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We report a lattice QCD determination of the 7y — 7z transition amplitude for the P-wave, I = 1 two-
pion final state, as a function of the photon virtuality and zz invariant mass. The calculation was performed
with 2 + 1 flavors of clover fermions at a pion mass of approximately 320 MeV, on a 323 x 96 lattice with
L ~ 3.6 fm. We construct the necessary correlation functions using a combination of smeared forward,
sequential and stochastic propagators, and determine the finite-volume matrix elements for all zzz momenta

up to |I_5| =3 ZL—” and all associated irreducible representations. In the mapping of the finite-volume to

infinite-volume matrix elements using the Lellouch-Liischer factor, we consider two different para-
metrizations of the zz scattering phase shift. We fit the ¢> and s dependence of the infinite-volume
transition amplitude in a model-independent way using series expansions, and compare multiple different
truncations of this series. Through analytic continuation to the p resonance pole, we also determine the
7y — presonant transition form factor and the p meson photocoupling, and obtain |G, | = 0.0802(32)(20).

DOI: 10.1103/PhysRevD.98.074502

I. INTRODUCTION

During the last decade, there has been tremendous
progress with lattice QCD calculations of low-energy
hadron-hadron scattering amplitudes and the associated
resonances [1]. While the S-matrix is not directly accessible
from the lattice, the Liischer quantization condition and its
generalizations [2—14] relate the infinite-volume scattering
amplitudes (and their resonance poles) with the discrete
finite-volume energy spectra computed on the lattice. A
widely studied example is zz scattering in the P-wave,
I =1 channel, where the p resonance resides [15-28].

Going beyond spectroscopy, Lellouch and Liischer
also found the relation between finite-volume and
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infinite-volume 1 — 2 transition matrix elements for the
case of the nonleptonic weak decay K — zz [29]. The
formalism was later extended to include all elastic states
below the inelastic threshold [30] and to moving frames
[7], and more recently to multiple coupled two-body
channels [8], matrix elements of arbitrary external currents
with four-momentum transfer [31,32], and 2 — 2 matrix
elements [33] (see also Refs. [34-39] for related work).
The first numerical calculations involving the Lellouch-
Liischer formalism were performed for K — zz, providing
an ab initio standard-model prediction of direct CP
violation in this process [40—42]. More recently, the
generalization of the formalism by Bricefio, Hansen, and
Walker-Loud (BHWL) [31] was applied by the Hadron
Spectrum Collaboration to compute the zy — zz ampli-
tude, with the 7z system in a P wave, as a function of
photon virtuality and zz invariant mass [43,44]. This
amplitude describes p photoproduction and radiative decay
[45,46], and also plays an important role in dispersion
relations used to calculate the hadronic contributions to the
anomalous magnetic moment of the muon [47-50]. Various
theoretical aspects of the 7y — zz process have also been

Published by the American Physical Society
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discussed in Refs. [51-57]. As far as the finite-volume
formalism is concerned, the 7y — zz amplitude in the p
resonance region is one of the simplest 1 — 2 processes to
study on the lattice, because the zz scattering is almost
completely elastic in the relevant energy region.

In this paper, we report a lattice QCD calculation of the
wy — zz transition with 2 4 1 flavors of clover-improved
Wilson fermions [58] at a pion mass of approximately
320 MeV, building upon our previous work on 7z scatter-
ing [28]. In contrast to the original Lellouch-Liischer
approach to the nonleptonic K — zz decay, where the
lattice parameters need to be tuned such that the final and
initial hadronic states have equal energy, the BHWL
formalism enables us to obtain the 7y — zz amplitude
for all zz energy levels and arbitrary momentum transfer.

In Sec. II, we discuss the 7y — 7z amplitude and related
quantities in the continuum. The parameters of our lattice
calculation are given in Sec. III. We describe the inter-
polating fields and correlation functions in Sec. IV, and the
extraction of the finite-volume matrix elements from these
correlation functions in Sec. V. The mapping from finite
volume to infinite volume using the Lellouch-Liischer
factor is explained in Sec. VI. We carefully study a
model-independent approach for parametrizing the g>
and s dependence of the 7y — zz amplitude in Sec. VII,
and present our results for the 7y — zz cross section, the
my — p resonant form factor, the p meson photocoupling,
and the p radiative decay width in Sec. VIIIL.

II. ABOUT THE ny — nxr PROCESS

The resonance photoproduction processes zwy — p are
obtained from the more general process zy — 7z, where
the final 77 state is in P-wave and couples strongly to the p
resonance with isospin /=1, I;=1 and J?¢ =1,
Throughout this paper (except where stated otherwise),
we allow the photon to be virtual, but continue to denote it
as just y. The zz photoproduction is described by the
continuum infinite-volume matrix element (zz|J*(0)|x),
which is constructed from the initial state |z), the insertion
of the QED current J# (defined without the factor of ¢)
and the final state |zz) with / =1 and four-momentum

P=(Vs+ P, ) The latter is projected to the P-wave,
so that it couples to the p resonance, where the polarization
of the system is described by e*(P,m) [59]. Due to the
Lorentz symmetry the matrix element decomposes like

21Vsyra(q.5)

my

(x| J#(0)|m) = e, (P.m)(ps)aPp. (1)

where ¢ = p, — P is the photon four-momentum transfer.
Above, the current is taken in position space, and the
single-pion state is normalized as

ﬁﬂ> = 2E71?” (2”)353(]_571 - ]_J);z) (2)

(m. Prln

The P-wave two-pion states with polarization m are
given by

|7m\/_f’,l,m>
dk Y1
-7/ @

where |7z, \/E,I_S,kcm> is a two-pion state with total

A
> =

kCl’l’l) |ﬂ”’ \/E’ P

momentum P, relative momentum direction unit vector
k. in the center-of-momentum frame, and invariant mass
\/s. These states are normalized according to

(nr, NT: ]_g;mlﬂ'ﬂ', Vs, P, Ecm>
= 2F,(27)32E,(27)383 (k= k)83 (P —k - P + k),
(4)

where E| and E, are the individual pion energies,
E =1\/m2+K, (5)

Ey = \/m2+ (P -k (6)

These normalizations of states imply that the matrix
element (1) is dimensionless and that V,,_,,, has units
of MeV~!. Notice that there is no explicit p label in the
amplitude; this is because the p is not a QCD asymptotic
state, but rather a resonance in P-wave zz scattering with
I =1 associated with the pole in the scattering amplitude
T pzone at Sp~ m% + imglg. The transition amplitude
V -z depends on both the photon four-momentum trans-
fer ¢° and the zz invariant mass s. Like 7 ,,_,,, this
amplitude also has a pole at s = sp; the residue at the pole
gives the p resonance photoproduction form factor. For s in
the vicinity of sp and at g> = 0, the amplitudes 7 ,,_, ., and
Viy—zr behave like [32]

G27m
Tlm—>7m(s) ~ Spﬂ— s (7)
G)rzGon
Viyonn(0.5) ~ —;P —, (8)

where G, and G, are the couplings of the p resonance to
7 and my, respectively.
The zz elastic scattering amplitude is related to the

scattering phase shift 6(s) via

167\/s 1

Tll'ﬂ—’ﬂ.’ﬂ(s) = k cot 5(5) _

©)

where k is the scattering momentum, defined by
Vs =2y/m2 + k*. Near a narrow resonance, the phase
shift is well described by parametrizations of the Breit-
Wigner type,
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my — s
cotd(s) = m, (10)

where multiple different choices can be used for T'(s).
Inserting Eq. (10) into Eq. (9) gives

1674/ VsT(s)
ko omy—s—i/sT(s)’
Motivated by Egs. (7) and (8), we write the photoproduc-
tion amplitude V,,_,.(¢%. 5) as

16zx  F(q*,s)
kT(s)cotd(s) —i

= klr6(’s’)F(q2, s)sind(s)e®),  (12)

where the form factor F(g?, s) no longer has a pole in s,
and becomes equal to the photocoupling G,,, for s =
m% +imglz and ¢*> = 0. More generally, we define the

resonant form factor for arbitrary photon virtuality as

Vﬂy—»fm (q2 ’ S) =

Fﬂy—w(qz) = F(qz’ m12€ + i’/nRFR)' (13)

Note that Eq. (12) explicitly satisfies Watson’s theorem.

In Ref. [28] we found that our 7z scattering amplitude is
well described by the BWI and BWII Breit-Wigner models
discussed in Sec. II of that same reference, so we continue
to utilize the Breit-Wigner formulas throughout this work.
The nonresonant backgrounds were found to be consistent
with 0 and are not included in the 7z scattering amplitude
here. For convenience, we repeat the definitions of BWI
and BWII here.

(i) BWL:

G K

Ii(s) = 67 s (14)

where g,,, is the coupling between the zz scattering
channel and the p resonance in the Breit-
Wigner model.

(i) BWIL

_ g/z)ﬂﬂk_31 + (erO)z
6r s 1+ (krg)?’

Iy (s) (15)

where kp is the scattering momentum at /s = mp

and ry is the radius of the centrifugal barrier [60].

We consider two physically observable quantities we can

determine from |(zz|/,(0)|z)|. The first is the 7y — zx

cross section as a function of 7z invariant mass, which in
the center-of-momentum frame is given by [43]

62 = 4|Vﬂ —>7T7[(q2’ s)|2
olay = wm;5.4%) = 1okl T (16)

T

TABLE I. The main parameters of the lattice gauge-field
ensemble used in this work. The uncertainties given here are
statistical only.

C13
N3 x Ny 323 x 96
p 6.1
Ny 2+1
Cow 1.2493097
am, 4 —0.285
am —0.245
Nconfig 1041
a [fm] 0.11403(77)
L [fm] 3.649(25)
am, 0.18295(36)
amy 0.6165(23)
am, 0.3882(19)
m,L 5.865(32)
Zy 0.7903(2)

This cross section can be measured at g> = 0, i.e., with a
real photon. A second physically observable quantity is
related to the p resonance, which appears in the 7z system.
The p radiative decay width ['(p — xy) is determined by
the photocoupling G,,, = F(0, m% + imgl'z) as [61]

pry
2 ((m;—m3)\* |G, |
F(p—>ﬂy):§a< pZm ) ’;2}' . (17)
P g

III. LATTICE PARAMETERS

This calculation is performed on a single ensemble of
gauge-field configurations with 2 4 1 flavors of dynamical
clover fermions. This is the same ensemble as used in our
calculation of zz scattering [28], and we refer the reader to
that reference for further details. The main parameters are
summarized in Table I. The strange-quark mass is con-
sistent with its physical value as determined via the “n,”
mass [62,63]. The lattice scale was determined from the Y
(18) — (28) splitting [62,64], where nonrelativistic QCD
(NRQCD) [65] with the physical b-quark mass was used to
calculate the masses. The renormalization factor Zy, of the
local vector current was determined by the LHPC
Collaboration as explained in Ref. [66].

IV. INTERPOLATING FIELDS AND
CORRELATION FUNCTIONS

To determine the finite-volume matrix elements we are
interested in, we need to compute two-point functions for
the single-pion system (J*¢ =0=F, I = 1, Iy = 1) and for
the two-pion system (J?¢ = 17,1 = 1, I; = 1), as well as
three-point functions with an insertion of the electromag-
netic current. The generalized eigenvectors obtained in the
spectroscopic analysis of the two-point functions are then
used to construct optimized three-point functions.
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A. Two-point functions overlapping with J*¢=0-*

The projection of the single-pion field to an irreducible
representation is trivial; i.e., it resides in the (pseudoscalar)

A(l_) irreducible representation [4] for all momenta. For
clarity we suppress the group indices of the single-pion
field. We use the following interpolating operator:

0 (1 Zd 1o X)ysu(ty, X)eiPsT, (18)

with momentum p,. The associated correlator C5~ is

Cl (1) = (05 (1) OF " (1, = 1). (19)
The ground-state contribution to the pion correlator, which
is obtained in the limit of large ¢, has the decomposition

= Zp/t ZPI[ P
Crr (1) = —=—e™t", (20)
2E7"

where the overlap factor is defined as
(010%" |7, Pr)py = Z5* (21)
and the finite-volume states are normalized such that
(7, Prlm, Pr)py = 2EZ°65_p.. (22)

Because the pion is a stable hadron, its energy is affected
only by exponentially suppressed finite-volume effects,
which are negligible for our value of m L. The dispersion
relation of the pion was presented in Ref. [28] and follows
the relativistic form well.

B. Two-point functions overlapping with JP¢=1--

The JPC = 1=~ two-point functions with momentum P
are constructed using two types of interpolators, the single-
hadron and the multihadron interpolators,

O04y(t.P) = > d(1.3)Tiu(t,¥)eP7, (23)
O.:(.p1. P2) = \/LE(”+<f’P1)7TO(f’ P2)
—2°(t, )" (1, pa)), (24)

where P, + P, = P. To project these interpolators to
definite irreps A of the little group LG(f’), we use the
projection formulas with representation matrices [67],

3 dim(A)
P.A,r _
Ogy " (1) =

> TAR)ROG(1.P).  (25)

LG(P) ReLG(P)

and

ngA,r( ) dlm( )
N, s
x Z rﬁ, O,.(t.P/2+Rp.P/2—RP).
ReLG
(26)
where p takes on the values
_ P 2x_ B,
p:§+fﬂm, me 7. (27)
Above, dim(A) is the dimension of the irrep, N, G(P) is the

order of the little group LG(ﬁ), and I'A.(R) are suitably

chosen representation matrices of R € LG(P ) In our
choice of basis indexing and projecting to finite-volume
irreps, we use the x, y, z polarization indices and not the
helicity basis like in Refs. [68,69].

In the following, we jointly denote the projected inter-
polators as

orM (n), (28)

where the index i labels the type: i=1 and i =2
correspond to the quark-antiquark interpolators with I'; =
y; and I'; = yqy,, respectively, and i = 3, 4 correspond to
two-pion interpolators with different values of |p|
and |p,|.

From the interpolators O we calculate a correlation

. P.A, 7 APA, BArt
matrix C;;™"(t) = (0; "™ (tzz + 1)0;" (1z,)). Tts con-
struction in terms of forward, sequential, and stochastic

quark propagators is discussed in Ref. [28]. The spectral
decomposition of the two-point correlation matrix reads

. Zn,l?‘,AZn.f’,AT -
PAr N i J —EPA;
Ci; (z)_zn:izEm e b, (29)
n

As in Sec. IVA, we define the overlap factors as

(0|0FA ey = Z0PA, (30)

and the finite-volume states are normalized such that

) >FV:2E5’A6n.n’5ﬁﬁ’6A,A’6r,r" (31)

To extract the energies and overlap factors from the
correlation matrix, we use the variational analysis [70—
73] by solving the generalized eigenvalue problem

=
(n',P N, ¥

CEAT (00PN (1) = ABN (1, 10) CEM (1) 0P (1), (32)

where we fix the normalization to

v;?,P,AT (tO ) CS,AJ’ (ZO) U}n.P,A

1

074502-4



ny — nx TRANSITION AND THE p ...

PHYS. REV. D 98, 074502 (2018)

Throughout this paper, we use the summation convention
for repeated indices i or j. The principal correlators
asymptotically behave as

BN (1, 19) = eEni—n), (34)

and we use single-exponential fits to extract EL* [28].

The generalized eigenvector v"*(z,) can also be used
to construct the optimized mterpolator [70-73]

On,ﬁ,A.r(t’ tO) = y?'ﬁ’AT(tO)O?’A’r(t), (35)

which has a dominant overlap to a single well-defined state

labeled with (n, f’,/\, r). Note that, although we perform
the analysis independently for different rows r of the irrep
A, in the infinite-statistics limit the energies and eigenvec-
tors are independent of r.

of the
zzr system in the moving frame P is the invariant mass

Vi = e - B, (36)

which is also used to define the scattering momentum k,’; A

via
\sEA = 20 /m2 4+ (kB2 (37)

C. The three-point functions

An important quantity related to the energy E5"

The current insertion that represents the interactions
between the photon and the hadrons depends on the
photon momentum ¢, which combined with the initial
and final state momenta satisfies momentum conservation:

P+ g — P, = 0. For the current insertion operator we use
tJ, Zequ.] tJ, , (38)

with the local current

o "
\_»/ d_’y5u

@ J ©

/ . \ﬂ%u

Q J"/g)u

N

- 2_. . .
Jﬂ(t]’x) = ZV (gu(tj,x)yﬂu(tj,x)
- -
—gd(l“],x)]/ﬂd([‘],x) . (39)

The renormalization coefficient Z, was determined in
Ref. [66] and is listed in Table I.

The three-point correlation functions are then obtained
from the sink/source interpolators and current insertion as

P.A,
Cng r( T t]v trm')

— (OF (1), (1, DO N (1)), (40)

where 7, is the source time, ¢, is the current insertion time
and 7, is the sink time. The three-point function is
expressed in terms of quark propagators by evaluating
Wick contractions. Figure 1 shows the quark-flow diagrams

P/\r

needed to calculate the Cp - three-point functions. The

current-disconnected dlagrams labeled (a) and (b), i.e., the
diagrams where the quark flow goes from the current J,
directly back to the current J,,, are omitted in this study. For
the nucleon electromagnetic form factors, the current-
disconnected contributions are known to be of order 1%
for the quark masses used here [74].

The Wick contractions depicted in Fig. 1 are constructed
from point-to-all, sequential and stochastic time slice
propagators. The technique builds upon and extends the
scheme used in Ref. [28] for the construction of two-point
correlation functions. This combination of propagator types
allows for a compromise in flexibility to construct all
required diagrams, minimal input of stochastic noise into
correlation functions and economy in the cost of producing
quark propagators and contractions.

The point-to-all propagators are obtained from the inver-
sion of the Dirac operator D on a fully spin- and color-
diluted point-source localized at fixed source location y,

( ng,U dlyu
UY5U \/
Jo TN ® I /—\7

dysu ( dysu
\,_/ J’YE)U

FIG. 1.

-~ \ J’Ys“/\
\.)_/ 07’}/57_1, \)_/ 575u

The different topologies of Wick contractions that make up the three-point function C’7 P, Tterty tag)-
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xyaﬂ_ZD l(x Zayr]ybﬂ( )

n 0b) (x)ﬂ = 5x,y5 5a/},
a,b=0,1,2,a,=0,1,2,3. (41)

The sequential propagator results from performing an
additional inversion of the Dirac operator on a point-to-all
propagator on sequential source time slice ¢ with insertion
of a spin matrix I' and momentum p according to

T(x;t,T, psy)ap = ZS x:1,2)%T, 5 P21, Zy)sy (42)

For the purpose of this work the sequential source time slice
always coincides with the source time slice, ¢ =1, = y,
and I = y5 for the pseudoscalar vertex.

Finally, the stochastic propagators follow from inverting
the Dirac matrix on stochastic time slice sources, whose
components on a fixed time slice ¢, are independently and
identically set with Z, 4 iZ, noise,

S(x,y)ah = Elp!) (x)a&™) (y) 57, (43)
t 1) (3 1 i 2
EB(x)h =6, ., &V (X)) € {iﬁiﬁ} Y X,p,b,
(44)

ZD X, 2 aﬁ’7 (2 )b (45)

such that we have the expectation values

E[g" (x)] =0, (46)

a

B[ (e (0)f] = 6,4,81,.,0:50 005 (47)

As a variant of the stochastic time slice propagator defined
in Eq. (43) the one-end-trick based on spin diluted
stochastic time slice sources is used to construct diagrams
(e) and (f) in Fig. 1. The sources in Eq. (44) are thus
modified according to

g (x)h = 5, . 8,560 (R)PePY, 2=0,1,2,3.  (48)

The one-end-trick then allows for the representation of a
product of quark propagatos by two stochastic propagators
through a vertex given again by I" and p as

E[¢(t-"'ﬁ *) (x)g(FYS)md’(ty'o'l) (Z)/l;r* (75)ﬁ’ﬂ}
= S(x;1y, ¥)aceP¥(Tys) S (25 1y, )55 (r5) g

= (S(xs1,.5)ePTS(1,.7:2)) - (49)

Equation (49) used in addition ys-hermiticity for the Dirac
propagator, S(x;y)" = ysS(y;x)ys.

The quark propagator loops of the connected diagrams
(¢c) and (d) are closed using the stochastic time slice
propagator from current vertex J, to pion vertex dysu at
sink. Based on the application of point-to-all and stochastic
propagator these diagrams are factorized into elementary
contractions. For diagram (c), we have

Tr(S (x5 x7)7,S (x5 x7)7sS(xp3 x)T)
= Eln,(x,)an: (xp) 516" (Ti7's) g
ny(x;) = S(xf’xl)*rsmb (%)),
ne(xy) = &9 (xp)TysS (xss xi), (50)
where 7, - are contracted, Fourier transformed and stored
separately as 7,(t;.q) and 7¢(t,, p,) for each stochastic

sample. Subsequently they are used to recombine the
diagram for all required momenta g, p, as well as any

vertex I'; and P at the source. Diagram (d) follows

analogously by promoting the point-to-all propagator

S(xf;x;) in Eq. (50) to a sequential propagator,

Tr(S(xi,5x7)7,S(xs xp)7sS(xp3 x5,)

127 )Fl)
:E[”¢(XJ)(1’1§(xf)ﬁ] b(Fi}’S)[)’a’

np(xy) = S(xpix;,) ysy,0' (x)),

ne(xp) = E9) () TysT(Xf3 g V50 iy X, )- (51)

For diagram (e) in Fig. I, the one-end-trick setup in
Eq. (49) leads to the factorization of the diagram,

x yselPT S x

Tr(S(xi,5x0)7,S(xs5x
S YSS(xiQ;xf)ySS(xf;xil)Fi)
= Bl (x)ny) (ep)g)(Cirs)
71((;) (x7) = S(xs5x;, )Tysyﬂff’(t””’ﬁiz’/l) (x7),
= Pl () S (xps 33, ). (52)

iBi
iz)e 27

A
’7,(;, : (xr)

Finally, diagram (f) is calculated as the product of propa-
gator loop traces using again the one-end-trick,

Tr(S(x;,: %)y, (x5 x,)7s )P
x Tr(S(x; 5 xp)ysS (s x; )T)
_ E[¢(t,,,,.0,l) ()Cj>-[-}’5}’”¢(t””’ﬁi2’l)]
X Tr(S(xp3x;,) 'S (g3 %, )Cirs).- (53)
All quark propagators are smeared at their source and sink

side in the same way as in Ref. [28], except the end of
propagators joining the local current insertion vertex.
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D. Optimized three-point functions

The spectral decomposition of the three-point function

Pe P
C3,/4,i

state contribution for the pion (for large ¢, — ¢;), is

(t;, 15, 1), keeping as before only the ground-

paPA,
C:I;.’u.i r(tm Iy tmr)

=N 77PN (5ol 7,(0.3) I B Py
n

—ED (1y=1)) =L (1) =1)
x € e T (54)
2ERAQED

For the 7z system we project to the nth state. This allows us

to have a definite invariant mass, \/ sP 'A, and momentum
NBr  _ (pPA P2 _ 22 :

transfer, (g )n,P.A = (E," — EF")* — g%, in our matrix

element. To achieve this we utilize the orthogonality
between the generalized eigenvectors and overlap factors,'

U;lf’,A(to)ZTf’,AT — 4 /2E§,A6E5'At0/25nm’ (55)

and construct the optimized three-point function [75-77]

prP A,
Qg,/,t,n r(tin Iy Lags tO)

= D?PVA(IO)CgZ?AJ([ﬂ’ Iy tﬂ'ﬂ)

= (O (1)1, (1. §) O PN (1,0.10)). (56)

This gives

PPN
QB,u,n (tﬂ’ Iy tans t())

= V2ELN P 0 ZE (2, 5, 17,(0.9)|n. P A Py

_Efr” (l/r_t.l) _Ef.A(lJ_lfm)
x & 7 , (57)
2EPA ) EPs

and we see that the optimized three-point function overlaps
only to the single definite state |n; P, A, r).

V. DETERMINING THE FINITE-VOLUME
MATRIX ELEMENTS

To extract the finite-volume matrix elements

(7, P|,(0.9)|n, P, A, r)py from the correlation functions,
we construct the ratio

'Note that this choice depends on the normalization of the
generalized vectors [cf. Eq. (33)].

PrPA,
R/‘l;.n r(tm tJa tmr)

p..P.A, poPA,
_ ng;i,n r(tm th tmz’ tO)Qg.u.n rT(tlr’ t/’ tm‘t’ t()) (58)
CEr (AL (AL, 1) ’

where C,’?” is the pion correlator, /If’A is the principal
correlator of the variational analysis, At =1, —t,, is the
source-sink separation, and ¢ =t,, +1,—t;. The ¢,
dependence of the optimized three-point function cancels
with the 7 dependence of the principal correlator. Inserting

Eq. (57) into Eq. (58) gives (for large time separations)

(7, Bal (0, @) |, P A 1)y

PePAF _
Rﬂ-” (tn" t./’ tﬂ'ﬂ) - PA D
AE,“EL"

(59)

The matrix elements determined from Eq. (58) still contain
residual excited-state contamination that decays exponentially
forlarge At,t; — t,,,and t, — t;. We have data for At/a = 8,
10, 12. There are several ways to proceed from this point on.
(i) Sett; —t,, = At/2 and fit only the At dependence
of the matrix element with an excited-state model, as

for example in Ref. [78].

(ii) Fit both the Ar and t¢; —t,, dependence with an
excited-state model.

(iii) Fit constants to the ratios (assuming that only the
desired initial and final states contribute), varying the
time ranges to assess residual contamination.

We found that options (1) and (2) did not yield stable fits,
because we have too few source-sink separations and the
statistical uncertainties are too large. We therefore use option
(3), where we investigate whether the various fits are
statistically compatible, and estimate a systematic uncertainty
associated with the fit choice. In Fig. 2 we present results for
the matrix elements |(z, p,|J,(0, g)|n, P, A, r)py| at repre-
sentative kinematic points (plots for the other kinematic
points are shown in Appendix A). As explained in the caption
of the figure, we perform fits for many different time ranges
and then choose one that appears to have plateaued for the
further analysis. To estimate the systematic uncertainty
associated with the fit range for the ratio, we compute the
change in the central value when going from the chosen fit to
At/a = 10, as marked with an X in Fig. 2. As a cross-check,
we also tested an alternative method for extracting the matrix
elements, in which we did not use ratios, but fitted the three-
point functions (57) after dividing out the time dependence
and overlap factors. That method gives results consistent with
the ratio method. Because the ratio (59) also depends on the

energies E A we additionally include a second systematic
uncertainty associated with the choice of fit range used in the
spectrum analysis of Ref. [28]. The numerical results for all
kinematic points are listed in Tables IV and V in Appendix A.
There, both systematic uncertainties have been added in
quadrature to the statistical uncertainties.
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FIG. 2. Examples of results for the finite-volume matrix elements |(z, p,|J/, (0, §)|n, P, A, r)py|. The left three panels show the data as
. Tor the three different source-sink separations. The right panels show the fitted values for multiple different fit

a function of 7; — ¢

ranges, which are indicated at the bottom. There, the first set of numbers are the included source-sink separations, and the second set of
numbers are the distances from the midpoint that are included for each of these source-sink separations. The blue bands show the chosen
fit result, and the half-crosses mark the fits that are used to estimate systematic uncertainties. The values of y2/dof are also given. The

quantity denoted as LD is the kinematic factor appearing next to

VI. MAPPING FROM FINITE VOLUME TO
INFINITE VOLUME

A. Lellouch-Liischer factors

The mapping between a finite-volume matrix element
(7, Po|J,(0,)|n. P, A, r)py| calculated on the lattice
and the corresponding infinite-volume matrix element
|(r, ﬁ,,|J”(O)|s,q2;I3,A, )|, for our normalization of

states, is [29,31,32,36]

hvl®

(7. Pxl/,,(0)
(7. 5al]u(0.9) . P AL 1)y |

1 16\t (a& P

Topfh n \OE OE

)

OE E— E]I?A

21V, ../ m, in Eq. (1).
Ty—=nn T q

Note that the current in the infinite-volume matrix element is

evaluated in position space at X = 0, while the current in the

finite-volume matrix element is projected to momentum q.

The energy-dependence of the 7z P-wave scattering phase
shift 6 has to be determined from the Liischer analysis on the
same lattice. We use our Breit-Wigner fits from Ref. [28], as
already discussed in Sec. II. The function ¢** in Eq. (60)
appears in the Liischer quantization condition as

chm Wlm )’

cotd = cot pPN = (61)

where w,,, is defined as

zh (15 (kL/(27))?)

3/2\/21Ty(kL)l+l’

(62)

Wim (kz)
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TABLE II. Nonzero values of ¢;,, appearing in the quantization
condition for elastic P-wave zx scattering. Above, the term with

Re and Im means —\/g(Re[wzﬂ + Im[wy,]).

(I, m) P.A

Lp A
2n P Cim

(0,0,0) T, (0,0)

(0,0,1) A, (0,0)
(2,0)

E (0,0)

(2,0)

0,1,1) B, (0,0)
(2,0)

2,1

2,2)

,_..
= — %M—»— | —_ N = [
—_
%C’*

B, 0,0)
(2.0)
2.0
2.2)

|
.

<.z

By (0,0)
2.0)
2.2 V6

0,0) 1
2.0 . /8

2.2) —\/§(Re + Im)
E (0,0) 1

2.0 iv6

[
_

(1,L,1) Ay

with the generalized zeta function Zﬁﬂ and the Lorentz
gamma factor y. The quantization conditions for cot ¢
used are discussed in Sec. VI of Ref. [28]; the nonzero

factors cﬁ,'l’\ appearing in elastic P-wave zz scattering are
also listed in Table II. The right-hand side of Eq. (60), known
as the Lellouch-Liischer factor, depends on the zz system’s

momentum P, irreducible representation A, invariant mass

\/ st 'A, and scattering momentum kP A In Fig. 3 we show
the Lellouch-Liischer factors as a function of invariant mass.
. .. PA . .
Calculating the derivative 82/;5 in practice means that we

must calculate the derivative of wy,, (k?),

OpPA 52— (m} —m3)? 1
OE 2V I 4cotpPh
aWlm (kz)
—_—, 63
g (63)

where m;, m, are the two hadron masses; in the case of 7z
scattering m; = m, = m,. In the rest frame, the derivative
of Z,;,, is again a zeta function,

a?%z ZP=0(5: B2) = sZP0(s + 1, R2). (64)

Since this does not hold in moving frames, we compute the
derivative numerically.

In Fig. 3 we can see that the two different models for the
phase shift 6, BWI and BWII, are statistically compatible.
Nevertheless, we use both Breit-Wigner models in our
analysis to quantitatively assess this.

The fitting systematic uncertainties in E5** enter in the
Lellouch-Liischer factors not only via the explicit factor of

Enf) A in Eq. (60), but also through the phase-shift para-
metrization fitted to these energies via the Liischer quan-
tization condition. In Ref. [28], we estimated the systematic

uncertainties in E;” by comparing the results of expo-
nential fits with start times ?,,, and 7., + a. To correctly
propagate these uncertainties to the Breit-Wigner param-
eters, we then performed the Liischer analysis and the
Breit-Wigner fits for both sets of energies [28]. In the
present work, we therefore also repeat the mappings of
the 7y — 7z matrix elements (and the subsequent analysis)
for both sets of Breit-Wigner parameters.

B. Lorentz decomposition of the infinite-volume
matrix elements

The infinite-volume matrix elements <s, qz; 15, A, r|J ”(O,
G)|m, Py obtained from Eq. (60) still carry the finite-
volume irrep indices 13, A, r. The infinite-volume states
(s, q%; 13, A, r| are linear combinations of the states labeled
by the continuum polarization index m in Eq. (3). The
coefficients of these linear combinations are given by the
irrep projection formula Eq. (25). We form the same linear
combinations of the polarization vectors on the right-hand
side of Eq. (1) to obtain the irrep-projected form-factor
decompositions. Taking this into account, we can deter-
mine the values of the infinite-volume transition amplitude
V- nr- Most kinematic points only have a single possible
Lorentz-decomposition factor, but at certain values of
(s, g%) there are two, as shown in Fig. 4. We average over
the two resulting values of V,,_, ,,, which reduces the full set

of 59 matrix elements to 48 distinct kinematic points (s, g2).

VIL. FITTING THE AMPLITUDE V_,_, .,

A. Parametrization of the infinite-volume
transition amplitude

To allow the calculation of observables, the transition
amplitude V,, . .(¢%. s) determined with lattice QCD at 48
discrete values of g* and s needs to be fitted to an analytic

parametrization. In Sec. II, we factored out the p pole in s
according to Watson’s theorem,
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FIG. 3.

The Lellouch-Liischer factors as a function of invariant mass, for the momentum frames and irreps used here. The thick black lines

show the noninteracting Lellouch-Liischer factors (without the phase-shift derivative). The thin blue lines and dashed red lines show the full
Lellouch-Liischer factors, using the BWI and BWII models [28] for the scattering phase shift. The bands indicate the statistical uncertainties.

F(q*,s) 167sT;(s)
m% — s —iy/sT(s) k-

‘What remains is the transition form factor F (qz, s), which
should not have any additional poles in s in our region of
interest. To obtain a model-independent parametrization of
F(q?, s), we perform a two-dimensional Taylor expansion
in the variables

Vﬂy—vm(qzv S) = (65)

2
s—m
T (66)

mp

S:

and

Vit —q¢* =\t — 1

z= > . (67)
\/t+—q +\/t+—to
after dividing out the lowest expected pole in ¢,
F(q?,s) = :Z&Mwm (68)

an

The variable S was chosen to be dimensionless and small
near the resonance. The definition of z maps the complex
q° plane, cut along the real axis for q* >t _, to the interior
of the unit circle [79-84]. The constant ¢, determines which
value of ¢* is mapped to z = 0; we choose t, = 0. The
constant 7, should be set to the lowest branch point. For the
QED current, the branch cut starts at (31,)? and the lowest

pole is located at m2. However, because we neglect

the disconnected contributions, we use ¢, = (2m,)* and

mp = i’)”lﬂ.2
In practice, the series (68) needs to be truncated. We

organize these truncations into three different families.

(F1) Combined order K:

F(q.s) = 'S (69)
mz n+m<K
(F2) Order N in z, combined order K:
N K-n
F(q%s) a2 S™. (70)
mP n:O m=0
(F3) Order N in z, order M is S:
N M
F(q%s) A, "S™. (71)
=0 m=0

The first two families, F1 and F2, cut the series at the
combined z and S order, while the third family F3
separately specifies the orders in z and S. In the limit of
large K, N, M, all parametrizations become equal.

“Because m% > t,, itis not actually necessary to factor out the
pole, but there is no harm in doing so.
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FIG.4. Transition amplitude values determined from the matrix elements | (s, ¢; P, A, rlJ (0, q)|m, Px)|1y, for those kinematic points
(s, ¢°) where the choices of momentum directions and irrep indices yield two different Lorentz decomposition (LD) factors. For each
kinematic point, we divide by the LD factors and average the two resulting values of V,,_, ... On the horizontal axes, the indices 1 and 2
correspond to the two different Lorentz decompositions indicated in the legend, while the index O corresponds to the average. The data
shown here are based on the BWII Breit-Wigner parametrization; the results for BWI look very similar.
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In the construction of y?, we take into account the
uncertainties in all z and s values by promoting these values
to nuisance parameters, like we did (for the s values) in
Ref. [28]. The covariance matrix, which we estimate using
single-elimination jackknife, is therefore a 3N 4,, X 3N gata
matrix, where Ng,, =48 is the number of kinematic
points. We added the systematic uncertainties associated
with the choices of fit ranges in the matrix element fits and
spectrum fits in quadrature to the diagonal elements of the
covariance matrix. The uncertainties of the best-fit param-
eters are obtained from the Hessian of y? at the minimum.

B. The fit results

For each of the different families of parametrizations
F1-F3 we investigate several fits while keeping the power
of z below 3, and power of S below 4. We find that when
the z-expansion goes to order n = 3 or higher, the addi-
tional parameters are consistent with 0 and no longer
contribute to the description of the data; similarly, for
the S expansion, at order m = 4 the parameters become
statistically consistent with 0. We drop all parametrizations
yielding fit parameters with uncertainties larger than 100
times their central values. We also remove parametrizations

that lead to (f—;f > 1.1, which includes those that are of Oth
order in the z-expansion. The list of models that we keep in

our analysis, and their corresponding values of é‘—(;, are
given in Table III.

We name the parametrizations according to the type of
Breit-Wigner, family of truncation, and truncation limits.
The parametrizations that survive the cuts are consistent
with each other within the uncertainties, and we choose
“BWII F1 K2” as our nominal parametrization. All fit
results are listed in Tables VI and VII in Appendix B. The
covariance matrix for the nominal parametrization is
provided as part of Supplemental Material [85].

TABLEIIL List of parametrizations, and their values of y*/dof
and total y2.

Parametrization %/ dof(?)
BWI F1 K2 0.98 (41.25)
BWI F1 K3 1.05 (39.99)
BWI F2 N1 K2 0.97 (41.56)
BWI F2 N1 K3 0.99 (40.57)
BWI F3 N1 M1 1.09 (47.90)
BWI F3 N1 M2 0.99 (41.41)
BWI F3 N2 M2 1.04 (40.69)
BWI F3 N2 M3 0.92 (33.23)
BWII F1 K2 1.07 (45.03)
BWII F2 N1 K2 1.05 (45.14)
BWII F2 N1 K3 1.06 (43.53)
BWII F3 N1 M2 1.07 (45.02)
BWII F3 N1 M3 1.07 (42.98)
BWII F3 N2 M3 0.99 (35.68)

a2 q2

FIG. 5. Three-dimensional plot of the transition amplitude
Vyy—rr (in lattice units) as a function of /s and ¢°. The lattice
QCD results are shown as the vertical bars, where the widths and
depths correspond to the uncertainties in a/s and a*q?, and the
magenta sections at the tops cover the range from V., ., —
oy, .. © Ve zz + 0y . Data points with larger uncertainty
are plotted with reduced opacity. The surface shows the central
value of the nominal fit function (“BWII F1 K2”).

In Fig. 5 we present the fitted V,,_, ,, combined with the
data points in a three-dimensional plot as a function of /s
and ¢°. Figure 6 instead shows a top-down view as a
density plot, where the discrete values of /s allowed by the
finite volume for which we have results appear as vertically
aligned points.

The slices of the fitted amplitude at these discrete values
of /s are plotted as a function of g% in Fig. 7, where the
upper panel shows the slices with /s > mp while the lower
panel shows the slices with /s < mg. We can see that the
parametrization describes both the /s and ¢ dependence
of the data well.

Qualitatively, we can see two main features in V,,_,,,:
the amplitude is falling off as g* decreases, and shows the

- 16

0.05 F 14

12

~ 000 F 10

g o 8

[6°)

—0.05 } : 6

0\' 4

—0.10 } I 2
0.40 0.45 0.50 0.55 0.60

a\/s

FIG. 6. Density plot of the fitted transition amplitude VV,,_, . (in
lattice units, nominal parametrization BWII F1 K2) in the a/s and
(aq)? plane. The locations of the discrete lattice QCD data points
are indicated by the orange points with error bars.
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FIG. 7. The transition amplitude V., (in lattice units,
nominal parametrization BWII F1 K2), sliced by value of
invariant mass /s, as a function of qz. The shaded bands
correspond to the 1o regions of the fitted parametrizations; their
colors and brightness match the data points at the same a+/s, as
indicated by the symbols in the legend.
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FIG. 8. The transition amplitude V,,_,, as a function of =z
invariant mass, for three different values of the ¢>. The top panel
corresponds to the nominal parametrization BWII F1 K2, and the
bottom panel corresponds to the parametrization “BWI F1 K2”.

FIG. 9. Like Fig. 5, but for the function F(g?,s). The data
points are divided by the central value of the Breit-Wigner factor
[cf. Eq. (8)] to represent the same quantity.
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FIG. 10. The form factor F(g>, 5), as a function of zz invariant
mass, for two different nonzero values of ¢ (top) and for ¢g> = 0
(bottom). Plotted is the central value of the nominal parametri-
zation BWII F1 K2 along with the two uncertainties: the inner
(darker) shaded region represents the statistical and systematical
uncertainties, and the outer (lighter) region includes also the
parametrization uncertainty, estimated as the root-mean-square
deviation of the central values obtained from the different
parametrizations with respect to the nominal one.
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expected enhancement in /s attributed to the p resonance.
The amplitude vanishes at the threshold 2m_, then rises and
falls steeply as the resonance region is crossed. This can
also be seen in Fig. 8, where we plot V,,_, ., as a function of
invariant mass for three different values of ¢°. In this figure,
we show plots for both the nominal parametrization BWII
F1 K2 and for the parametrization BWI F1 K2 that does not
include the Blatt-Weisskopf barrier factor. At large /s,
these parametrizations show some deviation. Nevertheless,
for both parametrizations, the falloff of the amplitude at
large /s is slower than what would be expected for purely
resonant behavior, indicating that the 7y — zz transition
probability remains sizable even when the invariant mass is
far above the resonance position. This is also reflected in
Figs. 9 and 10, where we plot the function F(g?,s) that
does not contain the Breit-Wigner factor. The slow falloff
of V4, ..z as a function of \/s corresponds to growing F.
The other parametrizations show the same behavior, con-
firming a nontrivial s-dependence of the function F (g2, s).

VIII. OBSERVABLES

As discussed in Sec. II we consider two main observable
quantities, both with a real photon (¢*> = 0): the 7y — zx
cross section and the p radiative decay width. The 7y — 7z
cross section (16) evaluated with our nominal parametriza-
tion BWII F1 K2 of V,, .. (s, ¢* = 0) is shown in Fig. 11.
Note that we evaluated Eq. (16) using the heavier-than-
physical pion mass of this ensemble, m,~ 320 MeV.
Because the p resonance is narrower than in nature, the
peak value of the cross section is higher [44].

To determine the p radiative decay width, I'(p — zy), we
must first determine the photocoupling G,,,, which
requires us to analytically continue the transition amplitude

100
=)
3
— 30F
w
=3
| 60F
=
E 40F
T
E 20F
S
O L L
700 800 900 1000
Vs [MeV]
FIG. 11. The two-pion photoproduction cross section as a

function of zz invariant mass, computed with the nominal
parametrization BWII F1 K2 of the amplitude, for our pion
mass of m, ~ 320 MeV. The inner (darker) shaded region
indicates the statistical and systematic uncertainties, and the
outer (lighter) shaded region also includes the parametrization
uncertainty, estimated as explained in the caption of Fig. 10.

0.12 >
— Re [vaﬂp(q )]

—-—- Im [Ffrv—m(qQ”

0.09

0.06 |
0.03F
0.00 |
—0.10 —0.05 0.00 0.05
(ag)®

FIG. 12. The real and imaginary parts of the resonant form
factor F,,_,,(¢*) obtained by analytically continuing the nominal
parametrization BWII F1 K2 of the 7y — zz amplitude to the p
resonance pole. The inner (darker) shaded region indicates the
statistical and systematic uncertainties, and the outer (lighter)
shaded region also includes the parametrization uncertainty,
estimated as explained in the caption of Fig. 10.

V- to the pole position. The resulting resonant form
factor F,,_,(¢%), defined in Eq. (13), is presented in
Fig. 12. We find that the imaginary part of the resonant
form factor is consistent with 0, and the real part slowly
rises as a function of g®. The resonant form factor at g> = 0
is equal to the photocoupling, G,., = F,,,(0). Our
results for G,,,, now for all fourteen amplitude para-
metrizations that gave good fits, are shown in Fig. 13.

—— 1BWI F1 K2
—_— 1BWI F1 K3
—— 1BWI F2 N1 K2
—— 1BWI F2 N1 K3
—— 1BWI F3 N1 M1
—_—— 1BWI F3 N1 M2
—_— 1BWI F3 N2 M2
—_—— 1BWI F3 N2 M3
—— 1BWII F1 K2
—— 1BWII F2 N1 K2
—— 1BWII F2 N1 K3
—— 1BWII F3 N1 M2
—— 1BWII F3 N1 M3
) Bt ] BWII F3 N2 M3
0.070 0.075 0.080 0.085 0.090
|G|
FIG. 13. The p meson photocoupling determined from the

fourteen different parametrizations of the 7y — zz amplitudes.
The bands indicate the value and uncertainties obtained from the
nominal parametrization BWII F1 K2, where the outer (lighter)
band includes (added in quadrature) the root-mean-square
deviation between all parametrizations and the chosen one.
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We find that the photocouplings extracted from the differ-
ent parametrizations are consistent with each other.
Nevertheless, we estimate a systematic uncertainty asso-
ciated with the choice of parametrization as

zN: (xi - xchosen)z’ (72)

i=1 N-1

where x; is the photocoupling determined from the ith
parametrizations, N = 14 is the number of different para-
metrizations, and X, 1S the value obtained from the
nominal parametrization, BWII F1 K2. Our final result for
the photocoupling is

|G,y | = 0.0802(32)(20), (73)

where the first uncertainty includes the statistical uncer-
tainty and the systematic uncertainty from the two-point
and three-point function fits, while the second uncertainty
is our estimate (72) of the parametrization dependence.

The kinematic factors in Eq. (17) lead to a strong pion-
mass dependence of the p radiative decay width. We can
calculate the decay width for the physical pion mass under
the assumption that the pion-mass dependence of the
photocoupling is negligible. This gives

T(p — ny) = 84.2(6.7)(4.3) keV, (74)

where we used m, =775 MeV and m, = 140 MeV. For

comparison, the experimental value of the p* radiative
decay width is 68(7) keV [61].

IX. CONCLUSIONS

We have presented a (2 + 1)-flavor lattice QCD calcu-
lation of the zy — zz process, where the zz system has
I =1 and J?C = 17=. The ensemble used has light-quark
masses that correspond to a pion mass of approximately
320 MeV, while the strange-quark mass is approximately at
its physical value. For the 7z system, we utilized the same
moving frames and irreducible representations as in our
previous study of zz scattering [28]. We determined the
transition amplitude V,, (g% s) with few-percent uncer-
tainty in a broad kinematic region around the p pole in
invariant mass s and around zero momentum transfer g2,
using model-independent parametrizations based on a series
expansion in the variables z and S, defined in Egs. (67) and
(66). The results obtained from several different truncations
of the series are consistent with each other. We observe the
expected enhancement of the amplitude associated with the
p resonance, but find that for large /s the amplitude falls off
slower than expected for purely resonant behavior. In our
analysis, we compared two different Breit-Wigner para-
metrizations of the zz scattering phase shift (with and
without a Blatt-Weisskopf barrier factor). These parametri-
zations yield consistent results for V,, ., (¢?, s) in most of
the kinematic range, but differ for large +/s.

By analytically continuing V,, .., (¢*, 5) to the p pole, we
also determined the zy — p resonant form factor and the p
photocoupling. All truncations of the series used for
V,W_,M(qz,s), and both Breit-Wigner functions, lead to
consistent results for the photocoupling, as can be seen in
Fig. 13. Our final result for this coupling is |G, | =
0.0802(32)(20), which is 1.66 above the value extracted
from the measured p* radiative decay width [61] using
Eq. (17), [G,zylexp = 0.0719(37). Most of the past lattice
studies of this quantity [77,86—-88] were performed in the
single-hadron approach, in which the coupling of the p to the
zz system is not taken into account. The authors of
Refs. [43,44] used the multihadron approach at a pion mass
of approximately 400 MeV and obtained a value of |G, |
around 0.12, as can be seen in Fig. 12 of [44].

Future calculations at lower pion masses, larger volumes,
and additional values of the lattice spacing are needed to
extrapolate to the physical point. One aspect that also
requires more attention is the residual contamination from
higher excited states in the ratios used to determine the
matrix elements from the correlation functions. Better
control over this contamination can be achieved by using
more than three source-sink separations and employing
more advanced analysis methods [89].

The lattice methods used here to compute a 1 — 2
transition are also applicable to many other processes of
interest in nuclear and high-energy physics. An important
example is the rare decay B — K*(— Kn)¢+t¢~ [90,91];
new lattice calculations of the B — K* form factors that
take into account the strong decay of the K* are needed.
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APPENDIX A: MATRIX ELEMENT FITS

Figures 14—19 show the ratios used to extract the finite-volume matrix elements and the fit results for multiple different fit
ranges, for additional kinematic points that were omitted in Fig. 2. Tables IV and V give the values of both the finite-volume
and infinite-volume matrix elements for all kinematic points.

o |£P|=1, A =4y, E, =04454, |£q =2, |&p:| =3, LD: (2E,)
UUll-H—I—I—I-H—I{H-I-I_YIJ{*LI{{ IIIIIIIIIIIIIIII
0.006 F
0.000 S h 5 5 5 v ¥ 5 5 5 L 5 s & s =&
el S B o N ~ =) =) S o3 A% o3 S S ) Co
o ~ N} =) < ~ ) o [N} o =) < [N} ~ o [N}
Lp L > . (27
. |£P| =1, A =E, E, =0.5004, |£ql=V3, |&£p:|=Vv2, LD: (¥E;)
U7
0.047p w====== TES =T . S s ==) x = = = T =T = T y x T I ¥ I 3 =
0.024
0.000 e e e e e -~y
£S5 %3S LHESEETSSET TS
~ < < ~ ~ ~ ~ ~ < < ) [N) < < ) ()
|£P|=v2, A =B, E, =0.5041, |£q |&£p.| =1, LD: (2E,)
0.033
0.022F k= =3 L I_:{J—I'Hiﬂ *x x = = X x x x X T xx = L ®T T T
0.011 F
L L L3 n " L n L L
000 RN EEEEE
o o o o o ~ o o o o =) o o o
- |£P| =v2, A =B, E, =05189, |£q=v2, |£p: f LD: (¥(2E; — E,))
3'3%'551 }I‘E{‘H{:W:IIIIIIIIIIIIIIII
0.000 - 4o -
o < [N} Q < < N} o < < ) [N} < =) o <
|£P Pl =2, A =B,, E, =0.5189, |£q1 =0, |£p:| =v2, LD:2(3%(E, — E,))
0.062
0.042F P e - T E 3
0.021} ====s ﬁ'}H{{‘H I ¥ = x x i x 3 3 [ L )
0.000 ——— P — S~
F S J 5SS TSR IR S I Y S
NN NN (SIS S T~ S s e~
s LP|=Vv2, A =By, E, =05557, |£q =3, |&p:|=1, LD: (2E,)
0.08
0.055) wme=s || Tsszsex || FFETEERGy = =2 = = ®* x = = x x x=x = * ¥ T X
0.028 F
L " L3 " L " "
ho R
~ N} ~ ) o [N} N} =) [N} < ) o [N}
‘2 \/— A= BS E;, =0.5375, ‘%ﬂ:L ‘i_%':lv LD (QTWET)
0.101
0.068f sx===s f=====<y I | = =x = = % % % = & ¥ ¥ X I3 ¥ ¥ F
0.034 3 }IE EEI 3
L 1 1 1 n 1 L L 1 k™3 L L L 1 L 1 L
0000 R R
() < < () =) < < < ) < o <
- |£P|=v2, A =B, E, 05041, ‘QW(ﬂ V2, |27p7|7f LD: (2E,)
.025
(.07 [ = =3 L }111{{\1‘1{ *x x x x X x x x * X T x ¥ F§ §F 3§
0.008 F F
0.000 IO: C\z S b 0 : ) m <} N w~ Q N L -
~ N ~ S i Do) ~ ~ S [N < N S S =) o
N ~ N N © N N N © © © © © ~N o <
|LP|=v2, A =B, B, =05557, |£q =1, |Lp.|=1, LD: (¥E,)
0.104
0,070} mmme= || z=====g || $3F¥*F335 || = = = = * == = = T x x x £ T T ¥
0.035 r F
L 1 1 L L 1 n L 1 1 n 1 n n L 1 n k™3 1 n n L 1 n L 1 n n
VOS2 i 68 2 46 80 T 528858583~ R~S &L 8
(t; —ten)/a (ty—tr)/a (ty —ter)/a ~ = S & S = = & 3 S 3 3 S S S IS
HEHE HS S S HE S HS HE YE WS Wy e Vs e e
33 e B O B O S S
ST AN g g AT ET Iy
NN N [ I S = =
~ ~ ~ ~ (=) (=) j=) [=)
s sgsgsg ™~ T 7"
g oo o0 oo

FIG. 14. As in Fig. 2, for additional kinematic points.
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FIG. 15. As in Fig. 2, for additional kinematic points.
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FIG. 16. As in Fig. 2, for additional kinematic points.
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TABLEIV. Lattice results for the matrix elements (continued in Table V), in lattice units. The quantity denoted as LD is the kinematic
factor appearing next to 2iV,,_,,,/m, in Eq. (1). Here, M Epy denotes the finite-volume matrix elements |(z, p,|J,(0,G)|n, P, A, )gy|,
after averaging over equivalent momentum directions and irrep rows r. The corresponding infinite-volume matrix elements, with
Lellouch-Liischer factors computed for the two different Breit-Wigner models, are denoted as MER'! and MEBM!. The systematic
uncertainties from the fits to the ratios (cf. Sec. V) and from the spectrum fits (cf. Ref. [28]) have been added to the statistical
uncertainties in quadrature.

LP| A |ER LD Vs ()7 MEry MERMT MERT
0 T, 1 (2E,) 0.4588(29) —0.0029(11) 0.0767(45) 10.81(96) 10.70(79)
0 T, V2 (2E,) 0.4588(29) -0.06173(81) 0.0636(50) 8.97(93) 8.88(81)
0 T, V3 (2E,) 0.4588(29) —0.11087(64) 0.0624(95) 8.8(1.5) 8.7(1.4)
0 T, V3 (2E,) 0.5467(28) -0.0910(13) 0.0545(83) 3.06(46) 3.08(47)
1 A, 1 (2E,) 0.3997(14) —0.04630(41) 0.0125(12) 0.657(68) 0.669(69)
1 A, V2 (2E,) 0.3997(14) —0.10343(39) 0.0095(16) 0.499(86) 0.509(88)
1 A, V2 (2E,) 0.3997(14) -0.02632(39) 0.0136(19) 0.72(10) 0.73(10)
1 A, V2 (2E,) 0.4732(42) —0.0841(15) 0.0649(99) 5.9(1.1) 5.8(1.0)
1 A, V2 (2E,) 0.4732(42) —0.0070(15) 0.093(12) 8.5(1.4) 8.4(1.3)
1 A, V3 (2E,) 0.3997(14) —0.07400(41) 0.0116(26) 0.61(14) 0.62(14)
1 A, V3 (2E,) 0.4732(42) -0.0620(13) 0.075(17) 6.8(1.6) 6.8(1.6)
1 E 1 (2E,) 0.4603(37) —0.0240(16) 0.0479(42) 6.62(74) 6.52(67)
1 E 1 (2E,) 0.5813(53) 0.0411(33) 0.0481(43) 2.22(20) 2.23(20)
1 E 1 (3 (E, - E,)) 0.5813(53) 0.1182(33) 0.0371(72) 1.71(33) 1.72(33)
1 E 1 (2E,) 0.5813(53) 0.0411(33) 0.0790(51) 3.64(24) 3.67(25)
1 E V2 (2(E, - E,)) 0.4603(37) -0.0111(12) 0.0323(74) 4.5(1.1) 4.4(1.0)
1 E V2 (2E,) 0.4603(37) -0.0882(12) 0.0697(84) 9.6(1.4) 9.5(1.3)
1 E V2 (2E,) 0.4603(37) -0.0882(12) 0.0554(84) 7.7(1.3) 7.5(1.2)
1 E V2 (2E,) 0.4603(37) -0.0111(12) 0.087(11) 12.1(1.7) 11.9(1.6)
1 E V3 (32E,) 0.5813(53) —-0.0269(25) 0.077(17) 3.53(79) 3.56(80)
1 E V3 (2E,) 0.4603(37) —0.0648(11) 0.079(17) 11.0(2.5) 10.8(2.4)
1 E V3 (2(E, - E,)) 0.4603(37) —0.0648(11) 0.028(13) 3.8(1.8) 3.8(1.7)
V2 B, 1 (2E,) 0.4207(30) —0.0608(11) 0.0209(27) 1.34(18) 1.36(18)
V2 B, 1 (2E,) 0.4207(30) 0.0163(11) 0.0238(31) 1.53(20) 1.55(21)
V2 B, 1 (2E,) 0.4814(57) -0.0339(28) 0.0628(80) 4.45(72) 4.45(70)
V2 B, 1 (2E,) 0.4814(57) 0.0432(28) 0.0748(94) 5.30(83) 5.30(81)
V2 B, V2 (2E,) 0.4207(30) —0.04843(86) 0.0191(31) 1.23(20) 1.25(21)
V2 B, V2 (2E,) 0.4814(57) -0.0283(23) 0.0591(97) 4.19(80) 4.19(78)
V2 B, V3 (2E,) 0.4207(30) —0.02545(91) 0.0235(82) 1.51(53) 1.53(54)
V2 B, V3 (2E,) 0.4814(57) -0.0110(20) 0.078(26) 5.5(1.9) 5.5(1.9)
V2 B, 0 2(2E,) 0.4384(33) 0.0355(18) 0.0433(40) 3.77(44) 3.84(44)
V2 B, 0 2(2E,) 0.4902(58) 0.0673(38) 0.0689(62) 4.32(47) 4.34(46)
V2 B, 1 (2E,) 0.4384(33) -0.0536(13) 0.0354(38) 3.08(39) 3.14(39)
V2 B, V2 (2E,) 0.4384(33) -0.0432(10) 0.0355(56) 3.09(52) 3.15(53)
V2 B, V2 (% (2E,-E,)) 0.4384(33) -0.0432(10) 0.0170(74) 1.48(65) 1.51(67)
V2 B, V2 2(%2(E, - E,)) 0.4384(33) 0.0339(10) 0.037(13) 3.2(1.2) 3.3(1.2)
V2 B, V2 (2E,) 0.4902(58) —0.0248(23) 0.0603(91) 3.78(62) 3.80(62)
V2 B, V2 (2(2E, - E,)) 0.4902(58) -0.0248(23) 0.028(13) 1.75(83) 1.76(83)
V2 B, V2 2(%(E, - E,)) 0.4902(58) 0.0523(23) 0.053(22) 3.3(1.4) 3.4(1.4)
V2 B, V3 (2E,) 0.4384(33) -0.0218(11) 0.049(14) 4.3(1.3) 4.3(1.3)

074502-22



ny — nx TRANSITION AND THE p ...

PHYS. REV. D 98, 074502 (2018)

TABLE V. Continuation of Table IV.

EFL A IR L JEr R MEw MER e
V2 B; 0 (3E,) 0.4603(87) 0.0484(52) 0.0473(73) 6.5(1.1) 6.4(1.1)
V2 B; 1 (%E,) 0.4603(87) —0.0440(39) 0.044(14) 6.0(2.0) 5.9(1.9)
V2 B; 1 (Z(E, - E,)) 0.4603(87) 0.0331(39) 0.043(11) 5.9(1.6) 5.8(1.6)
V2 B; 1 (2E,) 0.4603(87) 0.0331(39) 0.049(16) 6.7(2.2) 6.6(2.2)
V2 B; V2 (2 (E, - E,)) 0.4603(87) —0.0360(30) 0.039(20) 5.32.7) 5.3(2.7)
V3 A, 1 (*E,) 0.4371(98) 0.0035(44) 0.0309(61) 2.50(67) 2.55(69)
V3 A, 1 (%E,) 0.4827(89) 0.0257(46) 0.0388(84) 3.8(2.0) 3.8(2.0)
V3 A, V2 (*E,) 0.4371(98) 0.0094(34) 0.039(12) 3.1(1.2) 3.2(1.2)
V3 A, V2 (3E,) 0.4827(89) 0.0268(36) 0.045(16) 4.5(2.6) 4.5(2.6)
V3 E 0 3(32E,) 0.4501(95) 0.0293(58) 0.098(13) 11.6(3.7) 11.8(3.5)
V3 E 0 3(32E,) 0.5178(80) 0.0746(57) 0.098(13) 4.80(68) 4.85(68)
V3 E 1 (2(3E,—E,)) 0.4501(95) 0.0095(44) 0.043(24) 5.1(3.3) 5.2(3.3)
V3 E 1 (32 (3E, —2E,)) 0.4501(95) 0.0095(44) 0.046(20) 5.4(2.9) 5.5(2.9)
V3 E 1 (*E,) 0.5178(80) 0.0452(45) 0.086(20) 4.2(1.0) 4.2(1.0)
V3 E 1 (2(3E,—E,)) 0.5178(80) 0.0452(45) 0.038(25) 1.9(1.2) 1.9(1.2)
V3 E V2 3(3(E, - E,)) 0.4501(95) 0.0140(35) 0.119(37) 14.1(6.1) 14.3(5.9)
V3 E V2 (2E,) 0.4501(95) 0.0140(35) 0.074(41) 8.7(5.6) 8.9(5.6)
V3 E V2 (%E,) 0.5178(80) 0.0425(37) 0.081(43) 4.0(2.1) 4.02.2)
V3 E V2 3(%2(E,—E,)) 0.5178(80) 0.0425(37) 0.119(39) 5.8(1.9) 5.9(1.9)
APPENDIX B: FIT PARAMETERS

Tables VI and VII give the fit results for all parametrizations of the amplitude V,,_, ;.
TABLE VI. Fit results for the amplitude parametrizations based on the BWI Breit-Wigner model.
Parameter F1 K2 F1 K3 F2 N1 K2 F2 N1 K3 F3 N1 M1 F3NI M2 F3N2M2  F3N2M3
Ago 0.0794(34)  0.0799(43)  0.0801(31)  0.0814(34)  0.0834(29)  0.0804(32)  0.0785(42)  0.0821(45)
Ay 0.113(15) 0.078(50) 0.116(14) 0.088(33) 0.132(13) 0.113(16) 0.107(19) 0.037(53)
Ap 0.109(46) 0.004(158)  0.095(38) 0.004(109) 0.096(38) 0.108(48)  —0.28(18)
Ay 0.085(28) 0.068(52) 0.081(27) 0.076(31) 0.098(27) 0.086(29) 0.085(32) 0.053(37)
Ay 0.35(19) 0.30(33) 0.254(67) 0.21(16) 0.146(50) 0.30(13) 0.42(22) 0.77(33)
Ay 0.12(22) 0.24(37) 0.28(36) 0.22(42)
A, 0.13(96) 0.09(32) —0.09(24) —0.37(55) 4.7(2.1)
Ay 0.4(3.5) -0.5(1.3) 7.7(3.6)
Ay —0.06(2.06) —1.3(9.5)
Ags 0.28(38) 0.24(27) 0.77(44)
Az —10.8(4.4)
Ay —24(21)
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TABLE VII. Fit results for the amplitude parametrizations based on the BWII Breit-Wigner model.

Parameter F1 K2 F2 N1 K2 F2 N1 K3 F3 N1 M2 F3 N1 M3 F3 N2 M3
Ago 0.0803(32) 0.0806(30) 0.0821(32) 0.0809(30) 0.0827(33) 0.0835(39)
Ao 0.132(14) 0.133(14) 0.097(33) 0.131(15) 0.108(37) 0.045(53)
Agyy 0.116(45) 0.108(38) —0.01(11) 0.109(38) —0.01(11) —0.33(18)
Aqp 0.089(27) 0.087(26) 0.077(30) 0.091(28) 0.068(33) 0.054(36)
Ay 0.34(19) 0.276(68) 0.21(15) 0.31(12) 0.30(20) 0.77(32)
A 0.17(32) —0.08(23) 0.74(87) 5.1(2.1)
Asg 0.07(22) 0.12(39)
Ay 8.4(3.6)
Ay 0.2(9.3)
Aps 0.32(27) 0.28(28) 0.88(44)
Az -1.2(1.7) —11.6(4.5)
Assz —28(20)
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