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Abstract 

Inverse Uncertainty Quantification (UQ), or Bayesian calibration, is the process to quantify the uncertainties of random 

input parameters based on experimental data. The introduction of model discrepancy term is significant because “over-

fitting” can theoretically be avoided. But it also poses challenges in the practical applications. One of the mostly 

concerned and unresolved problem is the “lack of identifiability” issue. With the presence of model discrepancy, 

inverse UQ becomes “non-identifiable” in the sense that it is difficult to precisely distinguish between the parameter 

uncertainties and model discrepancy when estimating the calibration parameters. Previous research to alleviate the 

non-identifiability issue focused on using informative priors for the calibration parameters and the model discrepancy, 

which is usually not a viable solution because one rarely has such accurate and informative prior knowledge. In this 

work, we show that identifiability is largely related to the sensitivity of the calibration parameters with regards to the 

chosen responses. We adopted an improved modular Bayesian approach for inverse UQ that does not require priors 

for the model discrepancy term. The relationship between sensitivity and identifiability was demonstrated with a 

practical example in nuclear engineering. It was shown that, in order for a certain calibration parameter to be 

statistically identifiable, it should be significant to at least one of the responses whose data are used for inverse UQ. 

Good identifiability cannot be achieved for a certain calibration parameter if it is not significant to any of the responses. 

It is also demonstrated that “fake identifiability” is possible if model responses are not appropriately chosen, or 

inaccurate but informative priors are specified. 
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1. Introduction 

Inverse Uncertainty Quantification (UQ), also referred to as inverse/backward problem [1] or parameter estimation, 

is the process to quantify the uncertainties of random input parameters based on experimental data. Inverse UQ is 

crucial to forward uncertainty propagation, sensitivity and validation studies which all suffer from the “lack of input 

uncertainty information” issue. It seeks uncertainties in calibration parameters that are most consistent with the 

physical observations, the computer model and any prior beliefs gained through previous experiments or expert 

judgments. Inverse UQ by definition is very similar to Bayesian/statistical calibration [2][3], which is also known as 

Calibration under Uncertainty (CUU) [4]. In this work we treat both processes as the same and will use them 

interchangeably. 

Most inverse UQ related work of nowadays follow the seminal work of Kennedy and O’Hagan [2], hereafter 

referred to as the “KOH” approach. The KOH approach is comprehensive in that it accounts for many sources of 

uncertainties, especially model discrepancy. Model discrepancy, also referred to as model inadequacy, model 

uncertainty, model bias, model error, model form error or structural uncertainty, is due to insufficient or inaccurate 

underlying physics, numerical approximation errors, and/or other inaccuracies that would exist even if all the 

parameters in the computer model were known [2][5][6]. It is important to consider model discrepancy as otherwise 

we would have an unrealistic level of confidence in the computer simulations [5]. 
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Inverse UQ is known to be conceptually and mathematically much more difficult than forward UQ [1], mainly 

because of the ill-posedness [7] of inverse problems. The introduction of model discrepancy term by the KOH approach 

is significant because “over-fitting” (biased parameter estimations, which means that the calibration parameters are 

over-calibrated to a certain set of observation data, causing large prediction errors when the computer model is used 

for other experimental conditions) during inverse UQ can theoretically be avoided [5]. But it also poses challenges in 

the practical applications. One of the mostly concerned and unresolved problem is the “lack of identifiability” issue 

[5][6][8]. Identifiability refers to whether the true values of calibration parameters can theoretically be inferred based 

on given data. Without the model discrepancy term, inverse UQ is a straightforward and statistically “identifiable” 

process. However, with the presence of model discrepancy, inverse UQ becomes “non-identifiable” in the sense that 

it is difficult to precisely estimate the calibration parameters and to distinguish between the effects of parameter 

uncertainty and model discrepancy. 

The root of non-identifiability is the confounding between the calibration parameters and the model discrepancy 

[6][9][10]. Multiple different combinations of the computer model (with different values for the calibration 

parameters) and its corresponding model discrepancy might result in equally good agreement with the measurement 

data and equally high values for the likelihood function during Markov Chain Monte Carlo (MCMC) sampling. For 

instance, Jiang et al. [11] illustrated a simple case in which three different combinations of calibration parameter and 

discrepancy function result in equally good agreement with the physical observations. 

The degree of identifiability is measured by the posterior standard deviation (in case of single) [6][8] or posterior 

covariance matrix (in case of multiple) [11][12] of the calibration parameters. A tight posterior distribution indicates 

that a parameter is identifiable while a widely dispersed one means that a parameter cannot be precisely quantified and 

hence has poor identifiability. It is crucial to achieve good identifiability during inverse UQ for the following reasons: 

1. The primary goal of inverse UQ is to address the “lack of input uncertainty information” issue. 

Uncertainties of calibration parameters can only be successfully learned with good identifiability. 

2. Good identifiability also yields accurate estimation of model discrepancy posterior, which helps 

determining model deficiencies and provides guidance for future improvement of computer models. 

3. Better knowledge of the calibration parameters produces more accurate computer model predictions over 

a broad domain of application. That is, most calibration parameters have fixed “true” values which are 

independent of the context of the simulator’s application [5]. The posteriors learned from the calibration 

domain are still applicable for domains where no physical observations are available, e.g. the extrapolated 

prediction domain. 

The most popular and tested method to describe model discrepancy is Gaussian Process (GP) [13][14] following 

the KOH approach [2][15]. In order to deal with the lack of identifiability, it is recommended in [5][9][10] that one 

should use proper prior distributions (informative, usually with a specific functional form) for the calibration 

parameters and the model discrepancy function. However, it is often impossible to assign informative priors for either 

calibration parameters or model discrepancy because one rarely has significant prior knowledge of them. Firstly, 

calibration parameters with informative priors would have been treated as known rather than targets for inverse UQ. 

Secondly, it is inherently paradoxical to find a proper functional form of model discrepancy when one does not know 

the reality. Finally, it was demonstrated in [6] that there is inherent danger of using informative but inaccurate priors. 

Such misspecified priors can possibly result in tight posterior distributions for calibration parameters which are “far 

away” from the “true” solutions. In this case, one will mistakenly believe that good identifiability has been achieved 

while the solutions are actually wrong. 

Ling and colleagues [16] investigated five different prior formulations of model discrepancy function for Bayesian 

calibration: (1) constant, (2) Gaussian random variable with fixed mean and variance, (3) Gaussian random variable 

with input-dependent mean and variance, (4) Gaussian random process with stationary covariance function, and (5) 

Gaussian random process with non-stationary covariance function. Five posterior distributions of calibration 

parameters and model discrepancy were obtained based on the five priors. Next a reliability-based validation metric 

was used to assess the model predictions using each of the posteriors. The resulting quantitative validation metrics 

then served as weights to combine the five posterior distributions into a single distribution. Such Bayesian model 

averaging accounts for the uncertainty induced by the lack of knowledge regarding the model discrepancy. However, 

this method has limitations in practical applications. Firstly, some of the priors may not reflect the true model 

discrepancy and they may lead to wrong posteriors. The validation step may not be able to rule the corresponding 

posterior out (by assigning small weights in Bayesian model averaging) especially when validation data is limited. 
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Secondly, there is no guidance in choosing an appropriate threshold for the reliability-based validation metric. Thirdly, 

this technique may be useful to reduce the contribution from an improper prior for model discrepancy, but the proposed 

five priors does not represent all possible functional forms. For instance, model discrepancy may be linear or quadratic 

functions. Finally, considering multiple functional forms for priors will induce large computational cost when there 

are multiple responses. 

Arendt and colleagues [8] showed that good identifiability can be achieved by including multiple responses that 

share a mutual dependence on a common set of calibration parameters. The authors extended the single response 

modular Bayesian approach [6] to multiple responses for calculating posteriors of the calibration parameters and the 

model discrepancy. With numerical study of a simply supported beam, it was demonstrated that considering multiple 

responses can improve identifiability by an amount that ranges from minimal to substantial, depending on the 

characteristics of the specific responses that were combined. However, considering each combination one-by-one may 

be computationally prohibitive for problems with many responses. Including all of the responses is also not a viable 

solution due to the following reasons: (1) including additional responses increases the computational cost and may 

cause numerical instabilities (e.g. conditioning issue), (2) some responses may be redundant in the sense that they 

contain the same information as others, (3) many responses are easily available from computer simulations but not 

measurable or prohibitively costly to measure in reality. 

More recent work [11][12] addressed the issue of how to select the most appropriate subset of responses to best 

enhance identifiability. The authors used a preposterior analysis approach that, prior to conducting the physical 

experiments but after conducting the computer simulations, can predict the relative improvement in identifiability that 

will result using different subsets of responses. However, the preposterior analysis approach induces large 

computational cost.  Its application in practice is also constrained by cost in physical experiments. For example, in 

nuclear engineering, legacy data are usually used for inverse UQ since new experiments are normally expensive, which 

means that we are constrained to only use responses with available data. 

The work presented in this paper is inspired by the work presented in [6][8]. The authors showed in [6] that the 

identifiability strongly depends on the “nature” of the computer model responses as a function of the calibration 

parameters. It was also pointed in [8] that different combinations of responses result in drastically different 

identifiability. However, it was not explained how the “nature” of model responses as functions of the calibration 

parameters affect the identifiability for a generic problem. Better understanding of why certain combinations of 

multiple responses improve identifiability much more than others is necessary, which can guide the users to 

systematically choose the responses that result in the largest improvement in identifiability. 

In this work, we will show that identifiability is largely related to the sensitivity of the calibration parameters w.r.t. 

the chosen responses. In order for a certain calibration parameter to be statistically identifiable, it should be significant 

to at least one of the responses whose observation data are used for inverse UQ. To the best of the authors’ knowledge, 

no previous work has studied the connection between sensitivity and identifiability. Sensitivity Analysis (SA) is the 

study of how uncertainties in the responses can be attributed to various input parameters [17]. SA provides a ranking 

of the input parameters by their importance to responses. In this work we use Sobol’ indices to represent sensitivity. 

Sobol’ indices [18] measures the percentage of the variances (or uncertainties) in responses that can be apportioned to 

each one of the input parameters or their combinations, which is a very straightforward measure of sensitivity. 

We investigated a practical example in nuclear engineering in which the calibration parameters have distinct 

sensitivities for the responses. The numerical test is the inverse UQ of nuclear reactor system thermal-hydraulics code 

TRACE [19] physical model parameters, using experimental data from the OECD/NEA BWR Full-size Fine-Mesh 

Bundle Tests (BFBT) benchmark [20]. This test consists of five calibration parameters and four responses. Each 

response has different significant contributors. We adopted an improved modular Bayesian approach developed in a 

recent work [13][21] for inverse UQ which does not require priors for the model discrepancy GP emulator. By 

performing inverse UQ with different combinations of the responses and looking at the corresponding posteriors, a 

connection between sensitivity and identifiability can be established.  

This paper is organized in the following way. Section 2 briefly discusses the inverse UQ methodology and the 

identifiability issue. Section 3 presents a general overview of global sensitivity analysis using Sobol’ indices. The 

numerical test example is defined in Section 4. Sections 5 and 6 present the results. Section 5 concludes the paper. 
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2. Inverse Uncertainty Quantification 

2.1. Bayesian formulation for inverse UQ 

In this section, we will briefly present the Bayesian formulation for inverse UQ problems. Consider a general 

computer model 𝐲M = 𝐲M(𝐱, 𝛉) where 𝐲M is the model response, 𝐱 is the vector of design variables, and 𝛉 is the 

vector of calibration parameters (See [13] for detailed discussion on the classification of input parameters). Denote the 

physically measured response as 𝒚E(𝐱), the “model updating equation” [2][6] is defined as:  

 𝒚E(𝐱) = 𝒚M(𝐱, 𝛉∗) + δ(𝐱) + 𝛆 (1) 

where 𝛉∗ represents the “true” but unknown values for the calibration parameters, the learning of which is the goal of 

inverse UQ process. The term δ(𝐱)  is called model discrepancy [2], which is due to incomplete or inaccurate 

underlying physics, numerical approximation errors, and/or other inaccuracies that would exist even if all the 

parameters in the computer model were known. Finally 𝛆~ 𝒩(𝟎, 𝚺exp) represents the measurement noises. The model 

updating equation serves as the starting point of the inverse UQ process. The model discrepancy term was first 

addressed in the seminal work of Kennedy and O'Hagan [2]. Based on the model updating equation and the Gaussian 

assumption of the measurement noises, 𝛆 = 𝒚E(𝐱) − 𝒚M(𝐱, 𝛉∗) − δ(𝐱) follows a multi-dimensional Gaussian 

distribution. The posterior can be written as: 

 p(𝛉∗|𝒚E, 𝒚M) ∝ p(𝛉∗) ∙
1

√|𝚺|
exp [−

1

2
[𝒚E − 𝒚M − δ]T𝚺−1[𝒚E − 𝒚M − δ]] (2) 

Note that the likelihood covariance matrix 𝚺 has three parts: 

 𝚺 = 𝚺exp + 𝚺bias + 𝚺code (3) 

The first term  𝚺exp  is the experimental uncertainty caused by measurement noise  𝛆 . The second term 𝚺bias 

represents the model uncertainty, as stated earlier, due to incomplete/inaccurate underlying physics and numerical 

approximation errors. The third term 𝚺code is called code uncertainty, or interpolation uncertainty, because we do not 

know the computer code outputs at every input setting, especially when the code is computationally prohibitive. In 

this case, one might choose to use some kind of metamodels (e.g. GP). Code uncertainty should only be considered 

when metamodels are used. For a complete and detailed discussion of the inverse UQ formulation, see [13]. The 

posterior function can be explored by MCMC sampling to obtain the posterior distributions. 

2.2. Treatment of the model discrepancy term 

The introduction of model discrepancy term by the KOH approach is comprehensive in the sense that many different 

sources of uncertainties are considered in Bayesian calibration, i.e. uncertainties from parameter, model, experiment 

and code. It is also advantageous to consider model discrepancy because “over-fitting” (biased parameter estimates) 

can theoretically be avoided. However, it also poses challenges in the practical engineering applications. As shown by 

Brynjarsdottir and O’Hagan [5], the calibration results may not be satisfying if the prior assumption of model 

discrepancy does not capture the effect of missing physics in the model. However, the missing/insufficient physics is 

not known or not quantifiable because otherwise model developers could have incorporated them in the computer 

codes. Therefore, researchers have been trying to describe the model discrepancy term mathematically. One of the 

most popular choices is using GP [14]. Treatment of model discrepancy with GP can be further classified as two 

different techniques, full Bayesian [22][23] and modular Bayesian [6][8][10]. As this paper is not intended to review 

on these approaches, in the following we will only briefly comment on full/modular Bayesian. Interested readers can 

refer to [13] for a detailed review and comparison. 

In brief, both full and modular Bayesian approaches use a GP emulator to replace the full model (original computer 

code) during MCMC sampling, and a second GP model to represent the model discrepancy. Both GP models have 

unknown hyperparameters, 𝚿M = {𝛃M, 𝜎M
2 , 𝛚M, 𝐩M}  for computer model and  𝚿δ = {𝛃δ, 𝜎δ

2, 𝛚δ, 𝐩δ}  for model 

discrepancy, where 𝛃∙are the basis functions, 𝜎∙
2 are the process variances, 𝛚∙ are the characteristic length-scales and 

𝐩∙ are the roughness parameters [13]. Full and modular Bayesian approaches differ in their treatment of the unknown 
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GP hyperparameters. In full Bayesian, both 𝚿M and 𝚿δ are treated in a similar way as the calibration parameters 𝛉. 

They are assigned priors which also enter the likelihood function. Eventually posteriors of 𝚿M, 𝚿δ and 𝛉 are solved 

for all together. Then 𝚿M and 𝚿δ need to be integrated out from the joint posterior to get marginal distributions of 𝛉. 

However, in modular Bayesian, the estimation of 𝛉, 𝚿M and 𝚿δ are all separated. Modular Bayesian uses plausible 

estimates of {𝚿M, 𝚿δ} evaluated by methods like Maximum Likelihood Estimation (MLE) and treat them as if they 

were the true values of {𝚿M, 𝚿δ}. 

Both full and modular Bayesian approaches suffer greatly from the “lack of identifiability” issue. In the introduction 

part, discussions on identifiability have been presented concerning its origin, importance, previous treatments and 

limitations. The most investigated method to resolve the “lack of identifiability” issue is to use appropriate priors for 

model discrepancy. Note that the “prior for model discrepancy” essentially means the “priors for model discrepancy 

GP hyperparameters 𝚿δ”. Previously, researchers used distributions like normal, gamma, beta and inverse gamma 

[9][22][23][24][25], but there were no explanations about how the distribution parameters were chosen.  

In this work, we adopt an improved modular Bayesian approach developed in a recent work [13][21] that does not 

require priors for the model discrepancy term. The improved modular Bayesian approach also uses two GP models to 

represent full model and model discrepancy respectively. The unknowns 𝚿M are estimated using training samples 

from carefully designed full model runs. The primary distinction of the proposed method with classic modular 

Bayesian approach [6][8][10] is the way of solving for 𝚿δ. To solve for 𝚿δ with MLE, we need training data whose 

input is 𝐱 and output is the “observations” of model discrepancy. However, such direct observations of δ(𝐱) are never 

available because the reality is unknown. Therefore, we need substitutes of such “observation data” for model 

discrepancy. The improved modular Bayesian approach [13] is motivated by finding such “observation data”. 

This approach first uses a sequential Test Source Allocation (TSA) algorithm [21] to separate given data for 

validation and calibration (inverse UQ). Then the computer model is executed in the validation domain using the 

nominal values or prior means of the calibration parameters. The differences between the resulting model outputs and 

physical observations serve as “observation data” for model discrepancy, based on which a GP model is trained while 

the observation noise serves as “nugget” term. In the fitting process, 𝚿δ = {𝛃δ, 𝜎δ
2, 𝛚δ, 𝐩δ} are estimated using MLE 

and requires no prior distributions. Evaluating this GP model at design variables 𝐱 in the calibration domain provides 

the model discrepancy estimations, which will enter the likelihood function during MCMC sampling. 

2.3. Dealing with the identifiability issue 

The improved modular Bayesian approach [13][21] does not require priors for the model discrepancy. But this does 

not mean that it is capable of bypassing the identifiability issue. In this work, we will show that identifiability is largely 

related to the sensitivity of the calibration parameters w.r.t. the chosen responses. The connection between sensitivity 

and identifiability can be explained in an intuitive way. Suppose there are two calibration parameters and one 

responses. Parameter A is significant in the sense that its uncertainty causes 99% of the variation in the response, while 

parameter B can only accounts for the remaining 1%. During the random walk in MCMC sampling, most values in 

the prior range of parameter B produce equally well-fitting of the model response with observations. Therefore, unlike 

parameter A, the posterior samples of parameter B will not be concentrated in a certain region, resulting in large 

posterior standard deviation (STD) and non-identifiability. 

In order for a certain calibration parameter to be statistically identifiable, it should be significant to at least one of 

the responses whose measurement data are used for inverse UQ. If such a condition cannot be satisfied, improving the 

model discrepancy prior in full Bayesian or classical modular Bayesian approaches will not alleviate the non-

identifiability problem. To justify this claim, we applied the improved modular Bayesian approach to a practical 

problem in nuclear engineering, which is the inverse UQ of TRACE [19] physical model parameters using BFBT 

benchmark steady-state void fraction data [20]. This test consists of five calibration parameters and four responses 

with different significant contributors. By performing inverse UQ with different combinations of the responses and 

looking at the corresponding posteriors, a connection between sensitivity and identifiability can be established. We 

will also detect the strength of identifiability by the posterior STDs. Note that posterior STD may be an oversimplified 

indication of the spread of a distribution, especially for non-normal cases. However, it is believed to be the most 

relevant single measure of identifiability and used in many previous work [6][8][11][12][16]. 
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3. Sobol’ indices for global sensitivity analysis 

In this section, we briefly introduce global sensitivity analysis (SA) using Sobol’ indices. SA is the process to 

determine how uncertain input parameters contribute to the variation in the outputs. Methods for SA can be generally 

categorized as local or global [17][26]. Local SA methods mainly focus on the variations of the model outputs using 

derivative-based methods around nominal values of the inputs, whereas global methods deal with the uncertainties of 

the outputs due to input variations over the whole domain. The variance-based methods for global SA mainly use 

ANOVA (ANalysis Of VAriance) decomposition which represents the variance of a certain output as a sum of 

contributions of each one of inputs or their combinations. As a straightforward method to identify significant input 

parameters, Sobol’ method [18][27] is a popular measure and it will be used in the current study.  

Following the notation used in [28], define a general computer model as  𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑑)  where  𝑿 =
{𝑋1, 𝑋2, … , 𝑋𝑑} is the vector of all input parameters including both design variables and calibration parameters. Without 

loss of generality, the model output 𝑌 is assumed to be a scalar. Define the variance of 𝑌 with respect to a fixed 

input  𝑋𝑖 as  {Var(𝑋𝑖){𝔼(𝑿~𝑖)(𝑌|𝑋𝑖)}, 𝑖 = 1,2, … , 𝑑} , where  𝑿~𝑖  represents all input parameters but  𝑋𝑖 . The inner 

expectation operator means that the mean of 𝑌 is taken over all possible values of 𝑿~𝑖 given a fixed 𝑋𝑖, while the outer 

variance is taken over all possible values of 𝑋𝑖. Define the total variance of 𝑌 as Var(𝑌), the first order sensitivity 

coefficient, or Sobol’ index is defined as: 

 𝑆𝑖 =
Var(𝑋𝑖){𝔼(𝑿~𝑖)(𝑌|𝑋𝑖)}

 Var(𝑌)
 (4) 

The first order Sobol’ index 𝑆𝑖 is also called the main effect and it quantifies the variability in Y that is caused by 

uncertainty in 𝑋𝑖 alone. Furthermore, according to the law of total variation [29]: 

 𝔼(𝑋𝑖){Var(𝑿~𝑖)(𝑌|𝑋𝑖)} =  Var(𝑌) − Var(𝑋𝑖){𝔼(𝑿~𝑖)(𝑌|𝑋𝑖)} (5) 

It follows that Var(𝑋𝑖){𝔼(𝑿~𝑖)(𝑌|𝑋𝑖)} must be between 0 and Var(𝑌), indicating that 0 ≤ 𝑆𝑖 ≤ 1. If we flip 𝑿~𝑖 

and 𝑋𝑖 in Equation (5), we get: 

 𝔼(𝑿~𝑖){Var(𝑋𝑖)(𝑌|𝑿~𝑖)} =  Var(𝑌) − Var(𝑿~𝑖){𝔼(𝑋𝑖)(𝑌|𝑿~𝑖)} (6) 

Another kind of sensitivity coefficient naturally forms as: 

 𝑇𝑖 =
𝔼(𝑿~𝑖){Var(𝑋𝑖)(𝑌|𝑿~𝑖)}

 Var(𝑌)
= 1 −

Var(𝑿~𝑖){𝔼(𝑋𝑖)(𝑌|𝑿~𝑖)}

 Var(𝑌)
 (7) 

Since Var(𝑿~𝑖){𝔼(𝑋𝑖)(𝑌|𝑿~𝑖)}/ Var(𝑌)  on the right hand side of Equation (7) can be treated as the first order 

sensitivity indices of 𝑿~𝑖, the expression 1 − Var(𝑿~𝑖){𝔼(𝑋𝑖)(𝑌|𝑿~𝑖)}/ Var(𝑌) is the portion of total variance that is 

caused by all input combinations that include 𝑋𝑖. Therefore, 𝑇𝑖 measures the total effect and is called total sensitivity 

coefficient. Since 𝑇𝑖 includes first order effects of 𝑋𝑖 and higher order effects of 𝑋𝑖 by interaction with other inputs, it 

is always larger than (when interactions are non-negligible) or equal to (when interactions are negligible) the main 

effect 𝑆𝑖. The formulation of main and total effects can also be derived from Sobol’ decomposition, also called variance 

decomposition [27][28]. For independent input parameters, the Sobol’ indices satisfy the following relation: 

 ∑ 𝑆𝑖
1≤𝑖≤𝑑

+ ∑ 𝑆𝑖𝑗
1≤𝑖<𝑗≤𝑑

+ ∑ 𝑆𝑖𝑗𝑙
1≤𝑖<𝑗<𝑙≤𝑑

 + ⋯ 𝑆1,2,3,…,𝑑 = 1 (8) 

There are 2𝑑 sensitivity indices in total. Indices with multiple subscripts (e.g. 𝑆𝑖𝑗) are called interaction terms. The 

total Sobol’ index 𝑇𝑖 for a given input 𝑋𝑖 is the sum of all terms in Equation (8) that contain the subscript (𝑖). For 

example, when 𝑑 = 3, the total effect of 𝑋1 includes four parts 𝑇1 = 𝑆1 + 𝑆12 + 𝑆13 + 𝑆123. As the number of indices 

grows exponentially with the dimension 𝑑, it is impractical to compute all the sensitivity indices. Furthermore, it is 

common for the higher order (larger than two) interaction effects to be negligible [17]. The main and total effects are 

usually sufficient to identify the significant input parameters, while the second-order interaction effects are 

occasionally considered. Given the main and total effects, there are two straightforward ways to identify the existence 
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of high-order interactions: (1) if the total effect is sufficiently larger than the main effect for a certain input, interaction 

of this input with others exists whose magnitude depends on the difference between main/total effects, (2) alternatively, 

one can look at the sum of main or total effects for all the inputs. If main effects of all the inputs sum to a value less 

than but close to 1.0, or if the sum of total effects results in a value greater than but close to 1.0, it can be concluded 

that the interactions are negligible. 

Sobol’ indices have gained wide interest and several methods have been developed to calculate them [17]. Monte 

Carlo or Quasi Monte Carlo use brute-force sampling methods [18][27][28][30] but they are hardly applicable for 

computationally prohibitive models, because hundreds of thousands of computer model runs are usually needed. In 

case of time-consuming computer models, metamodel-based (e.g. GP [31]) sampling can be used. Other popular 

approaches include Polynomial Chaos Expansion (PCE) [26][32]. PCE is a method that expands the model outputs 

with respect to orthogonal polynomials in the uncertain inputs. Based on the orthogonality nature of the polynomials 

used to construct PCE, the output variance caused by each input and their interactions with others are very 

straightforward to calculate. In the present work, the DAKOTA code [33] is used to calculate Sobol’ indices using 

PCE-based approach. In case of correlated input parameters, methods developed in [34][35][36][37] can be used. 

4. Problem Definition: Inverse UQ of TRACE Physical Model Parameters with BFBT Benchmark Data 

TRACE [19] is a best-estimate system thermal-hydraulics code that has been widely used in nuclear reactor design 

and safety analysis. Significant uncertainties exist in the physical model parameters of TRACE closure laws, which 

are used to describe the transfer terms in the mass, momentum and energy balance equations. In previous uncertainty, 

sensitivity and validation studies, uncertainties in these parameters are usually ignored or defined using “expert 

opinion” or “user self-assessment”. In the present work, uncertainties in TRACE physical model parameters will be 

inversely quantified based on steady-state void fraction data from BFBT benchmark.  

Cross-sectional averaged void fractions were measured at four different axial locations in BFBT assembly 4, 

hereafter referred to as VoidF1, VoidF2, VoidF3 and VoidF4 respectively from lower to upper positions. Detailed 

description of TRACE and BFBT benchmark can be found in [19][20]. In this paper, we will not provide such details 

to avoid detour in the flow of the narrative. In brief, the responses are VoidF1, VoidF2, VoidF3 and VoidF4. The 

design variables 𝐱 consists of four parameters: pressure, coolant mass flow rate, power and coolant inlet temperature, 

whose test ranges are shown in Table 1. These design variables are used to define the inverse UQ domain and validation 

domain in the improved modular Bayesian approach [13][21]. 

Table 1. Design variables and their ranges in BFBT benchmark. 

Design variables 𝐱 Units Lower test range Upper test range 

Pressure MPa 0.9730 8.7050 

Inlet mass flow rate kg/s 2.8000 19.3583 

Power MW 0.2200 7.3300 

Coolant inlet temperature K 440.4929 564.5076 

The calibration parameters 𝛉 consists of five physical model parameters: P1008, P1012, P1022, P1028 and P1029, 

as described in Table 2. All of the five calibration parameters are multiplicative factors with nominal values of 1.0. 

The priors are chosen as uniform distributions over the range of (0, 5) for all the parameters. Such ranges are wide to 

reflect the ignorance before observing any data. Posterior ranges after inverse UQ are expected to be much narrower 

than prior ranges, indicating that the knowledge of these parameters has been improved given physical observations. 

Table 2. Selected TRACE physical model parameters. 

Calibration parameters 𝛉 (multiplication factors) Representations Uniform ranges Nominals 

Single phase liquid to wall HTC P1008 (0.0, 5.0)  1.0 

Subcooled boiling HTC P1012 (0.0, 5.0) 1.0 

Wall drag coefficient P1022 (0.0, 5.0) 1.0 

Interfacial drag (bubbly/slug Rod Bundle - Bestion) coefficient P1028 (0.0, 5.0) 1.0 

Interfacial drag (bubbly/slug Vessel) coefficient P1029 (0.0, 5.0) 1.0 



8 

 

5. Results for the First Inverse UQ Process 

5.1. Sensitivity analysis 

TRACE includes user access to 36 physical model parameters [19][21]. Those reported in Table 2 are selected after 

dimensional reduction using local/global SA. The removed 31 physical model parameters are either inactive (cause no 

variation in the responses at all) or have negligible importance (with main effect Sobol’ indices less than 1.0E-06 for 

any one of the responses) for BFBT benchmark. See [38] for the detailed dimensional reduction process. Table 3 shows 

the Sobol’ indices of each parameter for each response which are calculated using prior distributions in Table 2 and 

Figure 1 visualizes the results. The observed sensitivity can be briefly described as below: 

1) The significance of P1008 decreases to almost zero at higher elevations. This is because single-phase 

liquid exists only in the lower elevations of the bundle. 

2) Similarly, P1012 is more important at lower elevations because that is where subcooled boiling occurs.  

3) P1022 increases at higher elevations, while P1028 dominates at intermediate elevations. 

4) P1029 is only important for VoidF4. 

Table 3: Sobol’ indices for selected TRACE physical model parameters, calculated using prior distributions. 

Output 
Main effect Sobol’ indices Total effect Sobol’ indices 

VoidF1 VoidF2 VoidF3 VoidF4 VoidF1 VoidF2 VoidF3 VoidF4 

P1008 0.0903 0.0507 0.0093 0.0008 0.2989 0.1107 0.0176 0.0009 

P1012 0.6875 0.2696 0.0320 0.0012 0.9064 0.3307 0.0404 0.0013 

P1022 0.0022 0.1442 0.1896 0.6285 0.0119 0.1490 0.2022 0.6551 

P1028 0.0006 0.4705 0.7483 0.0299 0.0031 0.4747 0.7607 0.0388 

P1029 0.0000 0.0000 0.0000 0.3112 0.0000 0.0000 0.0000 0.3338 

Sum 0.7806 0.9350 0.9792 0.9715 1.2203 1.0650 1.0208 1.0298 

The fact that a certain input has close main and total effects Sobol’ indices means that this input has no interaction 

with others (e.g. P1022, P1028 and P1029). If the total effect is larger than the main effect, this input has interaction 

with others (e.g. P1008 and P1012), the degree of which depends on the difference between main and total effects. 

The sums of main or total effects for the inputs can also be used to detect interactions. If main effects of all the inputs 

sum to a value less than but close to 1.0, or if the sum of total effects results in a value greater than but close to 1.0, it 

can be concluded that the interactions are negligible. Table 3 (last row) indicates that noticeable interactions only exist 

between P1008 and P1012 for VoidF1 and VoidF2. 

 

Figure 1: Sobol’ indices for selected TRACE physical model parameters, calculated using prior distributions. 
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Based on the SA results, it can be seen that this numerical test is ideal for investigating the relationship between 

sensitivity and identifiability. There are multiple inputs and responses, and each response has different significant 

contributors. For instance, (1) VoidF1 has P1008 and P1012, (2) VoidF2 has P1008, P1012, P1022 and P1028, (3) 

VoidF3 has P1022 and P1028 (P1012 is negligible), (4) VoidF4 has P1022 and P1029 (P1028 is negligible). During 

inverse UQ, we can use data from different combinations of the responses and see if the resulting posterior distributions 

of corresponding significant contributors are identifiable. In this way a connection between sensitivity and 

identifiability can be established. 

5.2. Posterior distributions and identifiability 

The detailed step-by-step implementation of the improved modular Bayesian approach for this problem can be 

found in [21]. Therefore, in this paper we will directly present the posterior results pertinent to the identifiability issue. 

There are 15 different combinations of the four responses, from using only single response to using all of the four 

responses. Table 4 shows the posterior mean values and STDs for the five physical model parameters and Figure 2 

visualizes the results. The “output” column means the combinations of outputs whose data are used for inverse UQ. 

For instance, output “124” means data from VoidF1, VoidF2 and VoidF4 are used. Taking the SA results into 

consideration, Table 4 and Figure 2 demonstrate that: 

1) P1008 only has small significance for VoidF1 (mostly through interaction with P1012) and even smaller 

importance for VoidF2. However, it can still be observed that whenever VoidF1 and VoidF2 are included, 

the posterior STDs of P1008 are relatively smaller. Moreover, including VoidF1 leads to better 

identifiability than VoidF2 by comparing the results of “1” vs. “2”, “13” vs “23”,“14” vs “24” and “134” 

vs “234”. For outputs “3”, “4” and “34”, the posterior STDs of P1008 are much larger than the others.  

2) P1012 is significant for VoidF1 and VoidF2. Similar to P1008, the posterior STDs for P1012 are small 

whenever VoidF1 and VoidF2 are present, and large with outputs “3”, “4” and “34”. It is also shown that 

including VoidF1 results in better identifiability than including VoidF2 because P1012 has much higher 

sensitivity indices for VoidF1.  

3) P1022 is significant for VoidF4, and relatively important for VoidF2 and VoidF3. As expected, its 

posterior STD without any one of these outputs (i.e. outputs “1”) is the largest. 

4) P1028 is significant for VoidF2 and VoidF3. When either VoidF2 or VoidF3, or both are considered, the 

posterior STDs are small. Posterior STDs with neither of them (i.e. outputs “1”, “4” and “14”) are among 

the largest. 

5) P1029 is only significant for VoidF4. Therefore, its posterior STDs are only relatively smaller when 

VoidF4 is included. 

 

Table 4: Posterior mean values and STDs for TRACE physical model parameters from the first inverse UQ process. 

Output 
Posterior mean values Posterior STDs 

P1008 P1012 P1022 P1028 P1029 P1008 P1012 P1022 P1028 P1029 

1 0.9943 1.1422 1.7042 2.2032 1.2974 0.5241 0.1539 0.6474 0.5093 0.7677 

2 1.3339 1.1582 0.8413 1.1614 2.7884 0.6469 0.2378 0.4759 0.1691 1.2545 

3 2.7964 1.1109 1.1060 1.1660 3.0939 1.2038 0.6112 0.5287 0.2944 1.2177 

4 1.9979 2.3113 1.6510 2.5607 1.3588 1.2781 1.3494 0.4418 1.2574 0.5918 

12 0.5854 1.2321 1.4871 1.3385 1.7452 0.2374 0.0921 0.3723 0.1500 0.8096 

13 0.5495 1.2563 1.7204 1.4770 1.4485 0.2414 0.1091 0.3818 0.2698 0.8348 

14 1.1119 1.1215 1.5256 2.3491 1.0182 0.3971 0.1285 0.2604 0.4491 0.3081 

23 1.4224 1.1041 0.9852 1.1117 3.5537 0.6084 0.2510 0.3356 0.1621 0.9919 

24 1.0176 1.1510 1.2568 1.3054 1.1722 0.6200 0.2249 0.2509 0.1476 0.3651 

34 2.3102 0.9528 1.4135 1.3864 1.3342 1.1432 0.5437 0.2477 0.2148 0.4394 

123 0.6201 1.2210 1.4362 1.2921 1.8126 0.2305 0.0920 0.2668 0.1376 0.8596 

124 0.5927 1.2450 1.4012 1.3634 1.2245 0.2088 0.0873 0.2259 0.1498 0.3580 

134 0.6062 1.2497 1.5421 1.4711 1.2252 0.2274 0.1007 0.2412 0.2239 0.3467 

234 1.3945 1.0158 1.3036 1.3258 1.2231 0.6233 0.2099 0.2029 0.1151 0.3735 

1234 0.6162 1.2358 1.4110 1.3385 1.2340 0.2113 0.0890 0.1833 0.1155 0.3453 



10 

 

 

Figure 2: Posterior mean values and STDs for TRACE physical model parameters from the first inverse UQ process. 

This numerical test provides solid evidence that identifiability is closely related to sensitivity, which was often 

ignored in previous research. Good identifiability cannot be achieved for a certain calibration parameter if it is not 

significant to any of the responses whose data are used for inverse UQ. The posterior distributions obtained with output 

“1234” are considered as the most appropriate results because all the four responses are considered, and all the five 

calibration parameters are close to be the most “identifiable” (with nearly smallest posterior STDs) among all the 15 

combinations. Figure 3 shows the posterior pair-wise joint densities (off-diagonal sub-figures) and marginal densities 

(diagonal sub-figures) for the five physical model parameters when all the four responses are used. In Figure 3, the 

ranges of x-axes of the marginal density plots and the ranges of x/y axes of the joint density plots are the uniform prior 

ranges. It is obvious that the obtained posterior distributions have substantial reduction in uncertainties compared to 

the prior distributions. The posterior STDs of P1012 and P1028 are smaller than the other three parameters, indicating 

larger uncertainty reduction. 

The remarkable differences in the posterior statistical moments achieved using different combinations of responses 

warns us about the risk of obtaining improper posteriors if the observation data is not properly chosen. The first risk 

is “bad identifiability”, which is unlikely to be alleviated by numerical techniques (e.g. providing informative priors 
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for model discrepancy). The second risk, however, is “fake identifiability”, which refers to the case when posterior 

STDs are small but mean values are wrong. In the introduction part, we have mentioned that misspecified priors can 

result in tight posterior distributions for calibration parameters which are “far away” from the “true” solutions [6]. 

Such “fake identifiability” is also possible if the responses are not properly chosen. For example, with output “234”, 

the posterior STDs for P1022, P1028 and P1029 are among the smallest possible values, while those for P1008 and 

P1012 are also acceptably small (44% and 20% of the mean values respectively). However, the mean value for P1008 

obtained using output “234” is more than twice of the value obtained using output “1234”. Similarly, with output 

“123”, P1008, P1012, P1022 and P1028 are close to be the most identifiable, but the posterior mean value of P1029 is 

50% larger than the value obtained with output “1234”. 

 

Figure 3: Posterior pair-wise joint and marginal densities when all of the four responses are used. 

 

6. Results for the Second Inverse UQ Process 

In Section 5.2, identifiability results from a “first” inverse UQ process are shown. Here “first” means that the inverse 

UQ process starts with the non-informative prior distributions shown in Table 2. In this section, the results for a 

“second” inverse UQ process will be presented. The motivation for performing another inverse UQ is twofold: 

1) Model updating using Bayesian inference is an “iterative” process and the posterior distributions achieved 

from the first inverse UQ process can serve as the prior distributions for another inverse UQ process. As 

shown in Figure 3, the “new prior distributions” are very informative compared to the uniform prior 

distributions used in the first inverse UQ process. It is worthwhile to perform more inverse UQ “iterations” 

until the posterior distributions “converge”. 

2) When the input uncertainties change from non-informative uniform priors (Table 2) to the updated 

informative priors (Figure 3), Sobol’ indices will change accordingly. It is necessary to look at the 

identifiability of the new posterior results based on the updated Sobol’ indices. Substantial uncertainty 

reduction have been observed for all the parameters. Furthermore, the posterior distributions of P1012 

and P1028 have smaller variations than the other three parameters. As a result, their relative importance 

are expected to reduce. 
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6.1. Sensitivity analysis 

Table 5 shows the main and total effects Sobol’ indices calculated using the posterior distributions form the first 

inverse UQ process (Figure 3) and Figure 4 visualizes the results. Compared with Figure 1, it can be seen that: 

1) For VoidF1, there are still two significant contributors, P1008 and P1012. However, the relative 

importance of P1008 and P1012 increases and decreases respectively, due to the larger reduction of 

uncertainty in P1012. Even though the uncertainty in P1008 is also reduced, its posterior STD is much 

larger than P1012. High-order interactions still exist between P1008 and P1012 for VoidF1. 

2) For VoidF2, P1008 becomes much more important than the others, primarily because of the uncertainty 

reduction in P1012 and P1028 are larger than P1008, as shown in Figure 3.  

3) For VoidF3, the contributions from P1008 and P1022 increase. The main/total effects of P1012 diminish 

and Sobol’ indices of P1012 decrease by nearly half. Similarly, these can explained by the larger reduction 

of uncertainty in P1012 as shown in Figure 3. 

4) Similar results can be observed for VoidF4, there are still two significant contributors, but the importance 

of P1022 and P1029 have went down/up accordingly. P1029 alone now account for about 60% of the total 

variation in VoidF4, making it the more significant input. 

 

Table 5: Sobol’ indices for TRACE physical model parameters, calculated using posterior distributions from first 

inverse UQ process. 

Output 
Main effect Sobol’ indices Total effect Sobol’ indices 

VoidF1 VoidF2 VoidF3 VoidF4 VoidF1 VoidF2 VoidF3 VoidF4 

P1008 0.2581 0.6346 0.1233 0.0041 0.5530 0.6414 0.1230 0.0043 

P1012 0.4757 0.0392 0.0041 0.0002 0.7522 0.0477 0.0044 0.0004 

P1022 0.0055 0.1825 0.4941 0.3835 0.0057 0.1807 0.4919 0.3867 

P1028 0.0006 0.1347 0.3803 0.0104 0.0008 0.1350 0.3809 0.0107 

P1029 0.0000 0.0000 0.0000 0.5991 0.0002 0.0002 0.0002 0.6029 

Sum 0.7399 0.9910 1.0018 0.9973 1.3119 1.0050 1.0005 1.0050 

 

 

Figure 4: Sobol’ indices for physical model parameters, calculated using posterior distributions from first inverse 

UQ process. 
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6.2. Posterior distributions and identifiability 

Table 6 shows the posterior mean values and STDs for the five physical model parameters using different 

combination of the responses. In Figure 5, the posterior statistical moments from the first (Posterior 1 in the figure) 

and the second (Posterior 2 in the figure) inverse UQ processes are compared. Note that the Posterior 1 results in 

Figure 5 are the same with those presented in Figure 2. Here Posterior 2 results are superimposed on Posterior 1 results 

so that their comparisons are more obvious. The following can be observed from Table 6 and Figure 5: 

1) By only looking at the Posterior 2 STDs in Figure 5, there are no notable differences among all the 15 

different combinations of responses because they are all very small in magnitude. The reason is that the 

“updated prior distributions” (which is the posterior distributions from first inverse UQ, as shown in Figure 

3) are very informative and they have strong influence on the posterior distributions through Equation (2). 

As a result, no matter what responses are used, the posterior distributions will not deviate greatly from the 

“updated prior distributions”. 

2) However, even though these 15 posterior distributions have similar identifiability by visually inspecting 

Figure 5, indicated by the nearly equivalent yellow bars, the exact posterior STD values in Table 6 still 

reflect some connections between sensitivity and identifiability. For instance, P1008 is trivial for VoidF4, 

its posterior STD is the largest when only VoidF4 is used for inverse UQ (output “4”). P1012 is not 

important for VoidF3 and VoidF4, and its posterior STDs are large with outputs “3”, “4” and “34”. P1029 

is only significant for P1029, therefore, its posterior STDs are only small when VoidF4 is considered. 

Similar connections can also be observed for other parameters. It can be concluded that when the prior 

distributions are extremely informative, the relationship between input significance and posterior 

identifiability become less obvious but still holds. 

3) By comparing the posterior STDs from first (green bars) and second (yellow bars) inverse UQ processes, 

it can be seen that the posterior distributions from the second inverse UQ process have better identifiability, 

indicated by their smaller STDs. This study confirms that providing informative priors can indeed improve 

the identifiability. 

 

Table 6: Posterior mean values and STDs for TRACE physical model parameters from the second inverse UQ 

process. 

Output 
Posterior mean values Posterior STDs 

P1008 P1012 P1022 P1028 P1029 P1008 P1012 P1022 P1028 P1029 

1 0.5648 1.2542 1.4289 1.3914 1.2649 0.1278 0.0566 0.1585 0.1039 0.3008 

2 0.5999 1.2451 1.3617 1.3748 1.2734 0.1753 0.0658 0.1535 0.0857 0.3174 

3 0.6514 1.2417 1.4172 1.3687 1.2492 0.1878 0.0812 0.1506 0.0895 0.3290 

4 0.6195 1.2359 1.4607 1.3393 1.1656 0.1966 0.0852 0.1429 0.1052 0.2306 

12 0.5758 1.2543 1.3886 1.4022 1.2953 0.1233 0.0560 0.1508 0.0861 0.3092 

13 0.5782 1.2515 1.4355 1.3990 1.2677 0.1220 0.0554 0.1423 0.0891 0.3062 

14 0.5543 1.2546 1.4706 1.3909 1.1705 0.1214 0.0565 0.1337 0.1044 0.2201 

23 0.6323 1.2412 1.3763 1.3875 1.2846 0.1720 0.0680 0.1458 0.0736 0.3379 

24 0.5831 1.2376 1.4283 1.3798 1.1677 0.1669 0.0657 0.1336 0.0823 0.2379 

34 0.6395 1.2407 1.4603 1.3777 1.1676 0.1851 0.0814 0.1335 0.0851 0.2293 

123 0.5894 1.2505 1.4050 1.4110 1.2939 0.1264 0.0535 0.1411 0.0775 0.3108 

124 0.5569 1.2547 1.4446 1.4120 1.2008 0.1248 0.0551 0.1309 0.0853 0.2253 

134 0.5727 1.2523 1.4806 1.4079 1.1962 0.1195 0.0539 0.1223 0.0905 0.2260 

234 0.6089 1.2381 1.4284 1.3910 1.1790 0.1697 0.0685 0.1250 0.0731 0.2282 

1234 0.5690 1.2535 1.4480 1.4155 1.2070 0.1260 0.0538 0.1219 0.0768 0.2382 

Figure 6 compares the posterior marginal and joint distributions from first (solid lines) and second (dash-dotted 

lines) inverse UQ processes. The pair-wise joint distributions of both posteriors show similar dependence structure, 

while the second posterior joint distributions are more concentrated. By comparing the marginal distributions, both 

posterior distributions have similar shapes, while the second posterior marginal distributions have smaller variances. 

These facts again indicate that the posterior distributions from the second inverse UQ process are more “identifiable”, 

which is due to the much more informative “prior” distributions. Note that performing more inverse UQ “iterations” 

does make the posterior distributions more concentrated. Therefore, in this paper posterior results from further inverse 

UQ process will not be reported. 
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Figure 5: Comparison of posterior mean values and STDs for TRACE physical model parameters from first 

(Posterior 1) and second (Posterior 2) inverse UQ process. 

This numerical example also demonstrates the danger of getting “fake identifiability” in case of misspecified 

informative priors, because the resulting posterior will tend to “converge” to the misspecified informative priors. In 

the second inverse UQ process, those informative priors are posterior distributions obtained from the first inverse UQ 

process. Imagine that some inaccurate but informative priors are used which can deviate greatly from the “true” values 

of the calibration parameters. Similar to the second posterior in Figure 6, the corresponding posterior distributions will 

also “converge” to the inaccurate but informative prior distributions and their STDs will be small. In this case, one 

may believe that good identifiability has been achieved when the posterior distributions are hardly “close” to the “true” 

values. 

Through the numerical study results in Section 5.2 and 6.2, it has been demonstrated that fake identifiability is 

possible if model responses are not appropriately chosen, or inaccurate but informative priors are specified. Therefore, 

we recommend that during real applications of inverse UQ, one should first conduct a sensitivity study to identify the 

important calibration parameters for the responses whose data are available. Next non-informative prior distributions 

should be selected for those non-trivial calibration parameters. One can then perform a few Inverse UQ “iterations” 

until the posterior distributions “converge”. 
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Figure 6: Comparison of posterior pair-wise joint and marginal densities from first (solid lines) and second (dash-

doted lines) inverse UQ process, when all of them four responses are used. 

7. Conclusions 

In this work, the main objective is to demonstrate the relationship between sensitivity and identifiability for inverse 

UQ. The identifiability issue is caused by the confounding between the calibration parameters and the model 

discrepancy. Several different combinations of the computer model (with different values for the calibration 

parameters) and its corresponding model discrepancy might result in equally good agreement with the measurement 

data and equally high values for the likelihood function during MCMC sampling. Consequently, the calibration 

parameters become non-identifiable. Previous work have been focusing on providing informative priors for the 

calibration parameters and/or the model discrepancy function. However, this is a crude and often impossible solution 

to improve identifiability because one rarely has such informative prior knowledge. 

We adopted an improved modular Bayesian approach for inverse UQ that does not require priors for the model 

discrepancy term. We investigated a practical example in nuclear engineering, which is the inverse UQ of nuclear 

reactor system thermal-hydraulics code TRACE physical model parameters using BFBT benchmark data. This test 

consists of five calibration parameters and four responses with different significant contributors. By performing inverse 

UQ with different combinations of the responses and looking at the corresponding posteriors, a connection between 

sensitivity and identifiability has been established.  

It has been shown that identifiability is largely related to the sensitivity (or significance) of the calibration 

parameters w.r.t. the chosen responses. The numerical test demonstrated that, in order for a certain calibration 

parameter to be statistically identifiable, it should be significant to at least one of the responses whose data are used 

for inverse UQ. Good identifiability cannot be achieved for a certain calibration parameter if it is not significant to any 

response. Therefore, to obtain good identifiability in inverse UQ or Bayesian calibration activities, we recommend that 

the users first conduct a sensitivity study to identify the important calibration parameters for the responses whose data 

are available. Next non-informative prior distributions should be selected for those non-trivial calibration parameters. 

One can then perform a few Inverse UQ “iterations” until the posterior distributions “converge”. In this way, the risk 

of both bad identifiability and fake identifiability can be reduced. 
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