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We report a lattice QCD determination of the πγ → ππ transition amplitude for the P-wave, I ¼ 1 two-
pion final state, as a function of the photon virtuality and ππ invariant mass. The calculation was performed
with 2þ 1 flavors of clover fermions at a pion mass of approximately 320 MeV, on a 323 × 96 lattice with
L ≈ 3.6 fm. We construct the necessary correlation functions using a combination of smeared forward,
sequential and stochastic propagators, and determine the finite-volume matrix elements for all ππ momenta

up to jP⃗j ¼ ffiffiffi
3

p
2π
L and all associated irreducible representations. In the mapping of the finite-volume to

infinite-volume matrix elements using the Lellouch-Lüscher factor, we consider two different para-
metrizations of the ππ scattering phase shift. We fit the q2 and s dependence of the infinite-volume
transition amplitude in a model-independent way using series expansions, and compare multiple different
truncations of this series. Through analytic continuation to the ρ resonance pole, we also determine the
πγ → ρ resonant transition form factor and the ρmeson photocoupling, and obtain jGρπγj ¼ 0.0802ð32Þð20Þ.

DOI: 10.1103/PhysRevD.98.074502

I. INTRODUCTION

During the last decade, there has been tremendous
progress with lattice QCD calculations of low-energy
hadron-hadron scattering amplitudes and the associated
resonances [1]. While the S-matrix is not directly accessible
from the lattice, the Lüscher quantization condition and its
generalizations [2–14] relate the infinite-volume scattering
amplitudes (and their resonance poles) with the discrete
finite-volume energy spectra computed on the lattice. A
widely studied example is ππ scattering in the P-wave,
I ¼ 1 channel, where the ρ resonance resides [15–28].
Going beyond spectroscopy, Lellouch and Lüscher

also found the relation between finite-volume and

infinite-volume 1 → 2 transition matrix elements for the
case of the nonleptonic weak decay K → ππ [29]. The
formalism was later extended to include all elastic states
below the inelastic threshold [30] and to moving frames
[7], and more recently to multiple coupled two-body
channels [8], matrix elements of arbitrary external currents
with four-momentum transfer [31,32], and 2 → 2 matrix
elements [33] (see also Refs. [34–39] for related work).
The first numerical calculations involving the Lellouch-

Lüscher formalism were performed for K → ππ, providing
an ab initio standard-model prediction of direct CP
violation in this process [40–42]. More recently, the
generalization of the formalism by Briceño, Hansen, and
Walker-Loud (BHWL) [31] was applied by the Hadron
Spectrum Collaboration to compute the πγ → ππ ampli-
tude, with the ππ system in a P wave, as a function of
photon virtuality and ππ invariant mass [43,44]. This
amplitude describes ρ photoproduction and radiative decay
[45,46], and also plays an important role in dispersion
relations used to calculate the hadronic contributions to the
anomalous magnetic moment of the muon [47–50]. Various
theoretical aspects of the πγ → ππ process have also been
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discussed in Refs. [51–57]. As far as the finite-volume
formalism is concerned, the πγ → ππ amplitude in the ρ
resonance region is one of the simplest 1 → 2 processes to
study on the lattice, because the ππ scattering is almost
completely elastic in the relevant energy region.
In this paper, we report a lattice QCD calculation of the

πγ → ππ transition with 2þ 1 flavors of clover-improved
Wilson fermions [58] at a pion mass of approximately
320 MeV, building upon our previous work on ππ scatter-
ing [28]. In contrast to the original Lellouch-Lüscher
approach to the nonleptonic K → ππ decay, where the
lattice parameters need to be tuned such that the final and
initial hadronic states have equal energy, the BHWL
formalism enables us to obtain the πγ → ππ amplitude
for all ππ energy levels and arbitrary momentum transfer.
In Sec. II, we discuss the πγ → ππ amplitude and related

quantities in the continuum. The parameters of our lattice
calculation are given in Sec. III. We describe the inter-
polating fields and correlation functions in Sec. IV, and the
extraction of the finite-volume matrix elements from these
correlation functions in Sec. V. The mapping from finite
volume to infinite volume using the Lellouch-Lüscher
factor is explained in Sec. VI. We carefully study a
model-independent approach for parametrizing the q2

and s dependence of the πγ → ππ amplitude in Sec. VII,
and present our results for the πγ → ππ cross section, the
πγ → ρ resonant form factor, the ρ meson photocoupling,
and the ρ radiative decay width in Sec. VIII.

II. ABOUT THE πγ → ππ PROCESS

The resonance photoproduction processes πγ → ρ are
obtained from the more general process πγ → ππ, where
the final ππ state is in P-wave and couples strongly to the ρ
resonance with isospin I ¼ 1, I3 ¼ 1 and JPC ¼ 1−−.
Throughout this paper (except where stated otherwise),
we allow the photon to be virtual, but continue to denote it
as just γ. The ππ photoproduction is described by the
continuum infinite-volume matrix element hππjJμð0Þjπi,
which is constructed from the initial state jπi, the insertion
of the QED current Jμ (defined without the factor of e)
and the final state jππi with I ¼ 1 and four-momentum

P ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ P⃗2

p
; P⃗Þ. The latter is projected to the P-wave,

so that it couples to the ρ resonance, where the polarization
of the system is described by ϵνðP;mÞ [59]. Due to the
Lorentz symmetry the matrix element decomposes like

hππjJμð0Þjπi¼2iVπγ→ππðq2;sÞ
mπ

ϵνμαβϵνðP;mÞðpπÞαPβ; ð1Þ

where q ¼ pπ − P is the photon four-momentum transfer.
Above, the current is taken in position space, and the
single-pion state is normalized as

hπ; p⃗0
πjπ; p⃗πi ¼ 2Ep⃗π

π ð2πÞ3δ3ðp⃗π − p⃗0
πÞ: ð2Þ

The P-wave two-pion states with polarization m are
given by

jππ; ffiffiffi
s

p
; P⃗; 1; mi

¼ 1ffiffiffiffiffiffi
4π

p
Z

dˆk⃗cmY�
1mðˆk⃗cmÞjππ;

ffiffiffi
s

p
; P⃗; ˆk⃗cmi; ð3Þ

where jππ; ffiffiffi
s

p
; P⃗; ˆk⃗cmi is a two-pion state with total

momentum P⃗, relative momentum direction unit vector
ˆ
k⃗cm in the center-of-momentum frame, and invariant massffiffiffi
s

p
. These states are normalized according to

hππ;
ffiffiffiffi
s0

p
; P⃗0; ˆk⃗

0
cmjππ;

ffiffiffi
s

p
; P⃗; ˆk⃗cmi

¼ 2E1ð2πÞ32E2ð2πÞ3δ3ðk⃗ − k⃗0Þδ3ðP⃗ − k⃗ − P⃗0 þ k⃗0Þ;
ð4Þ

where E1 and E2 are the individual pion energies,

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k⃗2
q

; ð5Þ

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ðP⃗ − k⃗Þ2
q

: ð6Þ
These normalizations of states imply that the matrix
element (1) is dimensionless and that Vπγ→ππ has units
of MeV−1. Notice that there is no explicit ρ label in the
amplitude; this is because the ρ is not a QCD asymptotic
state, but rather a resonance in P-wave ππ scattering with
I ¼ 1 associated with the pole in the scattering amplitude
T ππ→ππ at sP ≈m2

R þ imRΓR. The transition amplitude
Vπγ→ππ depends on both the photon four-momentum trans-
fer q2 and the ππ invariant mass s. Like T ππ→ππ , this
amplitude also has a pole at s ¼ sP; the residue at the pole
gives the ρ resonance photoproduction form factor. For s in
the vicinity of sP and at q2 ¼ 0, the amplitudes T ππ→ππ and
Vπγ→ππ behave like [32]

T ππ→ππðsÞ ∼
G2

ρππ

sP − s
; ð7Þ

Vπγ→ππð0; sÞ ∼
GρππGρπγ

sP − s
; ð8Þ

whereGρππ andGρπγ are the couplings of the ρ resonance to
ππ and πγ, respectively.
The ππ elastic scattering amplitude is related to the

scattering phase shift δðsÞ via

T ππ→ππðsÞ ¼
16π

ffiffiffi
s

p
k

1

cot δðsÞ − i
; ð9Þ

where k is the scattering momentum, defined byffiffiffi
s

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2
p

. Near a narrow resonance, the phase
shift is well described by parametrizations of the Breit-
Wigner type,
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cot δðsÞ ¼ m2
R − sffiffiffi
s

p
ΓðsÞ ; ð10Þ

where multiple different choices can be used for ΓðsÞ.
Inserting Eq. (10) into Eq. (9) gives

T ππ→ππðsÞ ¼
16π

ffiffiffi
s

p
k

ffiffiffi
s

p
ΓðsÞ

m2
R − s − i

ffiffiffi
s

p
ΓðsÞ : ð11Þ

Motivated by Eqs. (7) and (8), we write the photoproduc-
tion amplitude Vπγ→ππðq2; sÞ as

Vπγ→ππðq2; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
16π

kΓðsÞ

s
Fðq2; sÞ

cot δðsÞ − i

¼
ffiffiffiffiffiffiffiffiffiffiffi
16π

kΓðsÞ

s
Fðq2; sÞ sin δðsÞeiδðsÞ; ð12Þ

where the form factor Fðq2; sÞ no longer has a pole in s,
and becomes equal to the photocoupling Gρπγ for s ¼
m2

R þ imRΓR and q2 ¼ 0. More generally, we define the
resonant form factor for arbitrary photon virtuality as

Fπγ→ρðq2Þ ¼ Fðq2; m2
R þ imRΓRÞ: ð13Þ

Note that Eq. (12) explicitly satisfies Watson’s theorem.
In Ref. [28] we found that our ππ scattering amplitude is

well described by the BWI and BWII Breit-Wigner models
discussed in Sec. II of that same reference, so we continue
to utilize the Breit-Wigner formulas throughout this work.
The nonresonant backgrounds were found to be consistent
with 0 and are not included in the ππ scattering amplitude
here. For convenience, we repeat the definitions of BWI
and BWII here.

(i) BWI:

ΓIðsÞ ¼
g2ρππ
6π

k3

s
; ð14Þ

where gρππ is the coupling between the ππ scattering
channel and the ρ resonance in the Breit-
Wigner model.

(ii) BWII:

ΓIIðsÞ ¼
g2ρππ
6π

k3

s
1þ ðkRr0Þ2
1þ ðkr0Þ2

; ð15Þ

where kR is the scattering momentum at
ffiffiffi
s

p ¼ mR
and r0 is the radius of the centrifugal barrier [60].

We consider two physically observable quantities we can
determine from jhππjJμð0Þjπij. The first is the πγ → ππ
cross section as a function of ππ invariant mass, which in
the center-of-momentum frame is given by [43]

σðπγ → ππ; s; q2Þ ¼ e2

16π
kjp⃗πj

4jVπγ→ππðq2; sÞj2
m2

π
: ð16Þ

This cross section can be measured at q2 ¼ 0, i.e., with a
real photon. A second physically observable quantity is
related to the ρ resonance, which appears in the ππ system.
The ρ radiative decay width Γðρ → πγÞ is determined by
the photocoupling Gρπγ ¼ Fð0; m2

R þ imRΓRÞ as [61]

Γðρ → πγÞ ¼ 2

3
α

�ðm2
ρ −m2

πÞ
2mρ

�
3 jGρπγj2

m2
π

: ð17Þ

III. LATTICE PARAMETERS

This calculation is performed on a single ensemble of
gauge-field configurations with 2þ 1 flavors of dynamical
clover fermions. This is the same ensemble as used in our
calculation of ππ scattering [28], and we refer the reader to
that reference for further details. The main parameters are
summarized in Table I. The strange-quark mass is con-
sistent with its physical value as determined via the “ηs”
mass [62,63]. The lattice scale was determined from the ϒ
ð1SÞ − ð2SÞ splitting [62,64], where nonrelativistic QCD
(NRQCD) [65] with the physical b-quark mass was used to
calculate the masses. The renormalization factor ZV of the
local vector current was determined by the LHPC
Collaboration as explained in Ref. [66].

IV. INTERPOLATING FIELDS AND
CORRELATION FUNCTIONS

To determine the finite-volume matrix elements we are
interested in, we need to compute two-point functions for
the single-pion system (JPC ¼ 0−þ, I ¼ 1, I3 ¼ 1) and for
the two-pion system (JPC ¼ 1−−, I ¼ 1, I3 ¼ 1), as well as
three-point functions with an insertion of the electromag-
netic current. The generalized eigenvectors obtained in the
spectroscopic analysis of the two-point functions are then
used to construct optimized three-point functions.

TABLE I. The main parameters of the lattice gauge-field
ensemble used in this work. The uncertainties given here are
statistical only.

C13

N3
L × NT 323 × 96

β 6.1
Nf 2þ 1

csw 1.2493097
amu;d −0.285
ams −0.245
Nconfig 1041
a [fm] 0.11403(77)
L [fm] 3.649(25)
amπ 0.18295(36)
amN 0.6165(23)
amηs 0.3882(19)
mπL 5.865(32)
ZV 0.7903(2)
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A. Two-point functions overlapping with JPC = 0− +

The projection of the single-pion field to an irreducible
representation is trivial; i.e., it resides in the (pseudoscalar)

Að−Þ
1 irreducible representation [4] for all momenta. For

clarity we suppress the group indices of the single-pion
field. We use the following interpolating operator:

Op⃗π
π ðtπÞ ¼

X
x⃗

d̄ðtπ; x⃗Þγ5uðtπ; x⃗Þeip⃗π ·x⃗; ð18Þ

with momentum p⃗π . The associated correlator Cp⃗π
π is

Cp⃗π
π ðtÞ ¼ hOp⃗π

π ðtπÞOp⃗π†
π ðtπ − tÞi: ð19Þ

The ground-state contribution to the pion correlator, which
is obtained in the limit of large t, has the decomposition

Cp⃗π
π ðtÞ ¼ Zp⃗π

π Zp⃗π�
π

2Ep⃗π
π

e−E
p⃗π
π t; ð20Þ

where the overlap factor is defined as

h0jOp⃗π
π jπ; p⃗πiFV ¼ Zp⃗π

π ð21Þ
and the finite-volume states are normalized such that

hπ; p⃗0
πjπ; p⃗πiFV ¼ 2Ep⃗π

π δp⃗π ;p⃗0
π
: ð22Þ

Because the pion is a stable hadron, its energy is affected
only by exponentially suppressed finite-volume effects,
which are negligible for our value of mπL. The dispersion
relation of the pion was presented in Ref. [28] and follows
the relativistic form well.

B. Two-point functions overlapping with JPC = 1− −

The JPC ¼ 1−− two-point functions with momentum P⃗
are constructed using two types of interpolators, the single-
hadron and the multihadron interpolators,

Oq̄qðt; P⃗Þ ¼
X
x⃗

d̄ðt; x⃗ÞΓiuðt; x⃗ÞeiP⃗·x⃗; ð23Þ

Oππðt; p⃗1; p⃗2Þ ¼
1ffiffiffi
2

p ðπþðt; p⃗1Þπ0ðt; p⃗2Þ

− π0ðt; p⃗1Þπþðt; p⃗2ÞÞ; ð24Þ

where p⃗1 þ p⃗2 ¼ P⃗. To project these interpolators to
definite irreps Λ of the little group LGðP⃗Þ, we use the
projection formulas with representation matrices [67],

OP⃗;Λ;r
q̄q ðtÞ ¼ dimðΛÞ

NLGðP⃗Þ

X
R̂∈LGðP⃗Þ

ΓΛ
rrðR̂ÞR̂Oq̄qðt; P⃗Þ; ð25Þ

and

OP⃗;Λ;r
ππ ðtÞ ¼ dimðΛÞ

NLGðP⃗Þ

×
X

R̂∈LGðP⃗Þ
ΓΛ
rrðR̂ÞOππðt; P⃗=2þ R̂ p⃗; P⃗=2− R̂ p⃗Þ;

ð26Þ

where p⃗ takes on the values

p⃗ ¼ P⃗
2
þ 2π

L
m⃗; m⃗ ∈ Z3: ð27Þ

Above, dimðΛÞ is the dimension of the irrep, NLGðP⃗Þ is the

order of the little group LGðP⃗Þ, and ΓΛ
rrðRÞ are suitably

chosen representation matrices of R̂ ∈ LGðP⃗Þ. In our
choice of basis indexing and projecting to finite-volume
irreps, we use the x, y, z polarization indices and not the
helicity basis like in Refs. [68,69].
In the following, we jointly denote the projected inter-

polators as

OP⃗;Λ;r
i ðtÞ; ð28Þ

where the index i labels the type: i ¼ 1 and i ¼ 2
correspond to the quark-antiquark interpolators with Γi ¼
γi and Γi ¼ γ0γi, respectively, and i ¼ 3, 4 correspond to
two-pion interpolators with different values of jp⃗1j
and jp⃗2j.
From the interpolators OP⃗;Λ;r

i we calculate a correlation

matrix CP⃗;Λ;r
ij ðtÞ ¼ hOP⃗;Λ;r

i ðtππ þ tÞOP⃗;Λ;r†
j ðtππÞi. Its con-

struction in terms of forward, sequential, and stochastic
quark propagators is discussed in Ref. [28]. The spectral
decomposition of the two-point correlation matrix reads

CP⃗;Λ;r
ij ðtÞ ¼

X
n

Zn;P⃗;Λ
i Zn;P⃗;Λ†

j

2EP⃗;Λ
n

e−E
P⃗;Λ
n t: ð29Þ

As in Sec. IVA, we define the overlap factors as

h0jOP⃗;Λ;r
i jn; P⃗;Λ; riFV ¼ Zn;P⃗;Λ

i ; ð30Þ
and the finite-volume states are normalized such that

hn0; P⃗0;Λ0;r0jn;P⃗;Λ;riFV¼ 2EP⃗;Λ
n δn;n0δP⃗;P⃗0δΛ;Λ0δr;r0 : ð31Þ

To extract the energies and overlap factors from the
correlation matrix, we use the variational analysis [70–
73] by solving the generalized eigenvalue problem

CP⃗;Λ;r
ij ðtÞvn;P⃗;Λj ðt0Þ ¼ λP⃗;Λn ðt; t0ÞCP⃗;Λ;r

ij ðt0Þvn;P⃗;Λj ðt0Þ; ð32Þ
where we fix the normalization to

vn;P⃗;Λ†i ðt0ÞCP⃗;Λ;r
ij ðt0Þvm;P⃗;Λ

j ðt0Þ ¼ δnm: ð33Þ
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Throughout this paper, we use the summation convention
for repeated indices i or j. The principal correlators
asymptotically behave as

λP⃗;Λn ðt; t0Þ ¼ e−E
P⃗;Λ
n ðt−t0Þ; ð34Þ

and we use single-exponential fits to extract EP⃗;Λ
n [28].

The generalized eigenvector vn;P⃗;Λi ðt0Þ can also be used
to construct the optimized interpolator [70–73]

On;P⃗;Λ;rðt; t0Þ ¼ vn;P⃗;Λ†i ðt0ÞOP⃗;Λ;r
i ðtÞ; ð35Þ

which has a dominant overlap to a single well-defined state
labeled with ðn; P⃗;Λ; rÞ. Note that, although we perform
the analysis independently for different rows r of the irrep
Λ, in the infinite-statistics limit the energies and eigenvec-
tors are independent of r.

An important quantity related to the energy EP⃗;Λ
n of the

ππ system in the moving frame P⃗ is the invariant massffiffiffiffiffiffiffiffi
sP⃗;Λn

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEP⃗;Λ

n Þ2 − P⃗2

q
; ð36Þ

which is also used to define the scattering momentum kP⃗;Λn

via ffiffiffiffiffiffiffiffi
sP⃗;Λn

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ðkP⃗;Λn Þ2
q

: ð37Þ

C. The three-point functions

The current insertion that represents the interactions
between the photon and the hadrons depends on the
photon momentum q⃗, which combined with the initial
and final state momenta satisfies momentum conservation:
P⃗þ q⃗ − p⃗π ¼ 0. For the current insertion operator we use

JμðtJ; q⃗Þ ¼
X
x⃗

eiq⃗·x⃗JμðtJ; x⃗Þ; ð38Þ

with the local current

JμðtJ; x⃗Þ ¼ ZV

�
2

3
ūðtJ; x⃗ÞγμuðtJ; x⃗Þ

−
1

3
d̄ðtJ; x⃗ÞγμdðtJ; x⃗Þ

�
: ð39Þ

The renormalization coefficient ZV was determined in
Ref. [66] and is listed in Table I.
The three-point correlation functions are then obtained

from the sink/source interpolators and current insertion as

Cp⃗π ;P⃗;Λ;r
3;μ;i ðtπ; tJ; tππÞ
¼ hOp⃗π

π ðtπÞJμðtJ; q⃗ÞOP⃗;Λ;r†
i ðtππÞi; ð40Þ

where tππ is the source time, tJ is the current insertion time
and tπ is the sink time. The three-point function is
expressed in terms of quark propagators by evaluating
Wick contractions. Figure 1 shows the quark-flow diagrams

needed to calculate the Cp⃗π ;P⃗;Λ;r
3;μ;i three-point functions. The

current-disconnected diagrams labeled (a) and (b), i.e., the
diagrams where the quark flow goes from the current Jμ
directly back to the current Jμ, are omitted in this study. For
the nucleon electromagnetic form factors, the current-
disconnected contributions are known to be of order 1%
for the quark masses used here [74].
The Wick contractions depicted in Fig. 1 are constructed

from point-to-all, sequential and stochastic time slice
propagators. The technique builds upon and extends the
scheme used in Ref. [28] for the construction of two-point
correlation functions. This combination of propagator types
allows for a compromise in flexibility to construct all
required diagrams, minimal input of stochastic noise into
correlation functions and economy in the cost of producing
quark propagators and contractions.
The point-to-all propagators are obtained from the inver-

sion of the Dirac operator D on a fully spin- and color-
diluted point-source localized at fixed source location y,

(a) (b) (c)

(d) (e) (f)

FIG. 1. The different topologies of Wick contractions that make up the three-point function Cp⃗π ;P⃗;Λ;r
3;μ;i ðtπ ; tJ; tππÞ.
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Sðx; yÞabαβ ¼
X
z

D−1ðx; zÞacαγηðy;b;βÞðzÞcγ ;

ηðy;b;βÞðxÞbβ ¼ δx;yδ
abδαβ;

a; b ¼ 0; 1; 2; α; β ¼ 0; 1; 2; 3: ð41Þ
The sequential propagator results from performing an

additional inversion of the Dirac operator on a point-to-all
propagator on sequential source time slice t with insertion
of a spin matrix Γ and momentum p⃗ according to

Tðx; t;Γ; p⃗; yÞabαβ ¼
X
z⃗

Sðx; t; z⃗ÞacαγΓγδeip⃗·z⃗Sðt; z⃗; yÞcbδβ : ð42Þ

For the purpose of this work the sequential source time slice
always coincides with the source time slice, t ¼ ty ¼ y0
and Γ ¼ γ5 for the pseudoscalar vertex.
Finally, the stochastic propagators follow from inverting

the Dirac matrix on stochastic time slice sources, whose
components on a fixed time slice ty are independently and
identically set with Z2 þ iZ2 noise,

Sðx; yÞabαβ ¼ E½ϕðtyÞðxÞaαξðtyÞðyÞb�β �; ð43Þ

ξðtyÞðxÞbβ ¼ δtx;tyξ
ðtyÞðx⃗Þbβ ∈

�
� 1ffiffiffi

2
p � iffiffiffi

2
p

�
∀ x⃗; β; b;

ð44Þ

ϕðtyÞðxÞaα ¼
X
z

D−1ðx; zÞabαβηðtyÞðzÞbβ; ð45Þ

such that we have the expectation values

E½ξðtÞðxÞaα� ¼ 0; ð46Þ

E½ξðtÞðxÞaαξðtÞðyÞb�β � ¼ δt;txδtx;tyδx⃗;y⃗δ
abδαβ: ð47Þ

As a variant of the stochastic time slice propagator defined
in Eq. (43) the one-end-trick based on spin diluted
stochastic time slice sources is used to construct diagrams
(e) and (f) in Fig. 1. The sources in Eq. (44) are thus
modified according to

ξðty;p⃗;λÞðxÞbβ ¼ δty;txδλβξ
ðtyÞðx⃗Þbeip⃗·x⃗; λ ¼ 0; 1; 2; 3: ð48Þ

The one-end-trick then allows for the representation of a
product of quark propagatos by two stochastic propagators
through a vertex given again by Γ and p⃗ as

E½ϕðty;p⃗;κÞðxÞaαðΓγ5Þκλϕðty;0;λÞðzÞb�β0 ðγ5Þβ0β�
¼ Sðx; ty; y⃗Þacακeip⃗·y⃗ðΓγ5ÞκλSðz; ty; y⃗Þbc�β0λ ðγ5Þβ0β
¼ ðSðx; ty; y⃗Þeip⃗·y⃗ΓSðty; y⃗; zÞÞabαβ: ð49Þ

Equation (49) used in addition γ5-hermiticity for the Dirac
propagator, Sðx; yÞ† ¼ γ5Sðy; xÞγ5.

The quark propagator loops of the connected diagrams
(c) and (d) are closed using the stochastic time slice
propagator from current vertex Jμ to pion vertex d̄γ5u at
sink. Based on the application of point-to-all and stochastic
propagator these diagrams are factorized into elementary
contractions. For diagram (c), we have

TrðSðxi; xJÞγμSðxJ; xfÞγ5Sðxf; xiÞΓiÞ
¼ E½ηϕðxJÞaαηξðxfÞbβ�δabðΓiγ5Þβα;

ηϕðxJÞ ¼ SðxJ; xiÞ†γ5γμϕðtπÞðxJÞ;
ηξðxfÞ ¼ ξðtπÞðxfÞ†γ5Sðxf; xiÞ; ð50Þ

where ηϕ;ξ are contracted, Fourier transformed and stored
separately as ηϕðtJ; q⃗Þ and ηξðtπ; p⃗πÞ for each stochastic
sample. Subsequently they are used to recombine the
diagram for all required momenta q⃗, p⃗π as well as any
vertex Γi and P⃗ at the source. Diagram (d) follows
analogously by promoting the point-to-all propagator
Sðxf; xiÞ in Eq. (50) to a sequential propagator,

TrðSðxi1 ; xJÞγμSðxJ; xfÞγ5Sðxf; xi2Þ
× γ5e

ip⃗i2
x⃗i2Sðxi2 ; xi1ÞΓiÞ

¼ E½ηϕðxJÞaαηξðxfÞbβ�δabðΓiγ5Þβα;
ηϕðxJÞ ¼ SðxJ; xi1Þ†γ5γμϕðtπÞðxJÞ;
ηξðxfÞ ¼ ξðtπÞðxfÞ†γ5Tðxf; tππ; γ5; p⃗i2 ; xi1Þ: ð51Þ

For diagram (e) in Fig. 1, the one-end-trick setup in
Eq. (49) leads to the factorization of the diagram,

TrðSðxi1 ; xJÞγμSðxJ; xi2Þeip⃗i2
x⃗i2

× γ5Sðxi2 ; xfÞγ5Sðxf; xi1ÞΓiÞ
¼ E½ηðλÞϕ ðxJÞαηðλÞϕ̄

ðxfÞβ�ðΓiγ5Þβα;
ηðλÞϕ ðxJÞ ¼ SðxJ; xi1Þ†γ5γμϕðtππ ;p⃗i2

;λÞðxJÞ;
ηðλÞ
ϕ̄
ðxfÞ ¼ ϕðtππ ;0;λÞðxfÞ†Sðxf; xi1Þ: ð52Þ

Finally, diagram (f) is calculated as the product of propa-
gator loop traces using again the one-end-trick,

TrðSðxi2 ; xJÞγμSðxJ; xi2Þγ5Þeip⃗i2
x⃗i2

× TrðSðxi1 ; xfÞγ5Sðxf; xi1ÞΓiÞ
¼ E½ϕðtππ ;0;λÞðxJÞ†γ5γμϕðtππ ;p⃗i2

;λÞ�
× TrðSðxf; xi1Þ†Sðxf; xi1ÞΓiγ5Þ: ð53Þ

All quark propagators are smeared at their source and sink
side in the same way as in Ref. [28], except the end of
propagators joining the local current insertion vertex.
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D. Optimized three-point functions

The spectral decomposition of the three-point function

Cp⃗π ;P⃗;Λ;r
3;μ;i ðtπ; tJ; tππÞ, keeping as before only the ground-

state contribution for the pion (for large tπ − tJ), is

Cp⃗π ;P⃗;Λ;r
3;μ;i ðtπ; tJ; tππÞ
¼

X
n

Zp⃗π
π Zn;P⃗;Λ†

i hπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFV

×
e−E

p⃗π
π ðtπ−tJÞe−E

P⃗;Λ
n ðtJ−tππÞ

2EP⃗;Λ
n 2Ep⃗π

π

: ð54Þ

For the ππ system we project to the nth state. This allows us

to have a definite invariant mass,
ffiffiffiffiffiffiffiffi
sP⃗;Λn

q
, and momentum

transfer, ðq2Þp⃗π

n;P⃗;Λ
¼ ðEP⃗;Λ

n − Ep⃗π
π Þ2 − q⃗2, in our matrix

element. To achieve this we utilize the orthogonality
between the generalized eigenvectors and overlap factors,1

vnP⃗;Λi ðt0ÞZmP⃗;Λ†
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2EP⃗;Λ

n

q
eE

P⃗;Λ
n t0=2δnm; ð55Þ

and construct the optimized three-point function [75–77]

Ωp⃗π ;P⃗;Λ;r
3;μ;n ðtπ; tJ; tππ; t0Þ
¼ vnP⃗;Λi ðt0ÞCp⃗π ;P⃗;Λ;r

3;μ;i ðtπ; tJ; tππÞ
¼ hOp⃗π

π ðtπÞJμðtJ; q⃗ÞOn;P⃗;Λ;rðtππ; t0Þi: ð56Þ

This gives

Ωp⃗π ;P⃗;Λ;r
3;μ;n ðtπ; tJ; tππ; t0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2EP⃗;Λ

n

q
eE

P⃗;Λ
n t0=2Zp⃗π

π hπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFV

×
e−E

p⃗π
π ðtπ−tJÞe−E

P⃗;Λ
n ðtJ−tππÞ

2EP⃗;Λ
n 2Ep⃗π

π

; ð57Þ

and we see that the optimized three-point function overlaps
only to the single definite state jn; P⃗;Λ; ri.

V. DETERMINING THE FINITE-VOLUME
MATRIX ELEMENTS

To extract the finite-volume matrix elements
hπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFV from the correlation functions,
we construct the ratio

Rp⃗π ;P⃗;Λ;r
μ;n ðtπ; tJ; tππÞ

¼ Ωp⃗π ;P⃗;Λ;r
3;μ;n ðtπ; tJ; tππ; t0ÞΩp⃗π ;P⃗;Λ;r†

3;μ;n ðtπ; t0; tππ; t0Þ
Cp⃗π
π ðΔtÞλP⃗;Λn ðΔt; t0Þ

; ð58Þ

where Cp⃗π
π is the pion correlator, λP⃗;Λn is the principal

correlator of the variational analysis, Δt ¼ tπ − tππ is the
source-sink separation, and t0 ¼ tππ þ tπ − tJ. The t0
dependence of the optimized three-point function cancels
with the t0 dependence of the principal correlator. Inserting
Eq. (57) into Eq. (58) gives (for large time separations)

Rp⃗π ;P⃗;Λ;r
μ;n ðtπ; tJ; tππÞ ¼

jhπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFVj2
4EP⃗;Λ

n Ep⃗π
π

:

ð59Þ
The matrix elements determined from Eq. (58) still contain
residual excited-state contamination that decays exponentially
for largeΔt, tJ − tππ , and tπ − tJ.We have data forΔt=a ¼ 8,
10, 12. There are several ways to proceed from this point on.

(i) Set tJ − tππ ¼ Δt=2 and fit only the Δt dependence
of the matrix element with an excited-state model, as
for example in Ref. [78].

(ii) Fit both the Δt and tJ − tππ dependence with an
excited-state model.

(iii) Fit constants to the ratios (assuming that only the
desired initial and final states contribute), varying the
time ranges to assess residual contamination.

We found that options (1) and (2) did not yield stable fits,
because we have too few source-sink separations and the
statistical uncertainties are too large. We therefore use option
(3), where we investigate whether the various fits are
statistically compatible, and estimate a systematic uncertainty
associated with the fit choice. In Fig. 2 we present results for
the matrix elements jhπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFVj at repre-
sentative kinematic points (plots for the other kinematic
points are shown inAppendixA). As explained in the caption
of the figure, we perform fits for many different time ranges
and then choose one that appears to have plateaued for the
further analysis. To estimate the systematic uncertainty
associated with the fit range for the ratio, we compute the
change in the central value when going from the chosen fit to
Δt=a ¼ 10, as marked with an X in Fig. 2. As a cross-check,
we also tested an alternative method for extracting the matrix
elements, in which we did not use ratios, but fitted the three-
point functions (57) after dividing out the time dependence
and overlap factors. That method gives results consistentwith
the ratio method. Because the ratio (59) also depends on the

energies EP⃗;Λ
n , we additionally include a second systematic

uncertainty associated with the choice of fit range used in the
spectrum analysis of Ref. [28]. The numerical results for all
kinematic points are listed in Tables IVand V in Appendix A.
There, both systematic uncertainties have been added in
quadrature to the statistical uncertainties.

1Note that this choice depends on the normalization of the
generalized vectors [cf. Eq. (33)].
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VI. MAPPING FROM FINITE VOLUME TO
INFINITE VOLUME

A. Lellouch-Lüscher factors

The mapping between a finite-volume matrix element
jhπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFVj calculated on the lattice
and the corresponding infinite-volume matrix element
jhπ; p⃗πjJμð0Þjs; q2; P⃗;Λ; riIVj, for our normalization of
states, is [29,31,32,36]

jhπ; p⃗πjJμð0Þjs; q2; P⃗;Λ; riIVj2
jhπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFVj2

¼ 1

2EP⃗;Λ
n

16π

ffiffiffiffiffiffiffiffi
sP⃗;Λn

q
kP⃗;Λn

�∂δ
∂Eþ ∂ϕP⃗;Λ

∂E
�����

E¼EP⃗;Λ
n

: ð60Þ

Note that the current in the infinite-volumematrix element is
evaluated in position space at x⃗ ¼ 0, while the current in the
finite-volume matrix element is projected to momentum q⃗.
The energy-dependence of the ππ P-wave scattering phase
shift δ has to be determined from the Lüscher analysis on the
same lattice. We use our Breit-Wigner fits from Ref. [28], as

already discussed in Sec. II. The function ϕP⃗;Λ in Eq. (60)
appears in the Lüscher quantization condition as

cot δ ¼ cotϕP⃗;Λ ¼
X
l;m

cP⃗;Λlm wlmðk2P⃗;ΛÞ; ð61Þ

where wlm is defined as

wlmðk2Þ ¼
ZP⃗
lmð1; ðkL=ð2πÞÞ2Þ

π3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
γðkL

2πÞlþ1
; ð62Þ

FIG. 2. Examples of results for the finite-volume matrix elements jhπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; riFVj. The left three panels show the data as
a function of tJ − tππ for the three different source-sink separations. The right panels show the fitted values for multiple different fit
ranges, which are indicated at the bottom. There, the first set of numbers are the included source-sink separations, and the second set of
numbers are the distances from the midpoint that are included for each of these source-sink separations. The blue bands show the chosen
fit result, and the half-crosses mark the fits that are used to estimate systematic uncertainties. The values of χ2=dof are also given. The
quantity denoted as LD is the kinematic factor appearing next to 2iVπγ→ππ=mπ in Eq. (1).
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with the generalized zeta function ZP⃗
lm and the Lorentz

gamma factor γ. The quantization conditions for cotϕP⃗;Λ

used are discussed in Sec. VI of Ref. [28]; the nonzero

factors cP⃗;Λlm appearing in elastic P-wave ππ scattering are
also listed in Table II. The right-hand side of Eq. (60), known
as the Lellouch-Lüscher factor, depends on the ππ system’s
momentum P⃗, irreducible representation Λ, invariant massffiffiffiffiffiffiffiffi
sP⃗;Λn

q
, and scattering momentum kP⃗;Λn . In Fig. 3 we show

the Lellouch-Lüscher factors as a function of invariant mass.

Calculating the derivative ∂ϕP⃗;Λ

∂E in practice means that we
must calculate the derivative of wlmðk2Þ,

∂ϕP⃗;Λ

∂E ¼ s2 − ðm2
1 −m2

2Þ2
2

ffiffiffi
s

p
3

1

1þ cot2ϕP⃗;Λ

×
X
l;m

clm
∂wlmðk2Þ

∂k2 ; ð63Þ

where m1, m2 are the two hadron masses; in the case of ππ
scattering m1 ¼ m2 ¼ mπ . In the rest frame, the derivative
of Zlm is again a zeta function,

∂
∂k̂2 Z

P⃗¼0⃗
lm ðs; k̂2Þ ¼ sZP⃗¼0⃗

lm ðsþ 1; k̂2Þ: ð64Þ

Since this does not hold in moving frames, we compute the
derivative numerically.
In Fig. 3 we can see that the two different models for the

phase shift δ, BWI and BWII, are statistically compatible.
Nevertheless, we use both Breit-Wigner models in our
analysis to quantitatively assess this.

The fitting systematic uncertainties in EP⃗;Λ
n enter in the

Lellouch-Lüscher factors not only via the explicit factor of

EP⃗;Λ
n in Eq. (60), but also through the phase-shift para-

metrization fitted to these energies via the Lüscher quan-
tization condition. In Ref. [28], we estimated the systematic

uncertainties in EP⃗;Λ
n by comparing the results of expo-

nential fits with start times tmin and tmin þ a. To correctly
propagate these uncertainties to the Breit-Wigner param-
eters, we then performed the Lüscher analysis and the
Breit-Wigner fits for both sets of energies [28]. In the
present work, we therefore also repeat the mappings of
the πγ → ππ matrix elements (and the subsequent analysis)
for both sets of Breit-Wigner parameters.

B. Lorentz decomposition of the infinite-volume
matrix elements

The infinite-volume matrix elements hs; q2; P⃗;Λ; rjJμð0;
q⃗Þjπ; p⃗πiIV obtained from Eq. (60) still carry the finite-
volume irrep indices P⃗, Λ, r. The infinite-volume states
hs; q2; P⃗;Λ; rj are linear combinations of the states labeled
by the continuum polarization index m in Eq. (3). The
coefficients of these linear combinations are given by the
irrep projection formula Eq. (25). We form the same linear
combinations of the polarization vectors on the right-hand
side of Eq. (1) to obtain the irrep-projected form-factor
decompositions. Taking this into account, we can deter-
mine the values of the infinite-volume transition amplitude
Vπγ→ππ. Most kinematic points only have a single possible
Lorentz-decomposition factor, but at certain values of
(s, q2) there are two, as shown in Fig. 4. We average over
the two resulting values ofVπγ→ππ, which reduces the full set
of 59 matrix elements to 48 distinct kinematic points (s, q2).

VII. FITTING THE AMPLITUDE Vπγ→ππ

A. Parametrization of the infinite-volume
transition amplitude

To allow the calculation of observables, the transition
amplitude Vπγ→ππðq2; sÞ determined with lattice QCD at 48
discrete values of q2 and s needs to be fitted to an analytic
parametrization. In Sec. II, we factored out the ρ pole in s
according to Watson’s theorem,

TABLE II. Nonzero values of clm appearing in the quantization
condition for elastic P-wave ππ scattering. Above, the term with

Re and Im means −
ffiffi
8
3

q
ðRe½w22� þ Im½w22�Þ.

L
2π P⃗ Λ (l, m) cP⃗;Λlm

(0,0,0) T1 (0,0) 1

(0,0,1) A2 (0,0) 1
(2,0) 2

E (0,0) 1
(2,0) −1

(0,1,1) B1 (0,0) 1
(2,0) 1

2

(2,1) i
ffiffiffi
6

p
(2,2) −

ffiffi
3
2

q
B2 (0,0) 1

(2,0) 1
2

(2,1) −i
ffiffiffi
6

p
(2,2) −

ffiffi
3
2

q
B3 (0,0) 1

(2,0) −1
(2,2)

ffiffiffi
6

p

(1,1,1) A2 (0,0) 1
(2,1) −i

ffiffi
8
3

q
(2,2) −

ffiffi
8
3

q
ðReþ ImÞ

E (0,0) 1
(2,0) i

ffiffiffi
6

p
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Vπγ→ππðq2; sÞ ¼
Fðq2; sÞ

m2
R − s − i

ffiffiffi
s

p
ΓiðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πsΓiðsÞ

k

r
: ð65Þ

What remains is the transition form factor Fðq2; sÞ, which
should not have any additional poles in s in our region of
interest. To obtain a model-independent parametrization of
Fðq2; sÞ, we perform a two-dimensional Taylor expansion
in the variables

S ¼ s −m2
R

m2
R

ð66Þ

and

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð67Þ

after dividing out the lowest expected pole in q2,

Fðq2; sÞ ¼ 1

1 − q2

m2
P

X
n;m

AnmznSm: ð68Þ

The variable S was chosen to be dimensionless and small
near the resonance. The definition of z maps the complex
q2 plane, cut along the real axis for q2 > tþ, to the interior
of the unit circle [79–84]. The constant t0 determines which
value of q2 is mapped to z ¼ 0; we choose t0 ¼ 0. The
constant tþ should be set to the lowest branch point. For the
QED current, the branch cut starts at ð3mπÞ2 and the lowest

pole is located at m2
ω. However, because we neglect

the disconnected contributions, we use tþ ¼ ð2mπÞ2 and
mP ¼ mρ.

2

In practice, the series (68) needs to be truncated. We
organize these truncations into three different families.
(F1) Combined order K:

Fðq2; sÞ ¼ 1

1 − q2

m2
P

X
nþm≤K

AnmznSm: ð69Þ

(F2) Order N in z, combined order K:

Fðq2; sÞ ¼ 1

1 − q2

m2
P

XN
n¼0

XK−n
m¼0

AnmznSm: ð70Þ

(F3) Order N in z, order M is S:

Fðq2; sÞ ¼ 1

1 − q2

m2
P

XN
n¼0

XM
m¼0

AnmznSm: ð71Þ

The first two families, F1 and F2, cut the series at the
combined z and S order, while the third family F3
separately specifies the orders in z and S. In the limit of
large K, N, M, all parametrizations become equal.

FIG. 3. The Lellouch-Lüscher factors as a function of invariant mass, for themomentum frames and irreps used here. The thick black lines
show the noninteracting Lellouch-Lüscher factors (without the phase-shift derivative). The thin blue lines and dashed red lines show the full
Lellouch-Lüscher factors, using the BWI andBWIImodels [28] for the scattering phase shift. The bands indicate the statistical uncertainties.

2Becausem2
P > tþ, it is not actually necessary to factor out the

pole, but there is no harm in doing so.
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FIG. 4. Transition amplitude values determined from the matrix elements jhs; q2; P⃗; ;Λ; rjJμð0; q⃗Þjπ; p⃗πijIV, for those kinematic points
(s, q2) where the choices of momentum directions and irrep indices yield two different Lorentz decomposition (LD) factors. For each
kinematic point, we divide by the LD factors and average the two resulting values of Vπγ→ππ . On the horizontal axes, the indices 1 and 2
correspond to the two different Lorentz decompositions indicated in the legend, while the index 0 corresponds to the average. The data
shown here are based on the BWII Breit-Wigner parametrization; the results for BWI look very similar.
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In the construction of χ2, we take into account the
uncertainties in all z and s values by promoting these values
to nuisance parameters, like we did (for the s values) in
Ref. [28]. The covariance matrix, which we estimate using
single-elimination jackknife, is therefore a 3Ndata × 3Ndata
matrix, where Ndata ¼ 48 is the number of kinematic
points. We added the systematic uncertainties associated
with the choices of fit ranges in the matrix element fits and
spectrum fits in quadrature to the diagonal elements of the
covariance matrix. The uncertainties of the best-fit param-
eters are obtained from the Hessian of χ2 at the minimum.

B. The fit results

For each of the different families of parametrizations
F1–F3 we investigate several fits while keeping the power
of z below 3, and power of S below 4. We find that when
the z-expansion goes to order n ¼ 3 or higher, the addi-
tional parameters are consistent with 0 and no longer
contribute to the description of the data; similarly, for
the S expansion, at order m ¼ 4 the parameters become
statistically consistent with 0. We drop all parametrizations
yielding fit parameters with uncertainties larger than 100
times their central values. We also remove parametrizations

that lead to χ2

dof > 1.1, which includes those that are of 0th
order in the z-expansion. The list of models that we keep in

our analysis, and their corresponding values of χ2

dof, are
given in Table III.
We name the parametrizations according to the type of

Breit-Wigner, family of truncation, and truncation limits.
The parametrizations that survive the cuts are consistent
with each other within the uncertainties, and we choose
“BWII F1 K2” as our nominal parametrization. All fit
results are listed in Tables VI and VII in Appendix B. The
covariance matrix for the nominal parametrization is
provided as part of Supplemental Material [85].

In Fig. 5 we present the fitted Vπγ→ππ combined with the
data points in a three-dimensional plot as a function of

ffiffiffi
s

p
and q2. Figure 6 instead shows a top-down view as a
density plot, where the discrete values of

ffiffiffi
s

p
allowed by the

finite volume for which we have results appear as vertically
aligned points.
The slices of the fitted amplitude at these discrete values

of
ffiffiffi
s

p
are plotted as a function of q2 in Fig. 7, where the

upper panel shows the slices with
ffiffiffi
s

p
≥ mR while the lower

panel shows the slices with
ffiffiffi
s

p
< mR. We can see that the

parametrization describes both the
ffiffiffi
s

p
and q2 dependence

of the data well.
Qualitatively, we can see two main features in Vπγ→ππ:

the amplitude is falling off as q2 decreases, and shows the

TABLE III. List of parametrizations, and their values of χ2=dof
and total χ2.

Parametrization χ2=dofðχ2Þ
BWI F1 K2 0.98 (41.25)
BWI F1 K3 1.05 (39.99)
BWI F2 N1 K2 0.97 (41.56)
BWI F2 N1 K3 0.99 (40.57)
BWI F3 N1 M1 1.09 (47.90)
BWI F3 N1 M2 0.99 (41.41)
BWI F3 N2 M2 1.04 (40.69)
BWI F3 N2 M3 0.92 (33.23)
BWII F1 K2 1.07 (45.03)
BWII F2 N1 K2 1.05 (45.14)
BWII F2 N1 K3 1.06 (43.53)
BWII F3 N1 M2 1.07 (45.02)
BWII F3 N1 M3 1.07 (42.98)
BWII F3 N2 M3 0.99 (35.68)

FIG. 5. Three-dimensional plot of the transition amplitude
Vπγ→ππ (in lattice units) as a function of

ffiffiffi
s

p
and q2. The lattice

QCD results are shown as the vertical bars, where the widths and
depths correspond to the uncertainties in a

ffiffiffi
s

p
and a2q2, and the

magenta sections at the tops cover the range from Vπγ→ππ −
σVπγ→ππ

to Vπγ→ππ þ σVπγ→ππ
. Data points with larger uncertainty

are plotted with reduced opacity. The surface shows the central
value of the nominal fit function (“BWII F1 K2”).

FIG. 6. Density plot of the fitted transition amplitude Vπγ→ππ (in
lattice units, nominal parametrization BWII F1 K2) in the a

ffiffiffi
s

p
and

ðaqÞ2 plane. The locations of the discrete lattice QCD data points
are indicated by the orange points with error bars.
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FIG. 7. The transition amplitude Vπγ→ππ (in lattice units,
nominal parametrization BWII F1 K2), sliced by value of
invariant mass

ffiffiffi
s

p
, as a function of q2. The shaded bands

correspond to the 1σ regions of the fitted parametrizations; their
colors and brightness match the data points at the same a

ffiffiffi
s

p
, as

indicated by the symbols in the legend.

FIG. 8. The transition amplitude Vπγ→ππ as a function of ππ
invariant mass, for three different values of the q2. The top panel
corresponds to the nominal parametrization BWII F1 K2, and the
bottom panel corresponds to the parametrization “BWI F1 K2”.

FIG. 9. Like Fig. 5, but for the function Fðq2; sÞ. The data
points are divided by the central value of the Breit-Wigner factor
[cf. Eq. (8)] to represent the same quantity.

FIG. 10. The form factor Fðq2; sÞ, as a function of ππ invariant
mass, for two different nonzero values of q2 (top) and for q2 ¼ 0
(bottom). Plotted is the central value of the nominal parametri-
zation BWII F1 K2 along with the two uncertainties: the inner
(darker) shaded region represents the statistical and systematical
uncertainties, and the outer (lighter) region includes also the
parametrization uncertainty, estimated as the root-mean-square
deviation of the central values obtained from the different
parametrizations with respect to the nominal one.
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expected enhancement in
ffiffiffi
s

p
attributed to the ρ resonance.

The amplitude vanishes at the threshold 2mπ , then rises and
falls steeply as the resonance region is crossed. This can
also be seen in Fig. 8, where we plot Vπγ→ππ as a function of
invariant mass for three different values of q2. In this figure,
we show plots for both the nominal parametrization BWII
F1 K2 and for the parametrization BWI F1 K2 that does not
include the Blatt-Weisskopf barrier factor. At large

ffiffiffi
s

p
,

these parametrizations show some deviation. Nevertheless,
for both parametrizations, the falloff of the amplitude at
large

ffiffiffi
s

p
is slower than what would be expected for purely

resonant behavior, indicating that the πγ → ππ transition
probability remains sizable even when the invariant mass is
far above the resonance position. This is also reflected in
Figs. 9 and 10, where we plot the function Fðq2; sÞ that
does not contain the Breit-Wigner factor. The slow falloff
of Vπγ→ππ as a function of

ffiffiffi
s

p
corresponds to growing F.

The other parametrizations show the same behavior, con-
firming a nontrivial s-dependence of the function Fðq2; sÞ.

VIII. OBSERVABLES

As discussed in Sec. II we consider two main observable
quantities, both with a real photon (q2 ¼ 0): the πγ → ππ
cross section and the ρ radiative decay width. The πγ → ππ
cross section (16) evaluated with our nominal parametriza-
tion BWII F1 K2 of Vπγ→ππðs; q2 ¼ 0Þ is shown in Fig. 11.
Note that we evaluated Eq. (16) using the heavier-than-
physical pion mass of this ensemble, mπ ≈ 320 MeV.
Because the ρ resonance is narrower than in nature, the
peak value of the cross section is higher [44].
To determine the ρ radiative decay width, Γðρ → πγÞ, we

must first determine the photocoupling Gρπγ, which
requires us to analytically continue the transition amplitude

Vπγ→ππ to the pole position. The resulting resonant form
factor Fπγ→ρðq2Þ, defined in Eq. (13), is presented in
Fig. 12. We find that the imaginary part of the resonant
form factor is consistent with 0, and the real part slowly
rises as a function of q2. The resonant form factor at q2 ¼ 0
is equal to the photocoupling, Gρπγ ¼ Fπγ→ρð0Þ. Our
results for Gρπγ, now for all fourteen amplitude para-
metrizations that gave good fits, are shown in Fig. 13.

FIG. 11. The two-pion photoproduction cross section as a
function of ππ invariant mass, computed with the nominal
parametrization BWII F1 K2 of the amplitude, for our pion
mass of mπ ≈ 320 MeV. The inner (darker) shaded region
indicates the statistical and systematic uncertainties, and the
outer (lighter) shaded region also includes the parametrization
uncertainty, estimated as explained in the caption of Fig. 10.

FIG. 12. The real and imaginary parts of the resonant form
factor Fπγ→ρðq2Þ obtained by analytically continuing the nominal
parametrization BWII F1 K2 of the πγ → ππ amplitude to the ρ
resonance pole. The inner (darker) shaded region indicates the
statistical and systematic uncertainties, and the outer (lighter)
shaded region also includes the parametrization uncertainty,
estimated as explained in the caption of Fig. 10.

FIG. 13. The ρ meson photocoupling determined from the
fourteen different parametrizations of the πγ → ππ amplitudes.
The bands indicate the value and uncertainties obtained from the
nominal parametrization BWII F1 K2, where the outer (lighter)
band includes (added in quadrature) the root-mean-square
deviation between all parametrizations and the chosen one.
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We find that the photocouplings extracted from the differ-
ent parametrizations are consistent with each other.
Nevertheless, we estimate a systematic uncertainty asso-
ciated with the choice of parametrization asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ðxi − xchosenÞ2
N − 1

vuut ; ð72Þ

where xi is the photocoupling determined from the ith
parametrizations, N ¼ 14 is the number of different para-
metrizations, and xchosen is the value obtained from the
nominal parametrization, BWII F1 K2. Our final result for
the photocoupling is

jGρπγj ¼ 0.0802ð32Þð20Þ; ð73Þ
where the first uncertainty includes the statistical uncer-
tainty and the systematic uncertainty from the two-point
and three-point function fits, while the second uncertainty
is our estimate (72) of the parametrization dependence.
The kinematic factors in Eq. (17) lead to a strong pion-

mass dependence of the ρ radiative decay width. We can
calculate the decay width for the physical pion mass under
the assumption that the pion-mass dependence of the
photocoupling is negligible. This gives

Γðρ → πγÞ ¼ 84.2ð6.7Þð4.3Þ keV; ð74Þ
where we used mρ ¼ 775 MeV and mπ ¼ 140 MeV. For
comparison, the experimental value of the ρ� radiative
decay width is 68(7) keV [61].

IX. CONCLUSIONS

We have presented a (2þ 1)-flavor lattice QCD calcu-
lation of the πγ → ππ process, where the ππ system has
I ¼ 1 and JPC ¼ 1−−. The ensemble used has light-quark
masses that correspond to a pion mass of approximately
320 MeV, while the strange-quark mass is approximately at
its physical value. For the ππ system, we utilized the same
moving frames and irreducible representations as in our
previous study of ππ scattering [28]. We determined the
transition amplitude Vπγ→ππðq2; sÞ with few-percent uncer-
tainty in a broad kinematic region around the ρ pole in
invariant mass s and around zero momentum transfer q2,
usingmodel-independent parametrizations based on a series
expansion in the variables z and S, defined in Eqs. (67) and
(66). The results obtained from several different truncations
of the series are consistent with each other. We observe the
expected enhancement of the amplitude associated with the
ρ resonance, but find that for large

ffiffiffi
s

p
the amplitude falls off

slower than expected for purely resonant behavior. In our
analysis, we compared two different Breit-Wigner para-
metrizations of the ππ scattering phase shift (with and
without a Blatt-Weisskopf barrier factor). These parametri-
zations yield consistent results for Vπγ→ππðq2; sÞ in most of
the kinematic range, but differ for large

ffiffiffi
s

p
.

By analytically continuingVπγ→ππðq2; sÞ to the ρ pole, we
also determined the πγ → ρ resonant form factor and the ρ
photocoupling. All truncations of the series used for
Vπγ→ππðq2; sÞ, and both Breit-Wigner functions, lead to
consistent results for the photocoupling, as can be seen in
Fig. 13. Our final result for this coupling is jGρπγj ¼
0.0802ð32Þð20Þ, which is 1.6σ above the value extracted
from the measured ρ� radiative decay width [61] using
Eq. (17), jGρπγjexp ¼ 0.0719ð37Þ. Most of the past lattice
studies of this quantity [77,86–88] were performed in the
single-hadron approach, inwhich the coupling of the ρ to the
ππ system is not taken into account. The authors of
Refs. [43,44] used the multihadron approach at a pion mass
of approximately 400 MeV and obtained a value of jGρπγj
around 0.12, as can be seen in Fig. 12 of [44].
Future calculations at lower pion masses, larger volumes,

and additional values of the lattice spacing are needed to
extrapolate to the physical point. One aspect that also
requires more attention is the residual contamination from
higher excited states in the ratios used to determine the
matrix elements from the correlation functions. Better
control over this contamination can be achieved by using
more than three source-sink separations and employing
more advanced analysis methods [89].
The lattice methods used here to compute a 1 → 2

transition are also applicable to many other processes of
interest in nuclear and high-energy physics. An important
example is the rare decay B → K�ð→ KπÞlþl− [90,91];
new lattice calculations of the B → K� form factors that
take into account the strong decay of the K� are needed.
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APPENDIX A: MATRIX ELEMENT FITS

Figures 14–19 show the ratios used to extract the finite-volume matrix elements and the fit results for multiple different fit
ranges, for additional kinematic points that were omitted in Fig. 2. Tables IVand V give the values of both the finite-volume
and infinite-volume matrix elements for all kinematic points.

FIG. 14. As in Fig. 2, for additional kinematic points.
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FIG. 15. As in Fig. 2, for additional kinematic points.
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FIG. 16. As in Fig. 2, for additional kinematic points.
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FIG. 17. As in Fig. 2, for additional kinematic points.
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FIG. 18. As in Fig. 2, for additional kinematic points.
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FIG. 19. As in Fig. 2, for additional kinematic points.
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TABLE IV. Lattice results for the matrix elements (continued in Table V), in lattice units. The quantity denoted as LD is the kinematic
factor appearing next to 2iVπγ→ππ=mπ in Eq. (1). Here, MEFV denotes the finite-volume matrix elements jhπ; p⃗πjJμð0; q⃗Þjn; P⃗;Λ; iFVj,
after averaging over equivalent momentum directions and irrep rows r. The corresponding infinite-volume matrix elements, with
Lellouch-Lüscher factors computed for the two different Breit-Wigner models, are denoted as MEBWI

IV and MEBWII
IV . The systematic

uncertainties from the fits to the ratios (cf. Sec. V) and from the spectrum fits (cf. Ref. [28]) have been added to the statistical
uncertainties in quadrature.

j L
2π P⃗j Λ j L

2π p⃗πj LD
ffiffiffiffiffiffiffiffi
sP⃗;Λn

q
ðq2ÞP⃗;Λn MEFV MEBWI

IV MEBWII
IV

0 T1 1 ð2πL EnÞ 0.4588(29) −0.0029ð11Þ 0.0767(45) 10.81(96) 10.70(79)
0 T1

ffiffiffi
2

p ð2πL EnÞ 0.4588(29) −0.06173ð81Þ 0.0636(50) 8.97(93) 8.88(81)
0 T1

ffiffiffi
3

p ð2πL EnÞ 0.4588(29) −0.11087ð64Þ 0.0624(95) 8.8(1.5) 8.7(1.4)
0 T1

ffiffiffi
3

p ð2πL EnÞ 0.5467(28) −0.0910ð13Þ 0.0545(83) 3.06(46) 3.08(47)
1 A2 1 ð2πL EnÞ 0.3997(14) −0.04630ð41Þ 0.0125(12) 0.657(68) 0.669(69)
1 A2

ffiffiffi
2

p ð2πL EnÞ 0.3997(14) −0.10343ð39Þ 0.0095(16) 0.499(86) 0.509(88)
1 A2

ffiffiffi
2

p ð2πL EnÞ 0.3997(14) −0.02632ð39Þ 0.0136(19) 0.72(10) 0.73(10)
1 A2

ffiffiffi
2

p ð2πL EnÞ 0.4732(42) −0.0841ð15Þ 0.0649(99) 5.9(1.1) 5.8(1.0)
1 A2

ffiffiffi
2

p ð2πL EnÞ 0.4732(42) −0.0070ð15Þ 0.093(12) 8.5(1.4) 8.4(1.3)
1 A2

ffiffiffi
3

p ð2πL EnÞ 0.3997(14) −0.07400ð41Þ 0.0116(26) 0.61(14) 0.62(14)
1 A2

ffiffiffi
3

p ð2πL EnÞ 0.4732(42) −0.0620ð13Þ 0.075(17) 6.8(1.6) 6.8(1.6)
1 E 1 ð2πL EπÞ 0.4603(37) −0.0240ð16Þ 0.0479(42) 6.62(74) 6.52(67)
1 E 1 ð2πL EπÞ 0.5813(53) 0.0411(33) 0.0481(43) 2.22(20) 2.23(20)
1 E 1 ð2πL ðEπ − EnÞÞ 0.5813(53) 0.1182(33) 0.0371(72) 1.71(33) 1.72(33)
1 E 1 ð2πL EnÞ 0.5813(53) 0.0411(33) 0.0790(51) 3.64(24) 3.67(25)
1 E

ffiffiffi
2

p ð2πL ðEπ − EnÞÞ 0.4603(37) −0.0111ð12Þ 0.0323(74) 4.5(1.1) 4.4(1.0)
1 E

ffiffiffi
2

p ð2πL EnÞ 0.4603(37) −0.0882ð12Þ 0.0697(84) 9.6(1.4) 9.5(1.3)
1 E

ffiffiffi
2

p ð2πL EπÞ 0.4603(37) −0.0882ð12Þ 0.0554(84) 7.7(1.3) 7.5(1.2)
1 E

ffiffiffi
2

p ð2πL EnÞ 0.4603(37) −0.0111ð12Þ 0.087(11) 12.1(1.7) 11.9(1.6)
1 E

ffiffiffi
3

p ð2πL EnÞ 0.5813(53) −0.0269ð25Þ 0.077(17) 3.53(79) 3.56(80)
1 E

ffiffiffi
3

p ð2πL EnÞ 0.4603(37) −0.0648ð11Þ 0.079(17) 11.0(2.5) 10.8(2.4)
1 E

ffiffiffi
3

p ð2πL ðEπ − EnÞÞ 0.4603(37) −0.0648ð11Þ 0.028(13) 3.8(1.8) 3.8(1.7)ffiffiffi
2

p
B1 1 ð2πL EnÞ 0.4207(30) −0.0608ð11Þ 0.0209(27) 1.34(18) 1.36(18)ffiffiffi

2
p

B1 1 ð2πL EnÞ 0.4207(30) 0.0163(11) 0.0238(31) 1.53(20) 1.55(21)ffiffiffi
2

p
B1 1 ð2πL EnÞ 0.4814(57) −0.0339ð28Þ 0.0628(80) 4.45(72) 4.45(70)ffiffiffi

2
p

B1 1 ð2πL EnÞ 0.4814(57) 0.0432(28) 0.0748(94) 5.30(83) 5.30(81)ffiffiffi
2

p
B1

ffiffiffi
2

p ð2πL EnÞ 0.4207(30) −0.04843ð86Þ 0.0191(31) 1.23(20) 1.25(21)ffiffiffi
2

p
B1

ffiffiffi
2

p ð2πL EnÞ 0.4814(57) −0.0283ð23Þ 0.0591(97) 4.19(80) 4.19(78)ffiffiffi
2

p
B1

ffiffiffi
3

p ð2πL EnÞ 0.4207(30) −0.02545ð91Þ 0.0235(82) 1.51(53) 1.53(54)ffiffiffi
2

p
B1

ffiffiffi
3

p ð2πL EnÞ 0.4814(57) −0.0110ð20Þ 0.078(26) 5.5(1.9) 5.5(1.9)ffiffiffi
2

p
B2 0 2ð2πL EπÞ 0.4384(33) 0.0355(18) 0.0433(40) 3.77(44) 3.84(44)ffiffiffi

2
p

B2 0 2ð2πL EπÞ 0.4902(58) 0.0673(38) 0.0689(62) 4.32(47) 4.34(46)ffiffiffi
2

p
B2 1 ð2πL EnÞ 0.4384(33) −0.0536ð13Þ 0.0354(38) 3.08(39) 3.14(39)ffiffiffi

2
p

B2

ffiffiffi
2

p ð2πL EnÞ 0.4384(33) −0.0432ð10Þ 0.0355(56) 3.09(52) 3.15(53)ffiffiffi
2

p
B2

ffiffiffi
2

p ð2πL ð2Eπ − EnÞÞ 0.4384(33) −0.0432ð10Þ 0.0170(74) 1.48(65) 1.51(67)ffiffiffi
2

p
B2

ffiffiffi
2

p
2ð2πL ðEπ − EnÞÞ 0.4384(33) 0.0339(10) 0.037(13) 3.2(1.2) 3.3(1.2)ffiffiffi

2
p

B2

ffiffiffi
2

p ð2πL EnÞ 0.4902(58) −0.0248ð23Þ 0.0603(91) 3.78(62) 3.80(62)ffiffiffi
2

p
B2

ffiffiffi
2

p ð2πL ð2Eπ − EnÞÞ 0.4902(58) −0.0248ð23Þ 0.028(13) 1.75(83) 1.76(83)ffiffiffi
2

p
B2

ffiffiffi
2

p
2ð2πL ðEπ − EnÞÞ 0.4902(58) 0.0523(23) 0.053(22) 3.3(1.4) 3.4(1.4)ffiffiffi

2
p

B2

ffiffiffi
3

p ð2πL EnÞ 0.4384(33) −0.0218ð11Þ 0.049(14) 4.3(1.3) 4.3(1.3)
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APPENDIX B: FIT PARAMETERS

Tables VI and VII give the fit results for all parametrizations of the amplitude Vπγ→ππ .

TABLE V. Continuation of Table IV.

j L
2π P⃗j Λ j L

2π p⃗πj LD
ffiffiffiffiffiffiffiffi
sP⃗;Λn

q
ðq2ÞP⃗;Λn

MEFV MEBWI
IV MEBWII

IV

ffiffiffi
2

p
B3 0 ð2πL EπÞ 0.4603(87) 0.0484(52) 0.0473(73) 6.5(1.1) 6.4(1.1)ffiffiffi

2
p

B3 1 ð2πL EπÞ 0.4603(87) −0.0440ð39Þ 0.044(14) 6.0(2.0) 5.9(1.9)ffiffiffi
2

p
B3 1 ð2πL ðEπ − EnÞÞ 0.4603(87) 0.0331(39) 0.043(11) 5.9(1.6) 5.8(1.6)ffiffiffi

2
p

B3 1 ð2πL EπÞ 0.4603(87) 0.0331(39) 0.049(16) 6.7(2.2) 6.6(2.2)ffiffiffi
2

p
B3

ffiffiffi
2

p ð2πL ðEπ − EnÞÞ 0.4603(87) −0.0360ð30Þ 0.039(20) 5.3(2.7) 5.3(2.7)ffiffiffi
3

p
A2 1 ð2πL EnÞ 0.4371(98) 0.0035(44) 0.0309(61) 2.50(67) 2.55(69)ffiffiffi

3
p

A2 1 ð2πL EnÞ 0.4827(89) 0.0257(46) 0.0388(84) 3.8(2.0) 3.8(2.0)ffiffiffi
3

p
A2

ffiffiffi
2

p ð2πL EnÞ 0.4371(98) 0.0094(34) 0.039(12) 3.1(1.2) 3.2(1.2)ffiffiffi
3

p
A2

ffiffiffi
2

p ð2πL EnÞ 0.4827(89) 0.0268(36) 0.045(16) 4.5(2.6) 4.5(2.6)ffiffiffi
3

p
E 0 3ð2πL EπÞ 0.4501(95) 0.0293(58) 0.098(13) 11.6(3.7) 11.8(3.5)ffiffiffi

3
p

E 0 3ð2πL EπÞ 0.5178(80) 0.0746(57) 0.098(13) 4.80(68) 4.85(68)ffiffiffi
3

p
E 1 ð2πL ð3Eπ − EnÞÞ 0.4501(95) 0.0095(44) 0.043(24) 5.1(3.3) 5.2(3.3)ffiffiffi

3
p

E 1 ð2πL ð3Eπ − 2EnÞÞ 0.4501(95) 0.0095(44) 0.046(20) 5.4(2.9) 5.5(2.9)ffiffiffi
3

p
E 1 ð2πL EnÞ 0.5178(80) 0.0452(45) 0.086(20) 4.2(1.0) 4.2(1.0)ffiffiffi

3
p

E 1 ð2πL ð3Eπ − EnÞÞ 0.5178(80) 0.0452(45) 0.038(25) 1.9(1.2) 1.9(1.2)ffiffiffi
3

p
E

ffiffiffi
2

p
3ð2πL ðEπ − EnÞÞ 0.4501(95) 0.0140(35) 0.119(37) 14.1(6.1) 14.3(5.9)ffiffiffi

3
p

E
ffiffiffi
2

p ð2πL EnÞ 0.4501(95) 0.0140(35) 0.074(41) 8.7(5.6) 8.9(5.6)ffiffiffi
3

p
E

ffiffiffi
2

p ð2πL EnÞ 0.5178(80) 0.0425(37) 0.081(43) 4.0(2.1) 4.0(2.2)ffiffiffi
3

p
E

ffiffiffi
2

p
3ð2πL ðEπ − EnÞÞ 0.5178(80) 0.0425(37) 0.119(39) 5.8(1.9) 5.9(1.9)

TABLE VI. Fit results for the amplitude parametrizations based on the BWI Breit-Wigner model.

Parameter F1 K2 F1 K3 F2 N1 K2 F2 N1 K3 F3 N1 M1 F3 N1 M2 F3 N2 M2 F3 N2 M3

A00 0.0794(34) 0.0799(43) 0.0801(31) 0.0814(34) 0.0834(29) 0.0804(32) 0.0785(42) 0.0821(45)
A01 0.113(15) 0.078(50) 0.116(14) 0.088(33) 0.132(13) 0.113(16) 0.107(19) 0.037(53)
A02 0.109(46) 0.004(158) 0.095(38) 0.004(109) 0.096(38) 0.108(48) −0.28ð18Þ
A10 0.085(28) 0.068(52) 0.081(27) 0.076(31) 0.098(27) 0.086(29) 0.085(32) 0.053(37)
A11 0.35(19) 0.30(33) 0.254(67) 0.21(16) 0.146(50) 0.30(13) 0.42(22) 0.77(33)
A20 0.12(22) 0.24(37) 0.28(36) 0.22(42)
A12 0.13(96) 0.09(32) −0.09ð24Þ −0.37ð55Þ 4.7(2.1)
A21 0.4(3.5) −0.5ð1.3Þ 7.7(3.6)
A22 −0.06ð2.06Þ −1.3ð9.5Þ
A03 0.28(38) 0.24(27) 0.77(44)
A13 −10.8ð4.4Þ
A23 −24ð21Þ
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