and capabilities of more complex models. In this
work, we present an algorithmic approach for formal analysis
of the viable-capture basins of walking robots, calculating both
inner and outer approximations and corresponding push recovery
control strategies. Extending beyond the classic Linear Inverted
Pendulum Model (LIPM), we analyze a series of centroidal
momentum based planar walking models, examining the effects of
center of mass height, angular momentum, and impact dynamics
during stepping on capturability. This formal analysis enables an
explicit calculation of the differences between these models, and
assessment of whether the simplest models ultimately sacrifice
capability, and thus stability, when designing push recovery
control policies.

I. INTRODUCTION

Push recovery is a fundamental skill for any bipedal robot–
necessary to prevent damaging falls in the presence of unantic-
ipated disturbances. Broadly speaking, typical approaches for
push recovery blend together techniques for active balancing
and for step recovery. To be successful, control policies must
be able to rapidly decide when stepping is necessary, and to
make such decisions while considering physical limitations
on potential motion. The study of push recovery strategies
has heavily focused upon simple models, many of which
admit closed-form solutions to the critical questions of control
synthesis and reachability analysis. In particular, the Linear
Inverted Pendulum Model (LIPM) [11, 12] has been broadly
influential on the study of walking robots. The LIPM is appeal-
ing because it captures the critical center of mass dynamics
of the robot while remaining relatively simple to analyze
and control. Centroidal-dynamics based approaches have been
highly effective at generating strategies which transfer to full,
high-dimensional robots (e.g. [10, 20, 8, 14]), motivating their
use here as well. Stephens [33] characterized and studied the
LIPM in the context of push recovery. Utilizing the notions
of the capture point and capturability, recent work has fully

determined the set of states in which can be stabilized within
N steps [29, 13]. This notion of capturability is critical to
safe execution of bipedal motion, as an accurate understanding
of the stabilizable states enables effective balancing and step
recovery.

The LIPM makes a number of key assumptions to simplify
the dynamical equations of motion: (1) planar center of mass
(COM) motion (often constant height), (2) constant angular
momentum, (3) fixed step time (independent of step length),
and (4) zero-impact stepping. Note that the first constraint
necessarily requires the fourth, since impulsive forces when
stepping would cause changes in the vertical velocity. Typical
control approaches based on the LIPM plan and execute
motions that satisfy these four conditions, therefore the LIPM
assumptions can be seen as model simplifications or, alterna-
tively, as restrictions on control policies.

Recent robotics research has examined some of these as-
sumptions, both in terms of balancing and step recovery.
Goswami and Kallem [5] studied the role of angular momen-
tum on balance, and Koolen et al. [15] characterized the role
of height variation. Capturability analysis was also used to
analyze reaction wheel models [13] and inverted pendulum
models [38]. Additionally, Mummolo et al. [24] used dis-
cretization and nonlinear optimization to perform exhaustively
calculation on low-dimensional jointed models. Biomechani-
cal studies have additionally investigated balancing from the
perspective of optimal control [17] and the role of arm swing
as a mechanism for modifying angular momentum [3].

Fundamentally, these works consist of specialized stability
and reachability analyses of bipedal systems. Here, we present
a unified approach to capturability computations, applicable
to a significantly broader class of models and controllers.
To enable computation for more complex models, we base
our approach on recent developments in sums-of-squares
(SOS) programming [27, 18], which has been effectively
used to compute control policies and regions of attraction
[34, 25, 35, 22, 28] and to approximate reachable sets [7].

Our primary contributions lie in the adaptation of SOS-
based approaches to capturability analysis, detailed in III, and
the insight that centroidal momentum models, as a middle
ground between the simplest models and full joint-by-joint
descriptions, are an ideal entry point for formal tools to
design dynamic motion for complex legged robots. As exact



computation of capturability is intractable, we find both inner
and outer approximations to the viable-capture basins, along
with provably effective control policies. We demonstrate the
algorithms on a series of centroidal models, evaluating the
effects of vertical acceleration, angular momentum, and impact
dynamics on the balancing and recovery capabilities of these
models.

Section II contains background of capturability analysis,
and an overview of SOS approaches to reachability and
control synthesis. Section III presents the main contributions
of this paper: specific algorithms for the inner and outer
approximations, addressing both the continuous and discrete
dynamics of balancing and stepping, along with measures
taken to improve numerical performance. Section IV contains
numerical results, with examples on five different models,
and Section V concludes with a discussion of results and
immediate directions for continued research.

II. BACKGROUND

A. Model Class

In this work, we consider a number of different planar
models for walking robots, each based on the centroidal
dynamics. Specifics of each model will be given in IV, but
all will obey a particular structure. We restrict to systems
governed by control affine dynamics with box-constrained
control inputs,

ẋ = f(x) + g(x)u,

with x ∈ Rn and u ∈ U . For simplicity, and without further
loss of generality, we take U = [−1, 1]m. Stepping events
will be assumed to occur after a fixed period, T , and result
in a discrete event with the post-step state given by a reset
map x+ = r(x−, s,Λ) for the foot location s ∈ [−1, 1] and
impact impulse Λ ∈ R. Here, we take r(x−, s,Λ) to be affine
in s. Note that some models will follow the traditional LIPM
approach and assume zero impulse during stepping, and others
will include impulsive impact forces transmitted through a
massless leg. While, for models with impacts, it might be
possible to explicitly define the impulse Λ, we instead will
exploit an implicit definition of inelastic impacts to reduce
overall problem complexity, similar to the approach taken
in [28]. In this formulation, valid impulses must satisfy an
implicit constraint of the form

h(x−, s,Λ) = 0. (1)

B. Capturability

We briefly introduce the concept of N -step capturability
from [13]. A state x0 is said to be N -step capturable if there
exists at least one trajectory starting at x0 that never reaches
a set of failed states, Xf ⊂ Rn, and contains at most N steps.
The set of all N -step capturable states is called the N -step
viable-capture basin. If a system is in a 0-step capturable state,
it is possible to avoid the set of failed states without taking
any steps, and the system can be said to be in a captured state,
which we also refer to as a balanced state.

A useful property of N -step capturability is that it enables a
recursive analysis: state x0 is N -step capturable if there exists
at least one state trajectory that starts at x0 and remains outside
of Xf forever, or until a stepping event occurs that resets the
state to an (N − 1)-step capturable state.1 This property will
be exploited in the proposed methods.

Additionally, we wish to guarantee that the robot state never
enters given unsafe or undesirable regions. For instance, the
height and orientation of the robot should be constrained to
stay within reasonable bounds. We will let the unsafe region
be described by Xu = {x : φi(x) ≥ 0, i = 1, ..., k}.

C. Barrier Functions

Barrier functions, similar in principle to Lyapunov func-
tions, provide a means for computing capturable states. They
demarcate regions in state space that are positively invariant,
meaning that if a trajectory of the system enters such a region,
then it can never leave the region. Modern tools from con-
vex optimization, particularly sums-of-squares programming
(SOS), have been widely used in recent years to search for and
certify barrier and Lyapunov functions. See [27] and [18] for
an overview of SOS programming. Recent applications have
included verification and control design of robotic systems,
[22, 34], hybrid systems [25], and of mechanical systems
undergoing contact [28].

In this work, we briefly discuss the role of time-varying
barrier functions [35]. Under mild conditions, if functions
V : R+ × Rn → R and ρ : R+ → R+ exist, such that(

V (t, x) = ρ(t) and t ∈ [0, T ]
)
⇒ ... (2)

dρ(t)

dt
− ∂V (t, x)

∂x
(f + gu)− ∂V (t, x)

∂t
> 0

then the ρ-sublevel set of the barrier function V ,

{(t, x) : t ∈ [0, T ], V (t, x) < ρ},

is positively invariant over the given time interval. Intuitively,
if, on the boundary of the sublevel set, V̇ < ρ̇, then trajectories
that start within the sublevel set cannot leave it. Note that if
(2) were to hold for all V (t, x) ≤ ρ(t), then V would be
a Lyapunov function–but the barrier condition is generally
less restrictive. The existence of such a barrier function
certifies an inner approximation of the viable-capture basin.
The goal, therefore, is to find such certificates that maximize
the practical size of this inner approximation.

D. Sums-of-squares

Observe that if V (t, x), ρ(t), and the dynamics are known
polynomial functions, then (2) is a question of positivity of a
polynomial on a basic semialgebraic set. We first remove the
semialgebraic conditions using a technique referred to as the
S-procedure [27, 32], rephrasing this problem as one of global
positivity. For example, to demonstrate that, for all x,(

g(x) ≥ 0 and h(x) = 0
)
⇒ f(x) ≥ 0, (3)

1Note that this is exactly the concept of a viability kernel with target[30, 1].



it is sufficient to find polynomials σ1(x), σ2(x), and q(x) s.t.

σ1(x)f(x)− σ2(x)g(x)− q(x)h(x) ≥ 0, (4)
σ1(x)− 1 ≥ 0, (5)

σ2(x) ≥ 0. (6)

For brevity, we will often use the notation in (3).
Critically, sums-of-squares methods allow the synthesis

barrier functions by replacing positivity constraints with the
sufficient condition that the polynomial be a sum-of-squares
[27]. If constraints like (4), and any objective function, are
linear in the coefficients of the unknown polynomials, then
this sufficient condition can be efficiently represented and
solved via Semidefinite Programming (SDP), a form of convex
optimization. In this paper, we will also be interested in
situations where both the original polynomials and multipliers
are unknown, and so bilinear approaches (discussed in III)
will be used. Bilinear formulations are also required when the
control policy is unknown, as (2) will include the product of
V (t, x) and u(t, x). Throughout the remainder of this work, we
will formulate optimization problems where constraints will
enforce that certain functions be sums-of-squares (SOS).

E. Reachability via occupation measures

Barrier functions produce conservative, inner approxima-
tions of the viable-capture basins. We also wish to produce
outer approximations, to certify that balancing recovery is
impossible from certain states, and as a measure of tightness
for the inner approximations. Recent work, originally intro-
duced in terms of occupation measures and deriving from
the work of Lasserre’s moment relaxations [19], produces
outer approximations of dynamically reachable sets [7]. This
formulation has led to a number of applications in nonlinear
control (e.g [22, 16]) with extensions to hybrid systems [31].

For notational consistency, we discuss the dual formulation
over SOS polynomials. Similar to the method of barrier
functions, this approach synthesizes functions which prove that
some set of states cannot ever be stabilized. We look for a
function V : R+×Rn → R such that V is decreasing in time
for any potential control action.

Given a compact region of state space (e.g. a ball of some
radius) X ⊂ Rn and goal set Xgoal ⊂ X , and unsafe states
Xu (assumed to be those outside X ), we search for V and a
slack function p : R+ × Rn → Rm, such that(

x ∈ X and t ∈ [0, T ]
)
⇒ ... (7)

− ∂V (t, x)

∂x
f(x)− 1T p(t, x)− ∂V (t, x)

∂t
> 0,(

x ∈ X and t ∈ [0, T ]
)
⇒ ... (8)

pi(x) ≥
∣∣∣∣∂V (t, x)

∂x
gi(x)

∣∣∣∣ for i = 1, ..,m,

x ∈ Xgoal ⇒ V (T, x) > 0. (9)

(7) and (8) imply the desired condition on V̇ . If these
conditions hold, then the 0-superlevel set of V is an outer
approximation of the viable-capture basin. Trajectories starting

Fig. 1: The viable-capture basins will be iteratively built, starting by
finding the 0-step or balancing basin. Stepping events connect the
goal for subsequent iterations to the previous basin.

from x with V (t, x) < 0 cannot ever reach the goal region,
where V > 0, without leaving X .

F. Optimizing Volume

Objective functions are chosen to maximize the size of inner
approximations and minimize the size of outer approximations.
By introducing the function W : Rn → R, with

x ∈ X ⇒W (x) ≥ 0, (10)
x ∈ X ⇒W (x) ≥ 1 + V (0, x), (11)

then minimizing
∫
X W (x)dx, “pushes down” on the 0-

superlevel set of V , and approximates the volume of the
viable-capture basin. For many common descriptions of X ,
including ellipsoidal regions, this integral can be easily com-
puted, and is linear in the coefficients of W , as in [4]. We use
this method for its simplicity and effectiveness, though other
options exist, such as in Henrion et al. [6].

III. APPROACH

Here, we present specific sums-of-squares based algorithms
for computing inner and outer approximations to the N -
step viable-capture basins for walking robots. Sums-of-squares
formulations are presented in detail to improve clarity and
reproducibility. Both approaches will follow this simple iter-
ative outline, cartooned in Fig. 1, separating the continuous
dynamics from the discrete events (stepping):

1) 0-step: Approximate the infinite-horizon set of states
from which a balancing controller can stabilize the
origin

2) N -step: Set the goal region to be the set from which a
stepping event leads to the (N − 1)-step viable-capture
basin. Approximate the backwards reachable set of this
goal region over a finite time interval.

A. Bilinear inner approximation

The approach to generate inner approximations of the
viability kernel requires finding barrier functions and a cor-
responding control policy. Since, first and foremost, we are
interested in fall prevention from the widest set of initial



conditions, the we choose to parameterize a bang-bang control
policy. As a result of Pontryagin’s Minimum Principle, we
expect bang-bang to be optimal for nonsingular problems [2].
Accordingly, define this policy in terms of switching surfaces
S : R+×Rn → Rm with ui(t, x) = sgn(Si(t, x)). This leads
to 2m barrier conditions, for all I ∈ {−1, 1}m, defined over
(potentially not connected) domains of constant control input

DI = {(t, x) : t ∈ [0, T ], IiSi(t, x) ≥ 0 for i = 1, ...,m}.

To guarantee safety with respect to Xu, the barrier function
must separate the unsafe region from the viable-capture basins.
The safety constraints and the bang-bang controller generate
the polynomial optimization program:

min

∫
BR

V (0, x)dx (I)

s.t.
(

(t, x) ∈ DI , V (t, x) = ρ(t), I ∈ {−1, 1}m
)
⇒ ...

dρ(t)

dt
− ∂V (t, x)

∂x
(f(x) + g(x)I)− ∂V (t, x)

∂t
> 0,(

x ∈ Xu, t ∈ [0, T ]
)
⇒ V (t, x) > ρ(t).

As a proxy for volume of the ρ-sublevel set, we use the
integral of V over a prescribed ball of state space. With the S-
procedure multipliers, the above optimization program will be
bilinear in the unknown polynomials (V appears both in the
antecedent and consequent of the implications). To solve it, we
adopt a two-stage technique of bilinear alternations, similar to
the approaches used in [37, 21, 28]. While these approaches
offer no guarantee of optimality, they are practically effective
and relatively straightforward to implement.

1) Strict Feasibility for Alternations: Solving a sequence of
SOS programs can be computationally challenging. Solutions
to these programs often lie on the boundary of the feasible set,
and small numerical tolerances can lead to infeasibilities in
subsequent programs. Adapting the work of Josz and Henrion
[9], we address this issue by writing the alternations in a
manner that guarantees that (1) the feasible set always has
a non-empty interior and (2) that alternating solutions lie on
the interior. These simple steps greatly enhance the numerical
stability of bilinear alternations. To accomplish this, we must
add one additional ball constraint, that xTx ≤ R2 for given
R, and corresponding S-procedure multiplier. Since we are
already restricted to the ρ-sublevel set of V , this addition has
no negative effect.

The algorithm, specified in Algorithm 1, is described here
in detail. We initialize the alternations by choosing a barrier
function based on an LQR solution. In the first stage, V, ρ and
S are fixed polynomials, and we solve the linear SOS program

min
γ,qI ,σ∗

γ (A)

s.t. γ +
dρ

dt
− ∂V

∂x
(f + gI)− ∂V

∂t
− σI,R(R2 − xTx) + ...

− qI(ρ− V )− σI,T (Tt− t2)−
m∑
i=1

σI,iIiSi is SOS,

σI,R, σI,T , σI,1, .., .σI,m are SOS, ∀I ∈ {−1, 1}m,

where γ ∈ R is a slack parameter. A solution with γ < 0
is feasible for the original problem (I). As shown in [9], the
feasible set of this program is guaranteed to contain a non-
empty interior.

In the second stage, the multipliers qI and σI,i are held
constant and we solve the program

min
γ,V,S,ρ,σI,R,σI,T

γ (B)

s.t. γ +
dρ

dt
− ∂V

∂x
(f + gI)− ∂V

∂t
− σI,R(R2 − xTx) + ...

− qI(ρ− V )− σI,T (Tt− t2)−
m∑
i=1

σI,iIiSi is SOS ∀I

σI,R, σI,T are SOS, ∀I ∈ {−1, 1}m,
V − ρ− σφ,iφi − σi,T (Tt− t2) is SOS,

σφ,i, σi,T are SOS for i = 1, ..., k∫
BR

V (x)dx ≤ c∗.

where c∗ represents the optimal cost, found via binary search.
Observe that the second stage additionally incorporates the
safety constraints described above. As with the first stage,
γ < 0 is used to verify feasibility.

Algorithm 1 Inner Approximation

Require: Termination criteria ε
Require: LQR costs Q,R for initialization

1: i← 1
2: cost0 ←∞
3: INITIALIZE
4: do
5: (qI , σI,i) =ITERA . Solve (A) for multipliers
6: (V, S, ρ, c∗) =ITERB . Solve (B) via binary search
7: costi ← c∗

8: i← i+ 1
9: while costi−1 − costi > ε costi−1

10: function INITIALIZE
11: V (x)← LQR( ∂f∂x

∣∣∣
x=0

, g(0), Q,R)

12: B(x)← − ∂V
∂X g(0)

13: end function

2) Balancing: Algorithm 1 provides the framework for
computing the N -step viable-capture basins of legged robots.
As a first step, we compute the 0-step (balancing) region. For
balancing, we pose the infinite-horizon problem, and eliminate
explicit dependence on time t. Additionally, we specify the
barrier function to take the form V0(x) = xTQx with Q � 0,
and the control switching function S0(x) to also be quadratic
in x. This condition enters as a semidefinite constraint in (B),
and ensures that the origin is contained within the barrier
function.

3) N -step: To compute the N -step viable-capture basin,
we must properly encode the condition that the N -step region



leads to the (N − 1)-step region:

VN (T, x) < ρN (T )⇒ (12)
∃s ∈ [−1, 1] s.t. VN−1(0, r(x, s,Λ)) < ρN−1(0)

For models with impacts, we first eliminate the force
variable by solving the optimization program

min
W,qV ,qh,σR

∫
BR×[−1,1]

W (x, s)dxds (R)

s.t. qw(W − 1) + qV (VN−1(0, r)− ρN−1(0)) + ...

− qhh− σR(R2 − xTx) is SOS,
σR is SOS,

where qV , qh, and σR are S-procedure multiplier polynomials,
h is the implicit constraint from (1), and qw is a given multi-
plier (fixed, to preserve linearity), typically qw = (1 + xTx+
s2)d as in Parrilo [26]. The 1-sublevel set of W , therefore,
contains the pairing of states and step locations that, through
the reset map, lead to the (N − 1)-step region. In the zero-
impact setting, simply take W (x, s) = VN−1(0, r(x, s, 0)).
As derived in the Appendix, condition (12) can be effectively
encoded as a set of SOS constraints in (B). We parameterize
VN (t, x) and SN (t, x) as quadratic in both state and time
(with quartic cross terms), to express time-varying quadratic
functions, and follow the approach of Algorithm 1.

Algorithm 1 provides a formulaic procedure for computing
an inner approximation to the N -step viable-capture regions
of a given model and a bang-bang control policy that prov-
ably achieves the discovered region. The problem of control
synthesis and verification is, however, nonconvex, and so no
guarantees of global convergence can be made. In practice, ini-
tialization with an LQR-based controller and barrier function
leads to good results–although local minima do exist.

B. Outer approximations

The approach for computing outer approximations follows
a similar technique as the inner approximations, utilizing the
underlying method of Henrion and Korda [7]. Unlike with the
inner approximations, the SOS programs are natively linear,
and so no bilinear alternations are needed.

1) Balancing: As in III-A, we pose an infinite horizon
problem, based on (7)-(11):

min
V,W,p,σR

∫
BR

Wdx (O1)

s.t. − ∂V

∂x
f − 1T p− σR(R2 − xTx) is SOS,

V |x=0 > 0,

pi −
∂V

∂x
gi − σp,i(R2 − xTx) is SOS for i = 1, ..,m,

pi +
∂V

∂x
gi − σn,i(R2 − xTx) is SOS for i = 1, ..,m

W is SOS,
W − V − 1 is SOS,

where V : Rn → R, p : Rn → Rm, and the σ’s are S-
procedure multipliers. We take the set of failed states to be

those outside the R-radius ball. Given a solution to (O1), the
0-superlevel set of V , {x : V (x) > 0} provides an outer
approximation to the 0-step viable-capture basin.

2) N -Step: As with the inner approximations, we must also
include constraints which link the N and (N−1)-step regions.
To compute an outer approximation, we express the sentiment
that the goal region (t = T ) for the N -step calculation must
include all states which can be brought to the beginning N−1
capture basin (t = 0). Defining

H := {(x, s,Λ) :s ∈ [−1, 1], h(x, s,Λ) = 0, ...

VN−1(0, r(x, s,Λ)) ≥ 0},

then this condition can be written

(x, s,Λ) ∈ H ⇒ VN (T, x) ≥ 0. (13)

Unlike with the inner approximations, no secondary step
is required and this constraint can be directly incorporated in
a single stage. To compute the N -step outer approximation,
solve the SOS program described by (7)-(11) and (13):

min
VN ,W,p,qh,σ∗

∫
BR

Wdx (O2)

s.t. − ∂V

∂x
f − ∂V

∂t
− 1T p− ...

σR(R2 − xTx)− σT (Tt− t2) is SOS,

VN (T, x)− σV VN−1(0, r(x, s,Λ))− σs(1− s2)− qhh
is SOS,

pi −
∂VN
∂x

gi − σRp,i(R2 − xTx)− σTp,i(Tt− t2)...

is SOS for i = 1, ..,m,

pi +
∂VN
∂x

gi − σRn,i(R2 − xTx)− σTn,i(Tt− t2)...

is SOS for i = 1, ..,m,

W is SOS,
W − VN (0, x)− 1 is SOS,
σR, σT , σV , σs, σRp,i, σRn,i, σTp,i, σTn,i are SOS,

where qh and the σ’s are multipliers. Solutions to (O2)
provide an outer approximation of the N -step viable-capture
basin as the 0-superlevel set of V (0, x). Tightness of these
approximations is governed by the total polynomial degree
used for V and W , with convergence results found in [7].

IV. EXAMPLES

The approach is demonstrated on four examples, computing
inner and outer approximations to the 0-step and 1-step basins.
These examples explore the effects of three of the primary
assumptions made in the standard LIPM. For each example,
we define the control-affine dynamics and reset map, allowing
application of the algorithms in III. Solutions are generated in
MATLAB, using Spotless [36] to formulate SOS programs and
MOSEK [23] to solve the resulting semidefinite optimizations.
Depending on model complexity, solutions were computed
over a period of minutes to hours on a desktop computer.
Comparisons across models for the balancing regions are also



TABLE I: Example model properties

Value Value Value
T 0.3 s z̄cm 1 m J 0.125 m2

rstep 0.7 m Uz,max 5 m/s2 Ux,max 1 m/s2

rfoot 0.05 m zmax 0.5 m θmax 90 deg

illustrated at the end of the section. Model properties were
chosen to emulate those of a prototypical walking robot and
are listed in Table I. Sampling and numerical simulations, not
depicted, have also been used as evidence that the true viable-
capture basins lie between the inner and outer approximations.

A. LIPM

For validation, we present approximations for the basic
planar LIPM (constant center of mass height, z̄cm), where the
true viable-capture basins are explicitly known. The ground
reaction forces (GRF) of the LIPM are constrained so that
z̈cm = 0, and the angular momentum is also constant. A
cartoon illustration of the model is seen in Fig. 2 A single
control input, u1, governs the location of the center of pressure
with respect to the robot’s foot, and is bounded by the
foot radius rfoot. The model has one degree of freedom,

x =

[
xcm
ẋcm

]
, with dynamics.

ẍcm =
g

z̄cm
(xcm + rfootu1.) (14)

Stepping, up to distance rstep, occurs without impact, and so
the reset map is given by

r(x−, s) =

[
xcm− − rsteps

ẋcm−

]
. (15)

Results are illustrated in Fig. 3, where the balancing and
1-step approximations are nearly identical to the explicit
calculations from Koolen et al. [13]. For this simple model,
both inner and outer approximations do an excellent job of
capturing the true viable-capture basins with minimal gap.

Fig. 2: Here, zcm remains constant for the LIPM, and the ground
reaction forces must point from the center of pressure on the foot
through the center of mass.

B. Variable Height

As a first extension, we relax the assumption that z̈cm = 0.
The resulting model has two degrees of freedom, xcm and

Fig. 3: There is a small gap between inner and outer approximations
for the LIPM. The explicitly known viable capture basins are visually
indistinguishable from the outer regions, and so are not plotted here.

Fig. 4: The ability to vary the vertical COM acceleration has a small
effect on the viable capture basins, though the gap between inner and
outer approximations is larger for the higher dimensional model.

zcm, along with a second control input that determines the
vertical acceleration. The equations of motion are:

ẍcm =
g + Uz,maxu2

zcm
(xcm + rfootu1), (16)

z̈cm = Uz,maxu2 (17)

Note that (16) is not natively polynomial in x and control
affine, and so we approximate using a quadratic Taylor ex-
pansion of z−1cm about the nominal height (z̄cm) and linear
expansion in the control input variables (eliminating the com-
paratively small second-order term u1u2). Additionally, we
enforce the physical constraint that the variation in height
satisfy |zcm − z̄cm| ≤ zmax, defining a corresponding unsafe
region. As with the LIPM, this is a zero impact model, and
so the reset dynamics remain unchanged from (15), with the



Fig. 5: An impulsive force during footstrike causes an instantaneous
change in the horizontal and center of mass velocities.

addition that zcm+ = zcm− and żcm+ = żcm−.
Fig. 4 illustrates a slice of the the viable capture-regions

for this model, where zcm = z̄cm and żcm = 0, demonstrating
the marginal improvement in control authority gained by this
additional control authority. Koolen et al. [15] also analyzed
a variable height model, for balancing only, although there
are a few key differences between that work and this. The
approach there was able to exactly calculate the 0-step viable-
capture basin, without approximation. However, their model
was significantly more permissive in both input and state
constraints, using the bounds z̈cm ≥ 0 and zcm ≥ 0 with no
upper bounds. The ability to include non-zero limitations on
inputs and states largely accounts for the more limited benefits
to variable height that are demonstrated here.

C. Incorporating Impact Dynamics

As presented in III, we are also able to include impact
dynamics in our models. Using an assumption of a massless
leg, an impact generates an impulsive force from the landing
foot through the center of mass, illustrated in Fig. 5. The
impulse must satisfy the post-impact constraint that the center
of mass velocity be orthogonal to the new stance leg. The reset
map and reset constraints are therefore

x+ = r(x−, s,Λ) =


xcm− − rsteps

zcm−
ẋcm− + Λ(xcm− − rsteps)

żcm− + Λzcm−

 , (18)

h(x−, s,Λ) = (ẋcm+xcm+) + (żcm+zcm+). (19)

A slice of the viable-capture basins is shown in Fig. 6.
While one might expect the impacts to have a strong stabilizing
influence, the effect on capturability appears minimal.

D. Variable Height and Rotational Inertia

The final model under consideration incorporates variable
rotational inertia to the variable height model of IV-B and is
shown in Fig. 7. Rotational inertia is captured in a reaction
wheel style model, similar to the one studied in [13]. An
additional degree of freedom, θ, describes the orientation of
the reaction wheel with a third input that governs the additional
lateral acceleration. Parameter J encodes the ratio between
the moment of inertia and mass. The limit on the third input,
in Table I, realistically restricts the angular acceleration to 8

Fig. 6: A slice of the viable-capture basins for a variable height model
with impact dynamics.

Fig. 7: With variable angular momentum, the ground reaction forces
are no longer required to point directly at the COM.

rad/s2. Safety constraints additionally enforce that |θ| ≤ θmax,
to capture the fact that the robot torso is restricted in its range
of movement. The nominal equations of motion are

ẍcm =
g + Uz,maxu2

zcm
(xcm + rfootu1) + Ux,maxu3,

z̈cm = Uz,maxu2, θ̈ =
zcm
J
Ux,maxu3.

As with (16), we use Taylor approximations to pose a poly-
nomial, control affine problem. Fig. 8 illustrates the viable-
capture basins for this model, demonstrating a significant
improvement in capturability as compared with simpler ap-
proaches (see Fig. 9). Nonetheless, stepping remains the only
mechanism for recovering from large disturbances. To solve
this higher dimensional model, the optimization problems are
correspondingly larger, and the gap between inner and outer
approximations is also larger. Computational considerations
limited the outer approximations to fourth degree polynomials,
whereas the other examples were carried out with polynomials
of degree six and higher.



Fig. 8: The viable-capture regions for a model including variable
height and inertia illustrate significantly larger regions than with
simpler approaches, particularly the 0-step basin. However, with
increased model complexity, the gap between inner and outer ap-
proximations is also larger.

V. CONCLUSION

The ability to formally analyze multiple walking models
enables a deeper understanding of the advantages and limita-
tions of different control approaches. The presented algorithm
allows us to explicitly bound the potential benefits from lever-
aging center of mass height, angular momentum, and impact
dynamics–thus calculating the limitations of strategies based
on the simplest models. Furthermore, these optimization tools
also offer algorithmic approaches to control synthesis. Along
with the inner approximations, we have designed bang-bang
control policies with provable guarantees of performance. The
barrier functions themselves could be also be used in a similar
manner to that of control Lyapunov functions–describing a
broader set of control actions which are also provably ef-
fective. While the results here are numerical approximations
for simple models, these tools enable principled analysis and
control design for systems beyond the capability of classical
approaches. Future work will explore the effectiveness of
these policies along with alternate control implementations.
For instance, The occupation measure methods have led to
work on control synthesis [22, 16]. New directions also include
analysis of additional walking models. For example, models
which capture the left-right asymmetry foot placement for
lateral stability and as well as an examination of swing leg
dynamics.

APPENDIX

Details for expressing (12) as SOS constraints are given
here. While not strictly necessary, it is efficient to leverage
the fact that W (x, s) is a convex quadratic in s. Observe that
(12) can be equivalently written as the statement

If W (x, s) = 1⇒ |s| > 1, then VN (T, x) ≥ ρN (T ). (20)

Fig. 9: Comparisons between inner (top) and outer (bottom) approx-
imations of the 0-step basins are shown. While neither modification
to the LIPM greatly expands the capture basin, the effect of angular
momentum is noticeably greater than that of vertical acceleration.

Rewriting W (x, s) − 1 = as2 + b(x)s + c(x), where a > 0
is a scalar, we solve for s and can manipulate the quadratic
formula to express the condition |s| > 1 as

(−b2 + 4ac > 0) ∨ ... (21)
((b− 2a > 0) ∧ (a− b+ c > 0)) ∨ ...

((−b− 2a > 0) ∧ (a+ b+ c > 0))

Defining VT (x) := VN (x, T ) and ρT := ρN (x, T ), these
conditions are naturally incorporated via the S-procedure as
additional SOS constraints in (B):

qV,1(VT − ρT )− σr,1(4ac− b2) is SOS,
qV,2(VT − ρT )− σr,2(−2a+ b)− σr,3(a− b+ d) is SOS,
qV,3(VT − ρT )− σr,4(−2a− b)− σr,5(a+ b+ d) is SOS,

where qV,i are fixed multipliers (like qw) and the σ’s are new
S-procedure multipliers.
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