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Robust Collision Avoidance via Sliding Control

Brett T. Lopez, Jean-Jacques Slotine, and Jonathan P. How

Abstract— Recent advances in perception and planning algo-
rithms have enabled robots to navigate autonomously through
unknown, cluttered environments at high-speeds. A key com-
ponent of these systems is the ability to identify, select, and
execute a safe trajectory around obstacles. Many of these
systems, however, lack performance guarantees because model
uncertainty and external disturbances are ignored when a
trajectory is selected for execution. This work leverages re-
sults from nonlinear control theory to establish a bound on
tracking performance that can be used to select a provably
safe trajectory. The Composite Adaptive Sliding Controller
(CASC) provides robustness to disturbances and reduces model
uncertainty through high-rate parameter estimation. CASC
is demonstrated in simulation and hardware to significantly
improve the performance of a quadrotor navigating through un-
known environments with external disturbances and unknown
model parameters.

I. INTRODUCTION
High-speed flight in unknown environments requires a

tight integration of perception, path planning, and control
to ensure that fast decisions are made and executed when
new observations of the environment are available. Recent
advances in perception and path planning algorithms have
enabled robots to navigate quickly in unknown environments,
but many of these systems rely on PID or feedback lineariza-
tion for the trajectory tracking component because of the
simplicity in their implementation. However, real-world sce-
narios that require high-precision control are likely to cause
these techniques to fail because of their sensitivity to model
uncertainty and external disturbances. This article presents
a nonlinear controller whose performance guarantees can be
used to establish provably safe (i.e. robust) trajectory follow-
ing even with model uncertainty and external disturbances.

Robust path planning accounts for model uncertainty and
external disturbances by synthesizing a feedback control law
that ensures the robot remains in a “tube” [1] around the
desired path. Reachable sets, Lyapunov functions, and model
predictive control (MPC) have all been used to synthesize
tubes for a variety of dynamical systems. However, many
of the existing techniques (a) cannot be used on systems
with nonlinear dynamics, (b) require expensive online/offline
optimization, or (c) are highly dependent on the type of
trajectory planner used. Additionally, since the desired level
of tracking precision is specified a priori, controllers must
be synthesized for multiple different operating conditions.
Our approach explicitly accounts for nonlinear dynamics,
can be used with any trajectory planner, requires no on-
line/offline optimization, and can dynamically change its
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Fig. 1. Quadrotor safely navigating in unknown environment using a Com-
posite Adaptive Sliding Controller (CASC) to estimate model parameters
and reject external disturbance (generated by two leaf blowers).

trajectory tracking precision by incorporating information
from a perception or trajectory planning system.

The main contribution of this work is the analysis and
experimental verification of a Composite Adaptive Sliding
Controller (CASC) [2] for robust trajectory following. CASC
leverages theoretical results from sliding control to obtain
bounds on tracking error in the presence of disturbances.
High-rate online parameter estimation via composite (or
combined) adaptation is employed to reduce model un-
certainty and maximize disturbance rejection. In addition,
CASC uses perception data to dynamically change its track-
ing precision to match the operating environment of the
robot – leading to a unique contribution of the work in that
the controller is tuned online using perception information.
CASC, used as an ancillary controller for a low-latency
receding horizon trajectory planner [3], is demonstrated in
simulation and hardware to enable robust path planning for a
quadrotor navigating through an unknown environment with
unknown model parameters and bounded disturbances. The
results show that CASC significantly increases the likelihood
of successfully navigating through cluttered environments
with model uncertainty and external disturbances when com-
pared to trajectory tracking with PID controller – a direct
consequence of the robustness properties of CASC.

A second contribution of this work is the release of
an open source flight stack for Qualcomm’s Snapdragon
Flight platform that includes a nonlinear observer, attitude
controller, and motor controller interface. The code can be
found at https://bitbucket.org/brettlopez/snap

II. RELATED WORK

Robust planning can be classified as a subset of robust
MPC (RMPC). Standard MPC generates a sequence of
control actions through an online optimization by assuming
the system’s dynamics are fully known and the complete
absence of disturbances. However, the model uncertainty and
disturbances that exist in real physical systems can reduce
the overall performance of MPC. Reduced performance is



particularly problematic for path and motion planning (i.e.
causing collisions with environment). RMPC attempts to ad-
dress these shortcomings by directly considering model/state
uncertainty and external disturbances.

The two RMPC strategies are: 1) a min-max formulation
and 2) tube MPC [4]. In the min-max framework, open-loop
MPC considers the worst-case disturbance in the optimiza-
tion. However, this assumption leads to overly conservative
solutions and can make the optimization infeasible. Alter-
natively, feedback MPC produces less conservative solutions
by optimizing over control policies instead of control actions
at the expense of computation complexity; often making
this approach impractical for real system. Tube MPC [1],
[5], [6] addresses the aforementioned issues by designing an
ancillary controller that keeps the system’s trajectory inside
an invariant tube around the nominal trajectory. Thus, RMPC
is decomposed into solving the standard MPC problem
and designing the ancillary controller. This decomposition
reduces computational complexity without sacrificing perfor-
mance making it practical for real-time systems.

Path planning for nonlinear systems using tube MPC
has begun to emerge in the literature with advancements
in nonlinear control synthesis methods. Some of the first
attempts to incorporate tube MPC ideas into path planning
involved using linear reachability theory to construct tubes
for nonlinear systems [7]. This approach was used to verify
safe trajectories online for ground [8] and aerial vehicles [9].
Although [8], [9] were the first to successfully demonstrate
the approach for nonlinear systems online, linearizing the
dynamics and treating nonlinearities as bounded disturbances
lead to overly conservative tubes. [10] explicitly considered
nonlinear dynamics when constructing ancillary controllers
via sum-of-squares (SOS) optimization that minimized the
funnel size (akin to a tube). Simulation and experimental
results for a variety of systems demonstrated the versatility of
the approach. However, the method required a pre-specified
trajectory library making it highly dependent on the choice
of path/motion planner. Further, the overall performance of
the system can be significantly reduced if the trajectories
are not carefully selected. Lastly, the offline computation
phase was extremely time consuming (e.g. 20-25 minutes per
trajectory). [11] presented a novel approach that generated
controllers offline via control contraction metrics [12] (based
on Contraction Theory [13]). While this approach is com-
pletely independent of the planning strategy, the differential
nature of the controller requires an online optimization
to generate a geodesic connecting the current and desired
state. Performing this optimization might not be feasible for
computationally constrained systems.

This work proposes using sliding control techniques to
synthesize a nonlinear ancillary controller. Other works have
proposed a similar strategy (see for instance [14]) but not
in the context of robust path planning. The advantage of
using sliding control is that the controller can be synthesized
independent of the planner and requires no online/offline op-
timization. Contrary to sliding mode control, sliding control
achieves robustness though continuous control thereby elim-
inating the undesirable chattering phenomenon synonymous

with sliding mode control.

III. PROBLEM FORMULATION

This article is concerned with the underactuated and con-
trol affine nonlinear dynamical system [15] whose dynamics
can be expressed as

ẋ = f (x) + b (x)u+Bdd, (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control
input, and d ∈ Rnd is the disturbance. Note the time
argument is omitted for clarity.
Assumption 1: Assume f (·) is unknown but can be decom-
posed into f = f̄+∆f where f̄ is the nominal dynamics and
∆f is unknown but bounded (i.e. |∆f | < F ). Similarly, b (·)
is of known sign and bounded (i.e. 0 < bmin < b < bmax).

Assumption 2: Assume disturbance d has the properties:
1) d ∈ D := {d ∈ Rnd : ||d|| ≤ D ∀t}
2) Bdd ∈ Span{b (x)}

The second property is the “matching condition” that ensures
the controller can compensate for the disturbance.

State and control input constraints, arising from obstacle
locations and physical limitation of the robot, are imposed by
requiring x ∈ X and u ∈ U for all time. The path planning
problem is defined as finding a control policy π : X×R→ U
such that x is driven to a goal configuration Xgoal ⊂ X .
The planning problem can be formulated as the following
optimization problem:
P1: Planning Optimization Problem –

minimize
π∈Π(X ,U)

JT (x,π (x)) =

∫ T

0

` (x,π (x)) dt

subject to ẋ = f (x) + b (x)u+Bdd

x ∈ X , π ∈ U , d ∈ D
x (0) = x0, x ∈ Xgoal,

where x0 is the initial state, ` (·, ·) is a quadratic cost
function, T is the time for the state to reach the goal
configuration Xgoal, and Π (X ,U) is the set of all feasible
control policies.

P1 is an optimization over all possible control policies and
is thus difficult to solve. The standard approach taken in tube
MPC [4] is to decompose P1 into 1) a deterministic MPC
optimization problem and 2) a feedback control synthesis
problem. The unperturbed dynamics are used in generating
an open-loop control input ū and nominal state trajectory
x̄ and a control policy that keeps the state x close to the
nominal trajectory x̄ is synthesized. To ensure tractability,
the following assumption is made:
Assumption 3: Assume the control policy u takes the form
u = ū + κ (x, x̄), where ū is the open-loop control input
and x̄ is the nominal state trajectory.
In the literature κ (·, ·) is known as the ancillary controller
and is designed such that the state x remains in a robust
control invariant tube around the nominal trajectory x̄.
Definition 1: First define x̃ := x− x̄. The set Ω ⊂ X ⊂ Rn
is a robust control invariant (RCI) tube if there exists an



ancillary controller κ (x, x̄) such that if x̃ (t0) ∈ Ω then for
all realizations of the disturbance d, x̃ ∈ Ω for all t ≥ t0.
Fundamentally, RCI tubes are a mathematical object that
describes how “close” the system remains to the desired
trajectory for all realizations of the disturbance. Assuming
κ (·, ·), Ω, and Xgoal are known, the following MPC opti-
mization problem at time step k is solved:
P2: MPC Optimization Problem –

minimize
ū∈Ū

JT (x̄, ū (x))

subject to ˙̄x = f (x̄) + b (x̄) ū

x̄ ∈ X̄ , ū ∈ Ū
x̄ = x̄0, x̄ ∈ Xgoal,

where X̄ := X ∼ Ω is the tightened state constraint and
Ū := {ū ∈ U : ū+ κ (x, x̄) ∈ U}.

The objective of this paper is to show that CASC can
be used as an ancillary controller κ (·, ·), with an associated
RCI tube Ω, to enable robust, high-performance collision
avoidance.

IV. CONTROLLER DESIGN

A. Overview

This section presents the Composite Adaptive Sliding
Controller (CASC) and provides analysis supporting its use
as an ancillary controller in the tube MPC framework. The
primary goal of synthesizing an ancillary controller is to
minimize the associated RCI tube for bounded modeling
error and disturbances. Sliding mode control (SMC) com-
pletely cancels any bounded modeling error or external
disturbance - essentially reducing the RCI tube to zero.
However, complete cancellation comes at the cost of high-
frequency discontinuous control (aka. chattering) making it
impractical for many real systems. The remainder of this
section discusses how CASC achieves robustness through
continuous control and how model uncertainty is reduced
through high-rate parameter estimation. It is important to
note that CASC relies heavily on past works. However, this
work provides a new interpretation of past results in the
context of robust path planning and online controller design
using sensor information (Section V).

For brevity, the following analysis will only consider
nonlinear second-order single input systems but the analysis
can be easily extended to higher-order MIMO systems.
Hence, (1) can be rewritten as

ẍ = f (x) + b (x)u+ d (2)

where x = [x ẋ]T is the state vector, u is the control input,
d is a bounded disturbance. The ancillary controller ensures
the tracking error x̃ = x − xd, where xd = [xd ẋd]

T , is
bounded for all time given uncertainty in the dynamics (i.e.
f (·), b (·)) and the environment (i.e. d).

B. Sliding Mode Control

Let the manifold S be defined by the equation s = 0 where

s = ˙̃x+ λx̃, (3)

S

(a) Sliding surface S.

S

B

(b) Boundary layer B.

Fig. 2. Sliding manifolds. (a): Sliding surface for traditional sliding
mode control. S is invariant to uncertainty and disturbances but requires
discontinuous control. (b): A region B around S can be constructed such
that B is invariant through continuous control.

and λ > 0. SMC aims to maintain s = 0, ∀t > 0 given
bounded model uncertainty and external disturbances. This
condition guarantees the tracking error converges to zero
exponentially (from (3)).

It can be shown [16] that adding a term that is discon-
tinuous across S ensures finite time convergence to S and
that the state remains on S indefinitely (pictorially shown in
Fig. 2a). The well known SMC law takes the form:

u = b̄ (x)
−1 [

ẍd − λ ˙̃x− f̄ (x)−Ksgn (s)
]
, (4)

where K is determined by the magnitude of the model
uncertainty and disturbance.

The manifold S, known as the sliding surface, is invariant
to model uncertainty and disturbances by construction. Thus,
the RCI tube associated with SMC decays exponentially
to zero (through (3)) once the state reaches S. This is an
amazing property given that zero tracking error is guaranteed
so long as K is selected appropriately. However, complete
cancellation of model uncertainty and disturbances requires
discontinuous control across S which, among other things,
can excite unmodeled high-frequency dynamics and shorten
the life span of the actuator thereby making SMC impractical
for many systems.

C. Composite Adaptive Sliding Controller

One of the earliest techniques [17], [18] to eliminate
discontinuous control was to introduce a thin boundary layer
around the sliding surface S. Let the boundary layer be
defined as B := {s : |s| ≤ Φ} where Φ is the boundary layer
thickness (shown in Fig. 2b). The control law that makes B
attractive and invariant [16] is given by:

u = b̄ (x)
−1 [

ẍd − λ ˙̃x− f̄ (x)−Ksat (s/Φ)
]
, (5)

where sat(·) is the saturation function. Since |s| ≤ Φ for
all time, (3) implies |x̃| ≤ Φ/λ. Therefore, by definition, the
boundary layer B is an RCI tube. Interestingly, the size of
the RCI tube for boundary layer SMC can be interpreted as
a design parameter since it is governed by Φ and λ – both
of which are parameters of the controller. The size of the
RCI tube can then be selected a priori. However, the tube
size cannot be made arbitrarily small since the necessary
bandwidth of the controller is inversely related to tube size.

It is instructive to analyze the dynamics of s inside
the boundary layer. For simplicity assume b (x) = b̄ (x).



Substituting (5) into (3), yields

ṡ = −K
Φ
s+ (∆f (x) + d) , (6)

which can be interpreted as a low-pass filter where the input
is the dynamics uncertainty ∆f (·) and external disturbance
d. The key term in (6) is the ratio K/Φ and how it dictates
the response of s (and ultimately the control input) to
uncertainty. In particular, (6) displays the tradeoff between
robustness/RCI tube size and control activity: large K or
small RCI tube increases the the magnitude of the high-
frequency component of the s dynamics leading to a high-
frequency control signal. This is undesirable for numerous
reason (i.e. shortened actuator life) but is especially problem-
atic for interconnected feedback systems where controller-
controller interaction can cause instability [19].

The previous discussion highlighted the importance of
keeping the ratio K/Φ small to reduce the influence of uncer-
tainty. Ideally, K should only be as large as the disturbance
magnitude D to keep B invariant. Thus, we propose to use
online parameter estimation to reduce model uncertainty and
minimize the ratio K/Φ. Before proceeding the following
assumption about the structure of f (·) is made:
Assumption 4: Assume f (·) contains only parametric un-
certainty and those parameters can be linearly parameterized.
Specifically, f (·) can be written as

f (x) = a1g (ẋ) + a2h (x) , (7)

where g (·) and h (·) are known functions, but a1 and a2

are unknown (possibly slowly time varying) coefficients.
Further, b (·) is an unknown (possibly slowly time-varying)
coefficients independent of the state but of known sign.

Estimating a1, a2, and b is done by finding an adaptation
law for a given Lyapunov function such that the system is
stable. The Lyapunov function and stability proof was first
proposed in [20] and is presented here for completeness. First
define the new composite variable s∆ as,

s∆ = s− Φsat (s/Φ) , (8)

which represents the distance from the boundary layer. We
wish to derive an adaptation law that is convergent to the
boundary layer. Consider the Lyapunov candidate function:

V =
1

2
s2

∆ +
1

2
b

(
γ−1

1

(
l̂1 − a1/b

)2

+ γ−1
2

(
l̂2 − a2/b

)2

+γ−1
b

(
b̂−1 − b−1

)2
)

(9)

where l̂i is the estimate of ai/b and γj is the adaptation rate
for parameter j. One can show (see [20]) that selecting the
following adaptation laws leads to asymptotic convergence:

˙̂
l1 = −γ1g (ẋ) s∆ (10)
˙̂
l2 = −γ2h (x) s∆ (11)

˙̂
b−1 = −γb

[
−ẍd + λ ˙̃x+Ksat (s/Φ)

]
s∆. (12)

As pointed out in [20], the above adaptation laws provide
a natural dead zone for adaptation (i.e. when s is outside

the boundary layer) which has been show to improve the
performance of adaptive controllers [16].

It is important to acknowledge that using adaptation to
reduce model uncertainty removes the invariance property
of the boundary layer (since s can now leave B). From a
practicality standpoint, however, so long as s converges back
to B sufficiently fast then the tracking error bound essentially
remains unchanged. High-rate estimation without undesirable
transients can be achieved through composite (or combined)
adaptation, as first proposed in [2]. Composite adaptation
fuses tracking error and model prediction error to update
the unknown parameters. For systems of the form (7), the
error in the actual and prediction acceleration is used for
adaption. For brevity the predictor-error adaptation scheme
is not derived here but a more detailed discussion can be
found in [2], [16].

The CASC thus takes the following form:

κCASC = −l̂1g (ẋ)− l̂2h (x) +

b̂−1
[
ẍd − λẋ− f̄ (x)−Ksat (s/Φ)

]
,

(13)

with
˙̂
l1 = − (γ1s∆ + γp1ep) g (ẋ) (14)
˙̂
l2 = − (γ2s∆ + γp2ep)h (x) (15)

˙̂
b−1 = −γb

[
−ẍd + λ ˙̃x+Ksat (s/Φ)

]
s∆ − γpbepẍp, (16)

where ep = ẍ − ẍp, ẍp = b̂κCASC, and γpi is the predictor-
error adaptation rate.

V. ROBUST CONTROL IN PATH PLANNING

A general system architecture for autonomous navigation
in unknown environments is shown in Fig. 3a. On-board
sensors are used for global navigation, local collision avoid-
ance, and localization. The local planner is responsible for
generating a collision free trajectory that is tracked by a
low-level controller. The distinguishing functionality of the
local planner is to determine the likelihood of collision
for a desired trajectory. Many local planners assume the
low-level controller can track the desired trajectory with
nearly zero error – making collisions imminent when model
uncertainty or disturbances are present. Incorporating the
theoretical guarantees of CASC into the local planner can be
interpreted as adding a feedback loop between the planner
and controller, the red dashed line in Fig. 3a. This feedback
loop contains information about the controller’s current and
predicted performance that enables the planner to select a
collision-free path with high confidence.

A byproduct of the CASC’s design is the ability to
dynamically change the boundary layer thickness based
on the current environment. This can be accomplished by
using perception data as feedforward into the controller
(blue dashed line in Fig. 3a) and enables CASC to respond
appropriately to the surrounding environment. For instance,
the boundary layer thickness law in Fig. 3b, where N is
the number of obstacles, ensures tight trajectory tracking in
cluttered environments (e.g. a forest) and looser trajectory
tracking in low clutter environments (e.g. an open field). This



Commands

VehicleController

Desired State

Estimator
State

Current State

Tracking Performance

Sensors
Onboard

Planner
Local

Environment Description

(a) General system architecture.

Φ

Φ1

Φ2

N Obstacles
N1 N2

(b) Boundary layer
thickness law.

Fig. 3. General architecture and boundary layer thickness law. (a): Robust
local planning requires an additional feedback loop with the controller to
make accurate predictions about the vehicle’s response to model uncertainty
and external disturbances. (b): The boundary layer thickness (and hence
tracking precision) can be modified by the number of observed obstacles.
Dynamically changing tracking precision permits more/less aggressive ma-
neuvers in dense/open environments.

is an ideal property since precise tracking typically leads to
aggressive maneuvers that require a lot of energy, which are
problematic for energy-limited systems. Further, modifying
the boundary layer thickness is much simpler than gain
scheduling given only a single parameter needs to change.
Generating a specialized response for different environments
is crucial for the evolution of high-performance autonomous
system – a capability naturally embedded in CASC.

VI. QUADROTOR MODEL AND CONTROL

A. Model
Let the position of a quadrotor with mass m and inertia

tensor J be described in an inertial frame I by vector rI .
The vehicle’s orientation with respect to the inertial frame
and body angular rates are denoted as the quaternion qa and
vector ωB .

The quaternion representation of the Newton-Euler equa-
tions of motion are

r̈I =
1

m
LqaFB − c · |ṙ|ṙ − g + d, (17)

LqaFB = qa⊗
[

0

FB

]
⊗ q∗a, (18)

ω̇B = J−1
[
MB − ωB × JωB

]
, (19)

q̇a =
1

2
qa ⊗

[
0
ωB

]
, (20)

where c is the body drag coefficient vector, g = [0 0 g]
T is

the gravity vector, d is an unknown but bounded disturbance
vector, FB = [0 0 Ftotal]

T is the body-frame force vector,
and MB is the body-frame moment vector. Note (17)–(20)
neglect higher order aerodynamic effects (i.e. blade flap).

Let Fi be the force produced by motor i. In practice, motor
forces are generated by sending a throttle command δT ∈
[0 1] to an Electronic Speed Control (ESC) that governs the
rotation rate of the propeller. Thus, there exists a mapping
b (·) that can be approximately inverted to give the necessary
throttle for a desired force Fd:

δTi,d
= b̂−1 (Fi,d) , (21)

where b (·) is identical to that presented in Section IV
Three sources of uncertainty exist in (17)-(21): the drag

coefficient vector c, inertia tensor J , and thrust gain b−1. The

inertia tensor can be easily approximated if the mass of the
individual components on the vehicle are known. Typically,
extensive experimental testing is required to obtain the drag
coefficient and thrust gain. However, (17) is of the same
form as the dynamics presented in Section IV-C so the drag
coefficient and thrust gain can be estimated online by CASC.

B. Control Architecture

The attitude dynamics in (19) typically evolve much faster
in time than the position dynamics in (17) for quadrotors.
This property permits successive loop closure [19] where the
output of one controller serves as the reference for another.
In this work, a desired trajectory is used as the reference for
position and velocity control. Feedforward acceleration and
jerk supplement position and velocity feedback to generate a
desired attitude and angular rate. Feedback is performed on
the desired attitude and angular rate generated by the outer-
loop controller. CASC, used as the outer-loop controller,
provides robust position and velocity control. A quaternion-
based sliding controller is used for robust attitude control.
See [21] for how position and velocity error is mapped to
desired attitude and angular rates.

It is worth noting that successive loop closure requires
sufficient frequency separation between the two loops. This
places a constraint on how small the boundary layer thickness
can be in CASC since, from (6), the smaller the boundary
layer thickness the higher-frequency content contained in the
control signal. Thus, the boundary layer thickness, and hence
the size of the RCI tube, must be carefully selected to prevent
coupling of the two loops.

VII. TEST ENVIRONMENT

A. Simulation

CASC was tested in a simulation environment capable of
providing real-time perception data and dynamics modeling
for a quadrotor. The simulator’s dynamics engine is a custom
C++ implementation that has been experimentally verified.
Gazebo [22] and the hector quadrotor package [23] were
used to simulate perception data (in the form of a point
cloud) as the quadrotor navigated custom worlds. 3-D depth
perception was simulated using the Asus model with a
60deg FOV, 6m maximum range, and 60Hz frame rate. The
Relaxed-constraint Triple Integrator Planner (R-TIP) [3] was
used for low-latency collision avoidance.

World 1, shown in Fig. 4, consisted of 150 obstacles
randomly placed in a 60x20m grid. The vehicle starts at the
origin ( ) and attempts to navigate to the goal ( ) at a speed
of 5m/s. Two crosswind dy profiles, a sinusoid (Fig. 6a) and a
series of steps (Fig. 6b), were applied to test the controller’s
ability to reject disturbances and the planner’s ability to
utilize the predicted tracking performance. In addition, the
thrust gain b−1 and drag coefficient vector c were assumed
to be unknown. A PID controller was also tested to provide
a performance baseline.

World 2, shown in Fig. 5, was designed to showcase
CASC’s ability to adjust to different environments online
while maintaining robustness to external disturbances. The
first portion of the world had 150 obstacles placed in a
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x

z y

Fig. 4. Top-down view of the world 1. The vehicle starts at the origin ( )
and navigates to the goal location 80m away ( ) while avoiding obstacles.
A sinusoid and step crosswind was applied to test CASC’s robustness to
disturbances.

dy
x

z y Dense Open Less Dense

Fig. 5. Top-down view of world 2. The vehicle starts at the origin ( ) and
navigates to the goal location 120m away ( ) while avoiding obstacles. The
environment was designed to test CASC’s ability to dynamically changed its
parameters depending on the level of clutter in envinronment. A crosswind
was still applied to demonstrate CASC’s robustness to disturbances.
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(b) Step crosswind.

Fig. 6. Crosswind profiles used as external disturbances. (a): Sinusoid
crosswind with an amplitude of 2.5m/s2 and period 5s. (b): Step inputs
crosswind with a maximum magnitude of 2.5m/s2.

40X20m grid, the second portion had no pole in a 40X20m
grid, and the third portion had 75 obstacles in a 40x20m
grid. The ideal response of the controller would be to
have tight tracking in the first phase, loose tracking in the
second, and moderate tracking in the third. The key to
dynamically changing the controller’s parameters is to have
perception data fedforward to the controller and a feedback
loop between the local planner and controller. This allowed
the boundary layer thickness to expand when no obstacles
were in the sensor’s FOV and contract otherwise (similar to
Fig. 3b). In addition, the planner adjusts the collision buffer
around the vehicle to accommodate for large/small tracking
error.

B. Hardware

The quadrotor used in this work (Fig. 7a) is equipped with
a Jetson TX1 for onboard perception and planning and a
Qualcomm Snapdragon Flight (Fig. 7b) for estimation and
control. Fig. 8 shows the system diagram and the rates of
each subsystem. Qualcomm’s visual inertial SLAM (VIS-
LAM) algorithm outputs a position and orientation at 30Hz
[24]. The pose output from VISLAM updates a nonlinear
observer that propagates high-rate IMU measurements. The

(a) Quadrotor platfrom. (b) Snapdragon Flight board.

Fig. 7. Experimental test platform. (a): Quadrotor with Jetson TX1
(perception and planning) and Snapdragon Flight (estimation and control).
(b): Snapdragon Flight board with two onboard cameras and IMU.
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Fig. 8. System architecture with associated rates for each subsystem.
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Fig. 9. PID x-y tracking error. (a): Poor tracking performance, with a peak
error of 0.3m, for the sinusoid disturbance caused the vehicle to crash into
an obstacle. (b): Poor tracking performance with a peak error of 0.3m was
also observed for the step disturbance again causing a crash.

state vector includes the vehicle’s position, velocity, attitude,
angular rate, and IMU biases. A quaternion-based sliding
controller is used for high-precision robust attitude control.
Robust attitude control is crucial to prevent interactions
between the inner-loop and outer-loop controllers. The flight
stack is open source and can be found online.

On the Jetson TX1, an Intel Realsense R200 stereo camera
generates a point cloud that is used by the local planner
for collision avoidance. Additional algorithmic components
(i.e. global planner, symbolic perception) will be added to
the Jetson TX1 in the future. The vehicle weighs 0.9kg and
hovers at 45% throttle.

VIII. RESULTS

A. Simulation

A PID controller was used as the performance baseline
for world 1. Fig. 9a and Fig. 9b show the tracking error
for the sinusoid and step crosswind disturbance, respectively.
The large tracking error of nearly 0.4m, and the inability to
predict it, caused the vehicle to crash in both test cases.
The inability to robustly track a desired trajectory is further
motivation for employing robust controllers (such as CASC)
into path planning.
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Fig. 10. CASC x-y tracking error. (a): Tracking error for sinusoid
disturbance is 2.5x smaller than that of PID and is strictly less than the
theoretical bound (black) as desired. (b): Tracking error for step disturbance
is 2.5x smaller than that of PID and contained within the theoretical bounds
(black) except at one time step where the measurement noise pushed it
outside the boundary.
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Fig. 11. CASC x-y sliding variable. (a): Sliding variable for sinusoid
disturbance breifly exits boundary layer (black) but is contained for almost
the entire flight. (b): Sliding variable for step disturbance briefly leaves
the boundary layer (black) but converges quickly back to the interior and
remains there for the rest of the flight.

The tracking error for CASC in world 1 with a sinusoid
and step crosswind disturbance is shown in Fig. 10a and
Fig. 10b, respectively. The tracking error for both cases was
reduced by a factor of 2.5 when compared to that of PID
and is less than the predicted tracking error bound (shown
as the black line). In both cases the vehicle was able to safely
reach the goal – a direct result of the robustness of CASC.
The sliding variable s is also shown in Fig. 11a for the
sinusoid and in Fig. 11b for the step disturbance where the
boundary layer (black line) is added for reference. As stated
in Section IV-C, online estimation reduces model uncertainty
at the expense of maintaining the the invariance property
of the boundary layer. However, s rapidly converges back
into the boundary layer because of the high-rate estimation
provided by combined adaptation. Therefore, while the the-
oretical guarantees are technically lost through adaptation,
Fig. 11 clearly shows in practice that s will remain in or
extremely close to the boundary layer.

The thrust gain and drag coefficient vector were unknown
so they were estimated online. Fig. 12a and Fig. 12b show
the estimate of the thrust gain and x drag coefficient, re-
spectively, for the sinusoid disturbance case. The true values
are shown for reference. The estimated thrust gain varied
slightly throughout the flight but remains within 10% of
the true value. Additionally, the drag coefficient converged
quickly to with 10% of the true value and remained steady
throughout the flight. Similar results were obtained for the
step disturbance case. Fig. 12 demonstrates CASC’s ability
to accurately estimate parameters online.
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Fig. 12. Estimate and true value of model parameters. (a): The thrust
gain converges quickly during takeoff with little overshoot. The estimate is
within 10% of the true value for the entirety of the flight. (b): The x drag
coefficient quickly converges to within 10% of the true value just as the
vehicle reaches top speed.
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Fig. 13. CASC x-y tracking error and sliding variable for dynamic
boundary layer thickness with sinusoid disturbance. (a): The tracking error
bound (black) is small when the vehicle is in the dense and less dense
environment but increases in open space. (b): The boundary layer thickness
(black) exhibits identical behavior. The sliding variable converges quickly
back to the boundary because of high-rate parameter estimation.

The proposed boundary layer thickness modification law
(based on obstacle density) was tested in world 2 where the
quadrotor had to navigate in an environment with varying
obstacle densities. Fig. 13a and Fig. 13b show the tracking
error and sliding variable, respectively, for the dense, open,
and less dense portions of the environment. The tracking
error bound in Fig. 13a and boundary layer thickness in
Fig. 13b (both shown in black) are small for the dense
obstacle phase, expand in the open space phase, and contract
in the less dense obstacle phase. Expansion in open space
minimizes expended energy by preventing unnecessary large
control action to reject disturbances. Fig. 13 displays CASC’s
ability to respond to changes in the environment.

B. Hardware
CASC was experimentally tested on the quadrotor plat-

form (Section VII-B) using only onboard sensing to navigate
through the unknown environment shown in Fig. 1. The
15m traversal required the vehicle to avoid obstacles while
simultaneously rejecting an external disturbance generated
by two leaf blowers.

The tracking error and sliding variable for the experiment
is shown in Fig. 14a and Fig. 14b, respectively. Note that
the leaf blowers are pointed along the +y axis. The tracking
error for x and y increases when the disturbance is applied as
expected. The y tracking error remains within the predicted
bounds while the x tracking error briefly exceed the predicted
amount by only 4cm. This was attributed to a combination of
measurement noise and the need for a more sophisticate aero-
dynamic model for the complicated flow-field generated by
the blowers. The y sliding variable is completely contained
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Fig. 14. CASC x-y tracking error and sliding variable for experiment
with step disturbance. (a): Tracking error remains within or near bounds
(black) predicted by CASMC. (b): Modeling errors cause the sliding variable
to briefly leave the boundary layer (black) but it quickly converges back
through high-rate estimation.
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Fig. 15. Parameter estimates for hardware experiments. (a): Thrust gain
converges quickly during takeoff and only varies by 8.6% throughout the
flight. (b): The x drag coefficient varies during the disturbance but quickly
converges to a steady state value after.

in the boundary layer. The x component briefly exits because
of modeling error but reenters quickly. Fig. 14 demonstrates
CASC’s ability to reject disturbances on a real system.

The thrust gain and x drag coefficient estimates are
shown in Fig. 15a and Fig. 15b, respectively. The thrust
gain converges quickly during takeoff and only varies by
8.6% during the flight - indicating the estimate converged to
approximately the true value. The drag coefficient estimate
exhibits more variation throughout the flight but converges
just after the vehicle passes the blowers. The variation was
attributed to the simplicity of aerodynamic model compared
to the complicated flow-field generated by the blowers.

IX. CONCLUSION

This work presented an analysis and experimental ver-
ification of a nonlinear controller that is robust to dis-
turbances and reduces model uncertainty through high-rate
parameter estimation. The key properties of the Composite
Adaptive Sliding Controller (CASC) are the guaranteed
tracking performance when disturbances are present (which
can be used to establish provably safe path planning) and
the ability to change its tracking precision based on the
current operating environment. CASC was shown to reject
external disturbances and estimate model parameters on a
quadrotor navigating in unknown environment using only
onboard sensors.
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