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Abstract

Computerized Tomography has a wide variety of applications in diverse fields such as med-
ical imaging, non-destructive testing, oceanography, and security inspection. Much of the
past focus in tomographic imaging has been to develop algorithms that produce high res-
olution images from the projection data. For a variety of reasons, including limited sensor
availability and noisy projection data, it is often impossible to produce a high resolution
image. This thesis focuses on those situations when only sparse, noisy projection data are
available. We present finite parameter estimation algorithms to reconstruct the vertices of a
binary polygonal object from geometric information extracted directly from the projection
data. Specifically, we develop three algorithms to reconstruction binary polygonal objects
from measurements of knot locations (location of the projection of a vertex of the object in
the projection data) and measurements of chords (thickness of the object). Both of these
measurements can be extracted directly from the projection data. The chords correspond
to the magnitude of the projection data and the knot locations correspond to the positions
of abrupt change in the slope of the linear spline function that results from the projection
of a binary polygonal object. The first algorithm incorporates each view sequentially, in
increasing angular order. The second algorithm allows views to be incorporated in any
angular order. The third, and final, algorithm is a nonlinear optimization algorithm that
uses the output of either the first or second algorithm as its initial guess. Additionally
the final chapter addresses situations where the extraction of the knot location data from
the projections is incomplete (i.e. missing knot location measurements). At each stage of
our analysis we demonstrate the performance of the algorithms with simulations of various
reconstruction scenarios.
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Chapter 1
Introduction

1.1 Motivation

Many algorithms have been developed to reconstruct a multi-dimensional function from its
projections. In tomographic imaging, widely used methods such as filtered backprojection
and Fourier methods [3,4] are used to reconstruct high resolution images in a variety of
applications [4]. Although these methods produce high quality images, they require a large

number of projections and a relatively large signal-to-noise ratio (SNR).

In applications such as oceanography [10] and non-destructive testing, the number of
projection angles is often severely constrained. The availability of sensors to obtain the
data often limits both the number of projections and the angular spacing of the views.
Often data can only be collected over a limited angular range. In addition, the projection
data are usually noisy. In cases of low SNR or incomplete data, a high resolution image is
virtually impossible because classical reconstruction algorithms introduce artifacts during
the reconstruction process. The goal in this case may be to try to estimate the boundaries
of the object. Because the traditional high resolution algorithms break down when only
sparse, noisy projection data are available, these techniques are no longer effective in this

situation.

Additionally, in a number of computerized tomography problems, the ultimate goal is
not a high resolution image, but simply to characterize the size and shape of the object
being imaged. The approach in the past has been to use a classical image reconstruction

algorithm to obtain the image and then extract the edges of the object with some kind

13



of edge detector. More recently, however, a number of algorithms have been developed to
extract the object directly from the projection data [6,9,12,14,16,17]. In cases of low SNR
or incomplete data, the second methodology is the preferred approach because the artifacts
introduced by the classical reconstruction algorithms during the reconstruction process make
the application of standard signal processing techniques ineffective. Further, post-processing
of a reconstructed image is also difficult because the noise in the reconstructed image is

colored even when the noise in the projection data is white.

A robust algorithm to detect object size and shape may also be used as a pre-processor
to provide a priori information to a high resolution image reconstruction algorithm. For
example, the reconstruction algorithms developed by Prince [12] or Milanfar [9] assume
prior geometric information about the object to be reconstructed. Thus, the emphasis in
the pre-processor is not on a high resolution image, but on a robust estimate of the object’s

shape. This emphasis is especially true if the projection data are noisy.

Therefore, in some applications it is either not desirable or not possible to produce
a high resolution image from projection data. Classical methods of tomographic image
reconstruction may not be the best approach in these situations. Instead, it is desirable to
implement an estimation algorithm that characterizes the shape of the object from sparse

and noisy projection data.

The objective of this thesis is to investigate finite parameter, geometric-based recon-
struction algorithms for binary polygonal objects from sparse and noisy projection data.
The primary focus will be to formulate a robust algorithm to reconstruct the vertices of a

polygon from knot location and chord length measurements of the projection data.

1.2 Contributions and Organization

The work presented in this thesis makes contributions in the following areas:

o Introduces several algorithms that extend the work of Milanfar [9], Prince [12], Rossi [14],
etc. in geometric-based reconstruction techniques. Specifically, by extracting geomet-
ric information related to the vertices and chord length (thickness of the object) of the
object directly from the noisy projection data, we estimate the vertices of a convex,

binary polygonal object.

14




e Supports the work of Prince [12] and Milanfar [9] in showing the usefulness of geomet-
ric information extracted directly from the noisy Radon transform data to reconstruct

a convex, binary polygonal object.

e Links the multitarget tracking problem of radar to the tomography problem of recon-
structing the vertices of a polygonal object, allowing many of the techniques and algo-
rithms developed in the radar context to be implemented in a tomography problem.
In addition, this work recognizes that the geometric constraints of the tomography

problem can be used to simplify the multitarget tracking algorithmic approaches.

e Develops several algorithms to reconstruct objects from sparse, noisy data. In addi-

tion, the algorithms allow limited angle or non-uniformly spaced projection data.

¢ Develops an algorithm that deals robustly with missed detections, or missing data

measurements.

This thesis is organized as follows. Chapter 2 begins with background information and
definitions utilized in the remainder of the thesis. Chapter 3 presents relevant previous work
and the problem geometry considered in the remainder of this thesis. Each of the following
three chapters treats a different reconstruction algorithm. Chapter 7 provides methods for
dealing with data inconsistencies (missing data measurements). Finally, conclusions and

future work are summarized in Chapter 8.
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Chapter 2

Definitions and Problem

Statement

This chapter provides a brief overview of concepts and definitions that will be used in
subsequent chapters. We begin with a review of the major concepts of M-ary Maximum
Likelihood (ML) hypothesis testing (Section 2.1.1), ML estimation (Section 2.1.2), and the
Generalized Likelihood Ratio Test (Section 2.1.3) . Next, in Section 2.1.4 we define some
of the major concepts of tomography including the Radon transform and support lines.
Finally, we review definitions of knot locations and chord length and relate these values to
the projection data available in tomography problems in Section 2.1.5. Having completed
a review of the background definitions and concepts, Section 2.2 is a statement of the

reconstruction problem considered in this thesis.

2.1 Definitions

2.1.1 M-ary Hypothesis Testing

An M-ary hypothesis testing problem assumes there are M hypotheses Ho, Hy, ..., Hpm-1
with a priori probabilities P; = Pr(H;). Given the set of conditional distributions
Dy g, (Y |H;) of the observation data, y, the objective is to specify a decision rule that

chooses the optimal hypothesis based on measurement data and a specified cost criterion.
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In general, the expected cost of choosing hypothesis k is defined:

M-1
E(Ck) = ) CijPr(H;ly=Y) (2.1)

j=0
where Cy; is the cost of choosing hypothesis k if hypothesis j is the true hypothesis and
Pr(H;| y = Y) is the probability that hypothesis j is the correct hypothesis given the
measurements y = Y. The optimal decision rule, which minimizes the cost function

defined in Equation (2.1}, is given by:

d(z) = Hk if for all H,' # Hk
E(Ck) < E(C') (2.2)

When all the hypotheses are considered equally likely a priori and all possible errors are
penalized equally by letting:
0 ifi=j
1 ifi#j

C’k_,' =

the problem is termed a Mazimum Likelihood (ML) rule. The result of Equation (2.2) then

reduces to:
d(Y) = Hyifforall H; # H,
Y Pr(Hly=Y) < Y Pr(Hjy=Y) (2.3)
i#k i
or

d(Y) = Hgifforall H; # H;
Pr(Hyly=Y)

v

Pr(H|y=Y) (2.4)

Using Bayes rule, we note that

Pyia, (Y| He)Pr(Hy)
355" pya; (Y| H;)Pr(H;)

Pr(Hy| y= Y) =

17



which can be substituted into Equation (2.4) to obtain

vy, (Y] He)Pr(He) S py (Y| Hi)Pr(H;)
S pn, (V) H)Pr(H;) — X055 pym (Y] Hy)Pr(Hj)

(2.6)

Using the fact that the denominator of Equation (2.6) is a normalization constant indepen-
dent of Hj and that all hypotheses are equally likely a priori, the ML decision rule reduces

to

d(Y) = Hpifforall H; # Hi

Py, (Y] H) pya; (Y| Hi) | (2.7)

v

or

dY) = Hi if for all H; # Hp

py|H;.(X| Hk) >

LV = pm@ E) >

(2.8)

where L(Y') is termed the likelihood ratio. This decision rule is used to obtain the optimal

ML estimate of the hypothesis given the measurements y = Y.

2.1.2 ML Estimation

In a ML‘estimation problem?, the value to be estimated, z, is assumed to be an unknown
quantity (i.e. non-random). Also, the ML estimation problem assumes that the probabilistic
model relating the value to be estimated, , and the observations, y, is known. Under these
assumptions, the ML estimate is defined as the value of z that makes the observations

y = Y most likely

tyr(Y) = arg max Py=(¥| X) (2.9)

In addition to problems where z is truly a non-random but unknown vector (Willsky [19] uses

the example of chemical flow rates), this assumption is often made in estimation problems

where z is random but its probabilistic distribution pz(X) is unknown.

!Complete derivations of these results can be found in [19).
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For the specific case of a linear Gaussian problem, the observation equation is defined
y=Az+v (2.10)

where y is a vector of observations, A is the system matrix relating the observations to the
desired vector z, and v ~ N (0, R) is zero-mean Gaussian noise. From Equation (2.10), with
the additional assumptions that z is unknown and v is jointly Gaussian, it is apparent that

y is also jointly Gaussian with

= AX (2.11)
=R (2.12)

In this case, Equation (2.9) becomes
2yr(Y) = argmax N(Y;AX,R) ~ argmin [(Y - AX)TR}(Y - AX)] (2.13)
X X

where N(Y; AX, R) denotes the normal distribution evaluated at y = Y with mean AX

and covariance R. This reduces to
gyr(Y) = (ATR'A)'ATR 'Y (2.14)
with the corresponding error covariance
Apr = (ATR71A)? (2.15)

2.1.3 Generalized Likelihood Ratio Test

In this section we extend the work of the Section 2.1.1 to include an ML hypothesis test
based on a Generalized Likelihood Ratio®. In addition to the assumptions made previously
(Section 2.1.1), this formulation assumes that each of the proposed hypotheses is also a
function of a non-random vector §, that may be different for each hypothesis H; being
considered. In the Generalized Likelihood Ratio Test, ML estimates of 8, are calculated

(using the equations of the previous section) for each hypothesis by assuming that it is the

?Complete derivations of these results can be found in [18].
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true hypothesis and these estimates are used in a likelihood ratio test as if they were the

correct values. Thus, the likelihood ratio becomes

Py (L) Hor )

L,(Y) = -
o) Py, 6, (Y| Hi, 0)

(2.16)

and the decision rule becomes

d(Y) = Hyiffor all H; # Hy

L,(Y) = Pyt (1] Hk’%‘) >1 (2.17)
py|Hi,5i(X| Hiv _0_:)

given measurements y = Y.

2.1.4 Radon Transform and Support Functions

Tomographic imaging is concerned with the reconstruction of a two-dimensional (2D) image
from a set of 1D projections. The Radon Transform relates a 2D function f(z,y) to its 1D
set of projections g(t,#). This relationship is defined for every ¢ and 6 by

9(t,0)= [ f@ )8t~ w-[2,y)") dedy (218)

and

w = [cos(), sin(8))T (2.19)

The function g(t,0) is termed the 2D Radon Transform of f. Further, the function g(t,6)
at a particular angle 6 defines the projection of f at angle  denoted by gg(t). Figure 2-1
depicts the relationship between the function f(z,y) and its projection gs(t) at angle 6.
The sinogram of f is the image formed from the values of g(t, ) plotted as intensity values

over the range —oo <t < +o00, 0° < 8 < 180°.

An interesting property of the Radon transform is the fact that projections taken 180°

apart are related by

g(t,8) = g(—t, 6 + 180°) (2.20)
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Figure 2-1: Relationship of the Radon Transform Parameters.

Therefore, to reconstruct an object from projections, data is only required over a 180°

angular range because of the consistency requirement of Equation (2.20).

The line integral of f at a particular ¢ and  along the line L(t,0) is depicted in Figure
2-2. Further, the line integrals that form the pro Jjection gg(t) are taken along a set of parallel
lines that are denoted by Lg(t). The support values are the two extrema, {_ and ¢,, that
define the set Lg(t). The lines corresponding to these two values of ¢ are termed support

lines (refer to Figure 2-1).

Although Equation (2.18) is theoretically invertible for a large class of functions f (=,9),
in most practical applications an exact inversion is impossible because of the physical con-
straints of the system. For example, in medical imaging factors such as patient dosage and
sensor availability limit both the number of line integrals per projection and the number
of projection angles. Thus, practical tomography problems have both a finite number of
angles and a finite number of line integrals. The primary focus of computerized tomography
is to find an approximate or pseudo-inverse for the Radon Transform when projections are

given for finite t and 6.
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Figure 2-2: The Line L(t,6).

2.1.5 Knot Locations and Chord Lengths

The projection of a binary polygonal object is a piecewise-linear spline function (see Fig-
ure 2-1). Each knot location, or position of abrupt change in the slope of the spline func-
tion [8], in the projection corresponds to the location of the projection of one of the vertices
of the object. Except in degenerate cases where two vertices lie along the same line perpen-
dicular to the projection, in each projection of the polygon the number of knots is equal to
the number of vertices of the object. Figure 2-3 shows the relationship between the knot
locations and the vertices of a polygonal object. From this diagram, it is apparent that
the outer knot locations (z1 and z4 in the figure) also define the support values described
previously. The chord length of a binary object is the thickness of the object along the line
L(t,6). In the projection of a binary object, the magnitude of the projection at a particular
location gg, (%), is equal to the chord length of the object along the line L(t;, 6). Therefore,
the projection of a binary object is simply a collection of chord lengths of the object. From
the above discussion, it is apparent that chord length measurements and knot locations
are closely related geometrically in both Radon and object space. Figure 2-3 shows the
relationship between a 4-gon f(z,y), its 1D projection ge(t), the knot locations, and chord
lengths. Further, as Figure 2-3 demonstrates, the chord lengths at the support values are
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- Knots: *

- Knot Locations: z1, z2, z3, z4
— Chord Lengths: C1, C2

projection

ge(t)

Figure 2-3: Relationship of Object, Projection, Knots, and Chords.

always zero.

2.2 Problem Statement

This thesis formulates reconstruction algorithms from sparse, noisy projection data. Specif-
ically, the algorithms reconstruct binary polygonal objects using measurements of knot
locations from the projection data®. Additionally, chord length measurements are incorpo-

rated to provide a more robust estimate of the object.

The problem of reconstructing a polygonal object from knot location data is one of
data association. That is, given a set of ordered knot locations z1(8) < z(8)... < z,(6)
from a projection, gg(t), the correspondence of the knots to the vertices of the object is
unknown without knowledge of the object. In the first view, we arbitrarily assume that
z1(61) corresponds to the unknown object vertex a, z3(f;) corresponds to the unknown
object vertex b, etc. Thus, the knot to vertex correspondence in the first view of a 4-gon
can be summarized by abcd. As the angular view changes, so does this association of the

ordered knot locations to the object’s vertices. For example, in view 1 of Figure 2-4 the

*The idea of reconstructing polygonal objects from knot locations is a natural extension of the work of
Prince [12] who used support lines to reconstruct the convex hull of an object. Chapter 3 details previous
work in this and other related areas.
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Figure 2-4: Example of Data Association of Knot Locations to the Vertices of an Object.

association of z1(61), 22(61), and z3(81) to object vertices would be labeled abc (consistent
with the notation defined above). Therefore, the first knot, z1(61), corresponds to vertex
a in the object. Referring again to Figure 2-4 we note that in the second view, however,
the first knot, z1(2) corresponds to vertex c in the object. Thus, the knot locations have
effectively “switched” their correspondences with the object. The knot location to vertex
association in the second view can be summarized by cab because z;(f2) corresponds to
vertex c in the object, z3(f2) corresponds to vertex a in the object, and z3(f2) corresponds
to vertex b in the object. We define a switch in two knots to occur when two vertices in the
object lie along the same line, perpendicular to the projection. Prior to two knots switching,
the knot locations more closer together with increasing 6. Finally, when the two vertices of
the object are aligned along the same line, the knot locations for the two vertices are the
same and the knot associations switch when 6 increases. In a reconstruction algorithm from

knot locations the knot to vertex data association must be determined at each projection.

Figure 2-5 shows the geometry of a noise-free reconstruction scenario. In the absence of
noise, the knot locations of only three angular projections are needed to exactly triangulate
the views and determine the vertices of the object. However, one misplaced knot can have

tremendous effects on the overall reconstruction. Figure 2-6 demonstrates that movement of
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Figure 2-5: Object Reconstruction from Knot Location Data From 3 Noise-Free Views.

one knot location produces an inconsistent triangulation. The triangulation is inconsistent
because there are only two points where three knot positions intersect to define a vertex

location (instead of the three required to determine the vertices of the triangle).

The problem posed in this thesis is the following: Given noisy knot locations from sparse
and noisy projection data, it is not possible to exactly triangulate the knot locations to de-
termine the vertices of the polygon. Thus, the association of the knot location data to the
vertices of the object from view-to-view is unknown. The objective of this investigation
is to formulate an estimation algorithm that will incorporate knot locations, chord length
data, noise statistics and prior geometric information to produce a robust estimate of the
vertices of the object. This work seeks to reduce the effects of noise by using a hypothesis
testing algorithm to robustly estimate the vertices of the polygon from noisy, inconsistent
data. Each possible data association (within the constraints outlined by the algorithm) is
considered a possible hypothesis and the objective is to determine the most likely hypoth-
esis (using ML techniques) and determine the estimate of the object’s vertices based on

this hypothesis. The inclusion of chord length into the reconstruction algorithm enhances
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Figure 2-6: Inconsistent Triangulation of an Object Due to a Single Misplaced Knot Mea-
surement.

the performance by using these data measurements to help determine the optimal data

association hypothesis.
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Chapter 3

Problem Formulation

Having defined the relevant terminology and problem statement in Chapter 2, we now move
on to discuss related research and provide a more detailed explanation of the problem for-
mulation. We begin in Section 3.1.1 by reviewing some of the more recent methods to detect
object boundaries from tomographic data and describing related research in stochastic es-
timation of objects from tomographic data. Section 3.1.2 continues the review of relevant
previous work by relating the tomographic reconstruction problem considered in this thesis
to the multitarget tracking problem of radar. The second half of this chapter discusses
some of the common issues related to the algorithms contained in this thesis. These in-
clude: assumptions (Section 3.2.1), triangulation geometry (Section 3.2.2), noise models

(Section 3.2.3), initial view (Section 3.2.4), and performance measures (Section 3.2.5).

3.1 Previous Work

3.1.1 Related Research in Computerized Tomography
Recent Work in Boundary Detection Algorithms

In this section we briefly review some of the recent work used to detect object boundaries
in tomographic imaging. Because the boundary detection of objects is the ultimate goal of
many computerized tomography applications, a number of algorithms have been developed
to detect edges and boundaries from tomographic data. Two different approaches can be
used to detect edges of an object. The first is a two step procedure that reconstructs the

object and then detects the boundary from the reconstructed image. In the second method,
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the boundaries of the object are obtained directly from the projection data. In the presence
of noisy or sparse projection data, the second method is often preferred because the artifacts
produced by classical algorithms during the reconstruction process render the application
of standard edge detection methods on the image ineffective. In addition, even if the noise
on the projection data is white, the reconstruction process produces an image with colored
noise. Because of this, much of the recent work in computerized tomography has focused

on this second approach to boundary detection.

Srinivasa et al [16] propose a method of edge detection of internal and external object
boundaries without first reconstructing the object. They base their analysis on the use of
the Marr-Hildreth edge detection operator, A?G(z,y), which uses the Gaussian function
for filtering and the Laplacian for differentiation and detects edges by zero crossings in the
filtered data. Instead of applying this edge detector to the reconstructed image, Srinivasa
et al show that by taking the Radon transform of the Marr-Hildreth operator at each view
angle, pp(t) = R(A?G(z,y)), they can convert the 2D convolution step required to detect
edges in an image to a 1D convolution in Radon space. They then combine this 1D function
with the reconstruction filter, 7(t), and apply this “new” filter to the projection data in each
view. After filtering each view, the filtered projections are then backprojected to obtain
the function, f“(m,y). Edges are then detected by determining the zero crossings in the
resulting image. This method requires a large number of projections and Srinivasa et al

consider only the noise free case.

Similarly, Thirion [17] proposes internal and external object boundary detection without
image reconstruction. In his work, Thirion develops a technique which he terms geomet-
ric tomography to reconstruct object boundaries. His methodology is to reconstruct object
boundaries directly from the sinogram data. Basically, he performs an edge enhancement on
the sinogram, detects the “oriented dual curves” corresponding to inner and outer bound-
aries of the object, and reconstructs the object’s boundaries from the dual curves. Thus, the
object boundaries are reconstructed directly from the sinogram data. In his work, Thirion
considers only the noise free case with dense sinogram data. In the presence of even small
amounts of noise it may be difficult in many cases to extract the dual curves hecessa.ry for

his edge detection algorithm.

The primary departure of this thesis from the work mentioned above is that sparse
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and noisy projection data is assumed. Further, it is also assumed that noise statistics and
possibly some a priori geometric information are available. Unlike Thirion, the approach
will be to reconstruct a polygon with a finite number of vertices. Because the sinogram of
each vertex is a sinusoid, it should be easier to detect these known functions in the noisy
sinogram data than it would be to detect the unknown “oriented dual curves” that Thirion

enhances in his noise-free algorithm.

Related Research in Stochastic Estimation of Objects

Geometric estimation of objects from noisy tomographic data have been approached with a
number of methods. Rossi and Willsky [15] used a finite parametric approach to characterize
the size, shape, and orientation of objects. The primary methodology in this approach is a
ML parameter estimation formulation. The accuracy of the estimate was evaluated using
the Cramer-Rao lower bound on the variance of the estimates. The results of this study
showed that size and orientation can be estimated more accurately than elongation and
that estimates of orientation require a minimum elongation that is inversely related to the

measurement SNR. Bresler and Macovski [2] extended this work to 3D reconstructions.

The primary focus of this thesis is an extension of the work of Prince and Willsky [11,12].
Instead of a finite parameter approach, they propose a number of reconstruction algorithms
to characterize the size and shape of the object based on support line measurements of noisy
projection data. Given the support lines at known angles equally spaced from (0°,360°],
noise statistics, and a priori information such as relative smoothness, Prince and Willsky
formulate the reconstruction as a constrained optimization problem. The algorithms use
varying degrees of a priori geometric information. The formulations range from a ML
estimate to a mini-max algorithm that maximizes the minimum discrete radius of curvature
of the object. Further, Prince [12] proposes a knot location method which models each
projection as a continuous piecewise-linear waveform. Using Kalman filtering techniques, he
formulates a method to detect the two extreme knot locations, t_ and t+, which correspond
to the location of the support lines. This thesis will continue the work of Prince by using
the additional information of the internal knot locations and chord length information to

formulate a robust estimate of the size and shape of the object.
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3.1.2 Relationship to Radar Multitarget Tracking Algorithms

In addition to the aforementioned work in tomography, the reconstruction of the vertices
of a binary polygonal object from knot location measurements is very closely linked to
the multitarget tracking problem of radar. The geometry of the tomography problem can
be viewed in two ways: (1) as a stationary object with measurements taken at different
angular positions or (2) as a rotating object with measurements taken at a single, fixed
view. Although both geometries are equivalent (see [5]), the former is the more accepted
framework for tomography problems as this is the method generally used to collect the
data. By viewing the vertex reconstruction problem using the latter geometry, however,
the close association to the single-sensor multitarget tracking problem becomes apparent.
In this framework, the association of knots to ob ject vertices is analogous to the association
of radar reports to targets. Further, the vertex locations of the tomographic reconstruction

problem correspond to the target locations of the radar problem.

In a single-sensor multitarget tracking problem, the objective is to collect radar data,
associate the reports to targets, and estimate the locations of the targets. The problem
consists of two distinct stages: data association and target estimation. In the knot recon-
struction problem formulated in this thesis, the association of the knot location data to
the vertices of the object from view-to-view is unknown. Like the multiple target tracking
problem, the problem is one of data association; unlike the radar problem, however, there
are knot correspondences that are impossible because of the geometric constraints imposed
on the behavior of the vertices of a polygon. Further, the tomography problem is simplified
because issues of “target maneuverablility” and dynamics are not necessary when we view
the object as stationary with views taken at different angular positions; while in the radar
context, the targets are free to move in and out of the field of view at different speeds

relative to each other.

Still, these two problems are very similar and many of the estimation techniques devel-
oped in the radar context are applicable to this problem. Many algorithms, both optimal
(Bayesian) and sub-optimal, have been formulated to solve the multitarget tracking prob-
lem. A number of these algorithms are based on an adapted form of a hybrid state esti-
mation problem (see [1,6,7,13]) which proposes a simultaneous solution to a discrete-state

estimation problem (data associations) and a continuous-state estimation problem (target
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locations). The reconstruction algorithms developed in this thesis are very similar to these
hybrid state algorithms. The vertex reconstruction problem is viewed as a discrete-state
data association problem where each hypothesis corresponds to a possible association of
knot measurements to vertices. Similarly, it is also an estimation problem to determine the
vertex locations. Thus, much of the methodology of these multitarget tracking problems

can be applied to the vertex reconstruction problem.

In addition to formulating the problem as the simultaneous estimation of the discrete
valued hypotheses (data associations) and continuous valued “targets” (object vertices), the
algorithms used in this thesis also include the target tree approach described by Kurien et
al [7] to represent the possible data associations. Further, if the number of vertices in the
object is unknown a priori, the knot location data may contain “false alarms” as formulated
in the radar problem. Thus, the object reconstruction can be extended to include the global

hypothesis techniques used in the Track-Oriented approach of multitarget tracking [7].

Because of the huge number of possible hypotheses, the screening and pruning tech-
niques developed in the multitarget approaches are also implemented in the reconstruction
algorithms in this thesis. More specifically, the screening technique called gating, which
limits the measurement space within which the reports for targets are expected to lie, can
be used to limit the data associations for the object vertices in views that are taken in close
angular proximity because the knot switches are constrained by the object’s geometry (see
Chapter 4). Also, pruning techniques such as the N — scan approximation described by
Kurien [6] can be used to limit the total number of hypotheses.

3.2 Problem Development

3.2.1 Assumptions

In the reconstruction algorithms developed in this thesis there are a number of underlying
assumptions concerning both the a priori object information and the acquisition of input

data.

In terms of a priori geometric information, we assume that the object to be recon-
structed is a binary, convex polygonal object with a known number of sides. Although

convexity is not required to reconstruct the vertices, it is necessary when determining the
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Figure 3-2: Unique Connection of the Vertices of a Convex Object.

unique connection of the vertices of the object. Figure 3-1 shows how 5 vertices can be
connected to form two different non-convex objects. The connection of the vertices of a
convex object, such as the object in Figure 3-2, is unique. The chord length measurement
data can be effectively used to disambiguate the possible vertex connections but this in-
volves a more complex reconstruction analysis. After the vertices have been estimated, all
possible connections of the vertices would have to be evaluated using the chord length data
to determine the optimal connection. Thus, in the interests of reducing model complexity

we consider only convex objects.

The second set of assumptions concern the acquisition of the measurement data. First,
we assume that the tomographic projections are taken at known angular views over the
range [0°,180°). Second, we assume that the knot location measurements have already
been extracted from the projection data independently of the algorithms developed in this
thesis, for example using a procedure similar to the work of Mier-Muth and Willsky [8].
In an actual tomographic reconstruction scenario, the system would be similar to that of
Figure 3-3. The noisy projection data (or chord length measurements) would be input
into a knot extraction algorithm which would produce knot location measurements and

their corresponding noise statistics. These data, along with the original projection data,
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Figure 3-4: Reconstruction Scenario Considered in this Work.

would then be used as the input to one of the reconstruction algorithms developed in this
thesis. We assume in this thesis that the pre-processing (knot extraction) has already
occurred. Thus, the inputs to our system are noisy knot and chord measurements. The
block diagram of the system modeled in this thesis is shown in Figure 3-4. The knot and
chord measurements are generated from the underlying object and perturbed with additive
white Gaussian noise (see Section 3.2.3 for a discussion of the noise models applied to the
data). This simulated data set is then used as the input to the reconstruction algorithms
develope& in this thesis.

3.2.2 Triangulation Geometry

In the noise free case, any three views can be used to triangulate the knots and reconstruct
the vertices of a polygonal object (see Section 2.2). When noise is present in the knot loca-
tion measurements, however, the views that are chosen have a huge impact on the quality
of the reconstruction. As an example of this, Figure 3-5(a) shows the triangulation (noise-
free) of views taken in close angular proximity while Figure 3-5(b) shows the triangulation

of widely separated angular views of the same object.

From these figures, it is apparent that if the same amount of noise were added to both
reconstruction scenarios, the error would be much more significant in the case of the views

taken in close proximity. Thus, the triangulation geometry is improved by taking widely
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Figure 3-5: Example of Triangulation Geometry of Views in Close Proximity Versus Views
Taken at Wide Angular Spacing.

spaced angular views. From an algofithm.ic viewpoint, however, the advantage in con-
sidering views in close proximity is that the number of knot location switches that can
occur for view-to-view is greatly reduced (i.e. the gating techniques described in Section
3.1.2); therefore, the number of hypothesized data associations is reduced and the overall
complexity of the reconstruction algorithm is reduced. Because both geometries have advan-
tages and disadvantages, Chapter 4 presents an algorithm that incorporates closely spaced
views sequentially (poor triangulation geometry, reduced model complexity) while Chap-
ter 5 presents an algorithm that incorporates views non-sequentially (better triangulation

geometry, increased model complexity).

As a final note, another advantage of the algorithms developed in this thesis is that they
allow reconstruction over any angular range with any angular spacing (i.e. non-uniform
spacing is allowed). Most classical reconstruction techniques require views over a full an-
gular range with uniform spacing. This advantage is important for applications such as
non-destructive testing where views are sparse and angular separations are generally non-

uniform.
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3.2.3 Noise Models

In this section we resolve some of the issues concerning the assumptions of noise models

used as input to the algorithms developed in this thesis.

Consistent with previous stochastic models of sinogram data [9, 12, 14], we assume
throughout this thesis that the available sinogram data, or equivalently chord length data,
are discrete samples of g(t, ) corrupted by additive white Gaussian noise of known intensity.

Specifically, for each chord our observation is given by
m;(6;) = g(t;,0:) + v(t;,6:), 1<i<k, 1<j<p (3.1)

where k is the total number of projections, p is the number of chord measurements per view,
and v(t;, 6;) are independent, identically distributed (i.i.d.) Gaussian random variables with

known variance o2,.

One difficulty in characterizing the amount of noise added to the chord data is that
every chord in every view has a different magnitude. Thus, it is not possible to characterize
the signal-to-hoise ratio (SNR) easily. In this thesis we will use an approach similar to those
used by Prince [12] and Milanfar [9]'. We define the SNR per sample on the chord length

data as

SNR =101o

35 9%(t5,6:)/d
g o2

m

(3.2)

where d = k X p is the total number of chords length measurements and o2, is the variance

of the 1.i.d. noise v in the observations.

In order to completely characterize the noise on the knot locations, knowledge of the
method used to extract the knots from the projection data is necessary. Assuming that this
data extraction is complete, the knot extraction algorithm would provide the noise statistics
of the knot measurements in an ideal reconstruction scenario. Because this algorithm would
extract the knots directly from the projection data there would undoubtedly be a correlation

between the noise on the knot locations and the noise on the chord length measurements.

!The only departure from the formulation used by Milanfar is that we use the traditional base 10 logarithm
instead of the natural logarithm used by Milanfar
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Figure 3-6: Example of the Values of M in the calculation of agj (6:) = IA—I‘C?;“MJ—
2

In the absence of a specific knot extraction algorithm, we assume in this work that the noise
on the knot measurements is additive Gaussian noise (for simplicity). To set the level of

noise on each knot we use the following intuitive formulation

az(e'):———KU’z" 1<i<k, 1<j<n (3.3)
HYVY | Asg|M; - T '
where

a‘fj (6;) = noise variance on knot location measurement z;(6;)

K = scaling constant

o2, = noise variance on chord length measurements

|As;| = absolute change in slope at knot location measurement z;i(6;)

M; = distance measure between adjacent knot locations

and k and n are the total number of projections and number of knot locations per view,
respectively. This equation can be interpreted as follows. The noise variance on knot j is
proportional to the variance of the noise on the chords, denoted o2,, to capture the idea
that higher errors in the chord measurements will translate to higher errors in the knot
location measurements during the knot extraction process. It is inversely proportionalito
the magnitude of the change in slope, |As;l, at the knot location because a large change in
slope should make it easier to extract the knot. Further, it is also inversely proportional to
the distance M; between the knot being extracted and the adjacent knots (for example, see
M, in Figure 3-6). For the case of external knots, M; is defined as twice the distance from
the nearest knot (for example, see My in Figure 3-6). The implication is that the greater

the separation between adjacent knots, the easier it is to extract the knots.
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To determine the value of the constant K we somewhat arbitrarily assign a value such
that the average standard deviation of knot location noise terms is 1.5 times greater than

the standard deviation of the noise on the chords

K((l—l E 02;(6:)) = 1.50m (3.4)
1.50,,d
K= Ei,j O'z,-(ai) (3:5)

where d = k X n is the total number of knot location measurements. Although we have
attempted to base this noise model on estimation principles, this model is admittedly some-
what arbitrary. Some adjustment to the knot location noise model may be required with
the application of a specific knot extraction algorithm. The idea here is to get a rough

approximation of the relative performance of the algorithms.

The noise models presented here are used throughout this thesis for the generation of
data. Reconstructions are performed for scenarios where these applied noise statistics are
assumed known and also for cases where the noise model for the chords is known and
the noise on the knots is assumed i.i.d. with the variance equal to (i.5am)2. The i.i.d.
model is a non-realistic model in that it assumes no information is available from the knot
extraction algorithm about the relative “goodness” of one knot measurement compared
to another. From the statistically-based GLR knot-location method used by Prince [12]
to detect the support knots from projection data, we know that in reality more precise
statistical information would be available from the knot extraction algorithm. Therefore,

we consider this i.i.d. model a worst case assessment of the algorithm’s performance.

3.2.4 [Initial View - A Max-Min Approach

A major concern for the algorithms developed in this thesis is the correct assessment of the
data association of the ordered knot locations measurements to the object’s vertices. If the
algorithm wrongly assigns this association, the wrong hypotheses will be retained and the
optimal solution will never be reached. In order to provide an initial view into the algorithm

with a favorable triangulation geometry, the algorithm begins by searching through all
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possible views and starts the algorithm with the view that maximizes the minimum (Max-
Min) separation between adjacent knot location measurements. Using the property of the
Radon transform given by Equation (2.20), the views that occur prior to the Max-Min view
are appended to the original data such that their new angular position is 0pew = 0o1a +180°
and the knot location measurements and chord length measurements are altered to be
consistent with the requirements of Equation (2.20). The hope in this approach is that
the Max-Min view and the views in close proximity to it will provide a good triangulation
geometry and the algorithm will start off by retaining the correct hypotheses. In addition,
we note that if all hypotheses are retained at each step of the algorithm, the initial view is
unimportant because the optimal hypothesis is never deleted from the possiblé hypotheses
retained at each step of the algorithm.

3.2.5 Performance Measures

Two measures are used to evaluate the performance of the reconstruction algorithms. The
first is the Hausdorff distance, a metric on the set of all convex sets, K. The second is
the Symmetric Difference measure, a geometrically based measure of the difference between
two convex sets. Both offer insight into the quality bof the reconstruction; yet, both have
deficiencies in their ability to quantify the “closeness” between the true object and its
reconstruction. In this section each method is presented and its merits and deficiencies are

noted.

In the algorithms that follow, the reconstructions are performed by minimizing the L?
norm on measurements in the Radon Space. Regardless, however, the minimization of
reconstruction error in the object space is of direct interest in quantifying the quality of the
reconstructed object. Although it sometimes produces ambiguous results, the Hausdorff
distance is appealing because it is a metric on K. The Symmetric Difference measure is
attractive because it is a geometrically intuitive measure of the difference between two
convex sets. The one disadvantage of the Symmetric Difference measure is that it is not
a “metric” (or a true measure of the distance between two sets). Because both measures
have benefits and deficiencies, we will incorporate both measures into our analysis of the

reconstruction results thus allowing a more comprehensive analysis of the algorithms.
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Hausdorff Distance

The Hausdorff distance is a frue metric on the set of all convex sets K in the metric space X ;
it is attractive because it offers a mathematically based definition of the distance between

two convex sets.

To describe the Hausdorff distance we first need to define a few terms of metric spaces.

First, the notion of distance between two sets in a metric space X is defined as
d(F,G) =inf{ d(z,y)| z € F, y € G} (3.6)
where F and G are subsets of the metric space. Further, a ball around a set is defined
B(F,p)={z € X |d(z,F) < p} (3.7)

where p > 0. Figure 3-7(a) shows an example of a ball, B(F, pr), around the set F.
Using these definitions, the Hausdorff distance is defined

AH(F,G)y=inf{ p | F C B(G,p) and G C B(F,p)} (3.8)

An intuitive explanation of the Hausdorff distance can been seen in Figure 3-7. Figure 3-
7(a) shows the minimum amount, pr, that F would have to be “uniformly expanded” so
that G could be contained in it. Similarly, Figure 3-7(b) shows the minimum amount, pg,
that G would have to be expanded to contain F. The Hausdorff distance is the maximum

of these two “minimum inflation factors”.

The primary deficiency of this metric is that it can produce non-intuitive results for
some convex sets. An example of such a result is shown in Figure 3-8. Figure 3-8(a) shows
the Hausdorff distance between the two sets F' and H. Similarly, Figure 3-8(b) shows the
Hausdorff distance between the same set F and a new set G. Although G and H are
significantly different to the eye, both have the same Hausdorff distance when compared
with the set F. Thus, this metric can be somewhat misleading in quantifying the quality of
a reconstruction. Therefore, a second measure of distance is introducedl to provide a more

geometrically intuitive performance measure.
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Figure 3-9: Example of the Symmetric Difference Measure.

Symmetric Difference Measure

The second method used to quantify the performance of the reconstruction algorithms is
the Symmetric Difference measure. Unlike the Hausdorff distance which is a metric on
K, the set of all convex sets, the Symmetric Difference measure has no simple distance
interpretation. Instead, it is a geometrically based measure on the difference between two

convex sets. This measure is defined
AS(F,G) = u(FAG) = p[(FUG) (FNG)) (3.9)

where F' and G denote convex sets and the operator u(-) denotes the area of the argument.

Figure 3-9 shows two sets F' and G and their corresponding Symmetric Difference measure.

A final note on the performance analysis is the manner in which we will use these
distance measures. In order to make reconstruction results comparable, the measurements
are generated as a percent. For the Hausdorff distance the percent HausdorfF error is defined

AH(S,8)
AH(S,0)

% Hausdorff error = x 100% (3.10)

where S corresponds to the true object, § corresponds to the reconstruction, and @ denotes

the set composed of the single point at the origin. Similarly, the Symmetric Difference error

is defined

A5(S,8)
B(S)

% Symmetric Difference error = X 100% (3.11)

These error measures provide a means to quantify the quality of the reconstructions for the

algorithms developed in Chapters 4, 5, 6, and 7.
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Chapter 4

Sequential Reconstruction

Algorithm

With this chapter we begin a sequence of three chapters dedicated to the reconstruction of
the vertices of two dimensional (2D) binary polygonal objects from knot location and chord
length data. We start in this chapter with the most structured of the three algorithms:
an estimation algorithm that incorporates knot location measurements sequentially, with
increasing angular position. Chapter 5 extends the algorithm to incorporate views non-
sequentially. Finally, in Chapter 6 a full nonlinear estimation algorithm that reconstructs
polygonal objects from knot locations and chord length measurements is developed. In all
three of these chapters the number of vertices is assumed known and each knot location
measurement corresponds to exactly one vertex in the object. Finally, Chapter 7 deals with

the problems of inconsistent data measurements (missed knot detections).

This chapter begins in Section 4.1 with the presentation of the methodology and overview
of the Sequential Reconstruction Algorithm. The next three sections det ail each of the three
distinct stages of the algorithm. Specifically, we present data association in Section 4.2,
vertex estimation in Section 4.3, and data processing in Section 4.4. Finally, sample re-
constructions and Monte-Carlo simulations are presented in Section 4.5 and conclusions in

Section 4.6.
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4.1 Overview of the Algorithm

This chapter is concerned with the reconstruction of binary polygonal objects from measure-
ments of the knot locations of an n-gon (assuming that the number of sides is known). As
outlined in Section 3.2.1, we assume that the projections are taken at known angular views
and that the knot locations have been extracted from the projection data independently
of this algorithm using a procedure such as that of Mier-Muth and Willsky [8]. Also, for
simplicity we assume that all objects are binary and convex as discussed in Section 3.2.1.
Throughout this chapter we will make extensive use of the definitions and terminology

presented in Chapter 2 and problem formulation of Section 3.2.

The algorithm developed here incorporates the measurements of the knots at each view
sequentially, with increasing angular position. The geometry of this problem can be viewed
as a fixed (rigid) object with tomographic measurements taken at different views; equiva-
lently, the problem can be viewed as measurements taken at a single, known viewpoint of
an object rigidly rotating at a fixed velocity and viewed at equal time intervals (see [5]).
By viewing the vertices with a fixed viewpoint geometry, the problem can be related to the
single-sensor multitarget tracking problem (see section 3.1.2). In this framework, the asso-
ciation of knots to object vertices is analogous to the association of radar reports to targets.
Further, the vertex locations of the tomographic reconstruction problem correspond to the
target locations of the radar problem. Thus, like the radar multitarget tracking problem,
this reconstruction problem is also developed by estimating both discrete and continuous
values. Unlike the radar problem, there are a number of simplifying assumptions because

of the geometry of the problem.

Figure 4-1 depicts the block diagram of the methodology used in this algorithm. Ba-
sically, the algorithm is a three stage process. In the first stage, all possible associations
of knot location measurements to vertex locations are enumerated to form discrete-valued
states or hypothesis. Once all of the possible data associations are determined, the second
stage of the algorithm estimates the vertex locations for each discrete hypothesis under
the assumption that it is the correct hypothesis. Finally, in the third step, the algorithm
determines the likelihood that each hypothesis is correct given measurements of the knot lo-
cations and chord lengths. The likelihood ratios of these hypotheses are then used to prune
the set of all possible discrete hypothesis for the next step of the algorithm and obtain the
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Figure 4-1: Block Diagram of Sequential Reconstruction Algorithm.
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Figure 4-2: Knot Location Data.

optimal estimates of the vertices.

4.2 Part I : Data Association

In the problem of object reconstruction from knot locations, each knot corresponds to a
vertex in the object. Prior to the reconstruction, however, this correspondence is unknown
and the problem is one of data association. If the knot locations in the first view (6; = 0°)
are associated to vertices a, b, ¢, and d as shown in Figure 4-2 (and denoted abed), the goal
is to determine the possible data association switches that can occur in these knots as the
views are varied from 8; = 0° to 6,, = 180° — A (assuming m projections are available and

A =180

m

Because of the geometry of the problem, there are a number of constraints in the allow-
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Figure 4-3: Relationship of Knot Location Data at §, = 0° and # = 180°.

able knot switches that can occur if the knots are viewed as a continuous function of §!:

A. As shown in Figure 4-3, if the knots in the projection at 8; = 0° are labeled a, b, ¢,
and d, these knots occur in the reverse order in the final projection at 6,4, = 180°.
Thus, for the case of a 4-gon a knot association hypothesis that starts with abcd must

end with dcba.

B. A switch in two knots occurs when two vertices lie along the same line, perpendicular to
the projection. Therefore, for an n-sided object, exactly n(n — 1) switches occur over
a complete and continuous 360° range of projections. Further, because each switch
of vertices occurs exactly 180° apart (because the vertices must lie along the same
line), 1'-("2;11 switches occur in the range from 6; = 0° to 6,41 = 180°. Therefore, in

a 4-gon exactly 6 knot location switches will occur.

C. Because two vertices have to be aligned on a line perpendicular to the projection for
the knots to switch, it is not possible for two knots to switch twice in a row (i.e. you

can’t undo what was done in the previous step) with increasing 6.

!Note that the examples are given for the case of a 4-gon but can be naturally extended to the general
case of an n-gon
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Using these geometric constraints and the fact that the views input into this algorithm lie

in close angular proximity, we assume for the Sequential Algorithm:

1. The following gating approach is used in this algorithm: from view-to-view the angular

increments are small enough so that only adjacent knots can switch.

9. We have to account for the possibility that from one view to the next, no knots will

change position.

One final note, for notational convenience we denote a switch in the associations of knots
in positions j and j + 1 by (5,5 4+ 1). For example, the hypothesis abed — bacd would be
denoted (1,2) because the knot associations in positions 1 and 2 have switched. Also, no

change in the knot associations from one view to the next is denoted NC.

Given the above constraints, the enumeration of all possible knot association hypotheses
can be shown in a tree. The root of the tree corresponds to the initial association of the
knots to the vertices in the unknown object. We label the first measurement abcd which
denotes that knot location measurements z; — 24 correspond to the unknown vertices a — d,
respectively (for a 4-gon). Each branch of the tree corresponds to the inclusion of a new
set of knot location measurements and gives the possible way in which the knot to vertex
associations may have changed since the last measurement. An example of the hypothesis
tree for a 4-gon is shown in Figure 4-4. We can see from this tree that the number of possible
hypotheses grow significantly with added views, even given the geometric constraints of
this problem. Further, the complexity of this tree increases substantially as the number of
vertices in the object increases. A pruning algorithm to reduce the number of hypotheses

is introduced in Section 4.4.

Using the notation of the Multitracker algorithm developed by Kurien [6] we let g¥ denote
one particular association or hypothesis of the first k£ views of knot location measurements
to the vertices of the object. Each potential hypothesis for the object, qf, is represented
‘on the hypothesis tree by a trace of successive branches from the root of the tree to a
branch representing the incorporation of the kth measurement. For example, the path
traced out in dashed lines in Figure 4-4 represents the hypothesis ¢ (assuming that the
r = 17 potential hypotheses are labeled from the top down), which corresponds to the knot

location hypothesis abed — badc — badc. Therefore, each sequence qf‘ gives one possible
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Figure 4-4: Hypothesis Tree for Sequential Reconstruction Algorithm.

interpretation of the association of the knot location measurements to the vertices of the
object for the first k views input into the reconstruction algorithm. Further, we denote the

set of all possible data associations up to measurement k by the set ¢* = [g¥, ¢¥, ..., ¢¥].

4.3 Part II: Estimation of the Vertices

The objective of this algorithm is to estimate the vertices of an object from measurements of

its projections at known angular views. We denote the vertex locations, V', by the following
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matrix

Ty Ty - Tp
V=

Y1 Y2 0 Un

For each view 6;, the assumed model relating the vertices to the knot location data is
2(8;) = K(V,6;) + n(6;) (4.1)

where

28;) = [21(6) 2(0;) - z(0)],  al@)<z2(8)< - < ()
= tow vector of noisy, ordered knot location measurements
v — vertices of the object(defined above)

h(V,8;) = nonlinear function of the vertices

and n(f;) ~ N(0,A;) is a vector independent Gaussian noise process with the variance on
each knot as defined in Section 3.2.3 so that A; is a diagonal matrix. The vector h(V,8;)

can be represented by
h(V,8;) = sort(c(8;)V) (4.2)

where c(8;) = [cos(;), sin(6;)] is the projection matrix at angle 6;, ¢(6;)V is the projection
of the vertices, and sort(-) is an operation that sorts the vertex projections in order of

increasing value. Thus, the problem is a nonlinear function of the vertex locations.

If the measurements at each view are combined (stacked), the overall measurement

equation becomes

z* = [£(6) | 27 (62) | .. | 27 (0R)]" (4.3)
= HV)+N
where
HV) = [BT(V,6) | AT(V,82) | ... | KT (V,60)]7
N = [nT(6,) | nT(62) | ... | nT ()T
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The objective of this algorithm is to estimate V given Z* and the noise statistics. Because

H is a nonlinear function of V, this problem is inherently nonlinear.

The formulation proposed in this chapter is a hypothesis testing algorithm which will
linearize the estimation problem with respect to V at each stage by assuming that the
association of the knot locations to the vertices is known. Later, in Chapter 6, we return
to the full nonlinear problem and consider a nonlinear approach to estimating the vertices

from Equation (4.3).

If we now assume that the knot associations ¢¥ are known, Equation (4.1) can be written

as:
2(6;) = c(6;)V Pi(gf) + n(6;) (4.4)
where
e(6;) = [cos(6;), sin(6;)]
P;(g¥) = permutation matrix dependent on the data associations

The term ¢(6;)V is the location of each vertex in the projection (i.e. the knot locations)
while P;(gF) is a permutation matrix that orders the knot locations based on the hypothe-
sized set of data associations given by ¢¥. The correspondence of the knot measurements,
z(68;), to the vertices of the object is lost without knowledge of P;. This equation is now
linear with respect to the vertices, V', and an estimate of V can be obtained using ML

estimation techniques.

First, we post-multiply each measurement equation by the appropriate permutation

matrix
2(6;)P;  (af) = ¢(6;)V + n(6;) P} (¢F) (4.5)

£(8;) = c(6;)V + (6;) (4.6)
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where

2(6;) = 2(6;)P7 () = [21(6;), 22(65),..., Zn(6))]
(8;) = n(6;)P; (¢f) = [a1(6;), a(6)), .-, 7n(65)]

Note that P; is always invertible because it is a permutation matrix. Recalling that each
column of V is a vertex of the object, we can separate the problem into n separate estimation
problems (one for each vertex) and estimate each vertex, V,,, separately using the ML

estimate equation defined in Section 2.1.2. Therefore, the measurement equation for each

vertex becomes

where
Ly = [2171(01)’ Em(02)7"" Zm(ok)]T
c = [Q(al)Ta Q(az)T: Ty E(ak)T]T
Km = [zm :‘/m]T
N = [im(61), m(82), -, firm(6k)]

and the ML estimate of V, is calculated using Equation (2.14) from Section 2.1.2
Vn(Zm) = (CTRIC)ICTR Z,, (4.8)

where the covariance matrix R,, is obtained by taking the appropriate terms from each
diagonal A; matrix (since the noise is uncorrelated and the matrix P; simply changes the

ordering of the knot measurements).

4.4 Part III: Data Processing

Because of the enormous number of possible hypotheses that occur as views are added, it
is necessary for computational purposes to prune the number of possible hypotheses as new
data are added. Further, we also require a procedure to determine the best data association

hypothesis and thus the optimal estimate. For these reasons, a method of evaluating each
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hypothesis is incorporated into the algorithm. The quality of each proposed hypothesis is
evaluated using the ordered knot location measurements Z*, the ML estimate ¥/ from Part

II, and chord length measurements collected over the same angular range.

4.4.1 Modeling of Chord Length Measurements
The chord length measurements as a function of the vertices, V', for each view 8; are modeled
by:

m(6;) = £(V,6;) + u(6;) (4.9)

where m(6;) is the vector of chord length measurements at angle 8;, f(V,6;) is a nonlin-
ear function relating the chord measurements and the vertices of the object, and v(6;) ~

N(0,0%1) is independent Gaussian noise as defined in Section 3.2.3.

The measurements at each view are combined (stacked) to form a single chord length

measurement equation

M*=FWV)+ 7T (4.10)
where
FV) = [ff(v,6) | f1(V,62) | ... | £T(V,60))F
T = [T(6) [ 2T(8:) | ... | &7 (8R)IT

Unlike the knot location data, the matrix f(V,6;) does not become a linear relationship
in V once the data associations are known?. Thus, it is difficult to estimate the vertices
V even given the data associations (unlike the knot locations). However, the chord length
data can be used effectively with the knot locations to help prune the possible hypotheses

as described in the following section.

*The form of this function is rather complicated to describe. Rather than give an explicit formula, we
include an explanation and the code used to calculate the chord measurements as & function of the vertex
locations in Appendix A.
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4.4.2 Hypothesis Test

If the measurements of the knot locations and chord lengths are combined to form the vector
Xk = [(2%)T | (M*)T]T, the hypotheses can be evaluated using a form of the M-ary ML
Generalized Likelihood Decision Rule (refer to Section 2.1.3)

d(X) = gFiffor all gf # g}

loglp,) s p(X* af, V(2 D] 2 loglp,) o p(X . V(Z* &) (411

where T?(Zquf‘) denotes the ML estimate of the vertices of the object given hypothesis qr
and knot measurements Z*. The primary departure of this decision rule from the standard
Generalized Likelihood Ratio Test is that the unknown non-random quantity, V, is esti-
mated from a subset of the total measurements (i.e. from the knot location measurements

but not from the chord measurements).

After evaluating the hypotheses using the above decision rule the top T hypotheses are
retained and the remainder are discarded. In the next step of the algorithm the possible
data associations for the new data are only included for these T hypotheses and the other
hypotheses are effectively pruned from the tree. In the final step of the algorithm, the
optimal hypothesis §, as determined by the above decision rule, is retained as the final
estimate of the true data associations. Similarly, the optimal estimate of V' is the ML
estimate given that § is the true set of data associations. Experimental results of this

algorithm follow in the next section.

4.5 Experimental Results

4.5.1 Test Objects

Throughout the analysis of the reconstruction algorithms developed in this thesis, two
binary test objects are used to chafacterize the performance of the algorithms. Both objects
are 4-gons that are contained within the region defined in Cartesian coordinates by the four
points (1,1),(1,-1),(-1,-1),and (~1,1) (or in polar coordinates by a ball of radius p = V2
centered at the origin). The first object is the “kite” shown in Figure 4-5. The kite was

chosen because of its contrasting projection width as the projection angle is varied over the
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Projections

Figure 4-5: Kite Test Object.

[0°,180°) allowable range. When a projection is taken along a line parallel to its longest side,
the distance between the two support knots is roughly twice that of the distance between
the support knots taken of a projection taken at 90° rotation (shown in Figure 4-5). In
contrast, for our second object we chose the square shown in Figure 4-6. At its minimum,
the distance between the support knot locations is .701 times the distance at its maximum
(refer to Figure 4-6). Thus, although the internal knots are allowed to move arbitrarily
close together as the view changes, the width of the field containing the knots does not vary
greatly (unlike the kite). By exploring sample reconstructions of both objects, we hope to

reveal both strengths and weaknesses in each reconstruction algorithm.

4.5.2 Sample Reconstructions

Figure 4-7 shows sample reconstructions of the two test objects from 27 uniformly spaced
angular views over the range [0°,180°). Each view contains 5 chord measurements with the
SNR levels on the chord measurements set at 10dB. The chord measurements are uniformly
sampled over the range defined by ¢t = [—1, 1]. Note that this results in views where some of
the chord measurements are zero (i.e. the object is not in the field of view) and conversely,

in views where the chord measurements are confined to the interior of the object (for the
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Figure 4-6: Square Test Object.

Error Measures Kite Test Object Square Test Object
True Model | i.i.d. Model | True Model | i.i.d. Model

Hausdorff Error (%) 16.22 36.67 32.16 44.61

Symm. Diff. Error (%) 19.35 38.42 17.71 33.62

Table 4.1: Comparison of Errors for Sample Reconstructions Using Sequential Reconstruc-

tion Algorithm.

kite object). Note also that T=10 hypotheses were retained in each step of the algorithm.
Given the above description, there are a total of 108 knot location measurements and 135
chord measurements used in each reconstruction. In both Figure 4-7(a) and Figure 4-7(b),
there are two reconstructions. The first one, denoted by the dashed lines is a reconstruction
in which the correct applied noise model was assumed known. In the second reconstruction,
denoted by dotted lines, the assumed model for the knot variances is an i.i.d. noise model
with Az = (1.50.,)%] where o2, is the noise variance on the chord length measurements.

Table 4.1 shows a comparison of both the Hausdorff and Symmetric Difference errors of

these two reconstructions.

3Refer to Section 3.2.3 for a complete description of the noise models used in this thesis.
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Figure 4-7: Sample Reconstructions of Sequential Algorithm: 27 views, 10 hypothesis prun-
ing, 10dB SNR on chords.

The relative performance of both reconstructions was consistent. In both cases, the
reconstruction that assumed the correct applied noise model for the knot locations outper-
formed the reconstruction that assumed the i.i.d. noise model. As discussed in Section 3.2.3,
the i.i.d. model is viewed as a worst case performance assessment and therefore the higher
errors are expected. We note that the Non-Sequential Algorithm presented in Chapter 5
deals more robustly with this noise model and the Nonlinear Algorithm presented in Chap-

ter 6 significantly reduces the error due to the i.i.d. model assumptions.

Also, it is interesting to note that the Symmetric Difference errors were larger than the
corresponding Hausdorff error in the reconstructions of the kite; while in the reconstructions
of the square, the Hausdorff errors were larger than the corresponding Symmetric Difference
errors. This occurs because of the different criteria used to quantify the distance between
two convex sets employed by these two error measures (refer to Section 3.2.5 for a complete
description of these error measures). Although the reconstruction errors of the kite were less
than those of the square for most of the error measures in Table 4.1, this result is only for
one possible sample path. We note this behavior but defer any comparative analysis of the

algorithm in reconstructing these two objects to the Monte-Carlo analysis of Section 4.5.3.
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4.5.3 Monte-Carlo simulations

In the following sections Monte-Carlo simulations of reconstructions are used to test the
performance of the Sequential Reconstruction Algorithm. With the exception of the last
section which compares the performance of reconstructions of both the kite and square test
objects, all of the simulations are performed using the kite test object. The Monte-Carlo
simulations consist of 100 independent recomstructions for each reconstruction scenario.
Additionally, in each plot error bars denote the 95% confidence intervals of the sample
mean values that result from the 100 runs of the algorithm. Again, as defined previously,
all chord length data for each projection were uniformly sampled over the region t = [-1,1].
Unless otherwise stated, T = 15 hypotheses were retained at each step of the algorithm,
5 chord measurements were taken per view, and the SNR was set to 10dB on the chord
length measurements. Reconstructions are done for cases that assume the correct applied
model for the noise on the knot location data and also for cases that assume an i.i.d. noise
model such that A, = (1.50,)2] where 02, is the noise on the chord measurements (refer to
Section 3.2.3 for a detailed description of the noise models used in this thesis). Finally, in
all of the simulations the projection data used to perform the reconstructions are uniformly

spaced samples over the angular region [0°,180°).

Reconstruction Error as a Function of Retained Hypotheses

Figure 4-8 is a plot of the Hausdorff and Symmetric Difference errors of the kite reconstruc-
tion as a function of the number of hypotheses, T, retained in each step of the algorithm.
Fach reconstruction consists of 18 views and reconstructions are performed for T = 5, 10,
15, and 20 retained hypotheses. As described previously, reconstructions are done assuming

both the correct applied noise model and the i.i.d. model.

As expected, as the number of retained hypotheses, T, is increased, the reconstruction
results improve. If the number of retained hypotheses is small, the algorithm cannot correct
itself after a sequence of poor projection data because the true hypothesis will already
have been pruned from the hypothesis tree. Conversely, if the algorithm where to retain
all hypotheses, the optimal estimate (as defined by the cost criterion u/sed to prune the
hypotheses) would always be obtained. We also note that the reconstruction error drops

most dramatically when the number of hypotheses is increased from 5 to 10. This error
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Figure 4-8: Performance as a Function of Retained Hypotheses Used in Sequential Recon-
struction Algorithm.

reduction is greater than subsequent decreases (as the number of retained hypotheses is
increased) because each time that T is increased the probability that the optimal hypotheses
or one close to it will be included in the retained hypotheses also increases (i.e. this is a

case of diminishing returns).

As expected, reconstructions based on the correct applied knot noise model outperform
the reconstructions that assume an i.i.d. knot noise model. Another interesting implication
of Figure 4-8 is that the i.i.d. model seems to level off much more quickly as a function of
the retained hypotheses; implying that retaining more hypotheses will not obtain a better
estimate. This behavior can be attributed to the uniform weighting, via the inverse of
the covariance matrix of the assumed noise model, of all knot data in the cost function
regardless of the amount of noise actually present in each knot measurement(i.e. a least

squares cost criterion versus a weighted least squares cost criterion).

Reconstruction Error as a Function of Chord Measurements

In this section we analyze the effect of the number of chord measurements used to prune
the hypotheses in the Part III of the Sequential Algorithm. Each reconstruction is based on
18 uniformly spaced views or a total of 72 knot location measurements. We set the variance

on the chord length measurements to a constant value throughout this experiment. Thus,
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Figure 4-9: Performance as a Function of Number of Chords Used in the Sequential Recon-
struction Algorithm.

as the number of chord length measurements per view is varied, the SNR (as defined in
Section 3.2.3) will also change. The constant variance on the chord lengths was chosen
for the case of 10 chord measurements per view at a SNR of 10dB and the noise on the
knot locations was set with Equation (3.3) using this constant chord variance. Noisy chord
data were generated for 0, 5, 10, 15, and 20 chord measurements per view. The simulation
results are shown in Figure 4-9. Figure 4-9(a) presents the Hausdorff error results while

Figure 4-9(b) presents the Symmetric Difference error results.

The overall behavior of the curves in Figure 4-9 is as expected. The reconstruction error
for both measures decreases as the number of chords used in the algorithm is increased.
Further, the most dramatic reduction in error occurs as the number of chords is increased
from 0 to 5 measurements per view. This lends credibility to the fact that the geometric
information contained in the chord data is an essential part of this reconstruction algorithm.
As expected, the reconstructions that assume the correct applied noise model (shown in the
solid lines) consistently have a lower error. An interesting observation regarding the Sym-
metric Difference error results for the i.i.d. noise model is that the Symmetric Difference
error is significantly larger than the Hausdorff error when the number of chords measure-
ments is small (refer to Figure 4-9). This implies that without an accurate knot location

noise model (as in the case of the i.i.d. model), the chord measurements are extremely
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important in reducing the Symmetric Difference error between the reconstruction and the

true object.

Reconstruction Error as a Function of SNR and Number of Views

This section presents the results of a series of independent Monte-Carlo simulations per-
formed at various SNRs for different numbers of views (refer to Figure 4-10) to characterize
the effect of these parameters on the Sequential Algorithm. Reconstructions are performed
for SNRs of 0dB, 10dB, 20dB, and 30dB and numbers of views equal to 9, 18, 27, and 54.
Figure 4-10(a) and (b) present the Hausdorff and Symmetric Difference errors, respectively,
for reconstructions assuming the correct applied knot location noise model. Similarly, Fig-
ure 4-10(c) and (d) present the same error measures for reconstructions assuming an i.i.d.

noise model for the knot location data.

There are a number of observations consistent with all of the reconstruction results pre-
sented in Figure 4-10. First, as the SNR increases the percent error decreases (as expected).
The most dramatic decrease in error occurs when the SNR is increased from 0dB to 10dB.
This result is attributed to the algorithm’s inability to resolve the knot-to-vertex data as-
sociations in a high noise scenario. Another result that is common to all reconstructions is
that the relative shape of the resulting curves at each SNR is the same. Thus, at a given
SNR all of the reconstruction errors behave similarly as a function of the number of views
even if the relative level is different. In addition, although the errors for both measures
decrease initially as the number of views is increased, in all cases (except at SNR=0dB)
the error increases as the number of views becomes large. Although this result may seem
counter-intuitive at first, it can be explained by the method used to reconstruct the objects
in this algorithm. As the number of views increases, the angular separation between views
becomes small. From one data set to the next, the views change very little. When the knot
locations are close in a particular view and noise is added to the system, the algorithm may
retain the wrong hypotheses. If the next view has the same data quality (which is expected
if the views are taken very closely together), the wrong hypotheses continue to be retained.
If enough “bad” views are added in a sequence, the optimal hypothesis may be pruned and
discarded, lost to the algorithm forever. Thus, the algorithm returns a sub-optimal estimate

such as the results of Figure 4-10 show for large numbers of views. Figure 4-11 demonstrates
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struction Algorithm. (a),(b) Correct Noise Model; (c),(d) i.i.d. Noise Model
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SNR=10dB, 5 Chords, T=15 Hypotheses.

that if the number of retained hypotheses is increased the reconstruction error for scenarios
of 54 views assuming the correct noise model is reduced dramatically. As a final note, we
stress that the Non-Sequential Algorithm of Chapter 5 corrects the problem of a sequence
of poor views by reordering the angular views before they are introduced into the algorithm

(at the expense of model complexity).

Finally, we note some of the differences between the respective results of Figure 4-10.
Consistent with previous sample reconstructions of Section 4.5.2, the i.i.d. noise model
reconstructions produce a higher percent error for both the Hausdorff and Symmetric Dif-
ference measures. Note also that the results of the i.i.d. reconstructions tended to be flatter
(i.e. did not vary as much) as a function of the number of views. Although the Hausdorff
error and Symmetric Difference error curves seem to have the same relative shape in most
cases, the Symmetric Difference error values where smaller. In addition, there are instances
where the two measures produce conflicting results. For example in Figure 4-10(c) and (d)
the Hausdorff error decreases as the number of views is increased from 27 to 54 views at
SNR=0dB while the Symmetric Difference error increased slightly under the same condi-
tions. These discrepancies can be attributed to the fact that each measure evaluates the
difference between two convex sets using a different criterion (see Section 3.2.5). For exam-
ple, in the sample reconstructions of Section 4.5.2, the i.i.d. kite reconstruction (in dotted

lines in Figure 4-7(a) had a smaller Hausdorff error than the corresponding reconstruction
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error for the square, while the i.i.d. square reconstruction (in dotted lines in Figure 4-7(b))
had a smaller Symmetric Difference error. Although it is arguable which of these two re-
constructions is “better”, in most cases the Symmetric Difference error is a more intuitive

measure.

Reconstruction Comparison of Two Test Objects

Having completed the Monte-Carlo analysis of the Sequential Algorithm for a particular
| object, the kite, we now turn to a comparative analysis. Figure 4-12 shows the Monte-
Carlo reconstruction errors for both the kite and the square test objects as a function of the
number of views used in the reconstruction. Reconstructions were performed for 9, 18, 27,
and 54 views. Figure 4-12 (a) and (b) are Hausdorff and Symmetric Difference errors for
reconstructions assuming the correct applied knot location noise model while Figure 4-12
(c) and (d) are the corresponding error measures under the assumption of the i.i.d. noise

model.

With the exception of the Hausdorff error for the ii.d. noise model (Figure 4-12(c)),
the reconstruction of the kite seemed to slightly outperform that of the square for small
numbers for views while the opposite was true for larger numbers of views. This result may
be attributable to the sensitivity of some of the views of the kite to noise. Because the
kite has views where the distance between the support knots is relatively small (refer to
Section 4.5.1), this may result in a sequence of “poor” measurements that produce error in
the reconstruction at large numbers of views. In the case of the Hausdorff error of the i.i.d.
model reconstruction of Figure 4-12(c), the kite’s reconstruction errors are less than the
square reconstruction errors for all numbers of views. These results conflict slightly with
the corresponding Symmetric Difference error analysis of Figure 4-12(d). Again, these dis-
crepancies are attributed to the different performance criteria of the two measures. Despite
these small differences, however, all of the curves have the same general shape. In addition,
the reconstruction errors of both objects are on the same order of magnitude. Therefore, the

algorithm does not seem to produce significantly better reconstructions for either object.
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4.5.4 Limited Angle Tomography and Non-Uniform Projection Angles

In this final section of experimental results we perform reconstructions using the Sequential
Algorithm over limited angular regions and with non-uniformly spaced projection data.
This is an important feature of this algorithm as many classical reconstruction techniques

require uniformly spaced angular projections over the complete range [0°,180°).

Reconstruction Error as a Function of Limited Angle Projection Data

In this section we evaluate the reconstruction performance of the Sequéntia.l Algorithm over
limited angular ranges. In each reconstruction, we generate a full set of projection data (i.e.
chord measurements and knot location measurements) over the [0°,180°) angular range
with 5 chord measurements per view at a SNR of 10dB. Like all previous experiments, the
chord length measurements are uniformly sampled over the range ¢ = [-1,1]. Next, we
perform reconstructions on subsets of the projection data over limited angular ranges using
the Sequential Reconstruction Algorithm. Specifically, reconstructions were performed over
the following angular ranges: [0°,45°), [0°,70°), and [0°,90°). Each subset of projection
data contains 18 uniformly spaced views over the specified angular range. For each angular
range, 100 independent Monte-Carlo reconstructions were performed with T'=15 hypotheses

retained at each step of the Sequential Algorithm.

Figure 4-13 shows the errors resulting from reconstructions of the kite as a function
of the angular range. As the results from both the Hausdorff and Symmetric Difference
errors in Figure 4-13(a) and Figure 4-13(b) demonstrate, the algorithm was able to produce
reasonable reconstructions over each angular range. As expected, the reconstruction errors
of both measures decreased as the angular range is increased. This is attributed to the
improvement in triangulation geometry obtained by spacing the views over a wider angu-
lar region coupled with the problem that the Sequential Algorithm has with retaining the
wrong hypotheses if the views are “too” close (refer to the discussion in Section 4.5.3 under
the performance as a function of SNR). Although these results show that this algorithm
is capable of reconstructing over limited angles, the success is somewhat limited because
of the relatively high reconstruction errors (although this would decrease as the SNR is
increased). However, looking ahead, we note that the results of the Non-Sequential Algo-

rithm of Chapter 5 demonstrate greatly improved overall performance, especially for small
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Figure 4-13: Performance as a Function of the Angular Range Using the Sequential Algo-
rithm.

Error Measures True Model | i.i.d. Model
Hausdorff Error (%) 10.75 14.53
Symm. Diff. Error (%) 19.88 17.05

Table 4.2: Sample Limited Angle Reconstruction Over the Range [0°,90°) Using the Se-
quential Algorithm.

angular ranges.

In addition to the reconstruction errors resulting from the Monte-Carlo reconstruction
results, Figure 4-14 shows a sample reconstruction. This reconstruction was generated
under the conditions listed above with projection data over the angular range [0°,90°). As
the resulting plot shows, the algorithm was able to produce a good quality reconstruction in
the face of limitations on both the angular range and the number of projections (18 views)
in a low SNR situation (10dB). Additionally, Table 4.2 summarizes the reconstruction error

for this particular sample.

Reconstruction Using Non-Uniform Angular Spacing

In addition to the ability to reconstruct over limited angular ranges, the Sequential Algo-
rithm also has the ability to perform reconstructions on non-uniformly spaced projection

data. Figure 4-15 shows a sample reconstruction from 27 non-uniformly spaced views over
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Figure 4-14: Sample Reconstruction Over Limited Angular Range ([0°,90°)) Using the
Sequential Algorithm.

the [0°,180°) a.ngularb range. In this reconstruction, each projection contained 5 chord mea-
surements at a SNR of 10dB with 7' = 15 hypotheses retained at each step of the algorithm.
To determine the non-uniform projection angles, we started with the initial projection at
g, = 0°. The second projection was at 8, = 3.5° and all subsequent angles were generated

with the following equation

6; = %0,'_1 < 180° - (412)

The solid line in Figure 4-15 represents the true object and the dashed and dotted lines
are the reconstructions assuming the correct knot location noise model and the i.i.d noise
model respectively. In addition, Table 4.3 summarizes the Hausdorff and Symmetric Differ-
ence reconstruction errors for these results. Although only for one sample path, these results
show the performance of this algorithm is not limited to a uniformly spaced projection data

set.

4.6 Conclusions

In this chapter, we have studied a finite parameter reconstruction algorithm to reconstruct

the vertices of a binary polygonal object from sequential measurements of knot location and
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Figure 4-15: Sample Reconstruction with Non-Uniformly Spaced Projection Angles Using
the Sequential Algorithm.

Error Measures True Model | i.i.d. Model
Hausdorff Error (%) 11.19 20.84
Symm. Diff. Error (%) 7.23 22.71

Table 4.3: Comparison of Errors for Non-Uniform Angular Spacing Using the Sequential
Algorithm.
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chord length data. The reconstruction was posed as a combined hypothesis test-estimation
problem; and the proposed solution was a combination of a Generalized Likelihood Ratio
Test to solve the discrete hypothesis testing problem and Maximum Likelihood estimation
technique to solve the estimation problem. The results of this algorithm were mixed. For
relatively small amounts of data (as compared to traditional reconstruction algorithms like
filtered backprojection [4] and even the statistically based ML reconstructions of Milan-
far [9]), the results were encouraging. Although the algorithm was unable to disambiguate
the data association problem for low SNRs (0dB), it was robust for SNRs at or above 10dB.
The analysis also confirmed that the inclusion of chord length data to prune the possible
hypotheses was a useful method of reducing the error in the reconstructed object. Further,
given the reconstructions of the two test objects, the algorithm appears robust to different
types of objects. Finally, we showed that the Sequential Algorithm is capable of recon-
structing objects in situations of limited angular measurements and non-uniformly spaced

projection data.

The primary deficiency was the degradation of the reconstruction results as the num-
ber of views increased for a fixed value of retained hypotheses. This is the result of the
sub-optimal pruning algorithm implemented to reduce the total number of discrete data
association hypotheses. We showed that one possible method of combating this problem is
simply to retain more hypotheses. In the next chapter, we approach this problem with a
second method: reordering the views so that they are introduced into the algorithm non-
sequentially. Additionally, the performance of the Sequential Algorithm when the i.i.d. knot
location noise model was assumed produced significantly larger reconstruction errors than
the reconstructions that assume the correct applied model. Although we reiterate that this
model is a worst case performance assessment (refer to Section 3.2.3), these errors are im-
proved in the Non—S‘equential Algorithm of Chapter 5 and significantly attenuated in the
Nonlinear Reconstruction Algorithm of Chapter 6 which uses both knot location and chord

length measurements to estimate the vertices of the object.
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4-A Generating Chord Lengths From Vertex Locations

Because the relationship relating the chord lengths to the vertices of an object is complex,
rather than giving an explicit formula to describe this relationship in this section we present
the method and the C code used in this thesis to determine the chord lengths from the vertex
locations of a binary convex object. The approach is to triangulate the object (i.e. divide
the convex object into non-overlapping triangles), take the projections of each triangle at
to, the position in the projection gg(to) where the chord length is desired, and sum the
chord lengths of all of the triangles along this position to determine the chord length of the
original n-gon. The reason for choosing this approach is twofold. First, determining the
chord length of a triangle from its vertices is trivial; second, there is a simple method to

triangluate a binary, convex n-gon into n 4+ 1 non-overlapping triangles.

As described in Section 2.1.5 the projection of a binary polygonal object is a piecewise-
linear spline function. For a triangle, that simply means that each projection is itself a
triangle as demonstrated in Figure 4-16. Therefore, to completely specify the projection
of a triangle, we only need to determine the knot locations z;, z3, and z3, and the chord
length h at the internal knot location (refer to Figure 4-16). From these values, we can
determine the equations of the two lines on either side of the internal knot location and
thus determine the value of the projection at any value of ¢ in the projection gg(t). All
of these values can be easily obtained from the vertices of the triangle. Referring again to
Figure 4-16, we note that if projections are taken of the three vertices of the triangle two
of the values correspond to the support, which define the base b, and the third projected
vertex corresponds to the internal knot location z;. To completely specify the projection,
we need only determine h. Using the fact that the area of the object and the area under
the projection are the same (this is a well known property of the Radon transform), we can
determine A or the value of the projection at the internal knot by using the equation of the

area of a triangle

A = Sbh (4.13)
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or
ho= = (4.14)

where A is the area of the triangle (easily obtained from the vertices of the object), b is the
base of the triangle (defined by the support knots), and h is the chord length or value of the
projection at the internal knot location 2. With these values, the entire projection of the
triangle is defined and to calculate any desired chord length value we simply determine on
which side of the internal knot the chord measurement lies and evaluate the correct equation
of the line. It is obvious for an object with more sides (think of a square for example) this
approach will not work because the determination of the chord lengths at the internal knot

location is not as simple as the case of the triangle.

The secondb reason for choosing this approach is that the triangulation of a convex n-gon
is trivial (procedure below). Once we have the non-overlapping triangles, the projections of
the triangles at the desired position ¢y are taken and the sum of the n + 1 chord lengths of
the triangles determine the chord length of the overall object. This summation is possible

because the Radon transform is a linear operation.
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In

summary, the overall approach is the following:

. A vertex’s angular position can be defined by the angular position of a vector from the

origin to the vertex (assuming that the origin is located inside of the polygon). For a
convex object, ordering the vertices in increasing angular order defines the connection
of the vertices to form the object. We begin by ordering the vertices of the convex

n-gon in increasing angular order to define the connection of the vertices.

. The z and y coordinates of all of the vertices are then averaged to define the center

of mass of the object. For a convex object, the center of mass in guaranteed to lie

within the object.

The object is then triangulated by taking the ordered vertices of the object in pairs
and the center of mass to form n + 1 non-overlapping triangles from the object. An

example of this procedure is shown in Figure 4-17.

To determine the chord length at a particular location #o in the projection gg(t),
the projection of each triangle is taken at the required position and the sum of the
projections of the n + 1 non-overlapping triangles at this position forms the chord

length of the overall object at to.

. Step 4 is repeated for each chord length calculation.

The code used to generate these results is the following:

#include <math.h>

#include <mex.h>
#include <stdlib.h>

Determines the chord lengths and knot locations of a binary

polygonal object.

Inputs:
1. "num_ver” : number of vertices in the object. ) 10
2. "views” : number of projection angles.
3. "theta” ¢ array of desired projection angles.
4. "ver” : matriz of vertices (2*num _ver) [stored by ROWS].
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f(x,y)

Figure 4-17: Triangulation of Kite Object.

5. "num_chords”: number of desired chord measurements.

Outputs:
1. "y1” : matriz (num_ver*views) of knot locations, each column
corresponding to a projection [stored by ROWS)].
2. "chords1” : matriz (num_chords*views) of chord lengths, each column

corresponding to a projection [stored by ROWS].

c_chordgen(y1,chordsl,num_ver,views,theta,ver,num_chords)
double y1{],chords1[];

double *num_ver, *views;

double theta[],ver[],*num_chords;

{

double *P, *templ;

double *arr,*tri,drr(3],crz[3];

double sumx,sumy,fix,cent[2];

double *brr,s[9],*A1,*t1,*pos;

double *v, *Angle,*t,de,*t2,*t3,delta;
double temptri[6],chord;

double m,b,temp[3],h;

int p;

int j,nrt2,k,nrt,nct,num,a,nviews,nchords,l;
fix=*num_chords;

nchords=(int)(fix);
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fix= *views;
nviews=(int)(fix);
fix = *num_ver;
num=(int )(fix);
sumx=0.0;

sumy=0.0;

v=(double *)malloc(sizeof(double)*(2*num));
tri=(double *)malloc(sizeof(double)*(num*2*3));

P = (double *)malloc(sizeof{double)*(num * num));
templ = (double *)malloc(sizeof(double)*(num));

brr = (double *)malloc(sizeof(double)*(num));

arr = (double *)malloc(sizeof(double)*(num));

Angle = (double *)malloc(sizeof(double)*(2*nviews));

t = (double *)malloc(sizeof(double)*(2*nviews*num));
t1 = (double *)malloc(sizeof(double)*(3*nviews*num));
t2 = (double *)malloc(sizeof(double)*(3*nviews*2));

t3 = (double *)malloc(sizeof(double)*(3*nviews*num*2));
Al = (double *)malloc(sizeof(double)*(num));

pos= (double *)malloc(sizeof(double)*nchords);

nrt2=2;

/* determine the center of mass of the object */
for(j=0;j<num;j++) {
sumx=ver[j]+sumx;
sumy=ver[j+num]+sumy;
}
cent[0]=sumx/fix;

cent[1]=sumy/fix;

/* order the vertices */

c_convex_order(v,ver,num_ver);

matzero(P,&num,&num);
for(j=0;j<num;j++) Plnum*j+(num—j—1)] = 1.0;
nrt2=2;

nrt=num*2;
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nct=3;

matzero(tri,&nrt,&nct);

/ * triangulate the object */
for(j=0;j<num;j++) 80
{
for(k=0;k<2;k++)
{
if(j==num-1 && k==1)
{
tri[((num—1)*6)+1]=v[0];
tri[((num—1)*6)+4]=v[num];
}

else
{ - 90
bri(5%6)+k]=v[i+k};
tri[(j*6)+k+3]=v[j+k+num];
}
}

tri[(j*6)+2]=cent[0];
tri[(j*6)+5]=cent[1];

/ * determine the projection matriz from the array of angles */

for(j=0;j<nviews;j++) { 100
Angle[(3*2))=cos(theta[j]);
Angle[(j*2)+1]=sin(theta[j]);

}

/ * calculate the knot locations from the vertices */
matmult(Angle,&nviews,&nrt2,ver,&nrtZ,&num,t,&nviews,&num);
for(j=0;j<num;j++) brrjl=1;
for(j=0;j<nviews;j++) {
for(k=0;k<num;k++) arr[k]=t[(j*num)+k];
piksr2(num,arr,brr); 110
for(k=0;k<num;k++) y1[(k*nviews)+j]=arr(k];
)

| * determine the area of each of the n+1 triangles */
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for(j=0;j<3;j++) s[j]=1.0;
for(j=0ij<3ij++) drrj]=j+1.0;
nrt=1;
for(j=0;j<num;j++) {
for(k=0;k<2;k++) {
for(1=0;1<3;1++) {
s[(k*3)+1+3]=tri[(j*6)+(k*3)+1];
temptri[(k*3)+1]=tri[(j*6)+(k*3)+1];
}
}

de= ((—1)*s[3]*(s[8]—-s[7]))+(s[4]*(s[8]—s[6])) —(s[5]*(s[7] —s[6]));

if (de < 0) de=de*(-1);
Alfj]=de;

matmult(Angle,&nviews,&nrt2,temptri,&nrt2,&nct,t2,&nviews,&nct);

for(1=0;1<nviews;l++){
for(k=0;k<3;k++) crr[k]=t2[(1*3)+k];
piksr2(nct,crr,drr);

for(k=0;k<3;k++) t3[(j*nviews*3)+(3*1)+k]=crr[k];

}

[ * calculate the chord lengths over the range t=[—1,1] (uniformly sampled) */

if (nchords==0)

matzero(chordsl,&nchords,&nviews);

else {
if(nchords==1){
pos[0]=0.0;
}
else {
delta=2.0/(nchords—1);
pos[0]=-1.0;

for(j=1;j<nchords;j++) pos[j]=pos[j—1]+delta;
}

for(j=0;j<nchords;j++) {
for(k=0;k<nviews;k++) {
chord=0.0;
for(1=0;1<num;l++){

for(p=0;p<3;p++) temp[p]=t3[(k*3)+(1*nviews*3)+p];
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h=A1[1]/(temp[2]—temp(0]);
if{ (temp[1] >= (pos[j]—1e—3)) && (temp[1] <= (pos[j]+1e—3)))
chord=chord+h;
else if((temp[1] > pos[i]) && (pos(j] > temp[0])) {
if ((temp[1]—temp[0]) >0 )
m=(h/(temp(1]—temp[0]));
else .
m=—(h/(temp[1]—temp[0]));
b=—m*templ0];
chord=chord-+(m*pos(j])+b;
}
else if((temp[1]<P°5U]) && (pos[j]<temp[2])) {
if ((temp[2]—temp[1]) >0 )
m=—(h/(temp[2]—temp(1]));
else
m=(h/(temp[2]—temp[1]));
b=—m*temp(2]; "
chord=chord+(m*pos(j])+b;
}
}

chords1[(j*nviews)+k]=chord;

free(v); free(tri); free(P); free(templ); free(brr); free(arr); free(Angle); 180
free(t); free(t1); free(t2); free(t3); free(Al); free(pos);

}

#include <math.h>
#include <mex.h>

Orders the vertices of a convez polygonal object.

Inputs: 190
1. "Ver” : matriz of vertices (2*¥num_ver) [stored by ROWS].
2. "num_ver” : number of vertices in the object.
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Outputs:
1. "” : matriz of vertices (2*num_ver) [stored by ROWS].
v=[z1 z2z3 ... zn

yl y2y3... yn/

c_convex_order(v,Ver,num_ver)
double v[],Ver[];

double *num_ver;

{
double *P,*templ,*arr,fix,*brr,*brrl;

int j,nr,num,a,nr2;

fix = *num_ver;

num=(int)(fix);

P = (double *)malloc(sizeof(double)*(num * num));
templ = (double *)malloc(sizeof(double)*(num));
brr = (double *)malloc(sizeof(double)*(num));

brrl = (double *)malloc(2*sizeof(double)*(num));

for(j=03j <numij++) brrlj]=j+1.0;
nr=1,

nr2=2;

matzero(P,&num,&num);

for(j=0;j<numij++) P[num*j+(num-j-1)] = 1.0;

/* determine the angle of each vertez */
for(j=0;j<num;j++)
{
templ[j]=atan2(Ver[j+num],Ver[j]);

}

/* sort the vertices ¥/

piksr2(num,templ,brr);

/¥ order the vertices */

matmult(brr,&nr,&num,P,&num,&num,brrl,&nr,&num);

for(j=0;j<numg-++)
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{
a=(int)(brr1{j]);
v[j]=Ver[a—1];
v[j+num)=Ver[a—1+num];
}
free(P); free(templ); free(brr); free(brrl);
}

#include <stdio.h>

Zeros out a matriz.
Inputs:
1. "matriz1”; The first matriz.

2. "nr1” : Number of rows in above.

3. "ne1” : Number of columns in above.

matzero (matrixl, nrl, ncl)
double *matrix1;
int *nrl, *ncl;
{
int i,j;
for (i=0;i<=(*nrl)-1;i++){
for (j=0;j <= (*ncl)-1;j++){
matrix1[ (*ncl)*i + j] = 0.0;
}
}

return;

}

#include <stdio.h>

Multiplies two (double) matrices.
Inputs:

1. "matrizl”: The first matriz.

2. "nr1” : Number of rows in above.
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3. "nc1” : Number of columns in above.

4. "matriz2”: The second matriz.

5. "nr2” : Number of rows in above.

6. "nc2” : Number of columns in above.
Outputs:

1. "matrizr”: The result of matrizl *matriz2.
2. "nrr” : Number of rows in above.

7 : Number of columns in above.

3. "ner
matmult (matrixl, nrl, ncl, matrix2, nr2, nc2, matrixr, nrz, ncr ) 280
int *nrl, *ncl, *nr2, *nc2, *nrr, *ncr;
double *matrixl, *matrix2, *matrixr;

{
int i, j, k;
double sum;
/ * Check for size compatibility.*/
if ( *ncl != *nr2 ) {
fprintf( stderr, "ERROR in MATMULT: Matrix size mismatch\n" );
exit(1);
} 290
|/ * The size of the multiplied matriz. */
*nrr = *nrl;
*ner = *nc2;
/* Multiply the matrices. */
for (i=0;i <= (*nrl)-1;i++ ) {
for (j = 0;j <= (*nc2)-1; j++ ) {
sum = 0.0;
for ( k=0;k <= (*ncl)—l; k++ ) {
sum += matrix1{ (*nc1)*i + k ] * matrix2[ (*nc2)*k +j J;
} 300
matrixr| (*nc2)*i + j ] = sum;
}
}

return;

}
/* END function "matmult” ————————————————————— */
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function "piksr2” 310
Sorts 2 arrays. Sorts array arr{1...n] into ascending numerical
order by straight insertion, while making the corresponding

rearrangement of the array brrfl ...n]

Inputs:
1. "n” size of arrays arr and brr
2. "arr"” array to be sorted
3. ”brr” array to be sorted
Outputs: 320
1. "arr” sorted version

2. "brr” sorted version

*/

piksr2(n,arr,brr)
int n;
double arr[];
double brr[];
{
int i,j; . 330
double a;
double b;
for (j=1;j<nij++) {
a=arr[j];
b=brr(j];
i=j—1;
while (i >= 0 && arrfi] > a) {
arrfi+1]=arr(i];
brr[i+1]=brr(i];

i——; 340

}
arrfi+1]=a;
brr[i+1]=Db;
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Chapter 5

Non-Sequential Reconstruction

Algorithm

In this chapter we develop a second algorithm, which we term the Non-Sequential Recon-
struction Algorithm, to reconstruct binary polygonal objects from knot location data and
chord length measurements. Unlike the reconstruction algorithm developed in Chapter 4,
the algorithm developed in this chapter allows views of knot location data to be introduced
into the reconstruction algorithm in any angular order. In Section 5.1 we outline the general
framework of the Non-Sequential Reconstruction Algorithm and how its methodology differs
from the Sequential Algorithm developed previously. Next, Section 5.2 describes the criteria
used to generate the possible hypotheses at each stage of the reconstruction and presents a
general overview of the algorithmic procedure. Finally, Section 5.3 presents sample recon-
structions and Monte-Carlo simulations of this algorithm and Section 5.4 summarizes our

conclusions on the results of this algorithm.

5.1 Overview of the Non-Sequential Algorithm

Like the previous chapter, this chapter is concerned with the reconstruction of binary polyg-
onal objects from measurements of the knot locations of an n-gon (assuming that the number
of sides is known); unlike the previous chapter, the views are introduced into the algorithm
non-sequentially. As outlined in Section 3.2.1, we assume that the projections are taken
at known angular views and that the knot locations have been extracted from the pro-

jection data independently of this algorithm using a procedure such as that of Mier-Muth
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and Willsky [8]. Also, for simplicity we assume that all objects are binary and convex as
discussed in Section 3.2.1. Throughout this chapter we will make extensive use of the defi-
nitions and terminology presented in Chapter 2 and problem formulation of Section 3.2. In
addition, many of the definitions and procedures introduced in Chapter 4 for the Sequential
Algorithm are also used for the Non-Sequential Algorithm.

Essentially, the methodology of the Non-Sequential Algorithm is the same as that of the
Sequential Algorithm developed in Chapter 4. The general framework is a multi-stage esti-
mation algorithm that simultaneously estimates discrete-valued states, or data association
hypotheses, and continuous-valued estimates of the vertices of the object based on these
discrete hypotheses (refer to the block diagram of Figure 4-1). In fact, the only difference
between these two algorithms is the method used in Stage 1 (see Section 4.2) to evaluate

the possible data associations and form the set of discrete hypotheses.

Instead of appending each new view right after the last projection (i.e. in close angular
proximity), this algorithm allows new projection data to be inserted at any angular location
over the [0°,180°) allowable angular range. The primary advantage of incorporating views in
any order is that the triangulation geometry (see Section 3.2.2) of this algorithm is greatly
improved by introducing views into the algorithm at wide angular spacing. Unlike the
Sequential Reconstruction Algorithm which uses a gating approach to limit the allowable
knot switches by assuming that only adjacent knots can switch their data association with
the vertices of the object from one view to the next, the Non-Sequential Algorithm allows
any switch as long as it is possible given the geometry of the tomography problem. Because
of its ability to accept any angular separation, this algorithm can also be used for limited
angle reconstructions or reconstructions with few but widely spaced views. As a result of
the increased flexibility, however, the number of possible hypotheses is increased and the

evaluation of the possible hypotheses is slightly more complex.

5.2 Generation of Data Association Hypotheses

In the Sequential Reconstruction Algorithm developed in the previous chapter, the number
of possible knot-to-vertex associations (and ultimately the number of proposed hypotheses)
was severely limited by the geometric constraints of reconstructing a binary polygonal object

coupled with the assumption that the projection angles were closely spaced. Because views
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were assumed to be added into the algorithm in close angular proximity, a gating approach
was used to constrain the number of hypotheses by allowing only adjacent knot-to-vertex
data associations to switch from one view to the next. Although the Non-Sequential Al-
gorithm cannot use this gating technique (because there can be large angular separations
between adjacent views), the number of possible data associations can still be greatly re-
duced from the n! vertex permutations that can occur in an n-sided object. If the knots
in the projection data are viewed as a continuous function of 8, the following geometric

constraints that were first described in Chapter 4 (and repeated here for convenience) are

still valid!:

A. If the knots in the projection at #; = 0° are labeled a, b, ¢, and d, these knots occur in
the reverse order in the final projection at 8,1 = 180°. Thus, for the case of a 4-gon

a knot association hypothesis that starts with abcd must end with dcba.

B. A switch in two knots occurs when two vertices lie along the same line, perpendicular to
the projection. Therefore, for an n-sided object, exactly n(n — 1) switches occur over
a complete and continuous 360° range of projections. Further, because each switch
of vertices occurs exactly 180° apart (because the vertices must lie along the same
line), '1("2——1-1 switches occur in the range from 6; = 0° to 6,41 = 180°. Therefore, in

a 4-gon exactly 6 knot location switches will occur.

C. Because two vertices have to be aligned on a line perpendicular to the projection for
the knots to switch, it is not possible for two knots to switch twice in a row (i.e. you

can’t undo what was done in the previous step) with increasing 6.

In the absence of a gating approach such as that used in Chapter 4, the above criteria
are used to develop the following “rules” to determine the allowable knot orderings and

possible hypotheses at each insertion of data?:

1. If a projection is inserted between two views that have the same knot-to-vertez asso-
cialion, the inserted view must also have that ordering.

This follows from a combination of constraints A, B, and C. If two views have the

!Note that the examples are given for the case of a 4-gon but can be naturally extended to the general
case of an n-gon

2 Again, these examples are given for the case of a 4-gon but can be naturally extended to the general
case of an n-gon
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same set of knot-to-vertex associations and a view is inserted between them, the only
way that the inserted association could be different is if the knots associations switch
and then switch back again. Over the 360° angular range two vertices of an object are
aligned, and therefore switch associations, exactly twice (i.e. only when they lie along
the same line). Further, because they must be along the same line we know that the
knot switches in the two vertices of the object will occur exactly 180° apart. Thus,
in order for the knots to switch and then switch back again, the angular range would
have to be greater than 180°. Because we consider only the range [0°,180°) this is not
possible. Therefore, a view inserted between two views with the same knot-to-vertex

association must also have that set of associations.

. Once a knot-to-vertez association has been used somewhere in a hypothesis, it can
never occur again after the knots switch from that position.
This follows from the analysis under rule 1. An angular separation of greater than

180° is required for the knot-to-vertex associations to switch and then switch back.

. If a knot-to-vertez association is used somewhere in the proposed hypothesis path, its
reciprocal cannot be used anywhere in the hypothesis (with the ezception of the initial
and final associations). From the consistency requirements of the Radon transform

(refer to Equation (2.20)) we know that the knot locations must adhere to the following

property:
2(0,') = [21(0,;) .. .Zn(ﬂi)] = [—zn(6; + 1800) o= 21(0,' + 1800)] (5.1)

and from the geometry of this problem (refer to Figure 4-3) this corresponds to an
exact reversal of the knot-to-vertex associations. Thus, if the knot associations switch
at exactly 6;, the switch to the reciprocal of the knot-to-vertex associations occurs
at exactly 6; + 180°. Because we consider a range of less that 180° the reciprocal
ordering cannot be a valid association over the range that we consider. The one
exception to this rule is the first set of data associations, abcd. Because the knots
switch to form this set of associations prior to the initial view at § = 0° the reciprocal

set of associations deba will occur before 8 reaches 180°.
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4. Each hypothesis must start with abed and end with dcba.
This rule follows directly from constraint A.

5. Only ﬂnz—_ll knot switches are allowed to occur in each hypothesis path. After this,
only the data associations adjacent to the inserted knot projection are allowed.

This rule follows directly from constraint B.

These rules are only a subset of the possible rules that can be derived to determine the
allowable data associations given the geometry of this problem. They are meant only to
provide a simple and efficient means of reducing the total number of hypotheses that must
be considered at each stage of the algorithm. A precise statement of the space defining the

set of valid data associations is still an open issue.

As an example of an application of rules 1-5 consider the 3 hypotheses given in the
first column of Table 5.1. The data associations for each hypothesis are listed in increasing
angular order in the first column and the arrow represents the point at which we wish to
insert a new set of projection data. Without any regard for the geometry of this problem,
there would be 4! or 24 possible permutations of a, b, ¢, and d that could be used to represent
the data association of the 4 vertices to the 4 knot location measurements that could be
added to each hypothesis. The center columns of Table 5.1 show which views can be
eliminated with the implementation of the 5 rules. In fact, looking at the last column,
which gives the allowable knot location data associations for this point of insertion into
each of the hypotheses we see that the number of potential associations has been reduced
from 24 to 18, 1, and 2 for the respective 3 hypotheses. Note also, that as the assumed
hypothesis becomes larger and more defined that the number of possible data associations
that can be inserted greatly diminishes. In fact, after the ﬂ%-—ll switches are chosen (such
as the third hypothesis given in the table), only the 2 data associations adjacent to any

inserted view are allowed.

Using the above “rules”, the possible data associations are enumerated in a hypothesis
tree similar to the one used in the Sequential Algorithm of Chapter 4. The primary difference
is that the views are not in increasing angular order as you move from the root to a branch
of the tree. Instead, as you move through the tree, the data associations are listed in the
order that they are introduced into the algorithm (which doesn’t necessarily correspond to

increasing angular order). Each branch in the tree must keep track of the angle at which
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Associations Eliminated by Respective Rule

Hypothesis Rule 1 Rule 2 | Rule 3 | Rule 4 Rule 5 Possible Data Assoc.
abed cdab cabd dacb
[ — adeb acdb dabc
bacd dbca cadb adbc abdc abed
bdac dcba acbd cdba cbda cbad
dbca bdac dcab bdca deda becad
dcba dbac badc bacd
abed
bdac :
1« || Al except bdac
bdac bdac
dcba
abed
I«
bacd All except
bade abed abed
bdac and bacd
dbac bacd
dbca
dcba

Table 5.1: Example Evaluations of Possible Knot Location Data Associations.
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the projection data is inserted. Note also that because at least three projections are needed
to triangulate the knot location data and form an object, the algorithm must retain all
possible permutations of the knot location data until three views are obtained. Therefore,
for the second view, n! permutations of the knot location data must be considered regardless
of the angular position. An example of a hypothesis tree for a 4-gon is shown in Figure 5-1.
As with the Sequential Algorithm of the previous chapter, the initial knot location data
is arbitrarily assigned to the unknown vertex locations as abed. Note that this tree is
significantly more complex than the corresponding tree given for the sequential algorithm
(see Figure 4-4). Each branch of the tree gives the association of the knots chosen for that
particular angle. Like the hypothesis tree developed in Chapter 4, a path from the root
to a branch of the tree represents one possible hypothesized set of data associations, g,
while ¢* = [¢¥, qé‘, ..., qF] represents the set of all r hypotheses up to the kth measurement.
Unlike the previous chapter, however, these data associations must be reordered to put
them in increasing angular position. For example, the hypothesis g3 which is represented
by the the set of data associations traced out in dashed lines in Figure 5-1, represents the

hypothesis abcd — abed — abed — bacd when reordered.

As mentioned previously, apart from the difference in the generation of the data asso-
ciation hypotheses, the format of the Non-Sequential Algorithm is the same as that of the
Sequential Algorithm. Thus, the algorithm consists of three distinct stages: generation of
data association hypotheses, estimation of vertex locations, and evaluation of data asso-
ciation hypotheses. The block diagram of Figure 4-1 summarizes these stages. Using the
above data association rules with each set of knot location data, the algorithm evaluates
the set of possible associations for each existing hypothesis qf'l, 1 <% < T in the hy-
pothesis tree and determines what knot associations are possible for the kth measurement
~given the geometric constraints outlined above (and demonstrated in Table 5.1). This set
of valid associations forms the set of hypotheses ¢* which corresponds to Stage 1 of the
reconstruction algorithm. Stages 2 and 3 of the algorithm, which evaluate and prune the
hypotheses, are performed using the same method as the Sequential Algorithm (see Sections
4.3 and 4.4). Again, chord length data are used in addition to the knot location data to
prune the possible hypotheses by using the likelihood ratio tests defined by Equation (4.11).

All of the calculations and evaluation procedures are identical to those of the Sequential
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cdba
abcd
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cdba
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dcba
— 600 - 12¢° =130
92- 60 93- 120 94— 30

Figure 5-1: Hypothesis Tree for Non-Sequential Reconstruction Algorithm.
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Algorithm with the exception of the determination of the discrete hypotheses, as described
above. Experimental Results of this algorithm follow in the next section.

5.3 Experimental Results

In this section, we present some sample reconstructions and Monte-Carlo simulations of the
proposed Non-Sequential Reconstruction Algorithm. As with the Sequential Algorithm, we
perform our analysis on two test objects: a “kite” and a square (refer to Section 4.5.1,
Figures 4-5 and 4-6). There are a number of specifications that are common to all of the

reconstructions performed in the following sections.

First, at the start of each reconstruction the initial view is determined by the Max-Min
Approach defined in Section 3.2.4. If the Max-Min view is labeled 6, = 0°, the views are
then divided by angular range into three sets with roughly the same number of views (i.e.
[0°,60°), [60°,120°), and [120°,180°))®. The views are taken from each set one by one and
added into the algorithm such that the separation between the new data and the views
input into the algorithm at the last pass through the three sets of views is maximized. For
example, the first three views are approximately at 6, = 0°, 6, = 60°, and f5 = 120°. For
the next view, we return to set 1 and pick the view that is as close to 30° as possible (i.e.
midway between 6, and 0.2) Similarly, for the 5th view the projection angle is chosen from
set 2 such that the view is midway between the views at 8, and f3. This continues until all

of the views are input into the reconstruction algorithm.

Second, as with the Sequential Algorithm, the chord measurements are uniformly sam-
pled over the region defined in Radon space by ¢t = [-1,1]. Again, as stated in the previous
chapter, this results in views where some of the chord measurements are zero (i.e. the
object is not in the field of view) and conversely, in views where the chord measurements

are confined to the interior of the object (for the kite object).

The noise on the chord measurements is i.i.d. Gaussian noise with variance o2 and
the corresponding noise on each knot location measurement is given by Equation (3.3).

Reconstructions are performed for cases where the correct applied knot location noise model

3These angular ranges are approximate and depend on the angular separation of the views in the projec-
tion data.
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is assumed known and also for cases where the assumed model is an i.i.d. model with

covariance A, = (1.50,)%] where o2

2 is the variance of the noise on the chord length

measurements?. Finally, as described in Section 3.2.5 the percent Hausdorff error and

percent Symmetric Difference error are used for the performance analysis.

5.3.1 Sample Reconstructions

This section contains results of sample reconstructions using the Non-Sequential Algorithm.
Note that for all of these results the true object is depicted by solid lines while the recon-
structions are represented by dashed or dotted lines. The sample reconstructions of this
section use the same data set used to generate the sample reconstructions of the Sequential
Algorithm (refer to Section 4.5.2). For both objects, the square and the kite, noisy chord
length and knot location data were generated so that the SNR on the chord length data
was set to 10dB. Additionally, projection data was taken at 27 equally spaced projections
over the interval [0°,180°) with 5 chord measurements in each view. Thus, each object had
a total of 108 knot location measurements (used to estimate the vertices and prune the

hypotheses) and 135 chord measurements (used to prune the hypotheses).

Figure 5-2(a) shows the sample reconstruction of the kite. Two reconstructions are
shown: the dashed line represents the reconstruction generated assuming the correct applied
noise model on the knot measurements while the dotted line represents the reconstruction
assuming the i.i.d. noise model. Similarly, Figure 5-2(b) shows a sample reconstruction
of the square. Like the kite reconstruction, the dashed line represents the reconstruction
assuming the correct applied noise model while the dotted line represents the i.i.d. model
reconstruction. Table 5.2 summarizes the Hausdorff error and Symmetric Difference error

for both sample reconstructions.

As in the Sequential Algorithm, the reconstruction errors assuming the correct applied
noise model were significantly less that those assuming the i.i.d. model for all of the cases.
This result is expected as the i.i.d. model weighs all knot location data equally in the cost
criterion used to determine the optimal hypothesis regardless of the amount of noise actually

applied to the knot. As a result, poor measurements are considered to be as important as

“Refer to Section 3.2.3 for complete descriptions of the noise models and SNR definition used in this
thesis.
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(a) Kite Reconstruction

1.5 v v 1.5 v
= True Object = True Object
= = Correct Noise Model = = Correct Noise Model
+ii.d. Noise Mode! G40 i.i.d. Noise Model
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(b) Square Reconstruction

Figure 5-2: Sample Reconstructions of Non-Sequential Algorithm, 27 views, 10 hypothesis

pruning, 10dB SNR on chords.

Error Measures Kite Object Square Object
True Model | i.i.d. Model | True Model | i.i.d. Model
Hausdorff Error (%) 6.57 20.41 15.79 19.22
Symm. Diff. Error (%) 8.08 32.66 10.67 24.19

Table 5.2: Comparison of Errors for Sample Reconstructions Using Non-Sequential Algo-

rithm.
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measurements with little noise which results in a degradation in the reconstruction quality
in most cases. It is interesting to note that for the Non-Sequential Algorithm, the kite
reconstruction has lower error measures for the correct assumed model while the square has
lower error measures for the i.i.d. assumed model. As in the previous chapter, we acknowl-
edge this result but defer any comparative analysis of the performance of the algorithm
in reconstructing these two objects to the Monte-Carlo analysis of Section 5.3.2. In addi-
tion, we note that the overall performance of this set of reconstructions was far superior
to those of the Sequential Algorithm shown in Table 4.1 (the same input data was used
in both reconstruction algorithms). In all error measures, the Non-Sequential Algorithm
produced smaller reconstruction errors. In particular, both the Hausdorff and Symmetric
Difference errors in the correct assumed model reconstructions were nearly halved in the

Non-Sequential reconstruction results.

5.3.2 Monte-Carlo Simulations

In the following sections Monte-Carlo simulations of reconstructions are used to test the
performance of the Non-Sequential Reconstruction Algorithm. As in the previous chapter,
all simulations are performed using the kite test object (with the exception of the last
section which is a comparison of reconstructions of the kite and square). The Monte-Carlo
simulations consist of 100 independent reconstructions for each reconstruction scenario. In
each plot error bars denote the 95% confidence intervals of the sample mean values that
result from the 100 runs of the algorithm. As defined at the beginning of this section, the
chord length data from each projection are uniform samples over the region ¢ = (-1,1].
Further, reconstructions are done for cases that assume the correct applied noise model for
the knot location data and also for cases that assume an i.i.d. model 5. The projection data
for all simulations are uniformly spaced samples over the angular region [0°,180°). Finally,
unless otherwise stated, T = 15 hypotheses are retained in each step of the algorithm, 5
chord measurements are taken per view, and the SNR on the chord length measurements

is set to 10dB.

5Refer to Section 3.2.3 for a complete discussion of the noise models used in this thesis.
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Figure 5-3: Performance as a Function of Number of Retained Hypotheses at Each Step of
the Non-Sequential Reconstruction Algorithm.

Reconstruction Error as a Function of Retained Hypotheses

Figure 5-3 shows the performance of the Non-Sequential Algorithm as a function of the
number of retained hypotheses, 7', at each step of the algorithm. The projection data
for each reconstruction consists of 18 views (for a total of 72 knot measurements and 90
chord measurements). Reconstructions were performed for T= 5, 10, 15, and 20 retained
hypotheses. Figure 5-3(a) is a plot of the Hausdorff error while Figure 5-3(b) is a plot of the
Symmetric Difference error. In both plots, the solid line corresponds to the reconstruction
assuming the correct applied model while the dashed line corresponds to the reconstruction

assuming the i.i.d. model.

As expected, the number of retained hypotheses is inversely related to the reconstruction
error. Unlike the Sequential Algorithm, these results do not display a huge reduction in
the error as the number of hypotheses is increased. Instead, all of the error curves are
somewhat flat and decrease relatively linearly as T is increased over the range from 5 to 20.
This result is attributed to the improved triangulation geometry introduced by altering the
order in which the views are entered into the algorithm. Basically, the algorithm is able
to recognize the optimal hypothesis even when only a few hypotheses are retained at each

step of the algorithm (unlike the Sequential Algorithm).

Consistent with the results of the previous section, the reconstructions that assume the
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correct applied noise model clearly outperform the reconstructions that assume the i.i.d.
model. Further, despite the differences in the relative error, all of the curves have the same

shape as a function of the number of retained hypotheses.

In addition, we also note that the level of error in the Non-Sequential Algorithm re-
constructions is considerably less than those of the Sequential Algorithm for all of the
performance measures. For example, in Figure 5-3(a) the percent Hausdorff error for the
reconstruction assuming the correct applied noise model (solid line plot) ranges from 16.62%
error with 5 retained hypotheses to 14.75% error with 20 retained hypotheses. The cor-
responding result for the Sequential Algorithm (shown by the solid line in Figure 4-8(a))
ranges from 26.64% error with 5 retained hypotheses to 17.99% error with 20 retained
hypotheses. These results are representative of the performance comparisons of the recon-
struction results of Figure 4-8 and Figure 5-3. This supports the claim that the improved
triangulation geometry of the Non-Sequential Algorithm results in better reconstructions

given the same input data.

Reconstruction Error as a Function of Chord Measurements

In this section we analyze the performance of the an-Sequential Algorithm as a function of
the number of chord measurements used in the reconstruction algorithm. Each reconstruc-
tion is based on 18 uniformly spaced views or a total of 72 knot location measurements.
We set the variance on the chord length measurements to a constant value throughout this
experiment. Thus, as the number of chord length measurements per view is varied, the SNR
(as defined in Section 3.2.3) will also change. The constant variance on the chord lengths
was chosen for the case of 10 chord measurements per view at a SNR of 10dB and the
noise on the knot locations was set with Equation (3.3) using this constant chord variance.
Noisy chord data were generated for 0, 5, 10, 15, and 20 chord measurements per view
and the resulting Hausdorff and Symmetric Difference reconstruction errors are plotted in
Figure 5-4 (a) and (b), respectively. As in the previous section, the solid line represents
reconstructions assuming the correct applied knot location noise model while the dashed

line represents reconstructions assuming the i.i.d. noise model.

The overall behavior of the curves in Figure 5-4 is as expected. The reconstruction error

for both measures decreases as the number of chord measurements used in the algorithm is
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Figure 5-4: Performance as a Function of Number of Chords Used in the Non-Sequential
Reconstruction Algorithm.

increased. As with the Sequential Algorithm, the most significant drop in error occurs as
the number of chords is increased for 0 to 5 samples per view. Again this lends credibility
to the importance of the chord measurements in determining the optimal hypothesis. As
with the performance analysis of the Sequential Algorithm, all of the error curves behave
similarly as a function of the number of chord measurements and the reconstructions that
assume the correct applied knot location noise model outperform the reconstructions that
assume the i.i.d. model. Further, as described in Section 4.5.3 of the previous chapter, the
Symmetric Difference error is much more sensitive to the number of chord measurements,

especially in the i.i.d. model reconstructions.

There are a number of significant differences between the reconstruction results pre-
sented here and the corresponding results of the Sequential Algorithm of Chapter 4. First,
the relative level of error for all of the reconstruction scenarios is significantly less for the
Non-Sequential Algorithm. Again, this is attributed to the improved triangulation geome-
try of the Non-Sequential Algorithm. The second difference is that the reconstruction errors
assuming the correct knot location noise model are a much stronger function of the number
of chord length measurements per view in the Non-Sequential Algorithm. This implies that
the combination of the improved triangulation geometry coupled with the chord measure-

ments help the algorithm to recognize the optimal hypothesis. This claim is particularly
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supported by comparing the reduction in both the Hausdorff error and the Symmetric Dif-
ference error as the number of chords is increased from 0 to 5 in the results assuming the
correct noise model of Figure 4-9 and Figure 5-4. As these results demonstrate, the error

reduction (for both measures) is much greater for the Non-Sequential Algorithm.

Reconstruction Error as a Function of SNR and Number of Views

This section presents the results of a series of independent Monte-Carlo simulations per-
formed at various SNRs and numbers of views (refer to Figure 5-5) to characterize the effect
of these parameters on the Non-Sequential Algorithm. Reconstructions are performed for
SNRs of 0dB, 10dB, 20dB, and 30dB and numbers of views equal to 9, 18, 27, and 54.
Figure 5-5(a) and (b) present the Hausdorff and Symmetric Difference errors, respectively,
for reconstructions assuming the correct applied knot location noise model. Similarly, Fig-
ure 5-5(c) and (d) present the same error measures for reconstructions assuming an i.i.d.

noise model for the knot location data.

There are a number of observations that are consistent with all of the results presented
in Figure 5-5. The first observation is that the most dramatic decrease in error occurs
when the SNR is increased from 0dB to 10dB. As with the Sequential Algorithm, the Non-
Seqﬁential Algorithm is still unable to resolve the knot-to-vertex data associations in a high
noise scenario. The second observation common to all reconstructions i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>