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ABSTRACT

The spatial second moments of a plume in a heterogeneous aquifer do not
quantify contaminant concentrations, as evident from the insensitivity of the longitudinal
spatial second moment to the exclusion of local dispersion. The mean squared
concentration fluctuations, i.e., concentration variance, determines the extent to which the
observed and theorized enhanced rates of growth of spatial second moments are
accompanied by a commensurate drop of point contaminant concentrations. The product
of the macrodispersion coefficient and the squared gradient of the mean concentration
field determines the rate of production of concentration variance. 'ts dissipation rate is
determined by the product of the local dispersion coefficient and the mean <quared
derivatives of the concentration perturbation. The fluctuation dissipation Gue to local
dispersion is represented as a first order decay with the decay coefficient equal to twice
the local dispersion coefficient divided by the squared concentration microscale. For an
advection dominated hydraulic conductivity microscale, the concentration microscale is
an increasing function of the conductivity microscale, consequently, the larger the
conductivity microscale, the slower is the dissipating action of local dispersion, and vice
versa. A relative increase in the high wave number component of the hydraulic
conductivity fluctuations enhances the dissipating action of local dispersion and a relative
increase in the low wave number component inhibits the rate of destruction of
fluctuations. The dominant transport mechanism for the concentration variance field is a
correlation between squared concentration perturbations and velocity perturbations. The
square root of the concentration variance divided by its mean, increases v:ith time
initially. Due to the dissipating action of local dispersion this fluctuation measure
decreases with time at large times. The Cape Cod bromide tracer exhibited this predicted
decrease in the relative magnitude of fluctuations with time. For the hypothetical zero
local dispersion case, this fluctuation measure grows unboundedly with time. To
determine the efficacy of the dissipating action of local dispersion on concentration
variance, the hydraulic conductivity field microscale needs to be measured.

The correlation coefficient between a correlated stochastic process and its integral
over a time period, is proven to decrease with the time period, asymptotically 10 a value
of zero. This is a rationale for Corrsin's conjecture of independence between a particle's
velocity and position, in a correlated velocity field. The conjecture yiclds a nonlinear
formulation for the macrodispersivities, which is solved for the isotropic case. The
longitudinal macrodispersivity remains unchanged from the linear theory. The transverse
macrodispersivity shows a correlation scale dependence.
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Title: Professor of Civil and Environmental Enginecring
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CHAPTER 1

LOCAL DISPERSION, MACRODISPERSION, AND THE PREDICTION
OF CONTAMINANT EXPOSURE LEVELS

Solute, in a homogeneous laboratory sand column with a hydraulic gradient
across it, undergoes an advective flux and a local dispersive flux. The local dispersive
flux manifests itself as the smearing of the breakthrough concentration at the end of the
column. The breakthrough is a cross section averaged concentration, therefore averaged
over a large number of pores. The breakthrough exhibits a diminished peak concentration
and an enhanced spatial second moment, compared to what would be if there were no
local dispersive flux. The mechanism of the local dispersive flux is that the sub-
continuum (i.e., pore scale) variations of advective velocities of the solute particles tends
to flatten out continuum scale solute concentration gradients. In referring to pore scale
variations as sub-continuum, it is being acknowledged that practical measurements
involve averaging over a large number of pore scales, and typically there is no easy way
of knowing or modeling the pore-scale velocity distribution, let alone modeling transport
incorporating these variations. This description of transport in a sand column is quite
unambiguously borne out in laboratory experiments. Breakthroughs are relatively smooth
curves with small noise. Peak concentrations are found to be inversely proportional to
breakthrough radii of gyrations. Therefore by measuring a local dispersion coefficient one
can model transport, by delineating boundary conditions and even porous material
heterogeneities. In such a modeling effort one can expect to reproduce detailed solute
distributions and peak concentrations quite well. The term local dispersion is used as a
synonym for diffusion, as it embodies the effect of the Laplacian term in the advection-

diffusion equation.



That advective heterogeneities can create larger spatial second moments of a
solute distribution, than what would result by the local diffusive flux alone, excluding
advective heterogeneities, is weli known [Taylor, 1921 and 1953; Richardson, 1926;
etc.]. For example, in Taylor's [1953] work on solute transport in a capillary tube, the
cross section averaged concentration can be shown to be governed by an advection-
dispersion equation with a large longitudinal dispersion coefficient, which is a popular
engineering formula. The actual concentration distribution (a fourth order polynomial in
Taylor's [1953] approximations) is certainly not constant over the cross section (see
Appendix-IIT). As the longitudinal mean concentration gradients weaken, at time scales
larger than the squared tube diameter divided by the transverse diffusion coefficient, the
variation of the actual concentration distribution over the cross section tends to weaken.
What if the diameter of the capillary tube was of the order of meters, and the
measurement scale is less than a centimeter, over which the velocity does not vary much?
Firstly, there is little use of knowing a cross section averaged concentration if scales
pertinent to sampling and exposure are small. Secondly, the time scale governing the
cross-sectional homogenization would become large. The peak point concentration at anyl
cross-section will of course be larger than the cross-section averaged concentration. If the
scale of the advective heterogeneities that are giving rise to large 'effective dispersion
coefficients' is large, and exposure to solute does not involve large scale spatial
averaging, one has to be concerned about concentration deviations around the cross-
sectional mean, about which, nothing can be said by the effective dispersion formulae
alone. |

Each time a large effective dispersion coefficient is computed and recommended
as an input to a numerical transport modeling code, it needs to be kept in mind that it
implies a smaller peak (mean) concentration. Effective media modeling using large
effective dispersion coefficients is certainly an attractive proposition because it seems to

take away the need to delineate advective heterogeneities and model the detailed
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advective diffusive transport. However, even for modeling the 'mean coiicentration' that is
misleading. The effective dispersion coefficients can only be computed after delineating
the advective heterogeneity (‘deterministically’ or 'stochastically'). Numerical modelers
affinity for large dispersion coefficients is easily explained by the numerical grid Peclet
number. Theoreticians have performed computations of 'effective dispersion coefficients’,
‘mean squared displacement of a particle (or two)' in more ways than one. In light of this
convergence of interests, and the implied enhanced dilution by using a large dispersion
coefficient, it can not be over stressed that a priori, nothing can be said about
contamination exposure levels at a point, after knowing some ensemble averaged value
(other than that the contamination exposure level will be less than or equal to the
injection concentration and greater than or equal to zero). The viability of using effective
dispersivities to 'model transport' in heterogeneous velocity fields can be judged only
after estimating how poor the ‘average concentration' or 'plume volume' is going to be in
predicting the levels of contaminant exposure. The current practice is to merely assert that
the "spatial second moments determines dilution". In principle, effective dispersivities (if
they exist) can be experimentally found from field tracer tests. The effort involved in
characterizing the advective heterogeneities to enable a reliable computation of a
dispersivity has not been shown to be less than the effort in fitting one to a tracer test. The
characterization of the advective heterogeneities to compute effective dispersion
coefficients or spatial second moments of plumes, also creates the opportunity to
understand and describe concentration fluctuations, that will give information about the
nature of solute concentration distribution not contained in the mere bulk dimensions of a
plume.

An approach to understanding transport processes in a heterogeneous aquifer is to
consider it to be a sampie realization of a three dimensional stochastic process, which is
described by its spectrum or covariance function, unto second moments. The work of

Bakr [1976], Bakr et ai. [1978] and Gutjahr er al. [1978] produced a valuable
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understanding of fluid flow phenomenon in (heterogeneous) aquifers in the form of a
flow spectrum (see Appendix-IV). An ensemble of hydraulic conductivity and flow field
realizations, related by Darcy's law (approximately) at each point, with the flow field
obeying conservation of fluid mass (as the spectrum of the divergence is identically zero)
is embodied in the spectral description. This remarkable description of the flow field set
the stage for understanding the cffects of hydraulic conductivity variations on
contaminant transport. Gelhar and Axness [1983] computed the ensemble averaged
concentration under the explicit assumptions of a scale disparity between the mean
concentration field and the hydraulic conductivity field, and weak temporal gradients of
the mean concentration field. It is under these two conditions that the ensemble averaged
concentration may be governed by an effective advection dispersion equation with a
constant macrodispersivity. These conditions impose a relaxation time, beyond which an
effective dispersion-advection equation can be expected to model the mean concentration
field. An explicitly time dependent macrodispersivity is sometimes computed to relax
these assumptions. However it creates additional ambiguities; What is the significance of
time = 0? Is it the time the solute was introduced? If so, what if we start with the solute
initial conditions that result after N days, of transport with different initial conditions?
With explicitly time dependent dispersivities we would have the situation that if we
started a simulation, stopped it, and started it again, it would yield an answer different
than if we performed the simulation for the same cumulative time. An explicitly
(injection) time dependent dispersivity violates the belief that constitutive equations
shc;uld be independent of the frame of reference. The notion of a dispersivity depending
on the mean concentration profiles can however be understood without violating this
"principle of material frame indifference”, and applied in an advection dispersion
equation. Of course, as the mean concentration varies with time, the resulting
macrodispersivity will be a function of time, however no matter what the 'time' is, for a

particular mean concentration distribution, a unique macrodispersivity (field) can be
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specified. This is not to say that the rate of change of the mean squared deviation of a
particle (as computed by Taylor [1921]; Dagan [1984]) or that of the spatial second
inoment of a plume in a heterogeneous velocity field cannot be time dependent. However,
the interpretation of that rate of change as implying a time-varying dispersion coefficient,
to be plugged in an effective constitutive equation is not without ambiguities. The effect
of the limitation on low frequency variations sampled due to a finite plume scale,
described by Richardson [1926], and recently for the case of three dimensionally
anisotropic heterogeneous aquifers by Rajaram [1991], is valuable in interpreting the
developing dispersion problem, as the dispersive flux is related to a plume scale, and the
meandering of the plume center of mass is separated from the growth of its dimensions
around its center of mass. However, the law of large numbers tells us when a plume
volume is much larger than the hydraulic conductivity correlation volume, the
meandering of its center of mass cannot be significant. Of course one can entertain larger
and larger correlation scales and add on more low wave number energy to our description
of logarithm of hydraulic conductivity (InK) to claim that such a meandering effect is
ever important. However in these circumstances one can expect no spatially-temporally
local formulation of transport to describe the mean concentration field. Recently, Adams
and Gelhar [1992] have shown the importance of explicitly recognizing large scale
features and its implications for the plume moments. A spatially and temporally non-local
model of transport for the mean concentration, as analyzed by Graham and McLaughlin
[1989], provides a description of the ensemble averaged concentration even when the
plume scale and the correlation scale overlap and the concentration temporal gradients
may be significant.

The current work on transport in saturaied heterogeneous aquifers constitutes of
incremental theories that are increasingly omnate in their formulation of the spatial second
moment of plumes. One such theory is also presented in Chapter 5. In contrast, little has

been done to understand the usefulness of knowing the ensemble mean concentration or

13



the spatial second moment of the plume. There is 2nother trend to include increasingly
large scale features into the low wave number part of the hydraulic conductivity spectrum
and compute a larger macrodispersivity. Neuman [1990Q] fit 'universal’ regression lines to
empirical log-'apparent longitudinal dispersivity' versus log-'apparent length scale' data.
Of course, larger the dispersivity employed in an effective advection dispersion equation,
smaller is the peak mean concentration. Is this peak mean concentration a good predictor
of the sample peak concentration? Are these enhanccd rates of atienuation of contaminant
concentrations implied by these large dispersivities real? Is there some trade off to
including large scale features into the random process and computing yet a larger
dispersivity (one particle or two particlz) that implies a smaller peak concentrations?
Consider a plume large enough so that the scale disparity assumptions of Gelhar
and Axness [1983], apply over a range of correlation scales. And also consider the
measurement scale always much smaller than the correlation scale. Is the smoothing
effect of local dispersion going to be the same over the range of corrclation scales? How
large are the concentration fluctuations? How do they depend on the InK description?
How large a fraction of the mean concentration are the concentration fluctuations? Are
the fluctuations increasing relative to the mean, or are they decreasing fraction of the
mean, with time? The conditions most suited for the mean concentration theory in
predicting the mean conceniration are taken to apply. it is then asked how do
concentrations in a sample plume vary around this mean. Chapters 2 and 3 arc on the
formulation and approximate analytical solution to the problem of mecan squared
concentration fluctuations, i.e., concentration variance. In the literature, the word (plume)
variance is sometimes used while referring 1o the spatial second moment or squared
radius of gyration of the plume. In this work the word concentration variance refers to the
ensemble average of squared concentration perturbations.
| Chapter 4 is on the high wave number characteristics of the hydraulic

conductivity field and an assessment of the applicability of Darcy's law in describing the
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details of the velocity field in heterogeneous medium. In Chapter 5 a rationale is provided
for Corrsin's [1962] conjecture of statistical independence between the position and
velocity of a particle being transported in correlated velocity field. Applyirg the
conjecture in computing Lagrangian velocity statistics from Eulerian ones and a nonlincar
computation of macrodispersivities is presented. In Chapter 6 the findings of this work
are enumerated.

The first three Appendices present aspects of fluctuation dissipation mechanism in
simpler settings (than three dimensionally stochastic hydraulic conductivity fields).
Appendix-I and II demonstrate the singularly important role of the interaction of local
dispersion and the high wave number component of the InK fluctuations in determining
concentration levels in heterogeneous aquifers. Appendix-III reports a variational
characteristic of Taylor's [1953] solution for the cross-sectional concentration profile in a
tube. Appendix-IV and V describe the flow field in a heterogeneous aquifer. Appendix VI
presents evaluations of macrodispersivity integrals.

Analytical studies in the groundwater literature, critically influencing this work,
or, pertinent to the following analytical developments, are cited. A few numerical studies
that can be related to the key conclusions made here are cited. The applied mathematics
and fluid mechanics literature that has influenced this work due to similarities with
various aspects of this work are also cited. That this work is not an exhaustive review of
groundwater flow and transport literature is also reflected in the citations.

A note on the organization of the thesis. After each chapter and appendix title is
presented a synopsis of the results developed therein. Reading these synopsis and the
summary of findings in Chapter 6 constitutes a quick overview of this work. Chapter 2
and 3 are a pair and may be read in that order. Chapter 4 and 5 may be read
independently. Appendices I-II- III constitute a simple introduction to the key ideas on

fluctuation dissipation pursued in Chapter 2.
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CHAFPTER 2

ADVECTION-DIFFUSION IN
THREE-DIMENSIONALLY HETEROGENEOUS AQUIFERS:
DYNAMICS OF CONCENTRATION VARIANCE

The concentration variance, i.e., mean squared cencentration fluctuations,
undergoes mean advection, a local dispersive flux, and a macrodispersive flux due to a
correlation between squared concentration perturbations and velocity perturbations. The
products of the macrodispersion coefficient and the squared gradient of fic mean
concentration field determine the rate of production of concentration variance. The rate of
dissipation of concentration variance is determined by the products of the local dispursion
coefficient and the mean squared gradient of the concentration perturbation field.
Variance dissipation is represented as a first-order decay with the decay cocfficient equal
to twice the sum of the local dispersion coefficient divided by the squared concentration
microscale. The concentration microscale, estimated for an advection dominated log-
hydraulic conductivity microscale, is an increasing function of the log-conductivity
microscale. Thus, the larger the log-conductivity microscale is, the slower is the rate nf
dissipation of concentration fluctuations by local dispersion and vice-versa. The wave
number squared dependence of fluctuation dissipation is a fundamental property of
advection-diffussion phenomenon. Hence, intensive sampling will be required to
realistically model the log-conductivity spectrum and determine its microscale, which
determines the rate of dissipation of concentration fluctuations by the acticn of local
dispersion. There is no mechanism of destroying concentration fluctuations without the

action of local dispersion.
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2.1 INTRODUCTION

The spatially varyving velocity ficld, resulting when a saturated porous medium
with a spatially varying hydraulic conductivity is subjected to a hydraulic head
difference, creates rates of growth of the spatial second moments of plumes that are
greater than what would occur by local dispersion alone in the uniform mean velocity
field. Theoretical studies [e.g., Gelhar and Axness, 1983; Dagan, 1984; Winter et al .,
1984; Gelhar, 1987] have related this enhanced rate of growth of spatial second moments
to the characteristics of the velocity field and thus to the hydraulic conductivity field
properties. An effective advection dispersion equation containing an effective dispersion
coefficient is used to model the ensemble averaged conceniration field. The rate of
growth of the spatial second moments of the ensemble averaged concentration field is
determined by the effective dispersion coefficient. This requires that there be a scale
disparity between the smoothly varying mean concentration field and the rapidly varying
hydraulic conductivity. Depending on the heterogencity encountered, the spatial second
moment will show fluctuations around the growing mean [Smith and Schwartz, 1980;
Frind et al ., 1987; Tompson and Gelhar, 1990]. Rajaram [1991] has shown that the
fluctuations in the spatial second moment, as a fraction of its mean value, die out in time.
The ensemble averaged equation applies under conditions of sufficient smoothness of the
mean concentration field, insofar as it predicts the field-scale spatial second moments of
plumes.

However, a priori, the spatial second moment of a contaminant plume, in a
heterogeneous hydraulic conductivity field, contains precious little information about the
actual distribution of solute in space. Indeed the results on longitudinal
macrodispersivities are insensitive to the exclusion of local dispersion, when local
dispersivities are much smaller than the correlation scale of the log-hydraulic

conductivity (InK) field. Thus, the spatial second moment has nothing to offer to
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distinguish between plumes in which there is absolutely no attenuation of original
concentrations, i.e., the zero local dispersion case, and plumes in which there will be a
decrease in solute concentration due to the action of local dispersion. A priori, the spatial
second moment is not a predictor of 'dilution’. The use of large cffective dispersivities,
obtained from stochastic theories, or, from fitting observed spatial second moments in
field experiments, may .result in a large underestimation of point concentrations, if the
solute is 'spreading' and breaking up into separate fragments without enhanced
attenuation of concentrations, instead of ‘mixing' and resulting in enhanced ‘dilution’.
While there is an abundance of studies that seek incremental refinements for the mean
concentration and/or better predictions of the spatial second moments of the
concentration distribution, rare are analytical evaluations of the deviations of solute
concentrations from the mean value [Gelhar er al., 1981; Dagan, 1982, 1984 and 1990,
Vomvoris, 1986; Vomvoris and Gelhar, 1990].

A major applied motivation of stochastic analysis of transport in heterogencous
porous medium has been to derive an effective equation for the concentration that may
be used to make decisions in real life contamination events which may require the
assessment of the concentration at a ‘point’ in space and time. The spatial extent of this
'point' may indeed be small (e.g., a well may sample an area not much larger than the
Darcy continuum scale; human exposure to contamninated water may occur over scales
smaller than the correlation scale of the InK field), thus spatial averaging of the
concentration field may not be pertinent in practical situations. Furthermore, for spatial
averaging to result in a considerable reduction of the variance of concentration, averaging
would have to occur over tens of correlation volumes (i.e., the product of the three
correlation scales). It does not seem prudent to rely on large-scale spatial averaging for
the attenuation of high concentrations, in assessing risk of exposure to toxic substances
In any case, the statistics of spatial averages of the concentration field can only be

computed after the second order statistics of point concentrations are determined.
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The complex distribution of solute, due to the complexity of the velocity field,
manifests itself as 'uncertainty' in the prediction associated with the mean concentration
field (Figure 2.1). How good is the ensemble averaged concentration, a predictor of the
concentration at a point in a plume in a sample realization of the hydraulic conductivity
field? Do enhanced second moments of plumes translate into enhanced 'dilution’, e.g.,
attenuation of peak point concentration? What are the mechanisms and scales controlling
these concentration deviations from the mean concentration? Do they become smaller in
time relative to the mean concentration, or do they become arbitrarily large multiples of
the mean and result in a fragmentation and ultimately an ‘explosion’ of the plume? A
description of the ensemble average of the squared concentration fluctuations, i.e., the
concentration variance, and an enumeration of controlling mechanisms, to answer such
questions, is the objective of this study.

The conservation equation for the concentration variance is derived in Section 2.2.
The variance undergoes mean advection, a local dispersive flux, and a macrodispersive
flux, just like the mean concentration field does. In Section 2.3 the macrodispersive flux
term for the variance is estimated for the zero local dispersion case to get a Fickian flux
term, in the variance equation. In addition to the transport terms in the variance
conservation equation, there is a source term and sink term describing the processes of
creation and destruction of fluctuations. The source term is twice the sum of the products
of the macrodispersion coefficient and the squared gradient of the mean concentration
field. The variance sink/dissipation term, is twice the sum of the products of the local
dispersion coefficient and the mean squared gradients of the concentration perturbation
field. .

The variance dissipation term is represented as a first order decay term with the
decay coefficient equal to twice the sum of the local dispersion coefficient divided by the
squared concentration microscale, in three dimensions. The fact that the sink term is

proportional to the variance of the derivatives of the concentration perturbation field
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CONTAMINANT CONCENTRATION
(MASS PER UNIT VOLUME)

Plume X,
—»| Radius L———

Figure 2.1
Are the concentration fluctuations a large multiple of the mean,

or, a small fraction of it ?
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directly indicafes the sensitivity of the dissipation mechanism to the rapidly fluctuating
(i.e., high wave number) content of the concentration field. Indeed diffusion acts rapidly
on fine scale features than smoothly varying ones. In Section 2.4 the microscile of the
concentration fluctuations is estimated by subjecting a small spot of the solute to the
opposing effects of local dispersion and characteristic value of the principal convective
compression (after Batchelor, 1959; Tennekes and Lumley, 1972), which is strongly
dependent on the high wave number content of the velocity field. When the transport is
advection dominated at the InK microscale, the concentration microscale is an increasing
function of the InX microscale. 'Ihcrcfofe. the variance decay coefficient is a decreasing
function of the InK microscale. Equivalently, the variance ‘residence-time' (the inverse of
the decay coefficient) is an increasing function of the InK microscale.

Nondifferentiable InK fields with zero microscales, result in infinite vorticity,
infinite convective compression, and infinite shear in the velocity field, and are not
entertained here. In deriving the results on variance dissipation, it is explicitly assumed
that the InK niicroscales are greater than the local dispersivities. In Appendix-IV is
presented a differentiable spectrum for the InK and the characteristic principal strain rate
of the velocity field in statistically isotropic and anisotropic porous material. The role of
the InK microscale in controlling the rate of dissipation of concentration variance, points
to the need for intensive characterization of the hydraulic conductivity in order to predict

conrcentration variance.
2.2 CONCENTRATION VARIANCE CONSERVATION EQUATION

The transport of a passive scalar, undergoing local dispersion and advection in a
velocity field with a mean v in the x; direction, and a zero mean-three dimensional

-divergence free-spatially varying component v;', is governed by the parabolic equation
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- V(zu — =0 (2.1)

The local dispersivities a;; typically have different longitudinal and transverse values;
0 =0, 0 = 033 =0p, ;=0 i#j

These local dispersivities may be measured in a laboratory column, and are typically less
than a centimeter for the longimdinal direction and even smaller for the transverse
direction. The local dispersion process in (2.1) has been simplified to depend on the mean
velocity field rather than the local velocity, which would make it spatially variable. The
effect of spatial variation of diffusion coefficients is not explored here.

Defining the velocity covariance function for the statistically stationary velocity

perturbation field

Ry (x—x)= Ry , (k-x)=E[v{X)v,(x)]

its spectrum is given by

1 oo .
Sip 0= [enl-ikg 1R, @

See Appendix IV for a specification of the velocity field.

Decomposing concentration ¢ into its mean and perturbation

and substituting into Equation (2.1), using the divergence free condition of the velocity
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fields

v;
—_— =0
ok;
on taking expectations of (2.1) we get for the mean concentration

&+vaé~v e +ac7vT-—0 (2.2)
x Va e T '

Subtracting the mean concentration equation (2.2) from (2.1) gives for concentration

perturbations

& o Fe ..
3 +v 3,\:7 = Vo &i&j + axi(cv,-— CV,-)= -V,-Bx—i (2.3)

There have been numerous studies to analyze the macrodispersive flux term
cy;
which creates additional (and indeed dominant) flux for the mean concentration field

(2.2). This term may be analyzed by multiplying the perturbation equation (2.3) by a

velocity perturbation at a different location and taking expectations to get

d T d e . 2 L,
;-v,,,(x)c (xt) +v > vi(x)c'(x,t) — va,-jmvm(x)c (xr) +

-g_— Vi, (x) ¢ (x,e) = — Ry v (x —x) &:a(: ) (2.4)

A new term
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2 VW) ¢ (k)

has been generated and is dropped using the plausible argument that it is higher order in
velocity perturbations compared to the macrodispersive flux term in (2.4), and therefore
will be small for small input InK variance. Dropping this new term in (2.4), the Green's

function for the advection dispersion operator governing the macrodispersive flux term is

[(x,' -1n; ) - V(s,'l(t - 1)
ﬁ 4a,-‘-v (t-1)
i=1 4 471'(1,"‘ v (f—T)

G(x-n,r—-1) =

Therefore the solution for the macrodispersive flux is given by

t +oo -
vV (x)c (x,t) = _J =OJ' G (x-n,t - T)R, , (x~-m) &;n,r)
T - o0

dndt (2.5)

The correlation between concentration perturbations and velocity perturbations at the
same spatial point may be evaluated from (2.5). Under the condition that the mean
concentration gradient in the integral solution vary in space and time much slower than
the Green's function and also much slower in space than the velocity covariance function,
it may be taken outside of the space time integration to approximate the integral by a
local relationship

V) € t) = v Ay (1) EXA) 2.6)

Where A, , the 'macrodispersivities', are given by
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1
@)= 5 [ | Gaeni-oR,,, x-wdnds @7)
This expression is equivalent to the expression for macrodispersivities given in Gelhar

[1987], equation 4.6. As shown in Gelhar [1987],

T S, . (k) dk
— (2.8)

t 200 A -=I
e iy + R+ o+ B

In this study it is assumed that the mean concentration field is smooth enough to permit
these localization approximations and the interest is on the process after large travel
distances, therefore the use of a constant effective dispersivity is justified. Gelhar and
Axness [1983] have computed the integral (2.8) for a variety of cases. For statistically

isotropic porous medium with small local dispersivities, they present the large time result
Au=o§i|/y2,y=l+a§«/6

where 4 and o are the correlation scale and standard deviation of the InK field.
To analyze the concentration variance, i.e., 62, = E[c?2], the exact concentration
perturbation equation (2.3) is multiplied by another concentration perturbation. After

taking the mean we get the exact concentration variance equation

1 ac; +va—og —va-izi+i(v'c'2) -—Ei—va % % (2.9a)
2| . Uokew  ay Ca Y oy '

Equation (2.9a) is the mass conservation statement at the second statistical moment level.

Some inferences about the concentration variance are already possible. Firstly, under the
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condition of a .f;nite mean concentration gradient and correlation between concentration
perturbation and velocity perturbation in (2.9a) (in the first term on the right hand side),
the inference of finite concentration variances for any value of local dispersion (including
zero) is trivially afforded, recognizing that transport terms (on the right hand side of
(2.9a)) cannot ever create any variance, and the dissipation term on the right hand side
can only destroy concentration variance. Secondly, the concentration mean and standard
deviation for a solute undergoing a first order decay with a constant decay rate coefficient
x are simply equal to those of a solute not undergoing a first order decay, multiplied by
e, This follows from recognizing that a first order decay can simply be scaled out of the
transport equation (2.1). Therefore, a solute undergoing a first order decay will have the
same coefficient of variation (i.e., the concentration standard deviation divided by the
mean cencentration) as a nonreactive solute. These two inferences do not involve any
approximations or closures, or dropping of terms, like those made in inferring the
correlation between concentration perturbations and velocity perturbations. The results of
Vomvoris [1986] do not agree with these inferences. In his analysis of a solute
undergoing a constant first order decay, the decay rate strongly influences the implied
concentration coefficient of variation, also, the variance can be made arbitrarily large by
making the local dispersivity arbitrarily small. The approximations developed hereafter
do not violate these two features. The results developed by Gelhar and Gutjahr [1982]
also have the feature that the solute undergoing a first order decay has an implied
coefficient of variation that is different from the nonreactive case.

Equation (2.9a) is the foundation for inferences of concentration variance to be
made in this and the next chapter. There are two new terms in (2.9a). The divergence of
the correlation between squared concentration perturbations and velocity perturbations,
the last term on the left hand side. The variance dissipation term, the last term on the right
hand side. These two terms will be analyzed in Section 2.3 and 2.4 respectively.

Substituting the Fickian relationship (2.6) in the first term on the right hand side of (2.9a)
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gives

o¢ 9t o’ — ¢ 9
—_— tv— v & —— +—a—(v}c'2)=2vA,-jii—2va,-j ii (2.9b)
o ox, aox; ; ox; ox; ox;

Analogous to the macrodispersive flux term for the mean concentration equation (2.2)
(the divergence of the correlation between concentration perturbations and velocity

perturbations) there is a macrodispersive flux term for the variance

2
ok;

(vic' 2)

(the divergence of the correlation between squared concentration perturbations and
velocity perturbations). The variance also undergoes mean advection and a local
dispersive flux, and is produced and dissipated by the forcings on the right hand side
(2.9b). Defining

Il = [ rax

for homogeneous zero far field conditions and divergence fice velocity perturbation

fields,

dc?
oy

Fo’ J
=l = | £ vy =
"—";.;. [ I (vic =0

I o

The macrodispersive term for the variance, is a transport term and does not cause any

dissipation or production of the global fluctuation measure, which on integrating (2.9b)

27



fullows

d &x & &' dc’ .
-l Il = 2va; || =—— || - 2va; || =—— 2.10)
d‘il 2 |l & gl o I - 2vay || o o I (

The macrodispersivities and local dispersivities have opposing reles in creating and
destroying concentration fluctuations in (2.10) and (2.9b). In the absence of local
dispersion there is no mecharism to destruy the variance (2.9b), and the global measure
in (2.10) is nondecreasing. Consideration of fluctuation budgets of the form (2.9a) and
(2.10) can be traced back to the deliberations of O. Reynolds [1895] on turbulent kinctic
energy.

The variance equation (2.9b) shows that a mean concentration profile in a porous
medium with a larger correlation scale is accompanied by greater fluctuations as the
longitudinal macrodispersivity increases with the correlation length thereby increasing
the strength of the source term in the variance equation (2.9). The source term in the
variance equation (2.9b) is proportional to the square of the spatial derivatives of the
mean concentration field, thereby showing that a plume scale is naturally involved in

determining the rate of production of concentration variance.
2.3 MACRODISPERSIVE FLUX OF CONCENTRATION VARIANCE
2.3.1 ZERO LOCAL DISPERSION CASE

Neglecting local dispersion in (2.1), the transport of a passive scalar in the

heterogeneous velocity field is governed by the hyperbolic advection operator
a o . o :
-5+V'E +V,--E =0 21D
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On taking expectations of (2.11), the mean concentration is govemned by

%‘ . v% + .%gv; - 0 2.12)

In order to evaluate the macrodispersive flux, the concentration perturbation equation,
obtained by subtracting (2.12) from (2.11), may be multiplied by a velocity perturbation
at another location. After taking expectations and dropping the new 'higher order term' (as
dropped in Section 2.2 from equation (2.4))

%) de (x,r)
ox;

%v;,,(i)c'(x.t) + v-a—fT v.ix)c'(xe) = — Ry, (x - (2.13)

The Green's function for the hyperbolic advection operator in (2.13) is

3
G(x-n,t-71) = H 6G;-m-v§;t-17))

i=1
The solution for the macrodispersive flux term is

o (n,7)

~n dr (2.14)
N ]x‘- -v§, (-1

- !
V;,,(i)c' (x,t) = —I =0Rv'.. v, (.i, - (x; -v 6;1(‘ -1)) [

For the correlation between velocity and concentration perturbations at the same location
in (2.14), assuming that the mean gradient is slowly varying in time so that it may be

taken outside the integration to get

dc(x,t)
ox;

Vm(X)C' (x,8) = —vA;{t) (2.15)
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where A, , the macrodispersivities, are given by

[ {
Ami (t ) = %J;BORV" v,y (V (t - T). 0, O)d‘l' (2.16)

This expression is equivalent to the expression 4.17 in Gelhar [1987]. It may be shown

n

t —>oo Am.i= 2
v

400
j j Sviw (0, ky, k) dky diky (2.17)

(Equation 4.19 in Gelhar [1987]). For large displacements, under conditions of sufficient
smoothness of the mean concentration ficld, a constant macrodispersivity may be used.
The longitudinal macrodispersivity found from (2.17) is indistinguishable from the one
found after including local dispersion (2.8), for small local dispersivities compared to the
InK correlation scale [Gelhar and Axness, 1983). By (2.12) and (2.15), the ensemble

average of the transport quantity ¢ is thus governed by the advection-dispersion operator

2-
%— + vgl- -.vA‘:’. -aa—‘—;x—j- = (218)

For the idealized zero local dispersion case, all powers of ¢ are governed by the

same operator (a fundamental property of the hyperbolic operator (2.11)). Define

s =c
It follows simply from (2.11)
) ad .0
T-’_‘,"i-v-a?l- +V,-'(-k'7 (2.19)
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Now
s=c?=(c+c) =ct+cr 28 ¢ (2.20)

and
§=2‘2+a,_.2, sms-§ =ct+2¢ c'—03 (2.21)

Therefore without any new assumptica on s it follows from (2.11), (2.15) and (2.19)

Va(X)s'(x,0) = —vA,,; fjﬁ:-_‘?_ (2.22)

On substituting (2.21) in the Fickian relationship (2.22) and using the Fickian

relationship for the mean concentration (2.15),

v, =-vA, - X (2.23)

thereby deducing that the role playcd by the correlation between squared concentration
perturbations and velocity perturbations (2.23) in the transport of the concentration
variance field in (2.9b), is similar to that of the correlation between concentration
perturbations and velocity perturbations (2.15) in the transport of mean concentration
(2.12). Of course the relative orders of these macrodispersive transport terms are
precisely the same in the equations for the mean concenftrarion and concentration
variance. The heterogeneous velocity field transports concentration fluctuations from
regions of greater fluctuations to regions of lesser fluctuations due to this correlation

between squared concentration perturbations and velocity perturbations (2.23). The
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derived Fickian relationship (2.23) was hypothesized by Csanady [1973].
On taking expectations of equation (2.19) and substituting (2.22)

a2 Ik RcL

-t v-xl— - VAijm 0 (2.24)

Substituting for the mean of the squared concentration given in equation (2.21), into
(2.24), gives the variance conservation equation for the idealized zero local dispersion
case

¢ It & o & &

d YPr— e YA, — 2vAl:’- E-; (2.25)
. i OX;

The derivation of equation (2.25) needed no additional assumptions on s, other than those
already made on c, in deriving the mean concentration equation for the zero local
dispersion case.

Dagan [1982] and [1990], analyzed the concentration variance, neglecting local
dispersion, for the case of a solute injected with a concentration ¢, in a finite region.

Dagan's result for the variance is

oXxt) =¢ (¢, - ¢) (2.26)

Differentiating this expression in time and space gives

do;
x

¥[3

=co-6§- -2c
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Fo _ Fe o8k . Fé
ook ? okx;ok; dx; dx; okx;0x;
These expressions yield
o0t  00F &* 0%
- + VE - VA; Hﬂ? =
A & & 9% dt J¢
(00—2(:)( X + VII- —VA,-j m 2VA,-j zgj- (2.27)

Recognizing that the mean concentration is governed by the advection-dispersion
operator (2.18), we get from (2.27) the same equation for the concentration variance as
(2.25). Therefore the mechanisms in the derived variance equation (2.25), for the creation
and movement of concentration fluctuations for the nondissipative zero local dispersion
case, are in complete agreement with Dagan's compact result (2.26). The important
macrodispersive transport mechanism for concentration variance derived in (2.23),
hypothesized by Csanady [1973], is implicitly contained in Dagan's result. Graham and
Mclaughlin [1989], Vomvoris and Gelhar [1990] and Li and Mclaughlin [1991] have
dropped this macrodispersive transport term for the concentration variance field, on
account of dropping the perturbations in the macrodispersive flux in the concentration
perturbation equation (2.3). It is being argued here that dropping this term in the variance
equation is akin to dropping the macrodispersive flux term in the mean equation.

Since small local dispersivities (relative to the InK correlation scales) play an

insignificant role in determining the macrodispersive flux of the mean concentration field,
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it is unlikely that they will play a major role in determining the macrodispersive flux of
the concentration variance field. Therefore, the Fickian relationship for the concentration
variance (2.23) will be substituted into the variance conservation equation including local
dispersion, i.e., equation (2.9b). This will result in there being a macrodispersive flux
mechanism for the transport of the concentration variance field, in additicn to the local

dispersive flux mechanism.

2.4. DESTRUCTION OF CONCENTRATION VARIANCE BY LOCAL
DISPERSION

2.4.1 VARIANCE SINK TERM

The variance sink term d(x,t) in the concentration variance equation (2.9) is given

8

(2.28)

g

d(x, 1) =2va; % '_

i 9%
This term is nonnegative, and therefore acts as a sink for concentration variance. The
dissipation/destruction of variance is singularly brought about by the action local
dispersion. The interaction of local dispersion and the rapidly fluctuating part of the
concentration perturbation field (which strongly determines the variance of the spatial
partial derivatives of the concentration perturbation field in (2.28)), controls the rate of
concentration variance dissipation. Such an inverse dependence of the rate of dissipation
of mean squared fluctuations, on squared dimensions characterizing spatial derivatives of
transport quantities, is ubiquitous in transport of heai, kinetic energy, and mass in

complex velocity fields. The reason being that a fundamental characteristic of an
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unsteady diffusion phenomienon is that the component of the transported quantity that
varies rapidly in space, decays faster in time, and the decay rate is inversely proportional
to the square of the scale that characterizes the derivatives of the variation in space. A
triviai one dimensional homogeneous boundary condition example, is sufficient to
demonstrate this 'wave number squared' sensitivity (See Appendix-I). Lumley [1972]
discusses this feature in his exposition of the dynamics of temperature fluctuations
(neglecting buoyancy, therefore treating it like a passive scalar) in complex turbulent
velocity fields. Taylor [1935a] discusses the dissipation of turbulent kinetic energy and
measures the scale characterizing the derivatives of the velocity field to successfully
deduce the rate of dissipation of energy in turbulent flow in a pipe [1935b]. Analytical
bounds on norms of the squared gradients of transport quantities have been computed by
variational methods, under various constraints, in search for extremal hypothesis that
might 'govern' complex flow systems [e.g., Howard, 1972; Malkus and Smith, 1989].
Analysis of dissipation functions like (28) facilitate finding absolute stability criteria for
fluid flows [e.g., Serrin, 1959; Sorokin, 1961; Joseph, 1976). The critical role of the
dissipation function in controlling the level of fluctuation energy, is well established in a
variety of continuous dissipative systems.

Due to small local dispersivities, transport in porous media is advection
dominated at extremely small scales (less than a centimeter). It is expected that the fine
scale features (high wave number component) of the velocity field, and therefore the InK
field, will play an important role in determining the strength of the spatial partial
derivatives of the concentration perturbation field. It is also expected that the energy in
the spatial partial derivatives decreases with an increase of local dispersivities duc 1o a
smoothing influence. Thus, to some extent, local dispersion may have a self inhibitory
role in variance dissipation. Of course, in neglecting local dispersion, the hyperbolicity of
the transport operator (2.11) precludes any fluctuation dissipation (2.28), and there is no

particularly interesting role for the gradients of the concentration fluctuation field. It is
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precisely the parabolic nature of the advection-local dispersion operator (1), that creates
the interesting phenomenon of fluctuation dissipation (2.28). Appendix-II presents
rigorous lower bounds on the dissipation function, sufficiently demonstrating its singular
importance in controlling the level of the concentration fluctuation energy in a bounded
two dimensional aquifer.

Defining the concentration spatial covariance function

R..(x,x,t) = Elc'(X, 1)c(X,1t)] (2.29)

i

= —— R (&, X, )| _i oy, (2.30)
&‘ axj &‘&J c X X=x,!

The concentration covariance equation may be formulated (by multiplying the
concentration perturbation equation (2.3) by a concentration perturbation at another point

in space and taking expectations) to get
0 7 e e i 2 o .
< ! ’ ’ ) + ! ’ ! ’ [ » ‘ ’ -
> c'(x,0)c'(x,0) VTI c'(x,c'(x,0) + ""‘ax, c'(x,0)c'(x,1)

va,-,-——-axi £ c'(x,0)c(x 1) - va,-jm c'(x,0)c'(x,0) + (2.31)

% c'(x, )c'(x , v (x) + 7.% c'(x,0c(x v,/ (x) =

—c(x .0 vi'(x)i;;‘f't)- - c'(x,r) V,"(.x)igf"l

To deduce the strength in the derivatives of the concentration perturbation field (30), an
investigation of the small separation behavior of the concentration covariance function is

required. The covariance equation (2.31) has a new term
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c'(x,0c’(x’ v'(x)

The corresponding term in the variance equation creates a macrodispersive transport
mechanism for the variance field (as derived in Section 2.3, shown to be implicit in
Dagan's [1990] model, and, hypothesized by Csanady [1973]). There is little merit in
dropping it and still retain the variance transport terms due to local dispersion. Solving
the covariance equation (2.31) in a small perturbation analysis will involve at least
formulating another equation for the correlation between squared concentration
perturbations and velocity perturbations. In numerical studies of the concentration
covariance, the discretization would be dictated among other factors, also by the fact that
the second derivative of the concentration covariance equation (2.30) needs to be
evaluated to determine the variance sink term (2.28). In numerical computations done by
Graham and Mclaughlin [1989] for a two-dimensional heterogeneous medium and Li and
Mclaughlin [1991] for a one-dimensional problem, this triple product transport term has
been dropped.

If the dissipating action of local dispersion on concentration fluctuations has to be
computed in a sample realization of the InK, the numerical approximations have to be
able to model the gradient of the concentration perturbation field with fidelity, as it
controls the local-dispersive flux, which is the only smoothing mechanism. This feature
unambiguously manifests itself in the sink term (2.28) in the exact concentration variance
equation (2.9a). Typically, numerical approximations are not capable of reproducing local
concentration gradients, for advection dominated transport in heterogeneous velocity
fields. For 'particle-tracking' methods (popularly claimed to be a panacea against
intensive spatial discretization requirements) to be able to model this local-dispersive
flux, it seems that a lot of particles will be required. There is little precedence of

suggesting convergence of numerical solutions in a derivative norm (e.g., H! norm), or
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any other norm. Ironically, almost without exception, numerical studies employ a
description of InK that is incredibly rich at the high wave number end (i.e., the
exponential correlation model of InX), and yields infinite strain rates for the velocity field
that cannot possibly be reproduced on a numerical grid. The singular objective of
numerically modeling the spatial second moment of plumes and the theoretically found
insensitivity of it to the local dispersion process, is probably why this issue is not
addressed.

Following is a simplified analytical study of the interaction of the fine scale
feature of the concentration perturbation field with the velocity field in the presence of
local dispersion, to assess the variance sink term (2.28), and enumerate the controlling

mechanisms and parameters.

2.4.2 VARIANCE DECAY COEFFICIENT

Assuming the small separation behavior of the covariance function is that of a

statistically stationary field, i.e.,

lim x> x R..(X,x,t) >R 1) (2.32)
E=xX - X
It follows from (2.30) that
a:' 2 1;2RC'C'( 1 t) Gg
)58 -
I o £)

By definition, A¢;, the microscale of the concentration perturbation field, is the scale that

characterizes the derivatives of the concentration perturbation field [Tennekes and
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Lumley, 1972]. Substituting (2.33) in the variance sink expression (2.28) gives

d(x,t) =y o (2.34a)
Wa:

- 0 (2.34b)
LK

% is the 'variance decay coefficient'. A sum over repeated indices is implied in (2.34b).
The variance sink term, thus approximated, is a first order decay term, in the variance
conservation equation (2.9). The decay coefficient y, is the sum in the three principal
directions of twice the ratio of the local dispersion coefficient and the squared
concentration microscale. The larger the concentration microscale Ac; is relative to the
local dispersivities, the slower is the action of local dispersion in destroying the
concentration variance. The 'residence time' of concentration variance, 1/y, is
proportional to the squared concentration microscale. The smaller the concentration
microscale, the smaller the fluctuation 'residence time', as local dispersion destroys it
faster. Of course, concentration variance is always being produced at a rate proportional
to the squared gradient of the mean concentration field, as dictated by the source term in
(2.9b). For the hypothetical zero local dispersion case, the residence time of concentration

variance is infinitely large, as the concentration variance is not being destroyed at all.
2.4.3 CONCENTRATION MICROSCALE

The interaction of the strain rate of the velocity field and local dispersion in
determining the concentration microscale is analyzed here. Consider a 'small spot’' of
solute introduced at the origin in the x coordinate sysiem. Equation (1) governs the

space time evolution of the small spot. The conservation equation in a coordinate system
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€ oriented with the x coordinate but also moving with the particle originally at the origin
in the x coordinate is

& & Fec
— —vi0))— = o —— 2
> + (W{E)-v{( ))ag,- voy; 3% (2.35)
A Taylor expansion of the velocity field may be made i.e.,
v(0)
ViE)= v{0) + & —— +0(&) (2.36)

9

This first order Taylor expansion is substituted in (2.35) as the focus is on the small scale
features and therefore a linear representation of the velocity is made [Batchelor, 1959;

Lumley, 1972; Tennekes and Lumley , 1972]. This gives

a v 0) A Fc

—_— 4l e = YO —— 2.

a oy o T e 23D

Defining the normalized spatial moments of this small spot as
40
[ stctoa
L) = — (2.38)

[ cwoa

On integrating equation (2.37) in space and using the divergence free condition on the
velocity perturbation field, the evolution of the normalized spatial moments of this small

spot is governed by



dh, ¥, o,
—— e ] e e [ e = D 2.39
i i 3% @ % Vg (2.39)

To study the interaction between the principal strain rates of the velocity field, local
dispersion, and the smal! spot, the cff-diagonal components of the gradient of the velocity
perturbation field in equation (2.39) are dropped to get

dly oV

— e Do [.. = 201 2.40
p o oGy (2.40)

with 10 sum on i. The evolution of the spatial second moment of this spot is strongly
influenced by the spatial partial derivatives of the velocity field in (2.40). Dropping of the
off-diagonal terms of the velocity gradient affords a local decoupling of the transport in
the different dimensions. Inclusion of the flow vorticity [which is computed in: Appendix-
V] can be expected to have a local isotropizing influence. Lumley [1.97i]. performs a
similar analysis including the vorticity and did not find a significant change the computed
concentration microscales. Equation (2.40), derived by Batchelor [1959], is the basis for
inferences about the high wave number behavior of transpert quantities undergoing
advection-diffussion.

Decomposing InK into its mean and pcrturbation,
In[K] = ElIn[K]] + f

For a stationary InK field the variance of the spatial partial derivatives is given by

{(3]- %
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where 4%; is the microscale of the InK field ir the { th direction. The standard deviation of

the veiocity field may be related to the InX description by

o, = -ﬂ?iv o (2.42)

Defining the variance of the derivatives of the velocity field

E{(M ]2] . (2.43)
)1 (auy '

The characteristic strain rates of the velocity field may be related to the InX field to get

o, E
Y

A%

(2.44)

v

& la

where the constant ¥ is defined, and f3;, y; are computed, in the Appendix-IV. Results for
three dimensional heterogeneous InX fields, for both the isotropic and layered anisotropic
case are presented in the Appendix-IV. The velocity ficld microscale is related to the InK

field microscale by

Al = %:-a( (2.45)

The solution to (2.40) is easily found to get
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' (2.46)
v;
ox;

I;(0) = L{0) 2av,-
ilt) = LixUexp ék;t + o

with again no sum on i. It follows from the solution (2.46) that in the case that the small

spot is being compressed in the i th direction with the ‘characteristic' strain rate, i.e.,

o,
4

the local dispersion and convective compression counteract each others influence and the

¥l

normalized spatial second moment in the i th direction of the small spot saturates to a

value

(2.47)

This reveals that features with dimension less than the square root of (2.47) cannot be
sustained in the advection-local dispersion transport process. The velocity strain rate ficld
was assumed to persist over dimensions larger than the small spot in using a one tenm
Taylor expansion of the velocity ficld in the ransport equation in (2.36). Therefore it is

being assumed that the transport at the velocity microscale is advection dominated,

A > ay (2.48)
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In addition, it is also being assurmed that the contribution from the initial dimensions of
the 'spot’ can be ignored in (2.46). Arguing that in an advection dominated transport
system, the initial dimensions of the 'spot’ are that of the velocity microscale, it is being

assumed

> (@a4)° (2.49)

> A > oy (2.50)

AR - 2.51)

This estimate is therefore made for 'moderate advection domination' (2.50). At conditions
of extreme advection domination of the velocity microscale, it is expected that the scales
gov}eming the spatial derivatives of the velocity field are superimposed on the
concentration field. The estimate of the squared concentration microscale may be
extended to larger velocity microscale by adding the squared velocity microscale, to

account for the initial dimension of the spot in (2.46)



@ (2.52)

This may be written as
A 2
) = 5 (%) Ay’ (2.5)
B \F
y

using (2.42),(2.44),(2.45). The concentration microscale estimate in (2.52) is argued
under the condition that the velocity microscale is greater than the local dispersivity,

which using (2.45) is expressed as

A": > E o (254)

The estimate of the concentration microscale in (2.53), has a linear dependence on the
InK microscale, at very large microscales. As the InK microscale approaches the local
dispersivity, the feedback from the smoothing effects of local dispersion, weakens the
dependence of the concentration microscale on the InK microscale.

The variance decay coefficient, on substituting (2.53) in (2.34b), is

3
2 iV
2=, i (2.55)

The decay coefficient thus represented, approximately incorporates the features of an
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increase in the strength of the spatial partial derivatives of the concentration perturbation
field with an increasc in the relative proportion of the high wave number component of
the InK spectrum (i.e., a decrease in the InK microscale), and therefore an increased rate
of destruction of concentration fluctuations. Also, as the InK microscale increascs (due to
a greater proportion of low wave number energy in the InK spectrum), the concentration
microscale increases (2.53), which creates a smaller decay coefficient for concentration

variance (2.55), i.e., a larger 'residence-time' for the concentration variance.

2.5 CONCLUSIONS

Substituting the correlation between squared cencentration perturbations and
velocity perturbations estimated in Section 2.3 Equation (2.23), and the variance
dissipation term (Equations (2.28) and (2.34)) estimated in Section 2.4, into the

conservation equation for the concentration variance (2.9b) yields

aoi+ oot & o’ & &

c c . ————
7 V?l— V(A,‘j + a‘.l) m‘;‘- 2vAu ax‘. axj ZO% (2.56)
1= 2va,-!-
£ &

The variance decay coefficient ¥ may be computed using (2.55) (and the constants
evaluated in the Appendix-IV). The variance conservation equation (2.56) is coupled to

the mean concentration governed by

dc . dc Fe
7 + VFI - V(A,-j + a,-j) m =0 (2.57)

The constant macrodispersivities Ajjused in (2.56), (2.57) hold under the condition of
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sufficient sméothness of the mean concentration field, as compared to the correlation
scales of the InK field, and after sufficient travel time to enable sampling of the
heterogeneity of the velocity field. The mean and variance of the concentration field
undergo a translation with the mean velocity field. The macrodispersive flux for the mean
and variance embodies the mechanism of transport due to the correlation of concentration
and squared concentration perturbations, with the velocity perturbations, respectively.

The source term in the variance equation shows that the rate of creation of
fluctuations increases quadratically with the mean concentration gradients. Therefore the
rate of production of fluctuations decreases with an increase in the plume scale. The
increase in the rate of production of concentration variance with an increase in the
macrodispersivities points to an increased capacity of a mean concentration profile to
produce concentration fluctuations in porous material with larger correlation scales and
therefore greater longitudinal macrodispersivities.

If local dispersion is excluded, there is absolutely no mechanism to destroy the
concentration variance created by the gradients in the mean concentration field (2.56).
Therefore, the spatial integral of the concentration variance, a global measure of
fluctuations, is nondecreasing (putting agj = 0 in (2.10)). As argued in Section 2.2, in the
absence if infinite gradients of the mean concentration field, there is absolutely no
possibility of infinite variance; no matter what the value of local dispersion, positive or
zero. Of course, the zero local dispersion case never occurs in real porous material. On
assuming the small separation behavior of the concentration covariance function to be
statistically stationary, the destruction of variance due to the action of local dispersion
may be represented as a first order decay term with 2 decay coefficient equal to a sum in
the three principal directions of twice the local dispersion coefficient divided by the
squared concentration microscale (Equations (2.34a,b)). Therefore the smaller the ratio of
the local dispersivity to the concentration microscale is, the slower is the action of local

dispersivities in destroying concentration variance. A simplified analysis was made to
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estimate the square of the concentration microscale (2.53). This estimate is made under
the assumption that the InK microscale is larger than the local dispersivities. The resulting
variance decay coefficient } increases with a decrease in the InX microscale (2.55). This
embodies the increased ability of local dispersion to destroy concentration fluctuations
when the solute undergoes small scale chopping up due to the high wave number part of
the velocity spectrum. Also, an increase in the low wave number energy of the InkK
spectrum, will decrease the variance decay coefficient, due to the larger time taken by
local dispersion, in dissipating concentration fluctuations with a larger microscale.

Since the growth of the spatial second moments of plumes is sensitive to the low
wave number part of the InK spectrum and most of the current studies of transport seek to
refine the description of the spatial second moment of plumes, it may be (mistakenly)
argued that a InK statistical characterization strategy should focus primarily on the low
wave number behavior. The mistake being the overlooking of the extreme insensitivity of
spatial second moments to any measure of attenuation of point concentrations, and the
strong role played by the small scale (high wave number) features of the InK fields, along
with the low wave number portion, in controlling the rate of destruction of concentration
fluctuations and therefore attenuation of solute concentrations. If one eliminates the fine
scale structure of InK to a point that the plume consists of a few big 'blobs’, they would be
less amenable to the action of local dispersion and are likely to contain high
concentration levels. Once the overall dimension of the plume is larger than the
correlation scale, 'meandering' of the center of mass cannot be significant (by the law of
laréc numbers). The spatial second moment of the plume would still be growing at an
enhanced rate, yet the peak concentration would decrease at a much slower rate than the
peak mean concentration, which is inversely proportional to the plume volume. The
synergetic interaction of the high wave number InK variations and the dissipating action
of local dispersion, modcléd approximately in (2.56), quantifies this phenomenon as it

determines the concentration variance.
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Dagan's [1982] and [1990], zero local dispersion analysis of concentration
variance is shown (in Section 2.3, (2.26) and (2.27)) to be equivalent to (2.56) on putting
local dispersivities equal to zero in it, i.e., after dropping the local dispersive flux of the
variance field, and more importantly, the variance dissipation term (the negative term on
the right hand side of (2.56)) which is singularly created by the action local dispersion.

" The variance equation (2.56) may be routinely solved along with the mean
concentration, in numerical models using effective parameters. The spatial discretization
requirements will be exactly the same as that for the mean concentration field. The time
discretization for the variance field will also be dictated by the decay coefficient .
Expressions for the decay coefficient for both isotropic and anisotropic, three
dimensionally heterogeneous porous medium have been presented. Analytical solutions
to the coupled concentration mean-variance system (2.56) and (2.57), for a multi-
dimensional finite size impulse input, excluding and including local dispersion, are

presented in Chapter 3.
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CHAPTER 3

ADVECTION-DIFFUSION IN
THREE-DIMENSIONALLY HETEROGENEOUS AQUIFERS:
CONCENTRATION VARIANCE FOR A FINITE IMPULSE INPUT

For a multi-dimensional finite size impulse input, analytical solutions to the
conservation equation for concentration variance 02, derived in Chapter 2, are presented.
Due to the dissipating action of local dispersion, at large times, 0 is a decreasing fraction
of the mean concentration. The Cape Cod bromide tracer exhibits this decrease. The
larger the log-conductivity microscale is, the slower is the action of local dispersion, and
the slower is the predicted rate of decrease of the ratio of Oc and the mean concentration
(i.e., the coefficient of variation), with time, at large times, and vice-versa. The
coefficient of variation increases with distance from the center. A balance between the
rates of production and dissipation of 02, relates it linearly to the squared gradients of the
mean concentration field, away from the center of mass. For the zero local dispersion
case, O¢ is an unboundedly growing multiple of the mean concentration, with time. The
longitudinal spatial second moment and macrodispersivities are insensitive to the
inclusion/exclusion of local dispersion, therefore do not differentiate between the
concentration fields for the two different cases. In contrast, the spatial-temporal evolution
of 02 is singularly determined by the dissipating action of local dispersion. o2,
quantifies the risk of exposure to large concentration levels as the probability that the

concentration exceeds the mean by & is bounded above by (o, /&; )2.

50



3.1 INTRODUCTION

The modeling of contaminant transport using an effective advection-dispersion
equation, with effective (macro)dispersivities is common practice. The effective
dispersion coefficient embodies the effect of (unresolved) advective-heterogeneity on the
spatial second moment, i.e., the squared radius (of gyration) of plumes. The ‘mean
concentration’ plume that results from such an exercise is smooth, due to the lack of
resolution of the detailed advective heterogeneity. While the spatial extent of the plume
may be reproduced in the ‘mean concentration' plume, actual concentrations will vary
around the 'mean concentration'. How large are these variations? Are these variations a
large multiple of the mean concentration? Do concentration levels show a decrease
commensurate with the rate of increase of the spatial extent of the plume? Do the
concentration variations become smaller fractions of the mean concentration in time, or
do they become progressively larger multiples of the mean concentration with time? Is
the peak of the mean concentration a good predictor of peak concentration levels at large
times? How unlikely is it that a point will be hit by a concentration 10, 50, 100..... times
the mean concentration? These questions arise in assessing exposure levels to toxic
substances in aquifers. The mean squared concentration fluctuations, i.e., concentration
variance, was shown to be governed by a conservation equation in Chapter 2. In this
chapter is presented the solution to the concentration variance equation and answers to
aforementioned questions.

The scale of fluctuations of the hydraulic conductivity being entertained in this
study are small compared to the plume scale, as it is under this scale disparity that an
effective advection-dispersion equation is applicable to determine the mean
concentration. In the absence of this scale disparity, any spatially-temporally local
approximations for the macrodispersive flux are indefensible, as argued in Chapter 2. The

importar.ce of explicitly incorporating large-scale identifiable trends in assessing bulk
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transport features can be appreciated from the recent work of Adams and Gelhar [1992].
The implication; of the lack of knowledge of such large scale trends is not explored here.
The fluctuations associated with the enhanced dispersion caused by the smaller scale
fluctuations are the concern in this work. Another fundamental property, that the InK
field is assurned to have, is a finite microscale. The InK microscale being the scale that
characterizes the derivatives of the InK field. The fluctuation dissipation mechanism is
shown to be sensitive to this scale in Chapter 2, under the assumption that it is larger than
the local dispersivities.

The coefficient of variation of the concentration is defined as the standard
deviation of concentration divided by its mean. A decrease in the concentration standard
deviation with time alone is no indication of the proximity of a sample plume with the
ensemble mean, as the mean concentration itself decreases with time. The point at which
the concentration standard deviation is the largest is not necessarily the point where our

_ability to predict concentrations is the poorest, because the mean concentration itself may
be large at that point. The regions in which the coefficient of variation is small are the
regions for which the mean concentration is a good predictor of the actual concentration
levels in a sample realization of a hydraulic conductivity field.

The concentration variance equation which is coupled to the mean concentration
equation (derived in Chapter 2) is solved for the case of a finite size impulse input in
Section 3.2. Simple analytical expressions for the variance and coefficient of variation for
a macroscopically multi-dimensional plume, being transported in three dimensionally
heterogeneous medium, are presented. A sharp qualitative and quantitative contrast is
found between the hypothetical hyperbolic-nondissipative-zero local dispersion case in
Section 3.3, and the more realistic parabolic-dissipative case including local dispersion.
Section 3.4 presents an analyses of the Cape-Cod bromide tracer for concentration
fluctuations and compares observations with the developed theory. In Section 3.5 is

presented a discussion of the implications of the results developed in this work.
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3.2 CONCENTRATION VARIANCE FOR A MULTIDIMENSIONAL
FINITE-SIZE IMPULSE INPUT IN THREE DIMENSIONALLY
HETEROGENEOUS AQUIFERS ’

(INCORPORATING FLUCTUATION DISSIPATING ACTION OF
LOCAL DISPERSION)

The pair of partial differential equations needed to study concentration variance

from Chapter 2 are for the mean concentration

ac ac c
— + A — ’.. o)  e———— O . l
>t > v(4; + ay) Frn (3.1a)
with an initial condition =
c(x, 1) = Ax) (3.1b)

and for the concentration variance

9o  Io? & o & &
— +tVv— — VA + @) —— = QA —— — o (3.2a)
a a T W e T i
with the initial condition
o(x,0) = 0 (3.2b)
Recall the definition of the variance dissipation coefficient;
2voy;
x= — (3.2c)
A4
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The variance equation (3.2a) is coupled to the mean equation (3.1a) on account of the
~ source term, which is the mechanism of producing concentration variance. In (3.1a) and
(3.2a), A;j and ay; are the macrodispersivities and local dispersivities respectively. The
mean velocity in the x; direction is v. A¢; are the microscales of the concentration field in
the i th direction. It needs to be kept in mind that the description of the mean
concentration using constant macrodispersivities A;; holds well for impulse inputs after
the plume has sampled the heterogeneous velocity fluctuations and the mean
concentration field is sufficiently smooth. The fluctuations in point concentrations that
are embodied in the ensemble of realizations (for which the mean is computed by solving
(3.1)) may be assessed by solving (3.2) for the point concentration variance. The
parameter A;j may be computed from the various results, in previously developed
theories, and the variance decay coefficient ¥ may be computed from the results
developed for the concentration microscales A¢;in Chapter 2. The variance decay
coefficient ¥ embodies the effect of increased ability of local dispersion to destroy
fluctuations for smaller concentration microscales and vice-versa, a feature ubiquitous in
advection-dispersion phenomenon (due to the parabolic transport operator), as discussed

in Chapter 2, and Appendix-I and 1I.
3.2.1 SOLUTION

The mean concentration, governed by Equation (3.1a), for a point impulse input,
is 5 Gaussian. The squared spatial partial derivatives of that Gaussian will be the source
term in the variance equation (3.2a). To account for a finite initial size and avoid the
unreal problem of an infinite source term in the variance equation due to a point impulse
input, it is replaced by a finite size Gaussian. Thus, consistent with the mean
concentration equation (3.1a), and the chosen initial conditions, the mean concentration is

taken to be
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(3.3)

clx, 1) =

Vb‘l‘ )2
M ¢ 4(A + opv(t + 1)
n

. 47:(A,, + ot +1y;)

where ¢tg;, the 'initial dilation time', provide an initial dimension to the concentration field.
N is the macroscopic dimensionality of the plume being transported in the three
dimensionally heterogeneous medium of porosity n. M is the total mass of solute.
Defining the radius (of gyration ) of the mean concentration plume in the i th direction to

be

1
+oo 12
I ex00x; — v8;0 dx
R(1) = | ——— (3.4)
I E(x,t)dx

For the Gaussian mean concentration in equation (3.3) it may be shown that

R‘-(I) = .\/Z(A,, + a"")V(I + Im) (35)

therefore the relationship of the initial dilation time #o; to the initial radius of the plume is

IOl (3.6)
i = 2(A",' + a,-,-)v '

Defining Lap as the advection-dispersion operator

Lyp = % v - vA; + o) —— €N))
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the solution for y governed by
Lyp y = F(x,t) (3.8a)
is

wx, ¢) =

!
=0

+oo +eo
j G(x—n,t)v:(n.O)dn+J {_[ G(x—n,:-r)F(n.r)dn}dr (3.85)

where G, the impulse response function (Green's function) for the advection-dispersion

operator (3.7) is

{ (G - ;) =v8,(t - D) }

N
“ 4(A; + aphv(t — 1)
Gx—-1n,t-17) = H (3.9)
i=1 J;ﬂ(A“ + a,',')V(l -7)

Scaling the variance in time as

s(x, 1) = A (x, 1) explyr) (3.10)

and substituting into the variance equation (3.2a) gives
d &
Lyp s(x,1) = 2vA; Frw exp(yr) (3.11)

i
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The solution for the scaled variable may be computed by (3.8b). Transforming the

solution back into the concentration variance gives

) Rand
— -2(-9 _ - i?i_‘
o?(x.1) —Iﬁoe {L'G(x 0, ¢ t)[ZvAu = axj]n dn} dr (3.12)

i , T

The concentration variance (3.12) may be split into different parts, created due to mean

gradients in the different principal directions

N
P D) = ), X0 (3.13)
i=1

where

! 400 % 2
03[,-] (x0) = -Lo gxe-9 L-G(x—n,t -1) [ZvA,-,-[-a;-]J dant dt (3.14)
b7 dn

, T

From the expression for the mean concentration (3.3) we have for its spatial partial
derivatives
a (x" - Va"li)

- — ; (3.15)
¥ 2Ag A+ )

This is substituted into the integrand in (3.14). The integrand, becomes a product of
exponentials, each having an argument quadratic in a spatial dummy variable, and is
multiplied by the square of the i th dummy spatial variable. Therefore using the two

simple integrals
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= (ol by + 0 2
I e - d dy = \/Eexp,:-(-c- - -2-)] (3.16a)
e a d 4dad,

and

3
+oo (ayz+by+c) NP d'z-( b?.} ( 2)
2 2 7 c b
e d = — - l+ — |expt—{ — — =~ (3.16b)
J-_..y | b 2 (a] 2ad d 4
the spatial integration in (3.14) may be exactly carried out to get

03(,-] (x,0) = (3.17)

- ap[ & ~ v&,0)? ]

t M] T 2.+ av(2t + 1g;— 1)
ZVA"" (_ —= - .
L:o n 11:11 dmlA; + avf (2 + 1; — (7 + 1)

[ -1 (X,' - v5,-lt)2

x

e—x(‘—f)dT

+
Z(Aii + a,"')V(2‘ + Iy — f)(f + ‘Oi) 4[(A“ + a,-,-)v(2t + ly; — T)]2

At large times, the primary contribution for this one-dimensional time integral (3.17)
comes from a region around ¢, due to the exponential weighting in time and the non zero

t0;. Therefore, approximately

!

1 Y
j (t - 9e* yr 4
=0

03'[,-] (x,0) =2vA; ¢ 2 5
2(A",' + a,-;)v(: + fo,')

2
(x; - vo,0) J" 2O 4o (3.18)
alA; + apv(r + ro,-)]2 =0
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In making this approximation it is being assumed that the primary contribution for the

first part of intégral (3.17) comes from the point of maximum of

(t-7e2-2
i.e., from
1
T=t(—-—
4

To be able to take terms (evaluated at time ¢) out of the integrand in (3.17) it is being

assumed that

1
L >> — (3.19)

Moreover for the maximum contribution in the integral (3.17) to come from around time ¢

it is assumed that the function

_ ) o2
¢{7) = U-oe (3.20)

N
(t+ 1) (H.,/ T+ 1y ]
j=1

evaluated at 7 =t - 1/, is much larger than what it is at its other potential maximum
point, at 7= 0. Thus, the finite initial size and finite ¥ enables a localization of the time
integral (3.17). The exponential (3.20) in this approximation condition, will help it 10 be

met, for finite size impulse inputs. For the integrals in (3.18) we have at large time that

f

! >> = I e* g = (3.21a)
X =0

1
x
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and

t

Inld+x >hily] = I o(t - Dty = (3.21b)

L
4

Substituting these integrals into (3.18) and substituting for the partial derivative of the
concentration field (3.15) appropriately in (3.18) gives for the variance created due to

spatial partial derivatives of the mean concentration field in the i th direction

2
A, 2VA;;
Ofli) (x,0) = . > ¢ + o (i) (3.22)
A+ o) + )" 2 x

Therefore for the total concentration variance (3.13) we have

N 2
Aji 2vA;;

a(x,0) =2 > 2 4 2 (i] (3.23)
1| Gata)e + 1)° 7 z

i=
Dividing the variance (3.23) by the square of the mean concentration (3.3) and taking the
square root gives for the concentration coefficient of variation
1

N -—
O’c (x,¢) A 2vA; (9 Inc )2 2

i=1

Substituting the expressions for the mean concentration (3.3) and its spatial partial
derivatives (3.15) into (3.23) and (3.24), we have for the space-time description of the

concentration variance and the coefficient of variation,



v’
M> I"-[ 20A;+ apv(e + 1)

03(1(. 1)= Y X
n i=1 4nv (Au"‘ a,-,-)(t + 'Ol')
< Ay 1 (G=vy)
2 NSt (3.25)
i=1 (Ai‘+ a,-)(t + Lo; ) xl Z(Aic"' ai)VZ
and
12
O'C (x, 4 ) Al A,"‘ [ 1 (X.‘ - v5“t)2 ]
= -_t — (3.26)
c(x,t) i1 At o)+ )2 \22 204+ avy

The large time asymptotic nature of the time localization approximations of the
one-dimensional time integral (3.17) to derive the expressions (3.23)-(3.26) has been
corroborated by machine (shown in Section 3.4). Equations (3.23)-(3.26) present the
correct 'large time' (quantified by conditions (3.19)-(3.21)) solution to the variance
equation (3.2a) for finite size impulse inputs (3.3). The implications and interpretations of

the simple analytical solution (3.23)-(3.26) are presented in the following subsection.

3.2.2 SPATIAL-TEMPORAL CHARACTERISTICS OF
CONCENTRATION FLUCTUATIONS

From the expressions (3.25) and (3.26) it is evident that away from the center of

(A,"'+ a,-,-)v
Ix,- - vb‘,-,tl >> \/-——— 3.27)
X
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we may write approximately for the variance (3.25)

VA; & &
o’ £ = c 3.28
2 (x,0) 7 o (3.28)
and for the coefficient of variation (3.26)
1
o.(x,0) 2vA r; = 12
-c - [ ij JlInc 2 lInc ] (3.29)
o(x,0) X d o

Note that a sum over repeated indices is implied in (3.28), and (3.29). These local
relationships in space and time (3.28)-(3.29), hold under the condition that the point
under consideration be away from the center of mass as given by (3.27), in addition to the
.condition of large time, imposed in evaluating (3.17). The local relationships may be
directly argued from the variance equation (3.2a); when the concentration variance
spatial derivatives and temporal rate of change are relatively small, then the source and
sink terms on the right hand side of equation (3.2a) must balance each other. Under these
conditions, the rate at which the concentration variance is being produced, is matched, by
the rate at which local dispersivities is destroying it. This balance is expressed by the
linear relationship between the variance and the squared gradients in (3.28). The
fluctuations created by the mean gradients are being destroyed by the action of local
dispersion, before they can be significantly transported. The smaller the variance decay
coefficient in (3.27), the further away from the center of the plume is such a balance
going to take place. The balance (3.28), deduced here under explicit conditions, is often
presumed in studying mean squared fluctuations of transpbrt quantities [e.g., Tennekes

and Lumley, 1972, Equation 3.4.2]. The variance decay coefficient y and the
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macrodispersion coefficient directly determine the fluctuations 2 mean concentration
gradient will be accompanied with as expressed in (3.28) and (3.29).

Vomvoris and Gelhar [1991] have also presented a linear relationship between
concentration variance and the squared spatial derivatives of the mean concentration
field. They do not present their linear relationship as a balance between the rates of
production and destruction of concentration variance, as is the case in this work under
explicit conditions of large time and distance from the center of mass of the plume. The
conditions under which the linear relationship (3.28) holds, the advective, local dispersive
and macrodispersive transport, and local rate of change terms in the variance equation are
unimportant, as the rate of production and dissipation of concentration variance are
balancing each other. Vomvoris and Gelhar [1991] have dropped the macrodispersive
term for the variance field (as pointed out in Chapter 2), yet retain the local dispersive
and advective transport terms. Therefore the linear relationship (3.28) between
- concentration variance and the squared gradients of the mean concentration field (a
limiting case of the general result (3.23) for a finite impulse input), reflecting a balance in
the rates of production and dissipation of concentration variance, is different from
Vomvoris and Gelhar's [1991] result.

Some of the results of Yomvoris and Gelhar [1991] contradict inferences from the
variance conservation equation (3.2a). For example, for finite gradients of the mean
concentration field, in the variance formulation (3.2a), the concentration variance can
never be infinite, for any value of local dispersivity, even if it is set to zero, unlike
Vomvoris and Gelhar [1991]. Also, concentration variance is never zero, even at points of
zero gradients of the mean concentration field, due to the local and macrodispersive flux
of the variance field. Whereas in Vomvoris and Gelhar [1991], the concentration variance
at points of zero gradients of the mean concentration field is identically zero. In
Yomvoris and Gelhar [1991], it is the transverse local dispersion that plays a singularly

important role. In the formulation over here, a priori, there is no such preferential
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importance of the transverse local dispersion, as the variance decay coefficient reflects
the ratio of local dispersion and the concentration microscale in different directions. As
pointed out in Section 2.2, in Vomvoris's [1986] and Gelhar and Gutjahr's [1982] results,
the coefficient of variation for the case of a solute undergoing a first order decay with a
constant decay coefficient is different from that for a nonrear:tive solute. In this work, the
coefficient of variation is the same for both the cases.

As the local dispersion decreases, the variance decay coefficient decreases, and
the concentration variance and coefficient of variation increases in (3.28) and (3.29).
However, the large time condition (3.19)-(3.21) on the analytical solution, explicitly
dictates that as the variance decay coefficient becomes smaller, the simple analytical
expressions derived here, hold at increasingly larger times. I that sense, the large time
solution to the variance equation is found to be singularly dependent on the action of
local dispersion. The solution for concentration variance for the hypothetical zero-local
dispersion case (presented in the next section) bears no resemblance to the large time
solution for the concentration variance developed here (3.23)-(3.26).

The increase in the mean models ability to predict actual concentrations with time
may be seen from the expression for coefficient of variation (3.26) from which it

follows for points

o, (x.0) 1 )]
x such that x; < R,(1) , e < [N( @ 7 + - )] (3.30)

Recall that N is the macroscopic dimensionality of the plume.
The global fluctuation measure (defined as a spatial integral of the concentration

variance) may be studied by integrating (3.2a) in space to get

d & &
— el = ZVA“”Z-_‘*— I - 2l | (3.31)
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For the macroscopically one dimensional mean concentration (N = 1 in (3.3)), the global

fluctuation measure may be solved for, to get at large time

2
1 [2(m A
Il = £ /2(%) R 63
8 AR v+ o)) G + 1)
theréforc
lim t— o |20 -0 (3.33)

Also, for the macroscopically three dimensional case ( N = 3 in (3.3)), it may be shown

that

lim t > o [ o?(x,0)]] = ;er -0 (3.34)

The generic properties of concentration standard decviation in space, and the
coefficient of variation in space and in time (at a fixed point) for the macroscopically one
dimensional case at large times, are given in Figures 3.1, 3.2 and 3.3. The double peaked
behavior in Figure 3.1 simply reflects the nature of the spatial derivative of the mean
concentration field, the square of which is a source term in the variance equation (3.2a).
Gelhar et al. [1981], Vomvoris [1986] and Vomvoris and Gelhar [1990] report such a
dependence of the concentration variance. Graham and McLaughlin [1989] and Li and
McLaughlin [1991] observed such bi-modal structures in their numerical results. The non
zero value of the concentration standard deviation at the center in Figure 3.1 reflects the
effects of transport of fluctuations (variance) by local and macrodispersive mechanisms
as embedded in the variance conservation equation (3.2a). In their numerical results,

Graham and McLaughlin [1989], and Li and McLaughlin [1991] observe nonzero
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concentration variances at points of zero gradients of the mean concentration field. In
contrast, the results of Gelhar et al. [1981], Vomvoris [1986] and Vomvoris and Gelhar
[1990] predict zero concentration variance at points of zero gradients for the mean
concentration field. In this work, the reflection of the squared gradient of the mean
concentration field in the shape of the concentration variance is sustained at large times,
as the dissipating action of local dispersion destroys fluctuations created at previous
times. In the absence of the destruction of concentration variance, the dispersive (local
and macrodispersive) fluxes of variance would get rid of the bi-modality as time
progresses. The bi-modality of the concentration standard deviation is interesting, insofar
it is related to the dynamics of creation and destruction of concentration variance, as is
explicitly described in this work. However, as the mean concentration varies in space, a
plot of the standard deviation on its own is not very useful in assessing the capacity of the
mean concentration to predict concentrations. In fact the occurrence of the peak cf the
standard deviations near the center of the plume is quite misleading, as the coefficient of
variation is actually small at the center of the plume, in Figure 3.2. The decrease in the
coefficient of variation in time at the center of mass and throughout the plumes is evident
in Figure 3.2. Equally important to note in this figure is the linear increase in the
coefficient of variation with distance away from the center of mass (Equation(3.26))
thereby showing the inevitable difficulty in predicting concentrations at the fringes of
plumes using the mean concentration equation. An associated feature is that the
coefficient of variation at a point asymptotes to a non zero constant value at a given point
in space at large times as shown in Figure 3.3 (after the plume has passed that point).
Most importantly it is shown in Figure 3.2 that the coefficient of variation at the
center goes down inversely with time. The variance decay coefficient determines how
fast this decrease takes place. Therefore, for the case of a finite impulse input, the rate of
decrease in peak mean concentration of the solute with time (determined by the value of

the macrodispersivity ) will indeed be matched by the peak concentration in a sample
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realization at large times. Thus if peak concentrations are to define a measure of
"dilution”, the enhanced rate of increase of the spatial second moment of the plume due to
velocity heterogeneities do translaie into enhanced dilution at large rime for impulsc
inputs. The variance decay coefficient, which increases as the concentration microscales
decrease, strongly determines how long a time it takes for this to happen. The greater the
low-wave number component of the InK spectrum (subject to assumption that the mean
concentration field is smoother than the InK field) the slower is the action of local
dispersion in dissipating fluctuations, the smaller is the variance decay coefficient ¥, the
slower the rate of decrease of the coefficient of variation (3.26). The greater the high
wave number component of the InK spectrum (subject to InK microscales being greater
than local dispersivities), th;: faster the action of local dispersion in destroying
concentration fluctuations, the larger the variance decay coefficient ¥, the faster the rate
of decrease of the coefficient of variation (3.26). For impulse inputs it needs to be
recognized that the gradients in the mean concentration field which are responsible for
creating fluctuations are themselves dying out with time. The feature of the standard
deviation of concentration dying out faster in time than the mean concentration in (3.30)
is strongly influenced by the rate of decrease of the gradients of the mean concentration
as evident from (3.28).

The results for the variance and coefficient of variation (3.25) and (3.26), show a
weak dependence on the fg; , and therefore initial dimensions of the plume. The initial
dilation time always appears as a sur. with time, and therefore plays a role of decreasing
impbnance at large times. A: large times, the initial dimensions of the plume, are only
weakly reflected in the concentration fluctuations. It need:s to be kept in mind though, the
results (3.25), and (3.26) weie computed on assuming a finite initial plume dimension,
and the large time, after which they hold is inversely dependent on the initial plume

dirnension, in (3.20).
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3.3 HYPOTHETICAL, HYPERBOLIC, NON-DISSIPATIVE, ZERO
LOCAL DISPERSION CASE

The mean concentration for a macroscopically multidimensional plume for the

zero lecal dispersion case is governed by

—— e Y o PA - — = () (335)

For the zero local dispersion case there is no sink term in the concentration variance

equation (3.2a), therefore the variance is governed by

2 2 - a-
99 +v30;_. - VA m_a’oi = 2vA dc d¢ (3.36)
at 3x1 ) i OXj = <V "’TI‘K =
which is equivalent to
acz I Fct

+v - VA =0 (3.37)

x o U axox

Equation (3.37) reflects the trivial fact that all powers of concentration ficld are governed
by the same hyperbolic transport operator, for the non-dissipative zero local dispersion
case. Consequently the expectations of the two powers are governed by the same operator
(see Chapter 2). The mechanisms of creation and dispersal of concentration variance
embodied in (3.36) and (3.37) are precisely the same as in Dagan's [1982], [1990] zcro

local dispersion concentration variance model, as shown in Chapter 2.

3.3.1 SOLUTION
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Consider the mean concentration solution to (3.35) to be a Gaussian

(x; - V5i1‘)2
M A T 4Av (G + fo)

= = 1 - ‘ (3.38)
-J4er,-,v (t + 1)

which has finite dimensions at initial ime. The initial conditions on the mean of the

fr ooz

4M“Vfo‘

squared concentration for zero initial variance is

cX(x,0) = [c(x, 0)] (3.39)

The solution for the mean value of the squared concentration may be easily found

by the integral

cAx,1) = +.',G(x-‘n. 1 c2(n, 0) dn (3.40)

with

. exp{_ [(x; —vé;, (e~ 1)) —17,-]2 }
Gx-n,t-7)= H At - 0

i=1 JZ)TA"“V(‘ -1)

(3.41)

the Green's (or impulse response) function. The integrai (3.40) may be computed exactly
as the integrand is an exponential with a quadratic argument (a feature exploited in the

evaluations in Section 3.2). This gives for the coefficient of variation
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-1 (3.42)

3.3.2 EXPLODING HYPERBOLIC PLUMES

From the solution (3.42), at the center of the plume

12
o, (¢+1g)
L2 _ -1 (3.43)
[ c :L.: 8wt [ ([]IGJ tOi(2’+ tOi) ) ]

which under the condition ¢t >> 9] becomes

[i:- ]x.-=5.-lw=[ [ﬂ\/% ] - 1]”2 (3.44)

Therefore at the center of mass of a macroscopically three dimensional plume (N = 3)
which is also the point of minimum coefficient of variation,
‘3/4

o,
lim ¢t — oo [—ﬁ] ) o -
€ Jy=gum 23/4(«,-1'02'03)”4

The plume is 'exploding’. This unbounded increase in the coefficient of variation is in

sharp contrast to the case including local dispersion (Figure 3.2 and Equation 3.30), in
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which the coefﬁcient of variation decreases with time. This unbounded growth of the
coefficient of variation with time is implied by Dagan’s [1982], [1990] model of
concentration variance and was observed in non diffusive particle simulations by Rubin
[1991]. The difference between the hypothetical zero local dispersion case and the more
realistic case including the dissipating action of local dispersion is a stark one; it is a
difference in the sign of the rate of change of the coefficient of variation at large times.

For the idealized zero local dispersion case, at any time, the fluctuations are a
cumuliative addition of fluctuations created since the initial time. The rate at which
fluctuations were created is the greatest, at the initial time, and strongly determined by the
initial radius of the plume. Therefore the coefficient of variation is strongly determined
by the initial plume dimensions, even at large times (3.45). On including local dispersicn,
the initial dimensions of the plume play a role of decreasing importance, as the time
increases. This is because fluctuations are destroyed by the dissipating action of local
dispersion. The fluctuations at any given time reflect the initial plume dimensions to the
extent, that the initial plume dimensions are reflected in the current plume dimensions,
and therefore in the gradients of the mean concentration field. At arge times the current
fluctuations forger the past. This feature of time localization comes out mathematically by
the exponential weighting in (3.17). The absence of any dissipating mechanism causes
infinite memory of initial conditions in the zero local dispersion transport.

The global fluctuation measure for the macroscopically one dimensional case,
which is the spatial integral of the concentration variance, is governed by

2
d

a
L |2l - 2, ”(ZJ I (.46)

It is easily shown that
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It follows from (3.47) that
M 2 1
limt o |20l - (-—-) >0 (3.48)
R 7 of8TALY 1)

which is again in sharp contrast to the case in which local dispersion is included (3.32)-
(3.34).

For the idealized zero local dispersion case, the ability to predict concentrations
continually deteriorates with time as the coefficient of variation grows unboundedly
(3.42). For any non-infinite concentration microscale in (3.2c), the coefficient of variation
for the case including local dispersion decreases with time at large times. In neglecting
local dispersion, the only mechanism to destroy mean squared concentration fluctuations
is being neglected (3.2a). The importance of local dispersion in destroying concentration
variance increases with a decrease in the concentration microscales, which is caused by a
decrease InK microscale (which are assumed to be larger than the local dispersivities). As
the InK microscale increases, the dissipating action of local dispersion decreases (the

variance decay coefficient ¥ decreases).

3.4 CONCENTRATION FLUCTUATIONS IN THE BROMIDE TRACER
AT CAPE COD, MA

The Cape Cod bromide tracer is analyzed here for concentration fluctuations. In

particular, theoretical predictions are made for the coefficient of variation, at the center of
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the plume, for the idealized non-dissipative zero local dispersion case, and the more
realistic case including local dispersion. The coefficient of variation, estimated from the
bromide concentration data, is compared with the theoretical predictions. Let it be made
clear at the outset, that a characteristic of the InK field, the InK' microscale, argued here
to be importantly controlling the dissipation of concentration fluctuations, has not been
measured, notwithstanding the value of zero, implied by the popular exponential
covariance function with absolutely no empirical basis (Plot any estimated InK spectrum.
Is there infinite area under the graph of wave number squared multiplied by the
spectrum? The ratio of the area under the spectrum to that under the wave number
squared multiplied spectrum is the squared InK' microscale. Discussed in Chapter 4). In
this study it has been assumed that the InK microscale is larger than the local dispersivity.
In light of the sensitivity of fluctuation .dissipation phenomenon to the scale
characterizing the spatial partial derivatives of the concentration field, an accurate
prediction of concentration variance needs realistic information about the low and high
wave number variations of InK. In the absence of this information, sensitivity of the
results will be shown to different ratios of the InX microscale and correlation scales.
Information from Leblanc et al. [1991], and Garabedian er al. [1991], is used in the
analysis. Dennis Leblanc, provided the bromide sampling data, and data on the plume
orientation.

The mean velocity v of the groundwater is 0.42 meters/day. The InK variance

and correlation scales are

o} =0.24
Ay=2=26m,;=0.19m

Taking the local dispersivities as
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a11=.m5 m, Oy = ag3=.0005m

The empirically fitted macrodispersivities from the tracer experiment are (after

subtracting local dispersivities)

Au =.96 m, Azz-: 018 m, A33 =.00l m

The initial plume dimensions yield the radii of gyrations of an equivalent Gaussian

Ry(0)=Ry(0)= 1.1 m,R3(0) =03 m

therefore from equation (3.6) the 'initial dilation times' are computed to be

50; = 1.4 days, 1, =77 days, fp3 =71 days

3.4.1 THEORETICAL PREDICTIONS OF COEFFICIENT OF
VARIATION

For the idealized zero local dispersion case, this information is sufficient to make
a theoretical prediction of the coefficient of variation, using the simple expression (3.43).
For the case including local dispersion, different ratios of the InK microscale to
correlation scale are considered in estimating the variance decay coefficient, listed in
Table 3.1 (using Equation (2.55), and the Appendix-IV). The coefficient of variation at
large times may be computed using the simple expression (3.24). A numerical evaluation
of the one dimensional time integral (3.17) at the center of mass is done to confirm the
validity of the large time analytical solution (3.23)-(3.26), and explore the behavior at

small times (Figure 3.4). At injection the coefficient of variation is of course zero. It

m



-{'— z (days™) T;- (days)
0.2 0.068 14.0
0.4 0.017 58.8
0.6 0.008 125.0
0.8 0.004 250.0
1.0 0.003 3333

A1=A2=26m, 13=0.19m

Table 3.1

Variance decay coefficient and variance 'residence time'.
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jumps rapidly.to its maximum value, as it is at the injection time that the gradients of the
mean concentration field are the greatest, and the square of the gradient of the mean
concentration field is the source term in the variance equation (3.2a), thereby producing
fluctuations at the largest rate at injection. However the dissipating action of local
dispersion dampens the growth of the coefficient of variation. The coefficient of variation
decreases with time at large times. The conditions in evaluating the large time analytical
solution were verified against a numerical evaluation of the time integral (3.17). For three
different ratios of InK microscale and correlation scale, Figure 3.5 shows the sharp
qualitative-quantitative contrast between the zero local dispersion case and the more
realistic case, including local dispersion (which of course is expressed equally vividly in

(3.30) and (3.45)).

3.4.2 ESTIMATION OF COEFFICIENT OF VARIATION FROM
BROMIDE SAMPLING DATA

The coefficient of variation is estimated from the bromide concentration sampling
data. A box is placed at the center of the plume, aligned with the principal axis. The
dimensions of the box are varied as 3, 3.5, and 4 times the correlation scales in the
different directions. The box therefore reflects the anisotropy of the InK field. The
arithmetic averages of the concentration and squared concentrations of samples in the box
are computed to estimate the mean concentration and mean squared concentration. The
concentration variance is found by subtracting the squared mean concentration from the
mean squared concentration. The estimated concentration standard deviation divided by
the estimated mean concentration is the estimated concentration coefficient of variation,
shown in Figure 3.6, as a function of time. The sampling volume of about 10 ml at the
Cape is certainly much smaller than the InK correlation volume (the product of the three

correlation lengths) of 1000000 ml, i.e., about a meter cube, hence the sampled data
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reflects the ﬂﬁcmaﬁons of 'point’ concentration samples. The coefficient of variation of
the point concentration samples for the bromide tracer at Cape Cod, MA, m;wih
time between 200 and 500 days (Figure 3.6). The coefficient of variation was estimated at
large times only because 2 scale disparity between the plume volume (the product of
twice the radii of gyrations in the three directions) and InK correlation volume (product
of the three correlation scales) is necessary for any estimation of mean and variauce of
concentration to be possible. At 200 days the plume volume is more than two hundred
times the InK correlation volume. After 200 days, the estimating box volume is less than

the plume volume, yet greater than the InK correlation volume.
3.4.3 COMPARISON OF THEORY AND OBSERVATIONS

Figure 3.7 shows how the estimated coefficient of variation compares with the
theoretical predictions for the idealized zero local dispersion case, and on including local
dispersion, with different ratios of the InK microscale to correlation scale. The idealized
zero local dispersion case predicts an ever increasing coefficient of variation, and
therefore fares quite miserabiy. The observed decrease in the coefficient of variation is in
sharp qualitative contrast with this implication of the zero local dispersion case. The
plume is not headed for a 'mean square explosion’, as it would be, if the zer0 local
dispersion case were reality. The feature of ever increasing coefficient of variations is
contradicted by observatios.

The predicted and observed decrease in the coefficient of variation with time
(Figure 3.7) provides a qualitative support of the theory developed here. The quantitative
performance of the theory can be judged if independent estimates of the ratio of the InK
microscale to the correlation scale are made. A ratio of one, or more, implies that the InK
field, has rather well defined ‘blobs’ of dimensions of the order of the correlation scale,

that dominate the fluciuation energy. If the ratio is much less than one, it means that the
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finer (than the correlation scale) scale variations, are a significant portion of the total
energy of fluctuations. The fundamental feature of the fluctuation dissipation mechanism
is that, the smaller the scale characterizing the derivatives of fluctuations, the faster local
dispersion can destroy fluctuations.

Figure 3.8 shows a plot of peak sampled concentrations as a function of the
product of the three observed radii of the plume, (a surrogate for the ‘plume volume'). At
early times the peak concentration does not decrease rapidly. The decrease is much
weaker than an inverse relationship with the plume volume. Enhanced rates of growth of
the spatial second moments, at early times, are not accompanied by a commensurate
reduction of the peak concentration. However, at later times, the peak behaves almost
inversely as the plume volume. This feature is consistent with the prediction of
decreasing coefficient of variation with time, due to the dissipating inrluence of local
dispersion. The mean concentration plus two standard deviations, plotted in Figure 3.8, as
a crude theoretical prediction of the peak concentration, shows a weak decrease at carly
times, and a more rapid decreases, later. The discrepancy at early times in Figure 3.8
raises an important limitation of the comparisons made here. A constant
macrodispersivity is being used in this analysis. While this may be a reasonable
assumption at large times, its violation at early times, coupled with the strong dependence
of the fluctuations at early times on the plume scale may cause additional effects, not
explored here. However, the observed fall in the peak concentration by an order of
magnitude, directly indicates that the idealization of the zero local dispersion is not even
a crude approximation of the behavior of the Cape Cod tracer test. In fact, the observed
behavior of the peak concentration implies that local dispersion has a dramatic role in the
variable advection-diffussion phenomenon. Aided by advective heterogeneities that
create more surface area for the local dispersion to act, the local dispersion is able to
create a rate of attenuation of point concentrations, that can be orders of magnitude faster

than what would happen with locai dispersion alone, in the absence of advective
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heterogeneities. The synergetic role of local dispersion and the high wave number ink
fluctuations in facilitating this dilution process is the single most important finding of the
analysis presented here.

In light of the theoretical and numerical agreement on the ever increasing
coefficient of variations for idealized zero local dispersion case, and the field
observations to the contrary, it may be concluded that, in order to realistically predict
mean squared concentratioa fluctuations, i.e., concentration variance, at large travel
distances, it is critically important to include the dissipating action of local dispersivities,
notwithstanding the smallness of local dispersivities.

In comparing the peak concentrations for the bromide tracer (Figure 3.8), two
standard deviations of the peak mean concentration were added to the peak mean
concentration. How many standard deviations should one add to the mean concentration
in anticipating contamination exposure levels? Ideally one would like to have the space-
time description of the concentration probability density function (pdf) f; from which
probabilistic inferences could be made. A priori, there is no basis for assuming the
concentration fluctuations to have a normal pdf, or a log-normal pdf, or any other. We
may never have a complete probabilisiic description of concentration fluctuations. The
concentration variance, however, does provide an upper bound on exceedance

probabilities, i.e.,

c+

?= [ e-dad 2 [ c-ood: & jicde (349)
0 S, c+ 6,

which is simply Chebyshev's inequality. Therefore the probability that the concentration

is going to exceed the mean by an amount §; is less than or equal to (0/§& )2. A
conservative assessment of risk is afforded through this bound. For example, in
delineating the ‘unsafe zone' due to a contaminant plume, it may be postulated that if at a

point, the mean concentration is below some safe concentration, and the probability of
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exceeding that safe concentration ¢an be shown to be sufficiently small, it is safe,
otherwise, it is unsafe. Recall that the coefficient of variation keeps growing with
distance from the center of mass, Figure 3.2. However that does not imply that if a point
is far enough, it will be unsafe, according to this rule. That is because the mean
concentration also keeps decreasing with distance from the center of mass. The method to
compute concentration variance developed here and the upper bound on exceedance

probabilities (3.49) may be used in such an exercise.

3.5 SUMMARY AND DISCUSSION

Due to the action of iocal dispersion, the concentration variance dissipation term
is a first order decay term on assuming the small separation behavior of the concentration
field to be statistically stationary. The variance decay coefficient ¥ multiplying the
concentration variance in the first order decay term, is the sum of twice the local
dispersion coefficients divided by the square of the concentration microscale in the three
principal directions. The estimate of the concentration microscales made in Chapter 2
render the decay coefficient a decreasing function of ‘&ie InK microscale, when the
microscales are larger than the local dispersivities in each of the three principal
directions. The derived analytical expressions (3.23)-(3.26) show that the mere
assﬁmption of a non zero variance decay coefficient (a non-infinite concentration
microscale) results in a dramatic influence of local dispersion on concentration
fluctuations, at large times. The global measure of fluctuations goes to zero at large times,
as shown in equations (3.33) and (3.34), and the coefficient of variation (the
concentration standard deviation divided by the mean concentration) also decreases with
time as expressed compactly in equation (3.30). The rate of decrease of the coefficient of
variation is determined by the variance decay coefficient. The smaller the microscale of

InK (assumed larger than the local dispersivities), the smaller the concentration
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microscales, the greater the rate at which local dispersivities can destroy mean squared
concentration fluctuations, and therefore result in a smaller coefficient of variation of
concentration fluctuations. The mechanism of dissipation of concentration fluctuations
embedded in the decay coefficient is that of a synergetic interaction of local dispersion
and the high wave number component of the velocity field. If the hydraulic conductivity
field is progressively stripped of its fine scale features, then the concentration microscale
will increase, resulting in a slower action of local dispersion. The InK microscale will
generally be proportional to the InK correlation scale. As the low-wave number energy of
the InK spectrum increases the InX' microscale also increases. This nature of the
fluctuation dissipation mechanism creates the need for extensive and iniensive
characterization of hydraulic conductivity.

The concentration coefficient of variation increases with distance from the center
of mass. Therefore at any given time, at points far enough in the plume, the coefficient of
variation will be large. This jaggedness of plume fringes will make the predictions of
concentration levels by the mean concentration poor ones. The center of mass of the
plume is the point of minimum coefficient of variation, which is decreasing in time, at
large times. If the coefficient of variation is small enough, the peak mean concentration
may become an adequate predictor of the peak concentration in a plume. However, the
time taken for this to happen depends on the scale of heterogeneities and the local
dispersion coefficients, as they determine the variance decay coefficient. The analytical
solution to the coupled variance equation revealed that away from regions of large
gradients in the variance field, at large times, the source term and the dissipation term
balance each other, thereby creating a linear relationship between concentration variance
and the square of the partial derivatives of the mean concentration field (3.28). Such a
linear relationship is of course singularly created by the dissipating action of local
dispersion, which creates a time localization effect in (3.17). This linear rela. i may

be used to asses the concentration variance for a more general mean concentration profile
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than the one‘ analyzed in this work, in regiors of weak gradients for the mean
concentration field.

If local dispersion is not included, there is no dissipation of concentration
variance, which is produced due to the gradients in the mean concentration field in its
conservation equation (3.2a). The analysis of this case is trivial because concentration and
squared concentration are governed by the same hyperbolic equation (in Chapter 2),
therefore the resuits for the mean concentration can be extrapolated to the mean of the
squared concentration, at similar levels of approximation. The analytical expressions,
developed in section (3.3) for the mean squared concentration fluctuations resulting from
a finite size macroscopically multidimensional impulse input, show that the coefficient of
variation (the concentration standard deviation divided by the mean concentration) at the
center of mass, (the point where it is the minimum at a given time) increases
unboundedly with time and also increases by decreasing the initial plume dimensions
(Equation (3.43)). This unbounded increase was observed in numerical simulations by
Rubin [1991], and is also implied by Lagan’s [1982], [1990] theory for concentration
variance, neglecting local dispersion. The coefficient of variation also increases with
distance from the center of mass as an exponential with the square of the distance as its
argument. Another measure of fluctuations, the spatial integral of concentration variance,
at large times, approaches a constant value inversely proportional to the initial plume
radius. Recall, on including local dispersion this measure decreases and approaches zero
at large times. The expression for the coefficient of variation for the zero local dispersion
casé (3.42) bears no resemblance to the expression that includes the effect of local
dispersion (3.26). The large time solution of the concentration fluctuations is singularly
inﬂuenc;d by the action of local dispersion. If the zero local dispersion case were a good
model for the concentration statistics at large times, the information in the mean

concentration would be absolutely useless as a predictor of point concentration exposure



levels, as the_de¢

The estimated coefficient of variation at the center of the Cape Cod tracer plume,
albeit large (a value of 1.4 at 203 days and .6 at 461 days) even after traveling dozens of
horizontal correlation distances, decreases with time. This decrease is predicted by the
theory as a consequence of including the dissipating action of local dispersion, and is in
sharp qualitative contrast with the predicted ever increasing coefficient of variation with
time, for the zero local dispersion case. Consistent with the decreasing coefficient of
variation with time, the peak sampled concentration is found to be inversely proportional
to the plume volume at large times, and falls by an order of magnitude in 500 days. The
observations at the Cape along with the theoretical results show that it is critically
important to include the dissipating action of local dispersion in any realistic assessment
of concentration fluctuations. The zero local dispersion model of solute transport is not
even a crude approximation of observations.

. The critical role of the fluctuation dissipation function in determining
concentration variance has important implications for the construction of numerical
approximations of advection-diffusion in heterogeneous medium. To incorporate the
fluctuation dissipating action of local dispersion, numerical approximations have to be
able to adequately model the spatial partial derivatives of the concentration field, which
centrol the local dispersive flux. It would be desirable to at least show some empirical
evidence of convergence (with respect to grid size) of solutions in a concentration
derivative norm. The usual methods of introduction of numerical dispersion to produce a
'wiggle-resistant’ solution of the concentration field are unacceptable because the real
solution probably has lots of wiggles. The creation of wiggles by the advective
heterogeneity and their interaction with the local dispersion (and not numerical
dispersion) is what needs to be simuiated. For 'Particle-Tracking' methods to be able to

reproduce the lccal dispersive flux, a lot of particies will be required. It is recommended
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in numerical modeling exercises, modest spectral descriptions be employed, the
microscales of which can be resolved by the numerical grids. We recommend not to use
the popular exponential spectrum for three reasons: 1) There is no dataset of InkK
measurements that supports the feature of infinite area under the plot of the squared wave
number multiplied by the estimated InK spectrum, versus wave number. 2) It is
impossible to resolve even a fraction of the strain rate of the velocity field implied by this
spectrum (infinite shear, vorticity, principal strain rates!) 3) At the small scales contained
in this spectrum that make the variance of the InK derivatives infinite, it is not even
sensible to talk about a porous continuum and its constitutive parameters like hydraulic
conductivity and local dispersion coefficients.

The nature of the variance dissipation implies an increase in the concentration
standard deviation with an increase in the low wave number energy of the Ink spectrum.
While the computation of dispersivities in scale-less, multiple-scale inedia is being
undertaken, the theory developed here shows that the use of these dispersivities in
making predictions of contamination levels needs to be looked at with great skepticism,
until researchers finding effective dispersivities in such media also come up with
estimates of the concentration coefficient of variation. In this connection, it needs to be
kept in mind that there are three scales operative in determining concentration
fluctuations and therefore contamination. exposure levels; the piume-scale, the
heterogeneity scale and the local dispersivity scale. The plume scale and the
heterogeneity scale determine the rate of production of concentration variance. The local
dispersivity and the heterogeneity scale determines the rate at which local dispersion
destroys concentration fluctuations. As the heterogeneity scale increases, the capacity of
local dispersion to destroy concentration variance diminishes, and decreases the
information contained in the 'mean concentration', or plume volume, about actual
concentration levels. The act of adding increasingly large scale heterogeneity ini¢ the

‘random’ description and coming up with a larger effective dispersivity and therefore
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diminished mean concentrations is potentially dangerous, until it is recognized that the
concentration standard deviation will also be large. At issue is not only meandering of the
center of mass of the plume (which cannot be significant after the plume is larger than the
- correlation volume, by the law of large numbers) but meandering and distortions of
different parts of the plume. The theory developed here explicitly assumes that the mean
concentration is smoother than the InK correlation scale. Yet, there is a rangc of
correlation scales for which this assumption is valid, given a plume scale. If the
correlation scale is at the higher end, then the concentration fluctuations will be greater,
compared to a smaller correlation scale. A pragmatic modeling approach may be to limit
the low wave number features that are labeled random, i.e., identify these features and
incorporate them into a numerical model. With the rest of the spectrum compute
macrodispersivities and employ them in the model. An estimate of the coefficient of
variation may serve as a guideline in deciding the scale below which the hydraulic
conductivity features are labeled random.

While 'variance reduction' via conditioning has the allure of giving optimum
estimates of concentration levels, the information of the InK spectrum required to model
the second order concentration statistics of the concentration ficld needs to be
appreciated. Due to the singular the importance of the fluctuation dissipation function in
determining the concentration variance, an estimate of the InK microscale is necessary in
any prediction of the concentration statistics. Of course any conditioning scheme
presumes the existence of reliable model of the covariance structure of the concentration
field. The uncertainties in estimating the InK microscale, along with the correlation scales
and variance may be significant. in this light, ‘variance acknowledgment' with a range of
the estimated values of the statistical parameters is probably of greater practical
importance. To that end, an upper bound on exceedance probabilities (3.49) may be a

useful risk assessment tool.
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The two most impertant findings of this Chapter are 1) In terms of concentration
exposure levels and deviations around the ensemble mean, a solute undergoing transport
even with even a very small local dispersion coefficient will behave dramatically
different from a solute undergoing pure advection. In the hypothetical zero local
dispersion case the ratio of the concentration standard deviation and mean concentration
(i.e., coefficient of variation or 'noise to signal ratio') increases unboundedly with time.
On including local dispersion, the growth of the coefficient of variation is dampened and
it decreases with time at large n'més, as was observed for the Cape Cod, bromide tracer.
In contrast, the longitudinal spatial second moment does not differentiate between these
two cases. 2) The high wave number InK variations facilitate the action of local
dispersion in destroying concentration ﬂuctuétions, and therefore importantly determine
the level of concentration deviations from the ensemble mean. Finally, intensively and
extensively characterized sites and large scale tracer experiments with intense monitoring
need to be undertaken in order to compare contrasting theories and test their abilities to
predict concentration variance, and concentration exposure levels, in addition to spatial

second moments of plumes.
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CHAPTER 4

THE HYDRAULIC CONDUCTIVITY MICROSCALE

The log-hydraulic coaductivity correlation function is found tc be distinctly
upward convex at the origin, yielding a nonzero log-conductivity microscale, the scale
characteristic to the variations of the spatial derivatives of the log-hydraulic conductivity
field. A disparity between the log-conductivity microscale and the square root of the
mean permeability is consistent with the cbserved upward convexity of the log-
conductivity correlation function at the origin. In the absence of this disparity, it is argued
that the effects of viscous transfer of momentum in the fluid, as represented in the Darcy-

Brinkman 'law', will dampen velucity strain rates in heterogeneous porous medium.

4.1 INTRODUCTION

The hydraulic conductivity (or permeability) is a Darcy scale constitutive
property of a porous medium continuum that provides a simplified dynamic model of the
viscous creeping flow through the soil interstices, integrated over a large number of
particle diameters ( i.e., Darcy Scale or REV ) via Darcy’s 'law'. While aggregation over a
large number of pores is required for Darcy's law to be found, the constitutive property of
the porous medium, the hydraulic conductivity, may vary from one location tc the other
in a heterogeneous porous medium continuum. Thne statistical description of the variation
of Darcy constitutive properties is sought to analyze its consequences on flow and
transport.

The spatial partial derivatives of the InK (K being the hydraulic conductivity) are
coefficients in the flow equation. The velocity being a linear function of the hydraulic

conductivity is linearly proportional to the exponential of the InK. Therefore the spatial
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partial derivaﬁves of the InK field determiine the shear, vorticity, convective compression
and tension of the velocity field. The intensity of strain rates of the velocity field are
expected to strongly influence the sinall scale distribution of solute undergoing the
advection-dispersion process [e.g., Lumley, 1972; Batchelor, 1959]. Transport being
advection dominated at very small scales (local dispersivities are typically less than a
centimeter), the fluctuations in the velocity field at such small scales are reflected in the
solute concentration field. Indeed, in the concentration variance equation the variance
sink term (that models the destruction of fluctuations by the local dispersion process), is
equal to the local dispersion coefficient multiplied by the variance of the derivatives of
the concentration perturbation field, which are expected to reflect the intensity of
fluctuations of the velocity field at small scales (Chapter 2).

In light of aforementioned sensitivities, a realistic model of the high wave number
fluctuations of InK is needed. In a continuum analysis of porous medium the high wave
number behavior of the InX is constrained by the requirement of a scale disparity between
the continuum scale (Darcy scale/REV) and the first scale at which continuum properties
vary. Constitutive parameters like hydraulic conductivity and local dispersivities can be
meaningful only on a finite local support. Moreover, it mnay be expected that there exists
an upper bound on the spatial partial derivative of the hydraulic conductivity field, above
which, the process of fluid momentum transfer associated with gradients in the velocity
field will alter the velocity field inferred by using Darcy’s 'law'.

The small separation behavior of the InK correlation function is explored in
Section 4.2. The scale characterizing the spatial derivatives of the hydraulic conductivity,
the InK microscale (defined in Section 4.2) is found by fitting a parabola to the
correlation function at the origin. The correlation function is found to be unambiguously
upward convex, at zero separation distance, thereby ensuring the feasibility of such a

process. Bakr's [1976] spectral estimates were found to imply a ratio of the microscale to

96



correlation sdale of 0.5. The popular exponential correlation function implying a zero
microscale is found to be a gross extrapolation on the high wave number end.

The unbounded increase in velocity strain rates as the inicroscales become
smaller, as implied by Darcy's law, is inconsistent with a picture of viscous creeping flow
through the porous medium. A viscous transfer of momentum in the fluid is argued to
limit the velocity strain rates in rapidly varying hydraulic conductivities, in Section 4.3. A
three dimensional velocity spectrum incorporating this effect is also presented. Section

4.4 summarizes the findings of this chapter.
4.2 THE MICROSCALE

Decomposing the logarithm of the hydraulic conductivity into its mean and

perturbation
InK = E[InK] +f
its spatial covariance function may be defined as
Ryxy, xp) = E[flx;)fxy)]

It follows from the linearity of differentiation and expectations that

SEAE AR
o, o DETE, = b

Assuming st:tiorarity of the InK conductivity perturbations to second moments

Rlxy, x9) = Rylxy, x1) = Ryx) =) = Rylxp—xy)
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defining a new variable

T =6-6
and using the fact
3§1I _ 352' 1
or 2T o s T
and

FRAEE) azgl(r)l
§108, g7 Ak

the variance of the spatial derivatives may be expressed as

Defining the variance as usual
o} = E[ff] = R0)

and the variance of the derivatives
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where 4 is called the microscale of InK. The microscale may be thought of as the
representative scale from which the strength of the spatial partial derivatives of the InK
field is derived. A zero microscale corresponds to a infinite variance of the derivatives of
the InK.

For small separations, the InK spatial covariance may be expanded around its

value at zero separation to get

RH(7) 2 PRAD)
|r=0+ %'—aiti—“l-r:o + e

Pyx) = Rg0) + x

Recognizing that the covuriance is the maximum at zero separation, using (4.1) and (4.2)

we may therefore approximately write for smali separations x,

w1 5(7)

Defining the correlation function as

1
) = —Ryx)
plx 0,2 (x
it follows that
Ax) £ (4.3)
=1- 4.3
24’

Therefore a parabola with a value of 1 at the origin, may be fitted to the correlation
function at small separationz, and the point xg at which the fitted parabola intercepts the

separation axis (p(xg) = 0) is related using Equation 4.3, to the !nK microscale;

99



x=V24A (4.4)

From Equation (4.2), it follows that in the spectral domain the squared microscale is a
ratio of the area under the spectrum and that under squared wave number multiplied by
the spectrum;
+ oo
Syk)dk
A= == (4.5)
I K3S ) dk

From (4.5), if the InK spectrum has more low wave number energy, its microscale will be
larger, and if we add more high wave number energy to the InK spectrum, its microscale
will be smaller. Therefore the value of the InK microscale is influenced by both low and
high wave number features in the hydraulic conductivity description. Of course a value of
zero for the microscale (for a nonzero variance) implies that the denominator in (4.5) is
infinite. In contrast the ‘correlation scale' is a scale typically associated with the location

of the center of gravity of the spectrum (see Appendix-1V).

4.2.1 ESTIMATION OF THE MICROSCALE

The empirical estimation of the InK microscale and the verification of the usual
continuum assertion of the existence of a scale disparity between the first scale at which a
continuum property may vary and the '‘Darcy scale' or REV, will require sampling Darcy
scale properties at small separations. Typically InK measurements are not made intensely
enough for such an investigation to be done. Ringrose and Pickup [1993], have created a
dataset of measurements of permeability made at the rate of 2 mm using a probe of

internal radii 1mm (see Figure 4.1). The measurements are made on a crossbedded

100



10.1 1 PR WS NN S VU WONN Y oA oo by
L [ ] .. 9 [ ] ® ®
:E # .0"‘.°.0.. . ...0 ou. Jos ¢,
2 . 8 ° > o °, () .
107 o © 17y
] ]
109 — v vr | v v r 5 rr v 1 v v 71T v ¥V
0 2 40 60 80 100
Figure 4.1

Ink measurements by Ringrose and Pickup [1993].
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sandstone from a Carboniferous outcrop near St. Monaco, Fife, Scotland. The
permeability of the rock is of the order 10-8 cm?. It may therefore be assumed that the
probe is sampling continuum scale perneability. Furthermore it is hypothesized that the
me:asurements are 'point' measurements of Darcy scale permeability of the rock. This
amounts to assuming that the microscale will be greater than 1 mm, thereby the measured
value is a local value. Of course, this may be checked once we estimate the InK

microscale.

Given a set of observations

fi,i=1,...NDP are observed valuesof f @ &

the covariance function may be estimated by

NDP-n

where NDP is the number of data points. Thus the estimated correlation function is given

by

pnd) =RynORH0) ,n=1,..N

Choosing N to be a small number so that we are dealing with the small separation part of
the correlation function, the mean square error between the observations and a parabola

fitted at the origin (corresponding to a microscale 4/) is

N
MSE(A) = -1:721[;,(,,5) o)1 4.6)
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where

(nd"

H=1-
pln 24

A 'good' estimate of the microscale may be defined as the argument that minimizes the

mean square error in (4.6), i.e.,

N= ar { min MSE(A) } 4.7)

0< <oo

Figure 4.2 shows the computed correlation function at small separations, and also
the best parabola fitted at small separations. Figure 4.3 shows the square root of the mean
square error as a function of the microscale. The mean squared error has a distinct
minimum that yields a microscale of about 1 cm. This being much greater than the probe
diameter of 1mm is consistent with the assumption that the measurements were indeed
point, local Darcy scale measurements. The upward convexity of the correlation function
in Figure 4.2 is strikingly unambiguous. This feature directly rules out the widely used
exponential correlation function as a realistic model, at small separations. The observed
upward convexity is an empirical validation of the hypothesis that there must be a
separation between the scales at which the continuum scale properties vary and the
continuum scale itself, the former being greater than the latter. Note thai in Figure 4.2, the
e-! decrease in the auto correlation function occurs over approximately a centimeter tco.
That is, for the range of scales in the dataset, the ratio of the microscale to correlation
scale is order 1. The history of fitting exponential correlation functions with zero

microscales makes this a little surprising. Of course if we were addicted to fitting a
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Log-Permeability Auto Correlation Function
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Figure 4.2

Upward convexity of Ink correlation function at the origin.
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Gaussian corrclaﬁon function, we would not be surprised at all, because it has a ratio of
microscale to correlation scale of about 1.

A reexamination of existing datasets will reveal that there was never any
empirical basis for the zero microscale implied by the popular exponential correlation
function. For example, one of Bakr’s [1976] spectral estimates is shown in Figure 4.4. In
addition, the frequency squared times spectrum is also shown. The ratio of the microscale
to his inferred correlation scale is about 0.5. Of course, we would like a long series of
closely sampled hydraulic conductivity covering a wide range of scales to make better
inferences, considering the fact that the spectrum and the frequency square multiplied
spectrum are truncated near their peaks in Figure 4.4. In the absence of such a dataset we
are free to speculate on models for extrapolating both low wave number and high wave
number behavior. On the low wave number end our imagination is constrained by the fact
that we may run out of aquifer (and the earth is a finite sized ellipsoid, thus providing a
lower bound on the low wave number cutoff). On the high wave number end, our flight
of speculation hits a limit when our description of the spatial variation of hydraulic
conductivity becomes incompatible with our model for flow. This incompatibility is

discussed in the next section.

4.3 LIMITATION OF DARCY’S 'LAW' IN COMPUTING VELOCITY
STRAIN RATES

The fluid velocity is proportional to the hydraulic conductivity, therefore, as the
microscale of the InK becomes smaller the characteristic velocivy strain rate becomes
larger (see Appendix-IV). Can this inverse relationship can go on for ever increasing
strain rates? This inverse relationship is precisely a consequence of Darcy’s 'law'. Yet in
fluid flow through the soil interstices, the continuity of velocity and stress in the fluid

phase and the viscous transfer of fluid momentum may be expected to have a smoothing
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Bakr's [1976] spectral analysis.
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influence on the velocity strain rates. This feature is not embedded in Darcy’s 'law'. To
examine this feature, consider the Navier-Stokes equations of conservation of fluid

‘momentura for an incompressible (Newtonian) fluid,

azv"

v dv; 1 9P
I{T-*-vj 3_xjj|_— ax,- +u 3xJ¢?xJ +pg‘.

The acceleration term on the right hand side may be dropped in considering the creeping

viscous flow through the porous media, to get

_ aP 32v‘-
0——-a—xi-+[,l-a—xj-§;j- +pg; . (4.8)

Darcy’s 'law' is heuristically derived from the preceding by modeling the volume
averaged viscous forces on the fluid, as the force exerted by a solid sphere upon laminar

flow by Stokes law, i.e.,

Fv;

ij 311

~_HB
| = L9 (4.9)

e
where g; is the volumetric flow rate. Substituting (4.9) in the volume averaged version of
(4.8), using the same symbols for volume averaged variables, gives Darcy’s 'law'.
However, it may also be argued that a fraction of the viscous force exerted on a fluid
element is also due to viscous transfer of momentum in the fluid phase. After all, a
substantial fraction of a bulk volume of porous media is not occupied by solid particles,

“but by fluid. The volume averaged viscous force term may thus be argued to be a
combination of a Stokes term and the original Laplacian viscous momentum transport

term in the Navier-Stokes equation, suitably weighted, i.e.,
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Fq;
II II - — - q; + ) Tx (4.10)

4.3.1 THE DARCY-BRINKMAN 'LAW'

Substituting (4.10) in the creeping flow equaticns (4.8) yields

kiP8 ¢ &q;
q; =- o 9x; +kbm 4.11)

This is the equation used by Brinkrnan [1947 a,b] in his attempt to relate the permeability
and porosity for an assembly of spheres, using a 'self-consistent' procedure. This equation
will henceforth be referred to as the Darcy-Brinkman 'law'. The weakness of both the
arguments in 'deriving’ Darcy’s and the Darcy-Brinkman’s 'law' is the introduction of new
parameters kg and kp, (both having units of length squared) that have to be experimentally
determined. The fundamental difference is that Darcy-Brinkman'’s 'law' facilitates transfer
of momentum in the fluid phase in addition to the force exerted by the solid matrix on the

fluid.

4.3.2 EXAMPLES

_Three examples are constructed to illustrate the impact of the Brinkman term on

modeling the flow field in a porous medium.
SINUSOIDALLY VARYING HYDRAULIC CONDUCTIVITY:

Consider a porous medium with its permeability varying sinusoidally in the x;

direction;
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=] (100 222)

and with a unidirectional hydraulic gradient in the x; direction,

»__, X _,
A

A Darcy law based analysis of this system gives the flow in the x; direction to be

k;pg (2nx
q1(xp) = d# J{1+Gsm( Az)}

The shear rate of the flow field is

; 2
31() 218 EdPSJ cos( 7”‘2)

312 - A 7 A

Defining the norm

14
V|=\/3Lf(xz)dxz

the norm of the shear rate is

d k
q |=ﬁ7r0 dng 4.12)

|dI2 A u

If the flow were governed by the Darcy-Brinkman 'law' (Equation (4.11) with a constant

Brinkman parameter k,, ) then it may be shown that the flow is given by
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_kaps 0 (27X,
o) = =22 J{l+1+4 o sin{ - )}

and therefore the shear by
da _1’:( 6 \Edps,cm(mz)
Y A\ +arkyat | H 4

The norm of the shear is

ldqll=*57r 0 kdpgj

dx A |idrkyat M

4.13)

The impact of the Brinkman term on the shear may be seen from Figure 4.5, which
contrasts (4.12) and (4.13). The Brinkman term, at small scales of fluctuations, dampens
out the velocity fluctuations, limiting the unbounded inverse dependence of shear on the

scale of fluctuations, as implied by Darcy’s 'law’.

TWO LAYERED POROUS MEDIUM:

Consider a two layered porous medium, with the upper layer having a greater
permeability than the bottom one. Locating the junction at x = 0, and the variables
pertaining exclusively to the positive x2 region are indicated by the superscript 1, and
variables pertaining to the negative x2 region by a superscript 2. A Darcy analysis leads to

the simple description of flow;

kups

J
u

0}‘12) =
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Figure 4.5
Shear in sinusoidally varying permeability:

Importance of the Brinkman term at small wavelengths.
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k’apg

g = T

To investigate the impact of including a Brinkman term with a constant kp, we will have
to impose conditions at the junction of the two media. Matching the flow rates and the

shear,

i) dgitxy)
1) =44y , -%—=—#—. atx; =0,

the flow may be shown to be given by

' (k] —k2
q}(Xz)= -%2-.1 { k}i <4 {" )

v

g

r 1 _ 5
qf(xz)= -%g-.l ) k% + ————(kd kz) exp(-l- X2 ]
{ J

'This also reveals an upper limit on the shear rate as

dq) |=k3-k24

(4.14)

FLOW IN A POROUS COLUMN WITH NO SLIP CONDITIONS AT WALLS:
Consider flow in a porous column of radius R, imposing zcro slip boundary

conditions at the boundaries. The flow is governed by the polar coordinate version of

(4.11)
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_ kaps 1 9 (_ dqlr)
q(r)— m J +kb7§—r-( \

where r is the radial distance from the center of the column cross-section, and J is the
hydraulic gradient along the column axis. The solution for the discharge is the series

solution;

S

k, P8 o S L 10

q(r)=TJ< 1 - ( - )2"
i ks

L n=0 2Zl (n! )2

The cross-section average discharge, which is a functicn of the column radius R, is

therefore

(‘JR )2" |
i -

k =2t .
®) = _d_pi',< | _ =0 n! (n+1)!

NES

L o 8 L (D

The zero slip boundary conditions reduce the average discharge. This reduction effect
decreases as the column radius becomes much larger than the square root of the
Brinkman parameter kp as shown in Figure 4.6,

The scales of fluctuations affected by the Brinkman term is of course dependent

on the magnitude of the Brinkman parameter kp in (4.11). Comprehensive tests of the
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Figure 4.6
Discharge through a column of porous media.
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Brinkman ‘law’ have not been performed. The previous example of flow in a column
shows that despite the additional fluid momentum transfer mechanism, the bulk flow in a
given column remains linearly proportional to the hydraulic gradient. From the point of
view of computing the bulk flow, the Darcy-Brinkman 'law' may be replaced by a Darcy
'law' with a modified permeability, for that column. Perhaps this is a reason why the
Brinkman parameter is not routinely measured. However it must be kept in mind,
laboratery experiments are typically done on 'homogenous' porous material, and not done
to explore the validity or limitations of the Darcy framework for modeling the details of
flow in heterogeneous porous continuum. Is there an experiment on a heterogeneous
porous medium, where the details of the flow field have been mapped and the relation
between flow strain rates and permeability variations can be studied? The additional term
in the Darcy-Brinkman law, modifies the unlimited inverse dependence of the velocity
strain rate on the scale of heterogeneity of the spatially varying permeability. Nield and
Bejan [1992] have discussed the Brinkman'’s equation and applications. Dagan [1979]
presents an estimate of kp. Experiments done with the aim of studying the interaction of

porous and ordinary laminar flows [Beavers and Joseph, 1967; Taylor, 1971] suggest

kb = IOkd to 100 kd

In that case as long as the scale of heterogeneity is much larger than the square root of the
permeability kg, the effect of the Brinkman term is negligible. However, if we were to
choose a nondifferentiable spectrum like the exponential, even the small Brinkman
parameter would decrease the variance of the derivatives of the velocity field from

infinite to a finite value.

4.3.3 VELOCITY SPECTRUM WITH BRINKMAN SMOOTHING
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Caupling.the Darcy-Brinkman 'law' (Equation (4.11)) with the divergence free
flow condition yields the same hydraulic head equatior, obtained using Darcy’s law
(Appendix-IV). Therefore the Brinkman fluid momentum transfer term may be routinely

incorporated in the velocity spectrum for flow in a three dimensional heterogeneous

medium to get
e kiky ki,
A Gl - s 13

The additional term in the denominator provides a 'high wave number Brinkman filter'.
Of course, if the InK spectrum already has a high wave number cutoff corresponding to a
scale much larger than the square root of the Brinkman parameter kp, the influence of the
additional terms on the velocity strain rates will be minimal. The reality of momentum
transfer in the fluid phase in a heterogeneous medium will impose a high wave number

cutoff, notwithstanding our choice of the InK spectrum.

4.4 CONCLUSIONS

For the crossbedded sandstone permeability series analyzed in this paper it is
shown that the InK correlation function is upward convex at the origin, implying finite
energy in the spectrum of the spatial derivatives of the InX. The InK microscale, the scale
associated with the derivatives of the InK field, was estimated. The choice of InK ficlds
with unbounded spatial derivatives everywhere, is a triply poor one. Firstly, it is not
compatible with the continuum requirements of a scale disparity between the REV scale
and the first scale at which fluctuations occur. Secondly, it results in unbounded strain
rates of the velocity field, which is only a reflection of the inability of the simple Darcy

scale continuum analysis to model the strain rates of the velocity field under conditions of
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extremely small écale heterogeneity. Thirdly, there is no dataset that supports unbounded
variances for the spatial partial derivatives of InK. In light of the important role the
velocity strain rates play in determining small scale properties of the solute distribution in
the advection dispersion process [Lumley, 1972; Batchelor, 1959] it is recommended that
analysis into finer details of solute distribution like the concentration variance and
covariance, adapt realistic representations of the InK correlation function at small
separations. In numerical approximations of flow and transport, it will be infinitely easier
to resolve the fluctuations of the InK field and the straining action of the velocity field, if
the energies in the spatial derivatives is finite. It is also argued, that the process of transfer
of momentum in the fluid phase will provide a high wave number filter for the velocity
field, in the absence of a scale disparity between the InK heterogeneities, and the square

root of the permeability of the porous material.
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CHAPTER 5

NONLINEAR COMPUTATION OF MACRODISPERSIVITIES IN
THREE DIMENSIONALLY HETEROGENEOUS AQUIFERS
VIA CORRSIN’S CONJECTURE

It is proven that the correlation coefficient (i.e., covariance divided by the product
of the standard deviations) between a corrclated stochastic process and its integral over a
time period is a decreasing function of the time period. This is a rationale of Corrsin's
[1962] conjecture of asymptoric statistical independence between a particles velocity and
position in a correlated velocity field. Corrsin's conjecture is inapplicable for smail
displacements for which the particles position and velocity are strongly correlated.
Applying Corrsin's conjecture to compute Lagrangian velocity statistics from Eulerian
velocity statistics (which are generally a lot easier to compute) yields a nonlinear
formulation for macrodispersivities. For the isotropic case nonlinear analytical algebraic
equations are derived for the macrodispersivities. The longitudinal macrodispersivity
remains practically unchanged from the linear results of Gelhar and Axness [1983]. The
transverse macrodispersivity shows a correlation scale dependence not exhibited in the
linear results. For the anisotropic imperfectly layered case it is shown for highly layered
aquifers the vertical macrodispersivities will be greater than the transverse horizontal
ones. The field scale observations to the contrary are therefore not explained by this
nonlinear result. Zhang and Neuman [1990] in their \wo-dimensional 'depth averaged'
considerations concluded otherwise on account of dropping the vertical dimension
altogether. This supports the analysis of Rehfeldt and Gelhar [1992] on flow unsteadiness

as a possible controlling mechanism for transverse horizontal macrodispersion.
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5.1 THEOREM

Let v(1) be a zero mean second order staticnary stochastic process with a

continuous covariance function

Ebv+D] = o2 p,(D) = & p(~1)
and

4
x(r) = jov(r)dr

with
El0x0] = o,
Define the cross—correlation coefficient between v(r) and x(r) as

Elx(ov(0)]

= (5.1)
Prtom = 5= 5
Let there exist c; € R such that
!
lim t =0 I p(Ddt — ¢ (5.2)
0
Then
lim t— oo P ™ 0 (5.3)
if
1) ¢, # 0 and there exists ¢, € R such that
!
lim t —oo J;tpv(r) dr —c, (5.4)
2) ¢, =0 and there exist 1, > 0 and é > 0 such that for every > £,
! !
tJ;pv(r) dt —J.o p()dt 28>0 (5.5)
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Proof:

¢ [
Elx(0)v(r)] = Io Elv(tvdldr = o jo p,t—1)dt

therefore

t
ELiv(] =03J.0 pT)ds (5.6)

Now

LY
EOx0] = o, =j0 J; Elv(z)v(e)ldrdr, (5.72)

Recognizing the constancy of E{v(7,)v(¢,)] over lines of constant 7, — 7; as shown in the

sketch below, the double integral may be transformed into a single integral over 7= 1, — 1;.

1’2‘
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As in Taylor [1921], it follows that

t
Elx(dx(6)] = 20 jo (t-7)p(1)dz (5.7b)

Using (5.6), (5.7b), the cross correlation coefficient (5.1) may be written as

j:p,(f)dr

12
4'2'[ t Jo‘p.,(r)dr - L:tp,( 7)dz ]

1) Asc; #0, it follows from the continuity of p, and (5.4) that

(5.8)

Pxn(e) =

1
V3lt ¢, - c,]'?

lim t— oo Px(ew(t) =

Now
lim t— oo V2[¢ ¢ - Cz]m =421
therefore
. c1
lim t— o Py > Af 57 =0 (5.9)
4
J. p.(t)dt
2) From (5.5) and (5.8) it follows that for every ¢ > r,, |p,,(,),,(,) |<| 20— 7 I
(26)
It follows from
4
lim t— oo I p(t)dt 5 ¢, =0
0
that
lim 1o | pyon | €0, ie., lim 1 oo Pxovie) = 0 o
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5.1.1 EXAMPLES

Example 1.

For an exponential velocity correlation function

||
pft) = "7 ,A>0

It follows

¢ I'4 !
'Lp,(r)dt =A-2 72 . limtooo ";p,(r)dr = A=¢p>0
and

3 !
.L'tpv('t)d‘t = A2 WP+ A)e T ~limioe J:Tpv(‘t)d’t - Al=g,

By part 1 of the theorem, these are sufficient conditions for lim t—oop,) = 0

In fact the cross—correlation coefficient between position x( ) and velocity v(r) is

1-2T
VI - 26T )= (A%~ (A2 + Ar)e THIV2

. A
im £ =90 Ppu(n) = N -0

Figure 5.1 shows the monotonically decreasing correlation between velocity and position.

Px(ov( =

therefore

Example 2,
For a 'zero integral scale' velocity correlation function

k3
pl1) =(l - % )e'_,l_, A>0
It follows that

' ! f
va(r)dt =te 2 .~ limtooo J;pv(t)dr - 0=
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Figure 5.1
Correlation coefficient between position and velocity: Example 1.
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Now
8 !
j;rp,(t)dr =2+ (P+ i+ %

therefore

[ _f _ o2 - 3
_ﬂt)-r_‘;p,,(t)dr Iorp,(r)dt =A°-(A°+At )e” 7
Since

dfie)
ds

condition 2 of the theorem is met, e.g.,

t
=te" A >Cforeveryt>0 .

ro=).,6=f(to)=1.2(1—%)
and
for every t>4, t_':p,(r)dr - J:fp,(t)dr 2112(1 -%—)>0

therefore lim t—ee p4,) — 0. In fact, the correlation coefficient between the position

x(t ) and velocity w(t ) is
Pxin = e ”
MO =
Y N -2+ A )e )P
therefore
\
) et
lim t =00 0, = -0
IxOns) 2 A
as shown in Figure 5.2.

It is worth reiteration that two sets of conditions in the Theorem were shown to be
sufficient to result in an asymptotic decay of the cross-correlation coefficient beiween 2

correlated stochastic process and its integral. The conditions are quite unrestrictive, but
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Correlation coefficient between position and velocity: Example 2.
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by no meens were shown to be necessary. The Theorem may hold true for an even bigger

class of velocity correlation functions.

5.2 MEAN SQUARED DISPLACEMENT OF A PARTICLE IN A
CORRELATED VELOCITY FIELD

Taylor's [1921] analysis of the mean squared deviation of a particle in a turbulent
velocity field is repeated here. Consider x(f ; €) to be the position of a particle that was at
the origin at ¢ =0, i.e., x(0 ; 0) = 0. Let the particle be carried along in a velocity ficld
with a mean v in the x; direction, and a three dimensional-zero mean-statistically
stationary perturbation v;'. The perturbation in the particles position around the ensemble

mean position (v¢, 0, 0) is given by

x(t;0)= I ‘v{ (x(t; 0))dr (5.10)
0
The mean squared perturbation in the particles position is therefore
2 2 ‘'
RO =L} 00 = | [ Blv/; 00 tx(r; Ol (5.11)
where
Elv;/(x(1; 0))v;'(x(2y; 0))] = () = uf-1); 1=1, — 3, (5.12)

is the Lagrangian velocity covariance function (which is assumed to be stationary on
account of the Eulerian velocity covariance function being assumed stationary). It follows

that
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[}
R =2.Io(t—‘l') ulo) di

therefore

!
LU 519

5.3 COMPUTATION OF LAGRANGIAN VELOCITY STATISTICS
FROM EULERIAN VELOCITY STATISTICS

The simplest approximation to relate Lagrangian velocity statistics to the Eulerian
ones involves substituting the mean particle positions instead their actual positions, in the

Lagrangian velocity covariance expression (5.12). This yields

u{1) = Elv;(Elx(z; 0)})v;(Elx(0; O)])] =R, (v7,0,0) (5.14)

This approximation may be understood as taking a Taylor expansion of the velocity of a

particle about its ensemble mean position;

&’0
v x(t; 0) = v(Elx(z; ) + x'(r;0) -&‘—ilm,ﬁ ...........

and assuming the partial derivatives of the velocity in space to be sufficiently small so

that all but the leading term may be dropped.
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5.3.1 CORRSIN'S [1962] CONJECTURE
Assuming that the joint probability density function (pdf) of

vx(1;0)), v/(0), x(7; 0)

can be expressed as a product of the joint pdf of

V,"(X(T ; 0)), V"'(O)

and
x(7;0)

(i.e., assuming the particles current position to be statistically independent of its current
velocity and the velocity at the origin. i.e., Corrsin’s [1962] conjecture) the Lagrangian

velocity covariance function (5.12) may be expressed as

oo
1) =L Ry (x(5: 0)) v dx (5.15)

where Yy is the pdf of the particle position at time 7 (the particle was at the origin at
initially). While this statistical independence assumption is a very strong assumption and
(Corrsin’s conjecture) certainly cannot be exactly correct (as the particle velocity is the
rate of change of the particles position), the Theorem in Section 5.1 shows that the
covariance between a particles position and its current velocity is a decreasing fraction of
the product of the standard deviation of the particles pesition and the standard deviation

of its velocity. The same applies for the covariance between a particles current position
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and the velocity at the origin. The fluctuations in velocity at any point are only
infinitesimally reflected in the fluctuations of the particle position. This feature comes
about by the growth in the standard deviation of the particles position. The Theorem in

Section 5.1 is the rationale for Corrsin’s conjecture.

5.3.2 LARGE DISPLACEMENT CONDITION ON THE APPLICABILITY
OF CORRSIN’S CONJECTURE

The large time condition on the applicability of Corrsin’s conjecture can be
appreciated using the results of the Theorem and the examples in Section 5.1. The
examples clearly show the inapplicability of Corrsin's conjecture at early times (see
Figure 5.1 and 5.2). In the expressions for the cocfficient of correlation between a
particles position and velocity (5.9) the Lagrangian temporal correlation scale ¢ may be

replaced by the spatial correlation scale / divided by the mean velocity v. This yields
1 \\2
(=)

as an estimate for the cross-correlation coefficient between a particles position and
velocity. Therefore, for the cross-correlation coefficient to be small, say a value of .1, the
particle has to travel 200 correlation distances. Corrsin's conjecture is inapplicable to the
to the 'developing dispersion' problem as done in a numerical iterative exercise by

Neuman and Zhang [1990].

5.3.3 NONLINEAR FORMULATION FOR MACRODISPERSIVITIES
USING CORRSIN'S CONJECTURE

A description for a mean concentration field of the form
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dc _ dc e

implies that the spatial second moment of the mean concentration follows

o — (Au + a,-;)v (5.17)

The mean concentration may also be interpreted as being proportional to the pdf of a

particle in the velocity field

2.0 = 2 e (5.18)

Now looking for a constant large displacement macrodispersivity, the pdf of a particle

consistent with the mean concentration equation (5.16) may be expressed as

3 exp

O = v8y 0’
L- 4(Aﬁ+ a,-.-)v'r 7

i=l J47¢(A""+ a"") vT

Va(r: 00 = (5.19)

The local dispersion contribution to the rate of change of the mean squared position of a
particle in (5.13) is argued as an additive Brownian motion component to the particles
position vector, with the strength of the Brownian motion firred to yield the laboratory
measured local dispersivities. Substituting the new formulation for the Lagrangian
velocity covariance function (5.15) into the expressions gives for the temporal rate of

change of the mean squared displacement (5.13) gives
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1
ag =timiseo S [ Ry e 00 vy duar (5.20)

This is equivalent to the expression for macrodispersivitics given in Gelhar [1987],
Equation 4.6, with local dispersivities replaced with a sum of local dispersivities and
macrodispersivities. It follows from Gelhar [1987] that (5.20) for large displacements is

(5.21)

I +on Sv‘ v‘(k)dk
— [ik, + (Aq 0 2 | + (Agpt @)k + (Ao k25 1V

Equation (5.21) is a nonlincar formulation for the asymptotic macrodispersivities,
incorporating a 'higher order’ conversion from Eulerian statistics to Lagrangian statistics,

via Corrsin’s [1962] conjecture, the rationale for which is provided in Section 5.1.
5.4 NONLINEAR COMPUTATION OF MACRODISPERSIVITIES

The computation of the macrodispersivity integral (5.21) will yield nonlinear
algebraic equations which can be solved to compute the macrodispersivities. Previous
evaluations of the integrals of this type in Gelhar and Axness [1983] are made under the
assumption that the local dispersivities are miuch smaller than the correlation scale or that
the local dispersivities are isotropic. Since the nonlinear formulation amounts to replacing
a local dispersivity by a sum of local dispersivity and macrodispersivity, both of these

assumptions do not hold.

5.4.1 ISOTROPIC CASE

132



For the isbtropic exponential spectrum, exact evaluations of the integral (5.21) are
showr in Appendix-VI (replacing the local dispersivitics replaced by a sum of local and
. macrodispersivities). The result is a pair of analytical nonlinear (albeit complicated)
expressions from which macrodispersivities may be evaluated. No numerical integration
is required and littie effort is required in solving the algebraic equations by machine. The
sesults are shown in Figure 5.3 and 5.4. The subscript L refers to results presented in

Gelhar and Axness [1983), i.e.,

A%y =y (5.22a)
o? 4
Ag = I’S;L(l + a:") (5.22b)

The subscript NL refers to the macrodispersivities computed here by a nonlinear
formulation incorporating Corrsin's conjecture. The longitudinal macrodispersivity is
unchanged in Figure 5.3. This can be easily understood from the evaluation of
longitudinal macrodispersivity integral (in Appendix VI). The longitudinal
macrodispersivity is quite insensitive to local dispersion, consequently when it is replaced
by a macrodispersion plus a local dispersion in the nonlinear formulation, it changes very

little,

—_— =] (5.23)

Of course that is not the case with the transverse macrodispersivity. As a first cut guess,
the nonlinear formulation involves substituting a local dispersivity by a macrodispersivity

in the expression (5.22b) adopted from Gelhar and Axness [ 1983]. Neglecting the portion
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Figure 5.3
Nonlinear computation of longitudinal macrodispersivity

in isotropic medium.
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Nonlinear computation of transverse macrodispersivity

in isotropic medium.
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in the brackets in the expression for transverse macrodispersivity (5.22b), it may be
expected that

NL
An j_ ] (5.24)

AL

This is borne out in the detailed evaluation shown in the Figure 5.4. Note that (5.24)
implies a dependence of the transverse macrodispersivity on the fourth power of the InK
standard deviation multiplied by the correlation scale. Dagan [1988] (his Section 6, last
paragraph) first presented such a result, without discussing the rationale for Corrsin's
[1962] conjecture and the large time conditions on its approximate applicability. Field
observation show larger transverse macrodispersivities than predicted by a linear theory.
However, comparisons with field experiments require performing this exercise for

anisotropic heterogeneous porous media.
5.4.1 ANISOTROPIC CASE

Examining the results of Gelhar and Axness [1983] on macrodispersivities in
anisotropic imperfectly layered medium with small ratios of vertical to horizontal
correlation scales £, one finds that the transverse horizontal macrodispersivity is €2 times
the transverse vertical (equations (43) and (44), Gelhar and Axness [1983]). This is
argued to be a fundamental property of the velocity correlation structure. Consider the

transverse horizontal and vertical velocity spectra

V2 kyk, 2
8,00 = 7(—;—) 55060 (5.250
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g )= "—("1"3 ) 500

Substitutihg nondimensional wave numbers

u; =kA;
and
e= iA=L/,
For small €,
_ Y Ly ] & v2 uju;
Sy (W) = 7 [ 2Rt i Spu) = € 72 Sﬂ( u)
and
_ 2| ___eum T .2 "__
Sy () = 7 [ 2R ) Sgu) = Sﬂ( u)

(5.25b)

(5.26a)

(5.26b)

Since the velocity spectrum is the only difference in the expressions for transverse

horizontal and vertical dispersivities, this shows that the transverse horizontal dispersivity

will be of the order of €2 multiplied by the transverse vertical dispersivity for £ << 1. This

is what has been found previously by Gelhar and Axness [1983]. Therefore, for highly

layered aquifers, a nonlincar evaluation of the macrodispersivities by (5.21) will also

result in the transverse vertical macrodispersivity being larger than the transverse

horizontal one. This is orthogonal to observations (Rajaram and Gelhar [1990];

Garabedian et al. [1991]), thereby ruling out such a higher order effect as an explanation

for field scale transverse macrodispersivities. In contrast, Zhang and Neuman [1990]
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came to the cohclusion that such a higher order effect is 'consistent’ with field
observations in their two dimensional 'depth averaged' model that prevented them from
considering the fundamental theoretical feature of vertical dispersivities being larger than
horizontal ones in layered anisotropic soils under steady flow conditions. This finding
further supports flow unsteadiness, as analyzed by Rehfeldt and Gelhar [19. 1, is an
important mechanism controlling transverse macrodispersivities in highly layered

anisotropic heterogeneous aquifers.
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CHAPTER 6

SUMMARY OF FINDINGS

1. Macrodispersive transport mechanism for the concentration variance
field.

Without introducing any new assumptions beyond those made in analyzing the
mean concentration, it was shown, for the hynothetical zero local dispersion case, that the
correlation between squared concentration perturbations and velocity perturbations is a
Fickian macrodispersive flux term for the concentration variance, in Equation (2.23).
Dagan's [1982] and [1990], zero local dispersion model of concentration variance was
shown to implicitly contain this transport mechanism for the concentration variance,
Equation (2.26)-(2.27). Csanady [1973] hypothesized this transport mechanism for the
concentration variance field. The derivation demonstrates the important role this term
plays in transporting fluctuations and therefore the inappropriateness of dropping it, and
yet retaining in the variance equation, the transport of fluctuations due to local dispersion,
as is implied in Graham and McLaughlin (1989], Vomvoris and Gelhar [1990], and Li
and McLaughlin [1991). The effect of dropping this transport mechanism on the
concentration variance is precisely the same as dropping the macrodispersive transpor:

mechanism in the mean coicentration equation.

2. Unbounded increase in the coefficient of variation (the ratio of the
concentration standard deviation and the mean concentration) for the
hypothetical zero local dispersion case.

For the hypothetical zero local dispersion case, the simple fact that both the
concentration and the squared concentration are governed by the same hyperbolic

operator (Equation (2.11) and (2.19)) makes the results found for the concentration
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(Equation (2.15) and (2.18)) directly extendible to squared conceatration (Equation
(2.23), (2.24) and (2.25)). This fact has not been explicitly acknowledged or exploited in
existing literature. Rubin [1991] has performed non diffusive 'particle simulations' to
compute the mean and variance of the concentration field, which exhibit an unbounded
increase with time of the ratio of the concentration standard deviation to the mean (i.e.,
the coefficient of variation keeps increasing with time for the hypothetical zero local
dispersion case). Simple analytical expressions derived here in Equations (3.43)-(3.45)
reveal the sensitivites of the concentration coefficient of variation excluding local
dispersion, and show an increase in the coefficient of variation with time, and larger
coefficient of variations for smaller initia! plume dimensions. They also yicld a finite
concentraticn variance for any finite initial dimensions of the plume, for the zero local
dispersion case. The zero local dispersion case, as analyzed here, is shown to be in
complete agreement with Dagan's [1982] and {1990] analysis of the hypothetical zero
local dispersion case. Recognizing the simplicity of the hypothetical zcro local Jispersion
case and the feature of ever increasing cocfficien: of variations with time, efforts into
understanding concentration variance should be focused on how local dispersion modifics

this unboundedly increasing coefficient of variation.

3. The dissipation of mean squared concentration fluctuations, i.e.,
concentration variance, due to local dispersion.

The only sink term in the exact variance equation (2.9a) shows that the rate of
destruction of concentration fluctuations by local dispersion is inversely proportional to
the square of the scale that charactcrizes the spatial derivatives of the concentration
perturbation field. On assuming the small separation behavior of the concentration
covariance function to be stationary, the sink term is a first order decay term with the
decay coefficient inversely proportional to the squared concentration microscale

(Equations (2.32)-(2.34)). The singular importance of including local dispersion on the
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concentration vaﬁancc can be directly seen by the entirely different behavior of the large
time solution for the concentration variance on including local dispersion (Section 3.2
contrasted with Section 3.3) and assumiing some non-infinite concentration microscale.
The application of the zero local dispersion case in finding concentration variance (e.g.,
Dagan [1982] and [1990]) can only be justified for small times, i.e., of the order of the
squared concentration microscale divided by the local dispersion cocfficient. In
considering twe dimensional transport in a bounded aquifer, it is rigorously demonstrated
that in dropping local dispersion, at the minimum, a first order decay term is dropped for
the cross-sectional mean squared concentration deviations from the cross-sectional mean
(Appendix-II, Theorem 1). Therefore, in an Eulerian continuum analysis of the
concentration field in a heterogencous aquifer (such as in this work), it is casy to
recognize the singular importance of the dissipating action of local dispersion on the large
time solution for concentration variance. This importance of fluctuation dissipation
functions has long been recognized in a variety of phenomenon, via Eulerian continuum
analysis, incorporating local diffusive mechanisms that appear as a Laplacian term in a
parabolic conservation statement (mentioned in Section 2.4.1). This singularly imporiant
role of diffusion or local dispersion is apparently not easily realized in analysis that seek
to follow the trajectory of indivisible particles in a Lagrangian framework, e.g., Dagan
[1982], [1990]. It remains to be seen what the particle based analysis in a Lagrangian
framework have to offer in describing finer details of the goncentration ficld other than its

radius of gyration (square root of spatial second moment).

4, Existence, estimation, and importance of the InK microscale.

The cxpoﬁcntial correlation function is a description of the InK ficld that results in
flow fields with infinite shear, vorticity, and principal strain rates. A testimonial to the
opaqueness of numerical simulations on flow and transport is the claim of numerical

models to be adequately resolving such pathological velocity fields! Moreover, it is
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shown in Chapter 4, that if porous medium indeed had fluctuations in its hydraulic
conductivity at scales comparable to the square root of its permeability, the Brinkman
extension to Darcy's 'law' would limit the increase in strain rates of the ensuing velocity
field. Measurements analyzed in this thesis unambiguously show the upward convexity of
the InK correlation function and the gross extrapolation involved in fitting an exponential
correlation function to existing datasets. This also provides an empirical basis to the REV
cartoon, i.e., the assertion that there exists a scale disparity between the first scale at
which an REV may be defined and the scale at which REV propertics vary.

The importance of the InK microscale is evident from the sink term in the
variance equation (2.9a). The rate of destruction of fluctuations by local dispersion is
proportional to the variance of the derivatives of the concentration perturbation field. For
advection dominated transport, it is to be expected that the InK microscale strongly
determines the sink term. An increase in the InK microscale causes an increase in the
concentration microscale which decreases the rate of destruction of fluctuations and vice
versa (Equation (2.55)). The insensitivity of the spatial second moment to this parameter
is a testimonial to the lack of information in the spatial second moment about any
measure of attenuation of point contaminant concentrations. The longitudinal spatial
second moment is not even sensitive to the exclusion of local dispersion, without which
there is absclutely no attenuation of injection concentrations, notwithstanding the usual

misleading assertion that "spatial second moments determine dilution®.

5. Simple analytical expressions for the concentration variance for a
multidimensional impulse input in three dimensionally heterogeneous
aquifers, including the singularly important dissipating action of local
dispersion.

The variance equation (3.2a), ernbodying the mechanisms of advective transport,

dispersive transport, creation and destruction of variance, was analytically solved for
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some explicit 1argc time conditions. The derived expressions (Equations (3.23)-(3.26))
explicitly present the sensitivities of the concentration fluctuations in three dimensional
space, to the InK description in three dimensional space, the initial plurne dimension, the
value of local dispersion. Most importantly, the sensitivity to the high wave number
component of the InK spectrum is such that greater the proportion of high wave number
energy, i;e., smaller the InK microscale (assumed greater than the local dispersivity),
smaller is the variance and the coefficient of variation. This reflects the fact that diffusion
mechanisms act more rapidly on fine scale variations than on large scale ones (sce
Appendix-I), and the InK microscale determines the concentration microscale (Equation
(2.53)). This is the first explicit exposition of the sole of the fine scale structure of the InK
field in facilitating variance dissipation and is argued to be of critical importance in
determining the usefulness or success of effective media modeling of transport in
heterogeneous InK fields. If the InK field were devoid of a rich fine scale structure then
the sample path concentratior: deviations would be larger because the concentration
fluctuations would occur at large scales resulting in larger concentration microscales and
therefore decreasing the efficacy of local dispersion in getting rid of the variance. The
success of macrodispersion based effective models will depend on the amount of surface
area that advective heterogeneity creates and the rate at which the continuum scale
diffusion {local dispersion) can destroy fluctuations. The richness of the InK fluctuations
on the high wave number end enhances the ability of local dispersion to attcnuate
concentration levels. Without a continuum scale diffusion mechanism, the high wave
number characteristics of the velocity field are of no special significance. This sensitivity
is ubiquitous in advection diffusion systems as discussed in Section 2.4.1.

The derived expressions also show the conditions under which the rate of
production and destruction of fluctuations balances out each other to yield a lincar

relationship between concentration variance and the squared gradient of the mean

143



concentration field (Equation (3.28)). Under these conditions the transport terms in the

variance equation are unimportant.

6. Concentration fluctuations in the bromide tracer, Cape Cod, MA.

The coefficient of variation estimated at the center of mass of the bromide tracer was
found to decrease with time between 200 and 500 days after injection (Figure 3.6). The
hypothetical zero local dispersion case predicts otherwise, and is of absolutely no
relevance in interpreting experimental observations of contamirant concentrations
(Figures 3.7 and 3.8). The decrease of the coefficient of variation with time is predicted
by the theory developed here on including the action of local dispersion (Figure 3.7).
While local dispersion may play an insignificant role in determining the longitudinal
spatial second moment of the plume, it plays a dramatic role in determining point
concentration levels (Figure 3.8).

The concentration data for the Cape Cod bromide tracer shows quite clearly that peak
concentrations are not strongly dependent on the plume size, when the plume scale and
the correlation scale overlap (Figure 3.8). Therefore, the notion that a refined
determination of the spatial second moment of a plume with a scale overlap with the Ink'
correlation scale gives a better idea of dilution is false, at least for the Cape Cod bromide
data. More alarmingly, the effective dispersivity (even if predicting the right value of the
spatial second moment) will result in a substantial underestimation of peak
concentrations. An analysis of the concentration variance provides a way to assess thesc

concentrations (Figure 3.8).

7. Bounds on the fluctuation dissipation function in a bounded aquifer
demonstrating the singular importance of the interaction of local
dispersion and high wave number velocity fluctuations in determining

concentration levels in heterogeneous velocity fields.
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In Appendix-II, variational calculus yiclded rigorous lower bounds on the
fluctuation dissipation function that sufficiently demonstrate the importance of the
interaction of local dispersion and high wave number velocity fluctuations in determining
concentration levels in heterogeneous velocity fields. These bounds support the more
general approximate analysis of concentration variance in three-dimensionally
heterogencous aquifers. These bounds sufficiently demonstrate the singular importance of
modeling the local flux in numerical models of transport. A priori, this singularity
imposes the need to have grid Peclet numbers of less than 1 in numericai models. The
bounds provide a necessary (and not sufficient) condition to assess the adequacy of
numerical approximations in solving the details of solute distribution for variable
advection diffusion problems. Currently, there is no performance check for variable
advection diffusion problems, and therefore, the claims of being able to handle grid

Peclet numbers of hundreds for such problems can not be judged.

8. Variationai characteristic of G. 1. Taylor's [1953] solution.

In Appendix-III, it was shown the G. 1. Taylor's [1953] solution for the cross-
sectional concentration profile has a variational characteristic. It minimizes the
dissipation integral subject to a fixed cross sectional dispersive flux. Equivalently, it
maximizes the cross-sectional dispersive flux for a given dissipation integral. This further
indicates the important role of the fluctuation dissipation function in determining the

details of solute distribution in variable advection-diffussion phenomenon.

9. Proof of asymptotically dying cross correlation coefficient between a
correlated stochastic process and its integral.

This fact was proven in Section 5.1, and provides a rationale for Corrsin's [1962]
(much stronger) conjecture (which is strictly incorrect) and an appreciation of the large

time conditions on its approximate applicability.
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10. Analytical nonlinear algebraic equations for a nomnlinear
computation of macrodispersivities.

In Appendix-VI, the Gelhar and Axness [1983] macrodispersivity integrals for the
isotropic exponential InK correlation function were exactly analytically evaluated for the
case of anisotropic local dispersivities, extending the previous exact evaluations for the
case of isotropic local dispersivities. It was found that the longitudinal macrodispersivity
is a decreasing function of the ratio of the transverse and longitudinal local dispersivities.

These evaluations also yield nonlinear algebraic expression for
macrodispersiyities, incorporating Corrsin's [1962] conjecture. The transverse
dispersivity shows a correlation scale dependence, not exhibited in the first order theory.
The longitudinal dispefsivity remains practically unaffected. It is argued that the ratio of
the vertical to transverse macrodispersivity will be greater than unity for highly
anisotropic soils, and therefore the field observations to the contrary are probably

explained by flow unsteadiness [Rehfeldt and Gelhar, 1992].
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APPENDIX-I

ON THE HIGH WAVE NUMBER SENSITIVITY OF FLUCTUATION
DISSIPATION PHENOMENON

A trivial one dimensional boundary value problem is presented here to illustrate

the high wave number sensitivity of fluctuation dissipation phenomenon.
A-L1 INITIAL-BOUNDARY VALUE PROBLEM

Consider the simple iritial -boundary value problem

B.C. c(0)=c(1,)) =0

1.C. c(x,t) =Sin(2kmx) k=1,2,3,........
oc Fe
PD.E. =0—— Vxe(0,1)
o " 52
2
Soluton: C&'t) = e—dw’) t Sin(sz)
Defining,
1
I ll = 7ax
0
It folloWs that
2
I = _;_ o 22Ut
and
d ||
"d‘; | =20 kn* || &2
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Therefore,

t_amtlly_
o @

This shows the nature of the high wave number sensitivity of fluctuation dissipation
phenomenon. Defining the squared concentration microscale by
el

(&) =

It follows from the solution that

(&)1 =il

therefore

d“cz" — 20 " 2"
a c\2 ¢
(4"

i.e,, ine rate of dissipation of rnean squared concentration fluctuations is equal to twice
the diffusion coefficient divided by the squared dimension characterizing the derivatives
of the concentration field.

Consideration of fluctuaiion dissipation and its sensitivity to the spectral
description of the spatially variable hydrauiic conduciivity is argued in Chapters 2 and 3
to be importantly controlling the level of concentration fluctuations in three

dimensionally hetcrogeneous aquifers.
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APPENDIX-II

- TRANSPORT IN HETERCGENEOUS AQUIFERS:
ON THE CRITICAL ROLE OF LOCAL DISPERSION

In a bounded two-dimensional aquifer of height H, the cross-sectional mean
squared concentration fluctuations from the cross-sectional mean are analyzed. The mean
squared concentration fluctuation equation has a dissipation term, which is a product of
the local dispersion coefficient and the mean of the squared concentration fluctuation
derivatives. The mean of the squared transversc derivatives of the concentration
fluctuations is shown to be greater than or equal to (7//)2 multiplied by the mean squared
concentration fluctuations. Therefore, the mean squared concentration fluctuations, as a
singular consequence of the action of local dispersion, is destroyed at a rate greater than
or equal to a first order decay process with a decay coefficient of 2D7(n/H)?, D7 being
the transverse local dispersion coefficient. For a specified cross-sectional dispersive flux,
the minimum of the mean squared transverse derivatives exhibits a wave number squared
dependence. These bounds on the fluctuation dissipation function demonstrate that the
interaction of the local dispersion process and the high wave number component velocity
fluctuations plays a critical role in determining solute concentration levels in

heterogeneous aquifers.
A-II.1 INTRODUCTION

In the absence of exact solutions for the details of the concentration distribution
for even the most elementary spatially variable advection-diffusion problems, the
construction of tractable solutions of various quantities of interest (e.g., spatial second

moments, mean concentration, mean squared concentration fluctuations) is inevitably
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accompaniced by approximations (i.e., dropping of terms, linearization, localizaton,
closures ezc.). Different approximations leading to different results can sometimes be
difficult to reconcile. A glaring example of this is on the role of the local dispersion
process in determining the strength of the concentration fluctuations. Dagan [1990] drops
local dispersion altogether in his analysis of concentration variance. In the analysis in
Chapter 2 and 3, the simplicity of the hypothetical, hyperbolic, zero local dispersion case
is acknowledged (the analysis of the zero local dispersion case is in complete agreement
with Dagan’s [1990] analysis of that case), but it is argued for the parabolic transport
problem with a positive local dispersion coefficient, the laige time solution for the
concentration variance is singularly influenced by the dissipating action of local
dispersion. In the approximate analysis in three dimensionally heterogencous porous
medium, the coefficient of vaviation (the square root of the mean squared concentration
fluctuations divided by the mean concentration) initially increases with time, and then
decreases with time at large times. This decrease in the coefficient of variation is
singularly due to the action of local dispersion. On excluding local dispersion, the
coefficient of variation increases urboundedly with time, as is implied by Dagan's work
[1990]. In empirical support of the analysis in Chapter 2 and 3, the data of rapidly
decreasing peak sampled concentration levels at the Cape-Cod, MA, bromide tracer
(Figure 3.8), and an estimate the coefficient of variation, which is found 1o be decreasing
with time betwezn 200 and 500 days (Figure 3.6), is presented.

Further, extensively and intensively characterized sites and tracer tests are needed
to create a set of observations on concentration levels (peak concentrations) and estimated
coefficient of variations, to sort out these diametrically opposing theoretical results.
Numerical simulations that demonstrate that their results are not drowned in numerical
dispersion, and are capable of reproducing the details of transport in rich velocity
spectrum and modeling the local dispersive flux are nontrivial. We might have to wait a

couple of decades for a computer large (and fast) enough to be able to model the local
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dispersive flux for a field scale problem, by having a grid Peclet number less than one
(without which any claim to be modeling the local dispersive flux is untenable) for local
dispersivities of the order of less than a centimeter. While work in these two arcas may
shied light on the role of local dispersion in determining the concentratior variance, a
more immediate consensus on the role of local dispersion in dissipating concentration
fluctuations is desirable. Needless to say that assessment of contamination exposure
levels at a point will /should aramatically differ if the coefficient of variation is 1 as
opposed to 160! Currently, there is no agreement even over the sign of the rate of change
of the coefficient of variation with the analysis in Chapter 2 and 3 predicting it (0 be
negative at large times (as a consequence of local dispersion) and Dagan’s [1990] results
implying that it is always positive!

In light of this divergence, the approach taken here is to ovily present results
(including bounds on functions) that can be deduced without any approximations in the
analysis for the simple case of a bounded two dimensional aquifer, with the solute
undergoing spatially variable advection and a local dispersive flux with a constant local
dispersion coefficient. Averages are computed over the height of the aquifer. The exacr
equation for the concentration mean squared fiuctuation is constructed. Rigorous lower
bounds on the concentration vatiance dissipation term (due to local dispersion) are found.
To make the case that local dispersion can be dropped altogether in analyzing meuan
squared fluctuations at large times, it is n~cessary (not sufficient) that the lower bounds
on the dissipation function be of no significant consequence at large times. Lower bounds
on the dissipation function enable a dclineation of the minimum possible cffect of the
dissipating action of local dispersion on the concentration variance. If this minitaum
action of local dispersion is insignificant, then it will be concluded that the importanse of
local dispersion is not shown by this analysis. If this minimum action of local dispersion
is significant, then its immnortance in controlling concentration fluctuutions will be

considered sufficiently established.
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A-11.2 .ACTION OF LOCAL DISPERSION IN FLUCTUATION
DISSIPATION

Define
- 1
8=ﬁ'j.08dy

Consider flow in the two dimensional bounded aquifer in Figure A-II.1

x velocity: V+v ,v=0
y velocity: w ,w =0and w(x, 0)=w(x, H)=0

%+%=0

L S S S S LS

T NO FLUX BOUNDARY

H
y
T NO FLUX BOUNDARY
77 7777777 7
Figure A-II.1

Bounded aquifer.
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The solute transport equation along with the auxiliary conditions is

I -3 IvC IwC Fc *C
=+ VEI:- e kY -Dg P —DTByT_ (A-IL1)

C(X.y. t)|;=o=m.)')
lxl — o C —) 0 (A-I1.2)

% o= L =0

In (A-ﬂ.i) Dy, and D are the longitudinal and transverse local dispersion
coefficients. Taking averages of each term in (A-II.1), over the aquifer height, yields the

equation for the cross-sectional mean concentration

%+ v'%+%’f--ob-az—c =0 (A-11.3)

Subtracting the mean equation (A-II.3) from the original transport (A-II.1) equation gives
the equation for the concentration perturbation

c=C-C

The equation for the mean squared concentration fluctuations, i.e., concentration

variance

@ = o[l Ay

is obtained by multiplying the concentration perturbation equation by another

concentration perturbation and taking cross-sectional averages to get
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%02- +V %’2- -Dy %‘; %] "gf— - [DL(%)2+DT(%-)2] (A-114)

The fluctuation dissipation function

2

dix,) = [DL(%)2+DT(%) ] (A-IL5)

represents the action of local dispersion in destroying the concentration variance.
Defining

oo
lgll=] gax

a global measure of the concentration fluctuation is governed by

(%)7] I (A-1L6)

2

N7 -1 [, (L) +

dlea |
dr

1
2

obtained by integrating the concentration variance equation (A-I1.4). In the zero local
dispersion case, as Dy and Dt are set to zero, the fluctuation dissipation function (A-IL5)

is dropped from (A-I1.4) and (A-IL6).

A-I1.3 LOWER BOUNDS ON THE FLUCTUATION DISSIPATION
FUNCTION

THEOREM 1

There exists ACmax > 0 such that
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(%)2 > :’3)2 (A-IL7)

PROOF:

The minimum of

among continuously differentiable functions c is sought, subject to the constraints

Iﬂczdy =E and Ioﬂcdy =0

0

and the no flux boundary conditions at y = 0 and H. Defining c' = dc/dy, the Euler-
Lagrange equation for this isoperimetric problem is

% _ %(7‘3{- ): 0 (A-IL8)

with
f=c?+ Aic + 3.202

The unknown multipliers are to be determined through the constraints. This yields

A +24,c —2¢" =0
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which is easily solved for the minimizing c,

- JE o 2) (a9

It follows
J;”(T%i)z"’ 2 J(;:j:: (A-IL10)

Therefore
& o =(HI7) (A-I1.11)

LEMMA 1
; ale) """C;;' I- — IIO’Cz I (A-IL12a)

This easily follows from Equations (A-11.6), (A-IL.7), (A-II.11) and implies

Zl s I ||-2vc— [ exp[ (t—r)]dr (A-I1.12b)
(H/m)*

It is certainly not being suggested that the minimizing concentration profile (A-

I1.9) is the answer to the solute transport problem. In fact, nothing about the specifics of
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the velocity ﬁeld was utilized in deriving the bounds (A-11.7), (A-I1.12). The exact
solution to the transport equation (or any other, obeying the boundary conditions) can
only result in there being greater dissipation than the minimum estimated here. The
minimizing concentration has been found from among the manifold of possible solutions
to the transport problem (the concentration perturbation obeys the boundary conditions
and integrates out to zero over the cross-section). The minimizing profile provides a
lower bound on the fluctuation dissipation function. In finding this lower bound it has
been proven that the mean of the squared concentration fluctuation is being destroyed by
the action of local dispersion at a rate greater than or equal to 2D7/(H/m)? multiplied by
the mean squared concentration fluctuations (A-II.12a,b). In dropping local dispersion, at
the very least, this first order decay term is dropped. Asymptotically, the results after
dropping local dispersion will therefore be drastically different from those incorporating

this minimal dissipating effect of local dispersion.

THEOREM 2

7 2. \2

(%‘-) > ()’ (A-I1.13a)
where

2
HIH[Jyv(yl)dyl] dy
R = 0 L70 - (A-11.13b)
H
[Io v(y)dy J‘Oyd)’l onl"()'z)d)’z]
PROOF:
The minimum of
H o 2
-‘:) (W) b



is sought, subject to the constraints

H H
J‘cvdy=F andjcdy=0
(i} 0

and the no flux boundary conditions. The Euler-Lagrange equation for this minimization

- is equation (A-I1.8) with

f=c%4 i+ Aev
This gives
2.1+/'sz -2c"=0

which is easily solved to get the minimizing vertical concentration profile

[P [0 [ o [ [

H

J, v [an [ "voa,

(A-11.14)

cy) =F

from which follows the bound (A-I1.13). In general, 62 is a function of x. Its mirimum

value over the values of x may be found if the two-dimensional variation of the velocity

field is specified.
LEMMA 2

For unidirectional velocity varying in y, it follows from Equation (A-11.13) and

(A-1L6)
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2 -
tdlod 4w Xy _plar (A-iL15)
Once again, it is not being snggested that the minimizing concentration profile (A-
I1.14) is the solution to the transport problem. It is only constructed to find a lower bound
on the fluctuation dissipation function in terms of the horizontal dispersive flux. For
unidirectional flow, it tarns out that Taylor [1953] type approximations (in a coordinate
system moving along the mean velocity, drop the local acceleration, longitudinal
diffusion, and the transverse variations of the longitudinal derivatives of the

concentration) yields this dissipation minimizing concentration profile (A-I1.14), as

shown in Appendix-III.

HIGH WA VE NUMBER SENSITIVITY. OF &
Consider the velocity

v(y)= W Sin(2kny/H)
It is easily shown from (A-I1.13) that

8 k?
02=('§')_"—5—“:—2' (A-IL.16)
(HI7)" (yV)

The minimum of the dissipation function, given a cross-sectional dispersive flux,
increases as the square of the velocity wave number.
Consider another velocity function, with a low wave number and a high wave

number with different weights
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v(y) =V [y, Sin(2kny/H) + y, Sin(8ky/H) ]

For this

2
6 = 128 K (A-IL17)
(H/7)* VX482 + 16y, v, + 302

Note that in (A-I1.17), for a specified mean squared fluctuation of the velocity field,

?-ﬁzﬁ"'_"é_
B 2

the greater the proportion of fluctuations at the higher wave number, the greater is the
value of 62 (in the denominator, in (A-I1.17), the low wave number velocity fluctuations
have a greater weight), as shown in Figure A-I.2.

The lower bounds on the fluctuation dissipation function, (A-I1.7) and (A-I1.13),
show that the large time solution for the concentration variance will be singularly
influenced by the action of local dispersion. However, despite this fluctuation dissipating
action of local dispersion, for a non zero value of the dispersive flux

cv

at a cross-section, even if solute were initially introduced uniformly over the height of the

aquifer, the cross-sectional concentration profile cannot be compleiely homogenized:

THEOREM 3

—_—2
& 2 &) (A-IL18)

PROOF:
This is Schwarz’s inequality.
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High wave number sensitivity of fluctuation dissipation function.
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A-IL4. SUMMARY

1. In dropping local dispersion while analyzing mean squared concentration fluctuations,
at the very minimum, a first order decay term is dropped. For any positive local
dispersion coefficient, such a dissipation term can be expected to result in dramatically
decreased concentration fluctuations at large times, compared to the case in which the

dissipating action of local dispersion is dropped altogether.

2. For a specitied cross-sectional dispersive flux, the minimum dissipation function is
proportional to the squared dispersive flux, with the constant of proportionality having a
high wave number sensitivity. For a givein mean squared longitudinal velocity
fluctuations, the velocity function with a greater proportion of high wave number

fluctuations, results in a greater minimum dissipation function.

3. As long as there is a non zero cross-sectional dispersive flux, the concentration profile

cannot be completely homogenized along a cross-section.
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APPENDIX-II

CROSS-SECTIONAL CONCENTRATION PROFILE
IN RECTILINEAR DUCTS:
A VARIATIONAL CHARACTERISTIC OF G. I. TAYLOR'’S SOLUTION

The cross-sectional concentration profile that minimizes the dissipation integral

for a specified dispersive flux, in unidirectional flows inside a rectilinear duct, is shown

to be the same as Taylor’s [1953] solution.

A-III.1. MINIMUM DISSIPATION CROSS SECTIONAL
CONCENTRATION PROFILE

The minimum of the dissipation integral

[ e

with respect to continuously differentiable functions c(y) is sought. The extremizing

function is subject to the constraint of a specified dispersive flux

H
J;c(y)v(y)dy = F (A-111.2)
and
H dc dc
joc(y)dy =0, I’=°=W l,-n =0 (A-IIL3)
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The velocity v(y) integrates to zero over the cross section, shown below in Figure A-IIL.1.

L LSS S S S S

f |

~/N\

0

H —ED"— w) ij(y)dy =0

>

X

Y
Y77 777777 7

Figure A-III.1

Unidirectional flow in a rectilinear duct.

Defining c' = dc/dy, the Euler-Lagrange equation for this extremization is

g- - Ed; (%—,—) =0, f=c%+ Ajc + Ayev (A-111.4)

The undetermined multipliers A1 and A are to be found through the constraints (A-II1.2)

and (A-II1.3). It follows from (A-II1.4) that the extremizing function obeys

Ai+A4y -2¢" =0 (A-1IL.5)

The solution of (A-IIL.5), subject to constraints (A-III.2) and (A-IIL3), is

169



[J'dyj ) j' " viyg) ]
v(y,)dy dy dy, | v(yp)dy
l T l J T (A-111.6)

c@) =
J;v(y)dy jo dy, J'o viy,)dy,

The dissipation integral (A-III.1), subject to (A-1I1.2) and (A-II1.3), may be made
unboundedly large. Therefore, (A-III.6) is the minimizing solution (and not the

maximizing one).
A-II1.2. TAYLOR’S CONCENTRATION PROFILE

Consider solute transport in the rectilinear duct in Figure A-IIL.1. The solute

concentration C, in a coordinate system moving along with the mean drift, is governed by

(A-1I1.7)

ac ac FC #c)
= ) =— -
> + v(y = (3):2 ay 0

In (A-IIL.7), v(y) is a zero mean function, and D is the molecular diffusion coefficient.
Solving a similar problem in a tube, Taylor [1953], for the large time condition ¢ >>

H2/D, drops the local rate of change and longitudinal diffusion terms

x Fc
N 312
and replaces
X X
x Y X

where
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1 M i}
=E_L Ckxyst)dy ,c =C -C

These approximations yield

v(y)%- -D % =0 (A-111.8)

Subject to the no flux boundary conditions, the solution to (A-IIL.8) is precisely the
minimum dissipation concentration profile (A-III.6). Additionally, Taylor’s analysis

yields the cross-sectional dispersive flux

H

H Y y
Fs -[0 cyviy)dy = -l.l)_ %—[ J; v(y)dy Io dy, J; |v(yz)dyz ] (A-II1.9)

A-II1.3 MINIMUM DISSIPATION CROSS-SECTIONAL PROFILE IN A
TUBE

Consider Taylor’s [1953] specific problem of solute transport in a tube, where the.

Poiseuillian velocity deviations from the mean drift up/2 are

v(r)= -"22-(1 - 252-2-)

a
where a is the tube radius, and r is the distance from the center in a cross-section. The
continuously differentiable function c(r) (assuming the concentration to be independent

of angular position) which minimizes the dissipation integral
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subject to a specified dispersive flux
a
F
J;c vrdr = LT3

and

a a ac
Lcrdr =0, 7|,=0= ?|,=a=0

is sought. The Euler-Lagrange equation

Ayr+ vr - -;_—(Zr %-) =0

yields the minimum dissipation concentration profile

c(r) = 1‘2;:0 [ %— (L)z + -;—(L)“] (A-1IL10)

The minimum dissipation profile (A-III.10), shown in Figure A-III.2, is the same as

Taylor’s [1953] solution (equations 20-23).

A-II1.4 CONCLUSION

Taylor’s [1953] solution for the cross-sectional concentration profile is the

smoothest profile that can sustzin a specified cross-sectional dispersive flux, i.e., it
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Minimum dissipation cross-sectional concentration profile.
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minimizes the cross-sectional integral of the squared transverse concentration derivatives
(the dissipation integral), for a specified cross-sectional dispersive flux. Equivalently,
Taylor's solution maximizes the cross-sectional dispersive flux for a given value of the

dissipation integral.
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APPENDIX-IV

STOCHASTIC DESCRIPTION OF THE HETEROGENEOUS
HYDRAULIC CONDUCTIVITY AND VELOCITY CONTINUUM

If ¢ is the hydraulic head, conservation of fluid mass dictates

& o , Okl d

. =0 (A-IV.1)
3x,- 2 axl' axi
Decomposing InX into its mean and perturbation
In[K(x)] = In[K,] + f (A-1V.2)

where K, , the exponential of the expected value of InK, is assumed to be a constant. The
second order statistics of f, the InK perturbation, are also assumed to be translation

invariant. For the case of a unidirectional mean hydraulic gradient

the effective hydraulic conductivity K5 =y K, relates the mean velocity in the x)
direction to the hydraulic gradient by v = (K J )/n, n being the porosity of the medium.
Gelhar & Axness [1983] give expressions for . For small values of the InK standard

deviation, the value of 7 is slightly greater than one. The spectrum of the divergence free-

three dimensional velocity perturbations is related to the InK spectrum Sg by
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| 2 kk Kk,
Sy B) = 7 ( 5, - ?—Xa,-, - —2—) S4(k) (A-IV.3)

(Bakr et al., 1978; Gelhar & Axness, 1983]

A-IV.1 InK SPECTRUM FOR A HETEROGENEOUS POROUS
CONTINUUM

The solution of the flow problem relies on a 'small perturbation' assumption on
the coefficients in (A-IV.1), i.e., the spatial partial derivatives of the InK field. The
continuum scale properties like hydraulic permeability and local dispersivities can only
be effective on a finite local support. These facts make the exponential spectrum (that
yields infinite spatial derivatives of InK) an unattractive description of a heterogeneous
porous continuum. The exponential spectrum and Darcy’s law result in a velocity field
with infinite characteristic strain rates, i.e., infinite principal strain rates and infinite
vorticity! At high frequencies (contained in the exponential spectrum), momentum
transfer in the fluid phase as embedded in the Darcy-Brinkman flow equation, provides
an important smoothing mechanism, in highly nonuniform porous medium (discussed by
Dagan [1979], and Nield and Bejan [1992]). In Chapter 4 is presented the velocity
spectrum, incorporation the Darcy-Brinkman 'law'. For currently available datasets of
InK, the exponential spectrum is a gross extrapolation on the high wave number end.

| In evaluating the concentration microscale in Section 2.4, it is explicitly assumed
that the InK microscale is larger than the local dispersivities. A fundamental feature of
fluctuation dissipation is the wave number squared dependence of the dissipation rate. To
be able to vary the proportion of energies that appear at low wave numbers and high wave
numbers in a relatively simple fashion, a spectrum is chosen with a high wave number

cutoff. A Gaussian InK correlation function that yields a finite InK’ microscale could also
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have been choseh, but the ratio of the InK microscale to the correlation scale implied by it
is a constant (about 1), hence the effect of varying this ratiu on the fluctuation dissipation
phenomenon can not be explored. Of course, for a site specific problem, a statistical

characterization of the site specific spectrum will be needed.

A-IV.2 InK SPECTRUM
Sﬂ(k) = _;‘12-—_ 111213 u2 — u2 < 7'2
ar Ir,,) (1 +ud’ ' "
0 >k (A~IV.4)

w= K3+ 1312 + 1212

A r, 5r 3 _
Itr,) = 4 S5 dr = "'2 - —— Ftan ')
0 (1+r9) 4Q1+r;)"  8(1+ry,)

¢ = Elf] =rsﬂ(k) dk (A-1V.5)

is the variance of InK. The variance of the derivatives of InK fluctuations is given by

02 2 4oo
- E[ (i) ] =I k?Sﬂ(k) dk (nosumoni) (A-1V.6)

where Af; the 'microscale’ of the InK field in the i th direction represents the scale of
fluctuations that characterizes the derivatives of the InK field. r,, is a nondimensional
high wave number cutoff. As r;,, becomes larger, the low wave number energy in the
spectrum decreases, high wave number energy increases, as shown in Figure A-IV.1a,b.

The correlation lengths /; determine the scale corresponding to the location of the peak of
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Figure A-IV.1a

Distribution of spectral energy over nonondimensional wave number.
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Distribution of spectral energy over nondimensional wave number.
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the spectrum (Figure A-IV.1a). The scale I; /r is the smallest scale of fluctuations being
entertained. It follows from equations (A-IV.4) and (A-IV.6) that r,,, 45, and [; are

linked
4 It
—_ = 3 (no sum on i) (A-IV.7)
’,' r,,,)
w8 r, 9r, 15
Qr,) = L dr=r,- —2— 1+ —2__ 2 an’'(,)
-‘; a+~ a+2)? 8+l 8

(See Figure A-IV.3) For the value of N /l; to be .2, the cutoff corresponds to a scale that

is about a hundredth of the correlation scale /; .

A-IV.2 VELOCITY FIELD AND ITS CHARACTERISTIC PRINCIPAL
STRAIN RATE

+oo

E[v]] =_[ Sy (K) dk (A-1V 8)

The squared charactezistic velocity principal strain rate is

'0%. ov; 2 +oo
-— = l{(;‘) ] =I k2S,,(k)dk (nosumoni)  (A-IV.9)
(41) i B

It follows from (A-IV.3), (A-1V.8) and (A-IV.9) that

o,

S | (A-1V.10)
G v
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Ratio of InK microscale and correlation scale.
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va' B
i/ 4
A

(A-TV.11)

where y; and f; are constants. Unless the InK microscaie is known, nothing can be said

about the characteristic strain rate of the velocity ficld (A-IV.11). Presuming the InK

microscale to be zero results in infinite accelerations in the flow field, which is a

reflection of the breakdown of Darcy's 'law' in describing the flow field, as discussed in

Chapter 4.

ISOTROPIC InK:

h=bh=k=1 and A, =4 =4, =4

Performing integration in spherical ccordinates

Bn_ (8 _"1=.‘_‘- /

Y 15 Y

bh_ [8 B _B /_3_
v 35 ¢y ¢ 35

LAYERED ANISOTROPIC InK:

L=b=l, L=1, and &, =&}, = 4, , &4, =4,
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(A-IV.13)



The integration over the two angles in spherical cocrdinate is performed numerically to

get velocity characteristics in Figures A-IV.34.
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Standard deviation of the velocity field.
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Characteristic principal strain rate of velocity field.
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Characteristic principal strain rate of velocity field.
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Characteristic principal strain rate of velocity field.
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APPENDIX-V
CHARACTERISTIC VORTICITY OF THE FLOW FIELD

The characteristic vorticity of the flow field in a three dimensionally
heterogeneous aquifer with the InK spectral dsescription presented in Appendix-IV, is

presented here for the isotropic case.
A-V.1 VORTICITY
The vorticity of the flow field is defined as

o = Vxy

ie.,

_(3"3 3"2). (3"1 3”3). (3"2 3"1)
o=\ ®m) & TR E R

From the spectral description of the velocity partial derivatives in Appendix-1V, we have

the spectral description of the partial derivatives of the velocity field;

2 o \2
§ 22 (k) = =k} ( 81 - ikz‘ki) S5%)

@y o 7

A-V.1 RELATIONSHIP OF THE CHARACTERISTIC VORTICITY
WITH THE HYDRAULIC CONDUCTIVITY

The mean squared components of the vorticity were computed for the isotropic

case to get
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It can also be shown that any two distinct components of the vorticity are

uncorrelated, i.e.,

Elo,0]=0, 1Si# <3
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APPENDIX- VI

MACRODISPERSIVITY INTEGRALS FOR STATISTICALLY
ISOTROPIC MEDIA WITH ANISOTROPIC LOCAL DISPERSIVITIES

The integral relating macrodispersivities to the hydraulic conductivity spectrum
presented in Gelhar and Axness [1983] is evaluated for isotropic media with anisctropic
local dispersivities. The exact evaluation of this integral enables an exploradon of the
sensitivity of macrodispersivities to K, the ratio of the transverse io longitudinal local
dispersivity. This evaluation also yields algebraic nonlinear expressions for the

macrodispersivities incorporating Corrsin's [1962] conjecture, in Chapter 5.
A-VI.1 MACRODISPERSIVITY INTEGRALS

The macrodispersivity is given by

Ay = j *= (B = k) okt + gl + K5)1Sy1K) dk

(A-VIL1)
e PLEE + [og k2 + ok + k%)]z}

i = 1,2,3 (Equation (29), Gelhar and Axness [1983]). For the exponertial isotropic

spectrum of InkK
o A
k)= —L
ot (1 + 2%
Gelhar and Axness [1983] give
=1+ a}/6
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Substituting the sﬁec'uum into the macrodispersivity integral gives

(A-VI1.2)

Ai 1 r“ (8 — wan ) Tegut + £ + )]
Pd-= {u+ legd + e + uDIPHA + ud)?

A
7
where
g=0p/A , er=0oglA

and
U= k,//l

are the nondimensionalized wave numbers.
A-V1.2 EVALUATION OF MACRODISPERSIVITY INTEGRALS

Mazking the transformation into spherical coordinates

uy =r cos(6), u, = r sin(6) cos(¢), uz = r sin(9) sin(¢)
du = r* sin(6) dr d9 d¢

the ¢ integral is trivially achieved. Using

r“ Pdr r
0

A+ +2  4(1+p)

the r integral is achieved. Substituting ¢ = cos(8 ), the theta integration becomes
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= %[9" Iy+ (EL - 35}‘)’2 + (351' - 251)14 + (EL - 91‘)16] (A-VL3a)

Ay
L
’}

and
Ayy 1
E = zlerl, + (e, - 2eply+ (e - g, ) (A-VL.3b)
7
where

N —

-1 (gl + bt +c)
a=g - 8’-,b=1,c=ﬁr

For y = b2 - 4ac >0 we have

1 2a+b-y —2a+b-Vy
O=—| In|l————=1 = Inl = |
vy 2a+b+Vy “2a+b+y
,_L[ b-2a__ b+2a ]_gm
0"y la-b+c a+b+c] y
1 2c+b 2c-b b
I‘_')T[a+b+c T a-b+c ]+y—m
1 [ be- ®*-2ac) bec +(B*-2a0)| 2
12=— - - —
ay a-b +c a+b+c y
I3=L2-[lnla +b +cl-Inla -b +c|]—-2-2-w—£[1—212
2a 20 ¢ 4
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I-ll : -+ 1 _21._21
4" ala+b+c a-b+c a?l g7

1 ]_2c 3b

1 :
’5""@0_[‘{_,_1, e ab+c) ab gl

o= o] — L — 4 —2 ]-«5—“1—4—b1
6" 3ala+b+c a-b+c 3a 4 3 ’S

The macrodispersivity integral (A-VI.1) has therefore been exactly analytically
evaluated for anisotropic local dispersivities. The isotropic local dispersion version of this
is presented in Gelhar and Axness [1983], Equation (38a,b). Figure A-VI.1 and A-VI.2
presents the computed n.acrodispersivities. The longitudinal macrodispersivty is a
decreasing function of the ratio of K, the transverse to longitudinal local dispersivity. For
realistic values of the ratio of longitudinal to dispersivity to correlation scale, the
transverse macrodispersivity is an increasing function of the ratio of the transverse to

longitudinal local dispersivity. In the figures, the case x = 1.0 corresponds to Gelhar and
Axness [1983], Equation (38a,b).
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Longitudinal macrodispersivity.
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Transverse macrodispersivity.
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