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Abstract

Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and 

Security–Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated 

minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared 

absorption near 2.7 μm and thermal infrared spectral features that are most similar to those of 

aqueously altered CM carbonaceous chondrites. We observe these spectral features across the 

surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales 

of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 μm) 

Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous 

ground-based observations. Bennu may represent a class of objects that could have brought 

volatiles and organic chemistry to Earth.

The OSIRIS-REx mission began its Approach phase to asteroid (101955) Bennu in August 

2018. Before and just after arrival at Bennu on 3 December, the OSIRIS-REx Visible and 

InfraRed Spectrometer (OVIRS) and Thermal Emission Spectrometer (OTES) collected 

hyperspectral data of this B-type asteroid, which is thought to be related to the carbonaceous 

chondrite meteorites1. The OVIRS instrument2 is a hyperspectral, point spectrometer that 

measures the reflected and emitted energy of Bennu across the spectral region from 0.4 to 

4.3 μm (25,000 to 2,300 cm−1) with a circular, 4-mrad field of view (FOV). The OTES 

instrument3, the first thermal infrared spectrometer to visit an asteroid, is a hyperspectral, 

point spectrometer that measures the emitted radiance of Bennu across the spectral region 

from ~1750 to 100 cm−1 (~5.71 to 100 μm) with a circular, 8-mrad FOV. The primary role of 

visible-to-infrared spectroscopy on the OSIRIS-REx mission is to characterize the 

mineralogy and chemistry of Bennu and aid in sample site selection4. The OTES radiance 

data also are used in conjunction with thermophysical models to determine properties of the 

surface, such as particle size and roughness, and to study the Yarkovsky effect5. The 

mineralogy and chemistry of the surface of Bennu provide information about the geological 

processes that have affected the asteroid, the potential for resource extraction, and the 

accuracy of telescopic spectral observations (with the final ground-truth coming from 

measurements of the returned sample).

On five days between 2 and 9 November 2018, both spectrometers obtained whole-disk 

(sub-FOV) spectra of Bennu for 4.5 hours, which is just over one full rotation period (~4.3 

hours). In December 2018, both instruments collected spatially resolved spectra of Bennu as 

“ride-along” observations during imaging activities optimized for the PolyCam and 

MapCam imagers6.
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Visible and near-infrared spectral characteristics

The ground-based, composite (0.4 to 2.4 μm) reflectance spectrum of Bennu shows a 

spectrally “blue” (negative) continuum slope across the visible and near infrared, 

characteristic of B-type asteroids1. Clark et al.1 did not find strong spectral absorptions in 

the Bennu telescopic data, and they identified CI and CM carbonaceous chondrites as the 

most likely spectral matches, with a preference for a CM1-like composition. (Please note 

that throughout the paper we following the standard convention of petrologic types for 

chondrites, such as CI1 and CM2, first introduced by Van Schmus and Wood7.) Thus, Bennu 

was predicted to have hydrated minerals, but no spectral features attributable to hydration 

were observed. The average OVIRS disk-integrated spectrum of Bennu compares very well 

with the telescopic data at these wavelengths, also having a negative slope and no clear 

absorption features (Figure 1). There is no variation in the spectra (above the noise) with 

rotational phase. Analysis of spatially resolved data is ongoing and will be used to confirm 

or refute ground-based observations of spectral slope changes8.

A blue-sloped continuum could be explained in one or more ways; such a continuum has 

been observed in some CI and CM carbonaceous chondrites and, in CI meteorites, is 

attributed to the presence of fine-particulate magnetite and/or insoluble organic material; it is 

also commonly associated with larger-particle-size samples and possibly space 

weathering9–11. Lauretta et al.,12 identify a candidate magnetite feature at 0.55 μm13 in the 

darkest materials imaged by the MapCam instrument; however, as of yet, no such feature has 

been observed in OVIRS spectra that would confirm this detection or its assignment to 

magnetite. Such a feature may become evident in the higher-spatial-resolution OVIRS data 

that will be collected later in the mission. Experimental space weathering of carbonaceous 

materials can result in reddening or bluing of the spectral slope11,14,15; at present, we do not 

have sufficient information from OVIRS spectra to draw any conclusions about the nature or 

degree of space weathering on Bennu as it relates to Bennu’s spectral slope or the presence 

of magnetite.

At longer wavelengths (>2.4 μm), both disk-integrated and spatially resolved OVIRS spectra 

display a ~2.7-μm absorption feature. The 2.7-μm feature is apparent in all OVIRS spectra 

collected thus far and is similar to the feature observed in aqueously altered CM1 and CM2 

carbonaceous chondrites16–19. In analog meteorites measured under appropriate conditions 

(Figure 2), this absorption is due primarily to structural −OH ions in hydrous clay minerals 

(typically poorly-ordered to crystalline phyllosilicates of the kaolinite-serpentine group), 

which are common in CI and CM carbonaceous chondrites19–21. Among carbonaceous 

chondrites, hydrated minerals also are a component of CR chondrites22. Adsorbed H2O in 

CI/CM meteorite samples (commonly terrestrial in origin) exhibits a broad feature centered 

closer to 3.1 μm19. Any potential H2O feature in the OVIRS spectrum is weak and will be 

examined in greater detail using higher spatial resolution data.

The exact position of the ~2.7-μm band minimum in phyllosilicates shifts with mineral 

structure and composition19,23 and there is experimental evidence that its position may be 

altered by space weathering24. The band center in the OVIRS data is at 2.74 μm (±0.01). 

Takir et al.19 showed that CI and CM chondrites display three distinct types of spectra based 
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on the position of this feature. In “Group 1” spectra, this feature ranges in position from 2.77 

to 2.80 μm and is associated with petrologic subtypes between CM2.3 and 2.6 (where 

decimal values indicate relative alteration within type 2, with smaller values representing 

greater alteration). The band center for “Group 2” meteorites ranges from 2.76 to 2.78 μm 

and includes petrologic subtypes CM2.1 to 2.2, which are the most aqueously altered 

petrologic type 2 meteorites. Finally, “Group 3” meteorites are also CM2.1 to 2.2 but have a 

band center at 2.72 μm. Ivuna, the only CI1 in the study, has a band center at 2.71 μm. The 

OVIRS band center lies between Groups 2 and 3 and is consistent with meteorites having 

petrologic types of CM2.1 – 2.2. Meteorites with these petrologic types are among the most 

aqueously altered samples studied. Space weathering effects on asteroids in this spectral 

region do not always match predictions25 but if solar wind irradiation is affecting this band 

in a manner consistent with experimental data on Murchison (CM2.5), the predicted effect 

would be to shift the band center to slightly longer wavelengths (a maximum of 0.03 μm for 

Murchison) and introduce a concave shape24. As seen in Figure 2, spectra of CI and CM1 

and low petrologic type CM2 meteorites can display concave shapes in the absence of 

irradiation. The concavity of the Bennu spectrum is visibly less than that observed in the 

analogue meteorites, therefore, we cannot uniquely ascertain whether or not the shape of the 

Bennu spectrum in this region is indicative of space weathering.

Prior studies identify four classes of so-called “3–μm band shapes among C-complex Main 

belt asteroids, which includes the region of the 2.7–μm feature. These classes are named for 

their type examples: the asteroids Ceres, Pallas, and Themis and the Jovian moon 

Europa26–29. These classes correspond to different dominant surface materials. Bennu’s 

spectrum, with its smooth rise from 2.85 to ~3.3 μm and blue spectral slope, falls into the 

Pallas-like class, consistent with what is presumed to be a phyllosilicate-dominated 

composition.

Spectra of Cb-type30 asteroid (162173) Ryugu measured by the near-infrared spectrometer 

on the JAXA-led Hayabusa2 mission exhibit a weak, narrow 2.72-μm hydroxyl band that 

does not vary spatially and is interpreted as indicating the presence of Mg-rich 

phyllosilicates31. The best meteorite analogues for the observed feature are thermally-

metamorphosed CI chondrites and shocked CM chondrites, suggesting that Ryugu has 

experienced more heating than Bennu, although other interpretations are possible31. 

Regardless of the interpretation, it is clear that Ryugu differs from unheated or slightly 

heated, phyllosilicate-rich carbonaceous chondrites and from Bennu.

There is not yet unambiguous evidence of organic features in the whole-disk or spatially 

resolved OVIRS spectra of Bennu above the level of the noise in the data shown. The whole-

disk observations filled only ~40% of the FOV, and the spatially resolved data were acquired 

at moderate phase angles (~40–50°) on relatively hot (~340 K) surfaces, which increases the 

contribution from thermal emission at the wavelengths where organic bands would be 

expected. Planned higher-spatial-resolution data on colder surfaces may yet reveal such 

signatures.
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Thermal infrared spectral characteristics

Whole-disk emissivity spectra of Bennu acquired in 2007 by the Infrared Spectrograph on 

the Spitzer Space Telescope have no discernible spectral features above the noise level of the 

data32 although a comparison is shown by33. Comparable disk-integrated OTES 

observations require additional calibration because Bennu does not fill the OTES FOV. 

However, spatially resolved (80 m/spot) OTES observations reveal thermal infrared (TIR) 

spectra having a spectral contrast of ~2% that do not vary in shape with rotational phase 

above the level of the noise (Figure 3).

The average TIR spectrum of Bennu exhibits a Christiansen feature (a peak on the high 

wavenumber/short wavelength side of the first major, usually silicate, absorption) position 

that is most similar to that of the CM1/2 and CM2 petrologic types. The spectrum also 

exhibits an absorption at the lowest wavenumbers (longest wavelengths) that is very similar 

to that observed in CI and CM carbonaceous chondrites (Figure 4). Meteorites in the CI and 

CM groups are volumetrically dominated (>55 vol.%34,35) by hydrated silicate minerals of 

the phyllosilicate group and are widely accepted to have been aqueously altered during their 

history within a parent body36–38. Therefore, we can infer that Bennu’s surface is 

volumetrically dominated by phyllosilicates and represents aqueous alteration of the parent 

body.

It is notable that we have not yet observed a distinct Mg-OH feature near 625 cm−1 (16 μm), 

as this feature is common to many meteorites of the CI and CM groups. The absence of this 

feature may be indicative of a non-Mg endmember (Fe-bearing) phyllosilicate composition, 

modest heating, disorder, and/or a particle size effect. Although there is no “smoking gun” 

match to Bennu among the aqueously altered meteorites, spectra of Bennu are distinctly 

dissimilar to carbonaceous meteorite groups that have either not undergone hydrothermal 

aqueous alteration or have experienced alteration but are now “dry” (e.g., CO, CB, CV, 

CK39) (Figure 4 and Methods). Bennu’s spectral signature also is dissimilar to meteorites of 

the CR group, which may be aqueously altered but typically contain lesser amounts of 

phyllosilicates with abundant olivine and pyroxene34 and have features that would be 

evident in the Bennu spectrum (Figure 4)39–41.

OTES spectra of Bennu also exhibit two features at 555 and 340 cm−1 that are likely 

attributable, at least in part, to magnetite (Figure 5) and may support the proposed detection 

of a magnetite feature at ~0.55 μm in the darkest regions of the asteroid12. Magnetite is 

believed to be a product of aqueous alteration and is present at abundances up to ~10% in CI 

chondrites. Magnetite abundance varies widely in CM chondrites, from ~0.3 – 8.4% 

depending on petrologic subtype34,35. The abundance of magnetite on Bennu has not yet 

been tightly constrained, but it is present at abundances of at least a few percent and its 

detection is consistent with our other observations that support an affinity with these 

meteorite groups.

The spectral slope of Bennu from 1500 to 1110 cm−1 (~6.6 to 9 μm) is relatively shallow 

and featureless—it does not clearly exhibit the spectral shapes and emissivity reductions in 

this region that are common to fine-particulate sample spectra and result from volume 
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scattering (Figure 4b). The region of silicate stretching bands (~1100 to 700 cm−1; ~9 to 

14.3 μm) exhibits a broad, bowl-like shape that is not well reproduced by spectra equivalent 

to solid and coarse-particulate (e.g., >125 μm) meteorites or fine-particulate (<125 μm) 

meteorites measured in vacuum with an induced thermal gradient (Figure 4). Although there 

are similarities in the shape and breadth of the fine-particulate Orgueil (CI) chondrite 

spectrum and Bennu in this region, there are distinct differences between these spectra at 

higher wavenumbers, so this feature shape might alternatively indicate an amorphous/

disordered component rather than production of transparency features resulting from volume 

scattering.

Despite the lack of strong evidence for abundant, volume-scattering (fine) particulates at the 

~80-m spatial scale of these observations, it is possible that these spectra represent a mixture 

of a small amount of fine (<125 μm) and greater amount of coarse (>125 μm) particulate 

materials, as well as the boulders that are present across the surface5,42. The lack of variation 

in the spectra indicates that at these spatial scales, the distribution of particle sizes on the 

surface does not vary substantially. The thermal inertia of Bennu is 350 ± 20 J m−2 K−1 s
−1/2, does not vary with rotational phase, and indicates a mean particle size on the order of 

0.5 to 5 cm5. However, thermal inertia is not uniquely interpretable in terms of particle size, 

and the presence of numerous boulders for this relatively low value of thermal inertia could 

be interpreted as indicating that there also may be smaller particles present than the mean 

particle size estimate would suggest. On the other hand, it may be that the assumption about 

the thermal inertia of boulders on Bennu is inaccurate and that their thermal inertia is lower 

than what is assumed for typical planetary materials5. The lack of rotational variability in 

thermal inertia is consistent with the lack of variability in the apparent particle size 

distribution from spectroscopy, despite their differing depth sensitivities.

OSIRIS-REx spectroscopic observations from visible through thermal infrared wavelengths 

are highly complementary and show that the pristine sample that will be returned from 

Bennu has the potential to inform our understanding of water in the early solar system and 

its origins on Earth. Bennu’s spectra indicate that the surface is consistent with and 

dominated volumetrically by some of the most aqueously altered CM chondrites. We cannot 

rule out the presence of a lesser component of CI material based on both the presence of 

magnetite and the visual variability among materials on the surface5.

The spectral datasets presented here are consistent with a surface having range of particle 

sizes that does not vary spatially at scales down to 80 m as evidenced by the lack of variation 

in the spectral reflectance and emissivity. Other observed properties may help explain the 

apparent spatial uniformity of the spectral signatures at relatively large scales if there are 

compositional variations present among the mobile materials, but material movement leads 

to homogenization of their distribution. The lack of rotational and spatial variation in 

particle size distribution may reflect surficial redistribution processes rather than 

compositional uniformity, given the observed variations in albedo5. Redistribution processes 

are supported by the geopotential at Bennu’s surface, which reveals that disturbed material 

moves towards the equator and/or escapes43. Additionally, analysis of the geological 

characteristics of Bennu’s surface indicates that it is an old rubble pile but has experienced 

recent dynamical and geological processes42. With these and future, higher-spatial-
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resolution spectral observations, we will be able to 1) provide vital context for analysis of 

the returned sample; 2) address the history and degree of aqueous alteration experienced by 

Bennu’s parent body based on details of mineral distribution, abundance, and composition 

(e.g., Mg/Fe proportions in phyllosilicates and abundance of magnetite); and 3) constrain the 

presence or absence of organics.

Methods

OVIRS instrument, calibration, and data processing

The OVIRS design is derived from the New Horizons LEISA portion of the Ralph 

instrument44 with an extended wavelength and simplified optics. The spectrometer uses five 

linear variable filters to collect the spectrum. Details of the various operating modes (e.g., 

super pixel summing) are described elsewhere2. To measure compositional spectral features 

with >5% absorption depth at spatial resolutions of 5 to 50 m, OVIRS meets a performance 

requirement of a signal-to-noise ratio (SNR) of >50 across the entire spectral range 

assuming an asteroid surface albedo of ~3–4% at a solar range of 1.2 AU and 300 K thermal 

radiation. To characterize and map variations in space weathering on surfaces with an albedo 

of >1%, OVIRS meets an accuracy requirement of 2.5% with a precision of 2%. OVIRS 

calibrations and performance assessments were performed on the ground and in-flight 

during the OSIRIS-REx Earth encounter in September 201745.

The observing sequence on day of year (DOY) 306 consisted of pointing OVIRS at Bennu 

for 4.5 hours while scanning in a slight “up and down” pattern but keeping Bennu within the 

FOV at all times to obtain whole-disk measurements. The phase angle during these 

observations was ~5.2°. The spectrum shown in Figures 1 and 2 is the average of 17,061 

radiance factor (RADF) or I/F spectra where Bennu filled approximately 40% of the FOV; 

the excursions in the spectra are representative of the point-to-point scatter in the data. The 

OVIRS calibrated radiance spectra were obtained according to methods described by2,45. In 

brief, OVIRS raw data are converted from counts/second to absolute radiance units using an 

automated calibration pipeline. First, the closest space view is identified to create an average 

background file. The background subtracted counts are converted to physical units using 

radiometric and out-of-band coefficients derived from ground testing and in-flight 

calibration activities. The full calibration approach is described in more detail elsewhere45. 

Slight adjustments were made to the previously derived radiometric and out-of-band 

coefficients to adjust the response in a few spectral regions based on the Bennu Approach 

data to ensure filter overlap regions aligned. Calibrated radiances are then resampled onto a 

common wavelength axis by removing outlying noise spikes more than 1.8 standard 

deviations from the mean and a performing a weighted average on the remaining spectral 

points in each wavelength bin. The common wavelength axis has a spectral sampling of 2 

nm from 0.4 to 2.4 μm and 5 nm from 2.4 to 4.3 μm. Data are then converted to radiance 

factor (I/F) by dividing by the solar spectrum scaled for Bennu’s distance.

The OVIRS disk-integrated data shown in this work are not photometrically corrected. The 

geometric albedo of Bennu (0.044±0.002) as determined from imaging results is given by46. 

The geometric albedo of asteroids (extrapolated to 0° phase) is known to be higher than the 

values measured in laboratory settings at 30° phase, where for Bennu’s phase function, this 
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scale factor is ~2. If we apply this scaling factor to meteorite albedo values presented in 

Figure 4 of1, CI and CM chondrite values are most comparable to the geometric albedo of 

the hemispherically-integrated observation of Bennu and meteorites of the CK, CO, CV, CR, 

and CH groups are not consistent. However, because there is evidence in higher resolution 

imaging of materials on Bennu’s surface having considerably higher albedos5, we are not 

prepared to assert that any compositions are ruled out by the global geometric albedo value.

Analysis of OVIRS spectra beyond ~2 μm requires removal of the contribution to the signal 

from thermal emission. We have tested two methods for removing this “thermal tail”, with 

both giving similar results; we show the spectrum obtained by the first method. The first 

approach to computing the thermal contribution to the total radiance uses a smooth-surface 

thermophysical model assuming a spherical asteroid. The thermal portion of the measured 

flux was estimated assuming that the spectrum of Bennu is flat from 2.2 to 4.0 μm. The 

thermal model was run while varying thermal inertia and asteroid size to fit the thermal 

portion of the measured flux for each OVIRS spectrum. The reflected radiance was 

computed as a straightforward subtraction of the model thermal radiance from the total 

measured radiance. In this approach, all the uncertainty and any remaining calibration 

artifacts are assumed to reside in the reflected radiance. Because the absolute uncertainties 

remain unchanged but the radiance itself is decreased substantially at wavelengths with 

significant thermal contribution, the relative uncertainties at these longer wavelengths 

increase, leading to an apparent increase in noise at longer wavelengths in the subtracted 

spectrum. For purposes of searching for potential spectral features, we also computed total 

model radiance by adding the thermal model radiance to a model reflected radiance 

(computed by scaling the solar spectrum to OVIRS radiance at 2.2 μm), then divided the 

measured OVIRS spectra by the model total spectra (Figures 1 and 2).

In the second method, the thermal contribution to the total radiance was computed using the 

OSIRIS-REx thermal model described in5. The computation was performed independently 

for each OVIRS spectrum for the instantaneous spacecraft distance and rotation phase of 

Bennu, using the shape of Bennu derived from OSIRIS-REx images47. We used the v13 

shape model at the lowest (12-m) resolution. The disk-integrated thermal models are not 

affected by the small changes in the newer version (v20) of the shape model. For some 

rotation phases, the model thermal radiance does not perfectly match the OVIRS 

measurements due to remaining imperfections in the shape model. We therefore scaled the 

model thermal radiance to the average measured radiance (averaged from 3.5 to 4.0 μm) of 

each spectrum before subtracting from the total radiance. For scaling purposes, the measured 

thermal radiance was estimated assuming that the reflectance of Bennu is flat from 2.2 to 4.0 

μm. The reflected radiance was computed as a straightforward subtraction of the model 

thermal radiance from the total measured radiance. In this approach, all the uncertainty and 

any remaining calibration artifacts are assumed to reside in the reflected radiance as 

described above.

Determination of the 2.7-μm band center was calculated (after the correction for thermal 

emission) using two methods that give virtually the same result to within the uncertainty of 

the measured spectrum. The first method is to fit a sixth-order polynomial to the measured 

spectrum between 2.65 and 2.85 μm and find the minimum of that fit; this is the same 
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method used by19 although those authors did not report the wavelength range over which 

they did their fitting. This fit was calculated for both versions of the average thermal-

radiance-removed Bennu spectrum. The derived minima vary by a single channel between 

the two spectra, being fit at 2.74 and 2.745 μm. Because the thermal emission correction can 

influence the position of this band, and these spectra represent a whole-disk measurement 

with variable temperatures and phase angles, this result suggests our uncertainty is relatively 

small (on the order of the channel to channel uncertainty).

The second method for determining the 2.7-μm band position fits a smoothing spline 

function to the spectrum between 2.69 and 2.85 μm for the DOY 306 (2 November 2018) 

average spectrum; the best fit is obtained using a smoothing value of 0.999999. The first 

derivative is then calculated, and the inflection point is used to determine the position of the 

band, which is 2.74 ± 0.007. Applying the same analytical approach to all of the spectra 

acquired on DOY 306, we obtain the same answer, to within the uncertainty of the data. 

Based on the consistency of the results obtained by these two methods and their estimated 

uncertainties, we conservatively identify the feature as being located at 2.74 ± 0.01 μm.

OTES calibration and data processing

The OTES instrument3 is a Michelson interferometer with heritage from the Mars 

Exploration Rovers Mini-Thermal Emission Spectrometer (Mini-TES) and Mars Global 

Surveyor Thermal Emission Spectrometer (TES)48,49. Spectral sampling is 8.66 cm−1 across 

the entire spectrum. To confidently identify spectral features having a >5% band depth and 

achieve a 1.5% total emitted radiance accuracy requirement, OTES meets a SNR of 320 at a 

reference temperature of 325 K and has a single-spectrum radiometric precision of ≤2.2 × 

10−8 W cm−2 sr−1 /cm−1 between 1350 and 300 cm−1. The absolute integrated radiance error 

is <1% for scene temperatures ranging from 150 to 380 K.

Observing sequences designed to obtain whole-disk OTES spectra consisted of pointing 

OTES at Bennu for 4.5 hours (a little longer than one full rotation of the asteroid) without 

scanning. However, the standard calibration of OTES data depends on the scene and the 

calibration targets all filling the FOV; when the scene (Bennu) fills only a portion of the 

FOV, wavelength-dependent, off-axis modulation of energy through the interferometer 

results in an apparent low signal at short wavelengths. Correcting this effect requires a 

substantially more complex calibration approach, which is under consideration. As such, we 

show here spectra acquired on DOY 347 (13 December 2018) when the FOV was fully filled 

and the standard calibration approach is appropriate for the observations. The average phase 

angle during these observations was ~45.5°. The DOY 347 observations cover the equator 

and southern (relative to the plane of the ecliptic) hemisphere and are equally representative 

of observations in the northern hemisphere collected during Preliminary Survey sequences 

on other days.

The calibration of OTES data generally consists of an automated processing pipeline that 

transforms OTES raw interferograms into voltage spectra and then into absolute radiance 

units3. More specifically, the measured voltage spectrum is the difference between the 

radiance of the scene, foreoptics, and the detector times the instrument response function 

(IRF); the radiance of the detector and the IRF are unknowns, but can be determined by 
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periodically observing space and an internal calibration target, at which point it becomes 

possible to solve for the scene radiance and account for temperature fluctuations of the 

instrument (detector) that result from the instrument heater cycling during the observations. 

After the acquisition of Earth observations in September 2017, an adjustment was made to 

the calibration pipeline to account for slopes in the interferograms that occur during the 

transition between cold space and a hot target (e.g., Earth or Bennu). This slope results from 

the time constant associated with the DC-correction electronics (which is longer than the 2-

second integration) and, if uncorrected, results in high-frequency “ringing” in the spectra. In 

addition, many of the “ride-along” observation sequences in Approach and Preliminary 

Survey4 that were designed for imaging did not include periodic views of space, instead 

measuring space only at the start and end of sequences that lasted on the order of 4.5 hr. As a 

result, an alternative calibration approach was developed to account for instrument (detector) 

temperature fluctuations during these sequences; this involves using a look-up table that 

correlates in-flight measurements of the temperature measured by a thermistor adjacent to 

the detector to the detector radiance.

The afternoon local time of the DOY 347 observations (~15:00 - 15:30) results in viewing 

surfaces having different temperatures (e.g., sunlit and shadowed) thus requiring an 

emissivity-temperature separation that allows for the fitting of multiple temperatures. We fit 

the OTES calibrated radiances using a non-negative linear least squares algorithm50 that 

takes as input a suite of Planck functions having temperatures between 150 and 380 K. The 

mixture of Planck functions that provides the best fit to the measured radiance is divided into 

the measured Bennu radiances to obtain emissivity, where the maximum emissivity is 

assumed to be 0.97 based on reflectance measurements of relevant carbonaceous chondrite 

meteorites39. The Bennu spectrum shown in Figures 3 and 4 is the average of 974 spectra 

having spatial resolutions of ~80–90 m/spot collected on DOY 347.

Meteorite samples

The meteorites shown in Figure 2 are Ivuna (CI1), LaPaz Icefield (LAP) 02277 (CM1), 

Meteorite Hills (MET) 00639 (CM2), and Cold Bokkeveld (CM2)19. Cold Bokkeveld may 

have been very mildly and briefly heated based on Raman spectroscopy of the insoluble 

organic material, but the evidence is somewhat ambiguous51,52 and there is no mineralogical 

evidence of heating that would change our interpretation of the observed 2.71-μm feature 

(where mineralogy is the property to which the laboratory and remote sensing measurements 

shown here are sensitive). Because meteorites have interacted with the Earth’s environment, 

even if briefly, they are prone to mineralogical and chemical alteration, including the 

adsorption and absorption of terrestrial water (which can be recognized through oxygen 

isotope analysis). The spectra shown in Figure 2 were measured under vacuum after the 

samples were heated to between 400 and 475 K, which drives out adsorbed and absorbed 

terrestrial water. The laboratory spectra have been resampled to the OVIRS spectral 

sampling. See19 for details of sample preparation, characterization, and measurement.

The meteorites shown in Figure 4 are Orgueil (CI1), Allan Hills (ALH) 83100 (CM1/2), 

Murchison (CM2), Miller Range (MIL) 090001 (CR2), Allende (CV3ox), and Vigarano 

(CV3red). All of these spectra were acquired as part of the development of the OSIRIS-REx 
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spectral library for the analysis of OTES data and have been resampled to the OTES spectral 

sampling. The spectral acquisition methods are described below. The text indicates that 

thermal infrared spectra of meteorite groups CO, CB, and CK do not resemble the OTES 

spectrum of Bennu; spectra of these groups are contained in the research collection of 

V.E.H. and are not shown here but have been shown elsewhere39.

Laboratory spectroscopy

The meteorite spectra shown in Figure 4a were measured by V.E.H. in reflectance on 

uncoated thin sections using a Thermo Scientific Nicolet iN10 microscope at Southwest 

Research Institute in Boulder, CO. The microscope is equipped with a KBr beamsplitter and 

a nitrogen-cooled, extended-range mercury-cadmium-telluride (MCT) detector and measures 

spectra from 4,000 to 400 cm−1; the optical geometry of this microscope is such that the 

spectra are equivalent to emission spectra according to Kirchhoffs Law53. The spectra have 

been scaled by differing amounts to minimize spectral contrast variations and simplify the 

comparison of spectral shapes. These spectra are appropriate for comparison to OTES 

emissivity spectra of coarse particulates and solids that do not exhibit volume scattering and 

are not susceptible to thermal gradients54,55.

Figure 4b shows fine particulate (<125 μm) versions of the same meteorite samples 

measured by K.L.D.H. in a simulated asteroid environment at Oxford University; the sample 

preparation, characterization, and spectral measurements are described in detail by56. The 

<90–μm magnetite spectrum in Figure 5 was measured under the same conditions and its 

spectrum is virtually identical to magnetite spectra measured as coarse materials and under 

ambient conditions. All of these spectra are appropriate for comparison to OTES emissivity 

spectra of dominantly fine particulates that exhibit volume scattering and are potentially 

susceptible to the development of thermal gradients.

Data Availability Statement

The data that support the plots within this paper and other findings of this study are available 

from the corresponding author upon reasonable request. Raw and calibrated spectral data 

will be available via the Small Bodies Node of the Planetary Data System (PDS) (https://

pds-smallbodies.astro.umd.edu/). Data are delivered to the PDS according to the OSIRIS-

REx Data Management Plan available in the OSIRIS-REx PDS archive. Higher-level 

products, such as reflectance and emissivity spectra, will be available in the PDS 1 (one) 

year after departure from the asteroid. Laboratory spectral data are deposited in the spectral 

library hosted by Arizona State University (http://speclib.mars.asu.edu/).
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Figure 1. Average whole-disk, full-rotation OVIRS spectrum of Bennu compared with the 
ground-based spectrum.
The OVIRS radiance factor spectrum (black) and ground-based spectrum1 (red) are 

normalized to a reflectance of 1.0 at 0.55 μm. The OVIRS data were acquired on day of year 

(DOY) 306 (2 November 2018), and the field of view was ~40% filled during these 

observations.
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Figure 2. Average DOY 306 OVIRS spectrum between 2.3 and 3.5 μm compared to spectra of 
example carbonaceous chondrites.
The carbonaceous chondrites were measured in vacuum after heating19 (see Methods for full 

meteorite names). The spectra are normalized to a reflectance of 1.0 at 2.4 μm and offset 

vertically for clarity. The vertical line at 2.74 μm denotes the Bennu band minimum position 

(see Methods).
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Figure 3. Average OTES spectrum of Bennu between 1500 and 200 cm−1.
The Bennu spectrum (black) represents slightly more than one full rotation of the asteroid as 

measured on DOY 347 (13 December 2018). The gray spectrum shows the standard 

deviation (offset +0.98).
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Figure 4. Average OTES spectrum of Bennu compared to spectra of whole-rock and fine-
particulate carbonaceous chondrite meteorites.
a, Comparison with whole-rock samples, b, Comparison with fine-particulate (<125 μm) 

samples. Spectra have been scaled and offset for comparison (see Methods). Vertical lines at 

1110 and 530 cm−1 indicate the positions of diagnostic peaks in the Bennu spectrum, and the 

vertical line at 440 cm−1 denotes a diagnostic absorption.
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Figure 5. Average OTES Bennu spectrum compared to a spectrum of pure, fine-particulate (<90 
μm) magnetite.
Spectra have been scaled and offset for comparison. Vertical lines at 555 and 340 cm−1 

indicate the positions of diagnostic absorptions in both spectra.
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