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ABSTRACT

Phase velocities of elastic wave propagation in a homo-
geneous transversely isotropic medium with symmetry axis
parallel to the free surface of a half space is investigated.
Approximate solutions of the problem of phase velocities of
Rayleigh, horizontally propagating P and SH waves is obtained
by means of perturbation method on the assumption that the
deviation of the elastic coefficients from isotropy is small.
In the case of horizontally propagating SV waves an exact
solution is obtained. The vertical lamination model approxim-
ating fracture zones and the Olivine model based on Francis'
hypothesis have been tested. The results derived from fracture
zone model showing small anisotropy fail to explain the
observed data. The Olivine model showing large azimuthal
variation of P and Rayleigh waves needed some modification in
such a way that the a axis of Olivine crystal will be distrib-
uted diffusely. Suitable choice of weighting functions
averaging the orientation of a a axis will give close agreement
between both observed and predicted P and Rayleigh waves.
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Introduction

A great deal of attention has been given to the aniso-

tropies of the propagation velocities of seismic waves in

connection with the investigation of the structure of the

Earth's crust and upper mantle. An anisotropic medium is

characterized by the change of its elastic properties with

the direction. In seismology, the transverse isotropy in

which the elastic properties remain invariant in the plane

perpendicular to the symmetry axis has been of the greatest

interest.

Stoneley (1949) is the first seismologist who discussed

surface and body wave propagation in a homogeneous transversely

isotropic half space with the symmetry axis normal to the free

surface. Synge (1957) showed that the propagation of undamped

Rayleigh waves do not exist unless the symmetry axis is either

parallel or perpendicular to the free surface. Bulchwald (1961)

discussed the waves radiated from a time-harmonic source and

used the method of Fourier double integrals to obtain the

equation for the velocity of Rayleigh waves which is the same

as that obtained by Stoneley.

A rapid variation of elastic constants with depth may

apparently have the same effect as an anisotropic medium on

the propagation of long waves. Postma (1955) gave the explicit

formula for the five elastic constants of homogeneous trans-

versely isotropic medium which is equivalent to a periodic,



-5-

isotropic two-layered medium in the long wave limit under the

restriction that the Lame's Constants are positive. Backus

(1962) applied the averaging technique to the constitutive

relation and equation of motion to approximate an inhomogeneous

isotropic and transversely isotropic horizontally layered

medium by a long wave equivalent, but more slowly varying

transversely isotropic inhomogeneous medium in the direction

perpendicular to the layers. Their theories will motivate us

to set up a model to approximate the crust in the Nazca Plate

discussed in this paper.

The anisotropy of the oceanic uppermantle beneath the

Mohorovicic discontinuity is first suggested by Hess (1964).

In the light of the observed results of the measurements of

P velocities showing that low velocities perpendicular to

the fracture zones and high velocities parallel to them in the

region near the ridge axis in the East and North East Pacific,

he claimed that seismic anisotropy of the upper mantle beneath

the oceans results from a preferential alignment of Olivine

crystals and predicted that the b axis that tends to be

perpendicular to the fracture zones could explain the observed

anisotropy. Francis (1969) suggested, on the other hand, that

the a axis of olivine crystals tend to point away from the

ridge axis and the b and c axes will be randomly oriented in

the vertical plane parallel to the ridge axis at the time that
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the oceanic lithosphere was produced.

Backus (1965) used perturbation technique to derive the

general form of the azimuthal dependence of the phase velocity

of the Pn waves as a function of the azimuth of the wave number

vector. He showed that correct to the first order in pertur-

bation, the expression for the Pn wave phase velocity can be

written as

~9A 1 +1 A%.Co2. -1 + 36'P -1 A+4 Co.54 + A S in4e

where the five coefficients A are functions of the elastic

constants of the wave medium. Later on, all the investigators

utilized the formula derived by Backus to interpret their

observed results in seismic refraction measurements (Raitt,

1969; Morris, 1969; Keen and Barret, 1971; Raitt, Shor, and

Morris, 1971).

Forsyth (1972) observed that there was a 2% azimuthal

variation of Rayleigh wave phase velocity in the region of

Nazca plate. Smith and Dahlen (1972) combined Rayleigh's

principle and Backus' harmonic tensor decomposition to discuss

the effect of small anisotropy on the propagation of surface

waves of Rayleigh and Love type with the motivation of explain-

ing Forsyth's observed value. They also obtained the general

form of the dependence of surface wave dispersion on the azimuth
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6 of the horizontal wave number vector.

Much more detailed study of the propagation of surface

and body waves will be required in order to predict the

degree of anisotropy of the earth's crust and upper mantle.

However, it is worth adopting some simple models to compare

the theoretically calculated results for comparison with

observation. In this paper, two such simple models will be

set up to explain Forsyth's observation and previously observed

Pn wave anisotropies. For simplicity, we shall assume that

the media in both are vertically homogeneous. The first model

will be a laminated mantle in which soft vertical layers

representing fracture zones are sandwiched alternately between

hard layers. The second model will be a homogeneous half space

made of Olivine crystals in which the orientations of the b and

c axes are uniformly distributed over the vertical plane and the

a axis distributes with a certain distribution function with

respect to the normal to the ridge axis (Francis, 1969). Both

models can be reduced to a homogeneous transversely isotropic

half space with symmetry axis parallel to the free surface.

In this case, the problem of the surface waves of Rayleigh

type can be solved by means of the separation of the equations

of motion and boundary conditions under the restriction of

neglecting the displacement of SH type which is of the second

order in perturbation. The powerful procedure analogous to
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that of Stoneley will be used in both the lamination model

and the olivine upper mantle model. In order to relate the

Pn wave anisotropy and Rayleigh wave anisotropy, body waves

will also be considered in the equivalent homogeneous

transversely isotropic medium derived from the second model

and some of the necessary averaging technique will be taken

into account. The purpose of this paper is to present the

theory based on these two models to explain the observed P n

wave anisotropy and Rayleigh wave anisotropy simultaneously.

2. Statement of the problem and equation of motion

Our analysis is primarily concerned with the propagation

of surface waves of Rayleigh type in two simple earth models:

one is the model of 'fracture zone' in which soft vertical

layers forming the fracture zones are sandwiched in the normal

oceanic lithosphere, and the other half-space composed of

olivine crystal in which the a axis of the olivine crystal

tends to become perpendicular to the ridge axis and parallel

to the horizontal plane, and the b and c axes orient randomly

in the plane perpendicular to the a axis. In either case,

the problem is reduced to finding the phase velocity of the

surface waves of Rayleigh type in a homogeneous transversely

isotropic medium, whose axis of symmetry is perpendicular to

the ridge axis and parallel to the free surface.
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Let (- 1|, ) be an orthonormal coordinate frame

oriented in the right-hand sense at a point of the free surface

with T pointing in the direction of the axis of symmetry,

directed vertically downward into the medium. To obtain

expressions convenient for comparison with observations, we

have to choose another orthonormal coordinate frame 1, q',3')

obtained by rotating ( i,, about the vertical axis in

such a way that ej become parallel to a vertical plane

containing the wave number vector.

In the notation of Grant and West (page 27), the stress

components and strain components in a transversely isotropic

body are related by the following constitutive relation.

?uL 0 0 0 0

Px. ()4+4) 0 0 0 o e.

0 0 0 0 2.) (2-1)

Because of the existence of strain-energy function, there

exists the symmetry of the elastic coefficients -C=

and hence the elastic constant tensor of the medium in our
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problem can be written as the linear combination of tetradics

(Morse and Fashbach, page 72) in the following form,

C 24- A.AAL4j AV~e A11 + e~; + J~~~ viCiSZi+ i

+ il ( )(~ ) ± +(~) (2-2)
Suppose that the departure from isotropy is sufficiently

small, we may assume that the elastic constant tensor of

the medium is perturbed from an isotropic tensor t to

t ~ + where S$ is small compared to Hence

we take

C~( +~)~ + +i v~i

(2-3)

4q + 15+ in fl)

where ht- Afi,= .-4 1 and

Next, we shall introduce the infinitesimal displacement

E ( t)=% (L + + (t. 4 3 arising from the wave

propagation with the wave number vector
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then the strain dyadic tensor is

~(zi-i.w~z +~r (2-5)

where T denotes the transpose, and the stress dyadic tensor
a is given by

or ~ ~ ,~ z.~)(2-6)'

where is the operator

which transforms the displacement fields ~(() = LL+(4..3
3

into the stress fields. C3 7 7

In the discussion of the propagation of surface waves

of Rayleigh type, we are mostly concerned with the regions

devoid of sources. The initial approach is to obtain the source

free equation of motion appropriate to the medium of our problem

in terms of the spatial derivatives of the displacement com-

ponents with respect to the orthonormal coordinate frame

and then use the method of displacement potentials

for plane waves and the prescribed boundary condition at free

surface to obtain the modified Rayleigh's equation and

determine whether surface waves of Rayleigh type.can or cannot
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exist in such a medium. A simple means to reach our goal is to

express every vector and tensor in terms of their components

with respect to the frame w%', ' 73O.

In homogeneous source-free regions, for time-harmonic

displacement fields with exp (-Cot ) dependence, and assume

that plane wave solutions of the type exp

are admissible, then in the equation of motion, 9 can

be replaced by -w and = + 3' can be

replaced by = where A= X = '

is the position vector and = (A", 2.,3)

The equation of motion in a medium of density f

on the assumption of infinitesimal deformation, and in

the absence of body force is

-/" (2-7)

1)3 Aj.)~

or - 1z '4 3~(-)

Our final step in obtaining the equation of motion

is to express CA?>AAg in terms of five elastic constants

AD ) /1 ) A ., 9 through the coordinate transformation
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C0SO 41

S ineSr,' + cose5'

(2-8)

and

Co5e 

3

+ Sene
-t Cose

s-iNote that the tensor C0 in

isotropic tensor, which can be written as

(2-10)

In case of the equation of motion is reduced

of course to the equation for an isotropic body

(A~~44~1±A ~3 0

At W- L)

44 

$0 S

(2-9)

is an

0

O lt 2

(2-11)%21LL

+

[(I,]
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In a homogeneous transversely isotropic medium, the

departure from isotropy is due to the existence of three

parameters 6>, 6f and . The absence of symmetry

of SC in the horizontal plane requires some complicated

algebra to obtain the right hand side of (2-7) in terms of

the five elastic constants Al , f li. , At and 9 in

the coordinate frame . Using (2-8), (2-9) and

I (A 4- (Exa + (L3e 3,
-(COS Qw j) -Sk($noU3.) (5) + ('3

then after some lengthy calculation, (2-7)

Ile 0
)VI (71) At','(*)

jG4V Ir, Fa A 04 & 0 -) A Q 70

41 (Q,9.447i) A;(70.11 '13J

(2-12)

becomes

AIz £A12&', .3

$$ph) hwar) A33)

(viI ~
{(t3

(2-13)

where

h (Vr)

A51(7T)
A44? + (2-14)

Al (h) A'O (Q)

A* aE() Ai3 (V)

(AOA-) IJ3
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and is a 3x3 symmetric matrix with elements

.A,1(v) =Au4 r) (-4x5irne (as e-25A.S COce+ 65SC52ce)d

E(= .) ~3MG2 S +$)c. (2-15)

Equation (2-13) constitutes a set of three coupled

simultaneous linear partial differential equations in three

unknowns ( i2. and C3 . To solve this set, we first

represent (t I , C n( a. &d-.3 as consisting of part due to

d= t plus a perturbed part. The displacement in (2-j3)

becomes M = + TCm + + IM - (2-16)

The zero subscript denotes the value of ' in isotropic medium

with ,Al and Aq as Lame's constants, and the i(i>Q) subscript

denotes the perturbed portion of - which is of i-th order in

and SA . If we assume that ' =0 , then every

term in (- -= 2 V.--14, is of order higher

than zero in S) SA and * We note also that the
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elements Ami (W)+$Am(w)=A4)+6Aw(v2); A357() 3))±SAg

and Am (+) + (7) A" (9)+ 6A3X(W) Neglecting all

terms involving (L which are of order higher than one in

6,k 3x& $9. we get

= (All +&1  (Li + (Ao(7)+SAt~ 3

A it~ + (A2L(wr) + SA 2w(r) (L- + 6~v

Z) + 6A,(V)) 333 (2-17)

The second equation in (2-17) offers explanation how horizontal

transverse displacement ( can be generated by (LI and U3

through the perturbation of the elastic properties of the

medium. On the other hand, the motion governing U. and k3

can be discussed in two dimensions (X', x3')- the vertical plane

containing the wave number vector. Therefore, only the first

and third equations of (2-17) are needed to discuss the

propagation of P-waves, SV-waves and surface waves of Rayleigh

type; whereas, in considering the propagation of SH-waves,

( and (L3 are regarded at least of the first order in

perturbation and the second equation of (2-17) becomes

t fA A20 (W) + .427 2 (2-18)
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3. Boundary condition

The boundary condition of our problem is the vanishing

of all the components of stress working at free surface X3 =0

The combination of this condition and the condition at

infinity: Z=O at X3'= Oo will determine the property of Free

Rayleigh waves. The stress working on the horizontal plane

is

3'{J + 3) J(3-1)

For the isotropic part, we have the well known result:

(3-2)
Next, we shall consider the perturbation term of (3-1). From

(2-4) and (2-6), we have

{f3 3 (3-3)
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Applying (2-9) and (2-12) to (3-3), we finally find

5'(('g)$}5= Coe5(c 33 Q-- S 0 ( 4. c) 5 ) '

- 5,9 So(se Sn9 e+oso,)

+ $1?A(Coo -Sheresend1 S (3-4)

When we are interested in the motion described by Cian l C3
only, ( and 6A(. may be neglected for the reason

discussed in relation to (2-17) and hence (3-4) can be

written approximately as

(3-5)

Then the boundary condition at free surface =o becomes

(3-6)

This relation plus the condition at infinity that the energy

will decay to zero is sufficient to determine the motion of

free surface waves. When C (3-6) reduces to the
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boundary condition for isotropic body.

A10141t + (~+A,~L3 0

(,43 + - (k= 0 (3-7)

4. Theory of the surface waves of Rayleigh type

In order to obtain the phase velocity of waves analogous

to Rayleigh waves, we shall apply the method of plane waves

due to Stoneley (1949) to our modified equation of motion

and boundary condition at free surface.

Recall that in Section 2 the first and the third

equations in (2-17) are sufficient to discuss P-waves,

SV-waves and surface waves of Rayleigh type approximately

and the second equation will be ignored for the present so

that the equations of motion expressed in terms of the components

in the coordinate frame { ' ( are

IFd?(L3 - (F iL), (t t ( U) (4-1)

where
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A~ ~ Gwiiki + 2 Gj Y~~5e +F ~5~)i~

L = +59e

C = A (4-2)

Now we set

(4-3)

or

Assume that waves are plane of sinusoidal disturbance,

the displacement must have exp(--.2iid) dependence, where Wo

is the circular frequency. Then we can write (4-1) as

(4-4)

Note that we no longer have in general purely

compressional waves or purely rotational waves as in the

isotropic medium. The details will be described in Sections

7 and 8. In order to investigate the surface waves of

Rayleigh type, it is convenient to derive the modified

Rayleigh's equation by means of displacement potentials.
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Considering homogeneous plane waves with the phase velocity

c, we assume that

oo (4-5)

and insert them into (4-1) and (4-3) to get the following

equations.

i (,rc4)-0A4 + (F+ 2±Ly+] + [L 3X-+ (rc-A+FiL) o

(f~2 2L - cF) + (L--Cc )L- =

(4-6)

or 9 = o,5 T 4h=\ A = =o, the equations of motion

are reduced to those on unperturbed isotropic medium with

Lame's constants AIj and ,e , and (4-6) becomes

+7 ) +
(4-7)

which correspond to equations

and )(."i+ -

waves in isotropic medium, where

+i + -f -- 0

for inhomogeneous plane

C ~ and -
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We assume further that

+ ()) -= _0.4p( 31) and yl='
where are constants. From (4-7) and (4-8)

we have

Ae CX-A - f' (Ft 2-L .'(c-iiF+L- =

f c- -2L - Q c) - L L-CtF =o (4-9)

In order that inhomogeneous plane waves may exist,

there must be non-trivial solutions 0 and )' of (4-9). This

condition is

(1-g{L C A + ( (fcr-A) C Or + L(fes -t) + (FPL)

- (fc_--4)(c1-L 0 (4-10)

In equation (4-10), the solutions (=:J have nothing to do

with the motion of surface waves of Rayleigh type. We can

solve for in (4-10) to give the values

L C
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(4-11)Lw

where C1 <= ~ -A) + L.(fe -L (F

For 6 =O,5-r or isotropic medium with Ali) .l as

Lame's constants, they reduce to

g;~=~ ~-

There are two roots 9 and

hence the solutions of

[ of equation (4-10) ,

(4-7) must be of the form,

E ~= 4f (-it l 3') + .Y2X (-&l ir2X5 )

According to (4-9), (4-12) can be written as

and

(4-12)

(4-13)

7fc7 .

*&)=9,og(14x -- $.o L ex0
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in which both g, and fsmust be negative in order to satisfy

the condition at infinity, where

( ,

Now that we have (4-13) which expresses the characteristic

of surface waves, we are going to put them into the boundary

conditions at free surface given by (3-6) to obtain the modified

Rayleigh's equation. Since we are not interested in , for

the time being, we only write the condition in the following way.

(~±±~) ~~ + ~-i-~ (~0

.i6.~3 + ~3 ~
(4-14)

In terms of compressional and rotational potentials, (4-14)

becomes

(4-15)

On substituting (4-13) into (4-15), we obtain

Az bi J + 32. ' 11)( = 0

- f. c -A + 3&(F-L)
fc7- - A t F t L + L,,:
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tQP(fg.i) (N~24g ~A x , Ae. /Nil ~ (I

(4-16)

For non-vanishing 4, and 4, to exist, the following
condition must be satisfied.

1k N

(4-17)

which is the modified Rayleigh's equation. It can be shown

that in an isotropic medium, this equation is reduced to the

ordinary Rayleigh's equation - : -

for arbitrary Poisson's ratio where C and CS are phase

velocities of P wave and S wave respectively.

Let us look at the elements of (4-17) more explicitly

and find that
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(frc'-A) + if"CAo +24 + Co
(~f c-A +)N4+,q + <&A+b)CosLe+ (A, H6 Cose)

C +Al 4 + 0 A+)C ae a +-t ?

(fi-() (Cfe4) + {(ki +A1 Cos'0 ) _

(t2-- A +.u+ All + (b +S9) Cos's ± (a +±COS+LO)v)L

(t+~;)

( (peC -A) - .
k fc '&-A +.A +,Al + (6A+ 6S)Co5o + (A, +P5&oAe)V )

(4-18)

where

A= h +2.fA + S A

+ Coe C(ots ) +2.e5A Coslo + 45p S1 M]26

is indicated in (4-2)

< -h( AII+Al +G A + 9) Gs5'e )

N
A

+

(, + ;A (0s5e6)

"no
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From the above results, we find a common factor

(fC'-A) + Al tAt + ( A +'9) Cos+ ± (Ali +9 Cose) &

in the column of (4-17). From the expression of

we see that the matrix in (4-17) has rank 1 if we set

and hence there must be a common factor on

the left hand side of (4-17). After removing the factor

whereAF- and L are expressed in (4-2), we get

- [N5) (Alt2t) + f c-A) (A u)&I±A F.

(A+k) O+2 ) (Y 0 -A)

+(A ) +9(A+4-)(r -A)(c-) - (4)(f-A)

(A+4(a t +4 5'(f'A =o (4-19)
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where

From (4-11), we recall that

(4-20)

(4-21)

Substituting (4-20) and (4-21) into (4-19) and after some

arrangement, the modified Rayleigh's equation is finally

obtained.

+ A + C

+ AL)
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A+, ~ 0 (,(+2L) X%~ -2"A) + (AIj+6F)2-

(4-22)

where X=fC

For small anisotropy, Al%4L.0O and ( i4 by)(A

in the medium under consideration. We have RO)<0 and P Auf f)>o

and hence there must be a root of F 00=O in the open

interval ( ,4f .f%) For real roots, we must have (X-,-k))(4 --

>0 which is equivalent to X >kAt+L , X >A+2/44 fA 4L X<fAtjk

X <Al,+IAR+SA but F(X) only takes real roots for the second case.

Rationalizing equation (4-22), we obtain a polynomial

eieequation in 7j'% (4iL of degree 3,

+~~~~ {All:& Y.(4~ i SL
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+~~ ~2 2J -2+ (-t-L,(I+ 0 (4-23)

where 2

for the poisson solid satisfying . , we have

Aw) -) ' 2 -.--- (+ 2  (4-24)

where 7= (j+ ).3 +

Both of (4-23) and (4-24) are the modified Rayleigh's

equation from which we can determine the phase velocity as a

function of the azimuth of wave number vector. In the

following sections, we shall calculate the ratio of the phase

velocity to from (4-23) and (4-24) in ten directions

corresponding to = 0* = C ' I*, and 90* for the two

models; the fracture zone model and the olivine model

discussed in the introduction.
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5. Transverse isotropy as the limiting case of a laminated material

The motivation of our choice of approximating the oceanic

lithosphere by a laminated model comes from the conjecture that

the fracture zones may be regarded as the soft thin layers

sandwiched in the Normal Oceanic lithosphere and in welded

contact with it. Postma (1955) has shown that in the long

wave limit, a medium consisting of alternating plane parallel

isotropic layers of two different elastic properties can be

approximated by a homogeneous transversely isotropic medium.

Since Forsyth found the anisotropy for Rayleigh waves in the

Nazca plate up to wave lengths of 400 km, the long wave

assumption may be justified.

Consider a laminated half space, in which vertical thin

layers with thickness h, and Lame's constants /s,141 are

sandwiched in a half space with Lame's constants a, /d

and thickness ho as shown in Figure 1. Let us choose an

orthonormal coordinate frame f(i, %A3 at some point on

the free surface such that f is the horizontal unit vector

normal to the plane of lamination, and i is the unit vector

directed vertically downward into the medium. The geometry

of the frame is also indicated in Figure 1. Following Postma

(1955), we choose a fraction of their thickness as the weighting

function to average all the stress and strain components in

these two different isotropic layers, finally the averaged

stress and strain relation is obtained. Comparing this
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X074 L X 7/'

T

A

+- h0 -- A

-

V

Figure 1. Coordinate frame fI, Fzf3 attached to a

laminated half-space. @i is the horizontal

unit vector normal to the interfaces. A is

the vertical unit vector and 2

e2
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result with the constitutive relation in homogeneous trans-

versely isotropic medium with symmetry axis parallel to E

we find

(A o + A44)t+ 2/J

'+

it4-

(Ao+2Ao) t ( 0) (5-1)

where, A -

There are five elastic constants of the transversely

isotropic body equivalent to the laminated body at long wave
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limit. For simplicity, we shall assume Ie =Ao and A=/&t
C(e)

Then the ratio y(9) in equation (4-24) was computed

for ' 50 at 100 interval for several cases of J\=

and a fixed rigidity ratio. The result is given in Table 1

for 2 For 9300, () = 134.o2.

which is the value of in the isotropic Poisson's

solid.

We see from Table 1 that the variation of __

with the azimuth of the propagation is small compared with

the 2% anisotropy observed by Forsyth for Rayleigh waves in

the Nazca plate. The set of parameters and

which give the required 2% anisotropy were obtained by the

following procedure.

For Poisson's solid, we assume that Ao=Ao and =
Then equation (5-1) becomes

S+ (5-2)

/A.. +(5-2)
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Table 1. Y(e) calculated for the laminated model in
which = .21.16/16

A) ." +0a (Degree) y(O)

5 0 0.9131
5 10 0.9132
5 20 0.9136
5 30 0.9143
5 40 0.9153
5 50 0.9164
5 60 0.9175
5 70 0.9185
5 80 0.9191
5 90 0.9194
10 0 0.9169
10 10 0.9170
10 20 0.9171
10 30 0.9174
10 40 0.9178
10 50 0.9182
10 60 0.9187
10 70 0.9190
10 80 0.9193
10 90 0.9194
15 0 0.9176
15 10 0.9178
15 20 0.9178
15 30 0.9180
15 40 0.9182
15 50 0.9185
15 60 0.9189
15 70 0.9191
15 80 0.9193
15 90 0.9194
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from which we have

_L 3&tAoA
1 /4_ /I& +c~

V-All1
.- iA1A q AI 4.v

'cA+

/'.AA -A (I - A- (O-A0A,+(A-A)2

- *

and hence

For given values of

(4 t a,4,)d~ + a,4.)

54+A (A ) ..

(5-4) is reduced to the homogeneous quadratic equation

( - ) ( + (+A) -4* (2

+ a( i+ -- ) =o

(5-3)

(5-4)

(5-5)



-37-

Table 2. (W=(Y calculated for laminated model compared
with observed by Forsyth (1972).

@ (Degree)

10
20

Calculated

0.899
0.900
0.901
0.903
0.906
0.910
0.913
0.917
0.919
0.919

70

Observed

0.901
0.902
0.903
0.905
0.909
0.912
0.915
0.917
0.919
0.919
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Table 3. Model parameters $ and ); which give the
observed anisotropy for Rayleigh wave phase velocity.

1 1.599
2 1.634
3 1.704
4 1.780
5 1.854
6 1.930
7 2.000
8 2.070
9 2.140
10 2.208
12 2.342
15 2.538
20 2.854
30 3.460
40 4.048
50 4.625
60 5.195
70 5.760
80 6.321
90 6.800
100 7.440
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in which the root Q ) must be greater than 1. On the

other hand, from the requirement of 2% anisotropy, in

Rayleigh velocity the values of -O=-283

.- oAgg 84.3 are required from the first

order perturbation of Rayleigh equation (4.24) in 4.)S, JA

and . By successive approximation, we finally obtain

-- 034-5ET = which gives nearly 2%

anisotropy in Rayleigh wave phase velocity. The variation

of with 0 are given for the

final solution together with the observed data as shown in

Table 2.

Thus, the observed 2% anisotropy in Rayleigh waves

require the anisotropy parameter as much as 0,o5I.T30

From equation (5-4), one can find the combination of

parameters for the fracture zone model which give this

value for . The result is given in Table 3. For

example, if the thickness ratio is 10:1, the rigidity

ratio more than 2:1 is required. We consider the result

rather unreasonable and therefore conclude that the fracture

zone model is unacceptable.

6. Olivine model based on the Francis' suggestion

Observed anisotropy of the upper mantle in the Pacific

Ocean appear to agree with the hypothesis that maximum velocity
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is in the direction of sea-floor spreading. Since Fracture zone

model is inadequate, an alternative Olivine model will now

be tested. In this model, we can include the measurements for

short period P wave anisotropy simultaneously. In this section,

we shall approximate the upper mantle by a half space made of

an aggregate of olivine grains in which the crystallographic a

axis lies horizontally in the direction perpendicular to the

ridge axis, and the orientation of the b and c axes are randomly

and uniformly distributed over a vertical plane parallel to the

ridge axis.

Let , E3 be an orthonormal frame field which is

parallel everywhere with i' in the direction of a axis, F"

and F," in the directions of the b and c axes respectively of

a single olivine crystal, then the constitutive equation for

this grain is described by nine elastic constants as

(C ( c3 0 0 0

C.CX% Cis 0 0 q

C1 3  Cci , o o 0

0 0 0 240 0

00 0 0 C 6

_61010 0 0 0 O2.(e6 (6-1)
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from which the elastic constant tensor of this single crystal

can be written as

+ C,%(' /±. -W)+ 1 ~'+

where G and e" are the components of the stress dyadic '-=
AAs

and strain dyadic ? respectively.

Let be another orthonormal coordinate frame at a

point of the free surface of the half space such that

is the horizontal vector in the direction perpendicular to the

ridge axis and is directed vertically downward into the

medium. According to Francis' hypothesis, we may assume

first and hence these two frames are related by

a rtS. + cs (6-3)

and
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ee=2

2 e3
e3" e3

Figure 2. Coordinate frames (ti, e!,1 j and { ' E:;

~ is parallel to the free surface and normal

to the ridge axis. E is downward unit vector

into the half-space. a is the angle between

3 and ~". The plane spanned by Ez and 9

is the same as the plane spanned by 'and '

8 is the azimuthal angle measuring the rotation

around the vertical * .
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Coa (6-4)

The geometry of this transformation is shown in Figure 2.

A great deal of recent work indicates that preferred

grain oreintation is probably the most important factor in

producing anisotropy in a compact aggregate (e.g., Babuska,

1968; Kumazawa, 1964; Klima and Babuska, 1968; Crosson and

Lin, 1971), and hence we shall neglect the interface structure

between the grains in our model. In order to predict the

elastic properties of the model in which the b and c axes

orient randomly in the plane perpendicular to the a axis

(or g), we shall go through the procedure according to Voigt,

Reuss and Voigt-Reuss-Hill approximation with the spatial

average replaced by averaging the single crystal property

with respect to rotation around the a axis.

If the components C in (6-2) which form a tensor of

fourth order are transformed into the components of C in

the coordinate frame R and we write

C A3i . Then the components

7" (4) are functions in the angular variable e)
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according to the transformation represented by the rotation

(6-3). In the Voigt's scheme it is assumed that the strain

field induced is uniform throughout the aggregate, then we

consider an equivalent uniform elastic body which would produce

the averaged stress for the given uniform strain. The stress-

strain relation in this set of grains can be written as

all-(a) C ( '(6-5)

Z-A .3

where * 'A ; is the elastic constant tensor

in (6-2). The averaged stress field in the whole aggregate is

then given by

K 9- (6-6)

The Voigt's averaged elastic constant tensor is , After

the evaluation of each integrals with components of c(a) as

integrands

<C>v c ' T + CX'I'z x y&; + C3  3A "3 r

+F LT) 4- C O (VS3+'f~'f)T

+ S" tr L§ ++

(6-7)
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where

CY= C+

CIII= C113= 1:CI-+C3

cyt (ct +C33) -(-44c4 -4c

%~~~C #G+ C3 3) C 3 +

C L= +(c3 +c+) (6-8)

According to equation (6-7), becomes the elastic constant

tensor of a homogeneous transversely isotropic medium with %

as the symmetry axis in which the matrix representation of this

tensor is

CY

CVa
cit

0

0

For our

write

CY

c,

cV3

0

c"3

0

0 0

0 0

0

0

0

C4

0

0

e o

o 0

aCSY 0

convenience, we shall adopt the notation in (2-1) and



0 0 0

o 0 0

0 0 0

el I

q2.

Cra

0

0
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0

0

0

V .C

94 S = Ogv 6 (6-9)'

In the Reuss scheme, it is assumed that stress is uniform

throughout the whole aggregate, then we consider an equivalent

uniform elastic body which would produce the average strain

for the given uniform stress. Hence

(6-10)

where the compliance tetradic tG) is the inverse of

tensor cQ) when we regard them as the symmetric operators on

the 6-dimensional tensor space.

C3

C0a

o24o6

o 2c4

Cy

C0

AL"

"'Iv

2.C4

0

0

(AI

W+ I~aA)

V

0

0

0

0 0

o 0

or

+2/ kVi) O0

0 YR)I

0 0

o 0

o 0

o 0

1 V0

o69
(6-9)
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In the notation of matrix in the frame

be represented by the matrix

Ss s, S13

Sla.
513
0

0
0

C"l

C13

0

0

0

S St3
-%3
0

0

0

eta

Cual

C2.3
0

0

0

533

0

0
0

0 0 0
0 0 0

o 2&2

0 0

0 0
0 0

*

lS34
0

0

4O 0

023 0

C33 0

0 0C 0 O

0 0 Pc55C 0

:L: 3

(6-11)

where (C is the inverse of the matrix (C) represented in

and hence in tensor notation,&A) can be written as

+3 +~ ±) +~ 53 #3 #

'+ ~~ C4 cf- 't1'± e) (Xte~)

( can

(6-1)

(6-12)

(s]= ftW

(;e '3+ Z3';r) ) OP41 (; jj ez' t
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Following the same procedure as that in Voigt's scheme, we

find that the Reuss average compliance tensor becomes

+ SQ(3 ) +e) + sr(3+ )((+)

+ A(6-1' 3)(L2) t

(6-13)

in which

Si ,

4.= 3.j= o,37. ( Sa + Sa3 ) + 0%25,5x3 + o,554

it= 3( = (512.+313)

SA= ss(S -33)=- 0,%12.-(S + S5)-4,5 4+ ss

o, s (Ss-- + St) (6-14)
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The matrix representations of the elastic compliance tensor

and stiffness tensor are related by (6-11) and hence the

matrix representation of the Reuss average elastic stiffness

tensor

+t T1 l('l+ ± ei) V- a

4- CIL (+ ) -S ( (6-15)

is obtained. For any values of C in (6-2), we find that

still represents the transverse isotropy with Ft

as the symmetry axis. In the notation of the preceding

sections also, we set

KA---=C K

E Wt(6-16)



-50-

The Voigt-Reuss-Hill (VRH) approximation, the, arithmetic

mean of the elastic constants calculated according to the

Voigt and Reuss schemes, is given by C;!= Os(C4 +Cj)

Now we shall go back to the discussion of the phase velocities

of the propagation of surface waves of Rayleigh type on the

model with elastic constants calculated from these three schemes.

Let us choose Olivine (93% Fosterite) as an example, the

density and the elastic constants are as follows:

dcei.s;4/ f = 3.3110 3%KXA

C,= 3.23O M6.
Cal= 1,376 oN b

Qis=-.f 2,3 5.1 M b.

O0n3= e-T5 0e M b.

C4 =0,64G2. Mb.

Cm= -. 805 rib.
Ca= o.T M b.

According to the foregoing procedures, the five elastic

constants of these three schemes are

Voigt:

A= 7647T5 PMb
= 0,6+3TS Kb

4.:: o, 63o oo oM
AV= A.2T300 ML
PV= oq,8545o NMb. (6-17)
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Table 4..Y(e)= < computed for three schemes of average for the
"Olivin Model" by Francis.

6 (Degree) Voigt value

0
10
20
30
40
50
60
70
80
90

1.0184
1.0153
1.0063
0.9924
0.9755
0.9580
0.9527
0.9313
0.9246
0.9224

Reuss value

1.0254
1.0220
1.0124
0.9975
0,9793
0.9604
0.9435
0.9308
0.9231
0.9205

VRH value

1.0220
1.0187
1.0093
0.9950
0.9774
0.9592
0.9431
0.9311
0.9239
0.9215
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Reuss:

O 0633500 M6

So,661440 Mb

At ,o636386 M6.

L.0 1.265040 Mb
0,7854 t3 Mb. (6-18)

VRH:

= 0,'4 '2\ 37 Mb.
-o= -6 682. o m b

o,663133 Mb.

=48543+ Mb (6-19)

Substituting all the values of these three schemes into

equation (4-23), we obtain the calculated values of the ratio

= c(e) in ten directions corresponding to e = 0*, 10,

200, ... , 90 * as given in Table 4. The results show that the

predicted anisotropy is much stronger than the observed 2%.

In order to obtain agreement with the observation, we shall

diffusely distribute the a axis around the normal to the vertical

plane along the ridge. In the following sections, we shall find

such a distribution of a axis that will explain both P and

Rayleigh wave anisotropy simultaneously.

7. Perturbation technique for the P-wave velocity

Accumulating evidences from refraction measurements
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support strong anisotropy in the velocity of horizontally

propagating P waves in the top of the Oceanic Upper Mantle.

The propagation of body waves through an anisotropic media

may be described by three phase velocities obtained from

the dispersion relation. As already mentioned, purely

longitudinal waves and purely transverse waves can no longer

exist in a generally anisotropic medium. We shall, at this

point, treat the case of small anisotropy analogous to the

work of Backus (1965) by means of the perturbation technique

in dealing with the coupled body waves.

We shall assume that the wave number vector is horizontal,

and the model will be the half space composed of aggregate

of Olivine grains discussed in Section 6 which can be specified

as a homogeneous transversely isotropic medium having the

symmetry axis in the horizontal direction , . In considering

the phase velocities of the propagating waves, plane wave

approach could be an appropriate one.

If C-(r) is a plane wave of dependence exp {( fX -t))

then it will satisfy equation (2-7). Define 7 =

let c be the phase velocity and 3 (T) f - (7) ())

be the positive definite symmetric tensor of rank 2,

where ( 3(7)) is the contraction of

elastic constant tensor defined by
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then equation (2-7) becomes

B() M ()=Ca7E7 (7_1)

The three eigenvalues of 67) which are squared phase

velocities correspond to the polarizations of three body

waves. It is clear that the tensor S(7) can be separated

into a part 4(7) which describes the propagation in isotropic

medium with Lame's constants A u, * and another part b ()

which describes the effect

due to the anisotropy, namely

(7-2)

where

= the is pc)) v,3

C31' (7 2)1

From the isotropic tensor Cc given by (2-3), we can write
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5o Lr(7-3)

Hence, we have the degenerate case for an isotropic medium in

which the polarizations of the longitudinal waves and transverse

waves are uncoupled.

In this section, we consider the propagation of P waves,

SV, and SH waves will be discussed in the next section. Recall

that the unit vector -P1 in the orthonormal frame defined in

section 2 is precisely 7 for horizontally propagating body

waves. As we have already seen that from Se given in (2-4),

4 is not eigenvector of and hence the polarization is

no longer longitudinal for P wave. However, the perturbation

theory (Backus, 1965) which is nondegenerate for P waves

provides us with the information on small anisotropy. If we

write the eigenvalue of () as + S; then, correct to

the first order in perturbation

from
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) Z(75)

and (2-15) where A&(V) are given by (2-15) with Vr

replaced by = We finally have

gCZt=os (S^(t+Sie)+±.54.(cs + 4 1936 (7-6)

which is the deviation of the squared phase velocity as a

function of the azimuth of P wave propagation, which is reducible

to the general form provided by Backus.

In general, when we want to evaluate the phase velocity of

the propagation of P waves in any weakly anisotropic medium, we

may impose the condition that wave number vector is in the

direction of the eigenvector (to be more precise, the polarization

of the particle motion is along the direction of the wave number

vector) regardless of its coupling with other modes.

The Pn velocities calculated by the formula

C )+(T)Cos'e H(-3) + 2ACos .+4S) e (7-7)
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Table 5A. P, SV and SH wave phase velocities computed for
Voigt scheme for the "Olivine Model" by Francis.

6 (Degree)

0
10
20
30
40
50
60
70
80
90

P a)( Ic)

9.8876
9.7984
9.5509
9.1994
8.8195
8.4856
8.2452
8.1065
8.0453
8.0295

4.8705
4.8602
4.8303
4.7784
4.7269
4.6652
4.6065
4.5581
4.5262
4.5150

4.8705
4.8933
4.9542
5.0146
5.0560
5.0560
5.0146
4.9542
4.8933
4.8705

Ij"/g
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Table 5B. P, SV, and SH wave phase velocities computed for
Reuss Scheme for the "Olivine Model" by Francis.

G(Degree)

0
10
20
30
40
50
60
70
80
90

)~ L5~L

9.6814
9.5918
9.3419
8.9836
8.5895
8.2330
7.9641
7.7975
7.7157
7.6925

4.8705
4.8589
4.8253
4.7734
4.7090
4.6400
4.5731
4.5183
4.4822
4.4696

4.8705
4.8859
4.9249
4.9688
4.9972
4.9972
4.9688
4.9249
4.8859
4.8705

Table 5C. P, SV, and SH wave phase velocities computed for
VRH schemes for the "Olivine Model" by Francis.

6 (Degree)

0
10
20
30
40
50
60
70
80
90

9.7850
9.6957
9.4470
9.0921
8.7052
8.3453
8.1059
7.9535
7.8822
7.8628

4.8752
4.8595
4.8280
4.7760
4.7180
4.6524
4.5898
4.5382
4.5042
4.4924

4.8705
4.8896
4.9377
4.9917
5.0267
5.0267
4.9917
4.9377
4.8896
4.8705

(xyAe()

CA #kg'C)
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for 10 directions 0 0*, 100, ... , 90* for the 'Olivine model

with averaged elastic constants of three schemes mentioned in

the last section are tabulated in Table 5. These values are

all too large along the direction of 7 . We must conclude

that the Olivine Upper Mantle model in which the orientation

of the a axis of all the Olivine grains lies in the horizontal

direction perpendicular to the ridge axis cannot explain the

observed anisotropy. It is again necessary to diffusely

distribute the orientation of the a axis.

8. Anisotropy of s waves

From (7-3) we see that the eigenvalue ) of ,( i)

is degenerate with a two dimensional eignespace normal to k

generated by ( and '. If we write the eignevalues of

0(11) .. .EX2± st(4). in terms of (~)~~(~.

for waves of SV and SH type respectively, then again to

the first order in perturbation by imposing the condition

that 3 and l are the eigenvectors corresponding to the

waves of SV and SP type respectively, we find, following

Backus, that 69 and $4) are the eigenvalues of the

following matrix
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These two eigenvalues can be obtained by choosing two

orthonormal vectors which generate the same eigenspace

normal to f/ and diagonalize the matrix in (8-1).

In the present case of transverse isotropy, the problem

is much simplified. Synge (1957) has shown that in a

homogeneous transversely isotropic medium, there is an

eigenvector of 8(ft) normal to the symmetry axis and the wave

number vector. Hence in the medium characterized by the

elastic tensor = r +' with ' and $' expressed in

the form of (2-11) and (2-4) respectively, ' is the

eigenvector of 7(') (')49' and the matrix in (8-1)

is diagonal, namely, the polarization of SV waves is purely

transverse. For the waves of the SH type, the polarization

is no longer purely transverse. However, the approximation

of obtaining (8-1) gives C : - (; '-

correct to the first order in perturbation. As long as it

is permissible to impose the condition that the polarization

of SH waves is transverse, the azimuthal dependence of the

phase velocity C5N will be obtained.

Summarizing the foregoing remarks, we have SC='

exactly for SV, and J C= (6 K(C2? Se-- ('A 2. $%)3Z6(oS

correct to the first order in perturbation for SH waves.

In other words, the phase velocities C and CSH can be

written as
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.m.~/%I(C +a +All's4ah (8-2)

~ ~ ~cs + A 5 'e ~r'6

(8-3)

The phase velocities CSH and Csv given by (8-2) and (8-3)

are also tabulated in Table 5 for the three averaging schemes

in (6-17), (6-18) and (6-19). They show that the azimuthal

dependence of CSH is weaker than C v!. P waves exhibit much

greater azimuthal dependence than S waves. The phase velocity

of SV is monotonically decreasing from e = 0* to e = 900,

while that of SH waves is the smallest at 6 = 0* and 90* and

the largest at e = 450*. These features should be helpful for

diagnosing the anisotropy of a transversely isotropic body.
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9. Transversely isotropic medium with the orientation of

symmetry axis diffusely distributed.

So far, the phase velocities of Rayleigh waves in 'fracture

zone' model and 'Olivine' model computed in Section 5 and

Section 6 were unable to explain the observed data; the latter

gave too large azimuthal variation and the former too little.

Also, the calculated values of the phase velocities of P waves

did not fit the observation. In order to explain observed

results, we shall modify the 'Olivine' model in such a way

that the a-axis is no longer strictly perpendicular to the

vertical plane along the ridge axis, but diffusely distributed

around the direction. Since we found in Section 6 that the

bounds given by Voigt and Reuss averages are narrow enough,

we shall calculate only the Voigt average here assuming that

the strain is uniform.

On the assumption of uniform strain throughout the whole

medium, the averaging of the elastic constants is reduced to

the averaging of the equation of motion. Before this average,

we have to perform the transformation of the coordinate frames.

Let %', #, ,, ' and {fi, ' EL4'1 be three

orthonormal frames having the same origin at a point of

the free surface of half space with the geometry described in

the following way:

is the horizontal unit vector normal to the ridge
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axis, ( is the unit vector directed vertically into the medium

and V is obtained by setting .' = 7x the frame

is obtained by rotating frame fFi t 3 about C, through

an angle e such that N' is the horizontal vector parallel to

the vertical plane containing the wave number vector. The

frame freu, " '3 is obtained by rotating the frame {fi, W, /J-

about % through an angle I first and then followed by the

rotation of the rotated frame through an angle a about the

axis 2/ which is at an angle T with ' as shown in Figure 3.

Any two pair of these three frames are related by

~. S~i+C5Q~a(9-1)

GCsf Co i + Co sp S~- ,n rL

MDWM

= Cos C G S 5 (4

( ' 5+ 
sI 

9 3
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e2 2nIe2

e3
e 3

Figure 3. Coordinate frame { (, , is specified in

figure . r is measured clockwise about '3

0' "x '' ' is parallel to the symmetry

axis of transversely isotropic medium, and at

an angle with the horizontal plane.



In particular, when S = 0, namely, ( lies in a horizontal

plane, (9-3) is reduced to

Sir (-p ~ +Cos(e)'

(9-4)

The displacement vector Z in case of infinitesimal deformation

can be written as

+ (1 -i + C05~ (1*L. e

+ (C0 (-L Ca- e~' S P S +pCs (

(9-5)

Furthermore, if we assume that a symmetry axis of a homogeneous

transverse isotropic medium with five elastic constants AL,,AL,

Alu IAl and V is arbitratily oriented, then by suitable

choice of the angular variables S and r, ZjDW will lie in the

direction of the symmetry axis and ' in a horizontal plane.
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The choice of this frame outlined to the transverse isotropy

is reasonable and can simplify our calculation in deriving

the equation of motion later-on, since in the plane normal to

the symmetry axis, the frame can be arbitrarily rotated

without affecting the expression of the elastic tensor. After

the choice of the frame { n"',*2., ) is made, the elastic tensor

can be expressed as

(AL* +~i (Al~ t N)(' + 05

(9-6)

which can be decomposed into a part c9 in isotropic medium

with Lame's constants , and a perturbed part

given by

Z=)+/ + 3 
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e 't+L (9-7)

+ el e "+ ti + il e e3 3* '

+3 c6) + +* e (9-8)

where SA = AL -A i , i /A = A -An and

The choice of the frame makes 77 0

and hence the relation between the partial derivatives with

respect to the coordinates in frame and frame

(e 4 becomes

aK 1 = cO sp cs(c-r)I - p

e= 5 A(e -r) di

(9-9)

where <b=) (i=1,2, 3)

is the position vector

If we apply (9-3),

motion - '

and T = ji' i + 3' f=+X'A'+a

of the medium particle.

(9-5) and (9-9) to the equation of

C/ 3 A A 4"

32'=Slay (e.Ko-r) a

X3 I
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we find that

3134 (L 1 A-

(9-10)

where the 3x3 matrix operator (r) is the same as that

given in (2-12) and ( ) is the perturbed part which

contributes to the dependence of the motion on the angle

between the direction of propagation vector and symmetry axis.

Following the same procedures as those discussed in the previous

sections, we shall calculate A(V) j '3

and when we deal with P, SV waves and surface waves

of Rayleigh type and 6  when dealing with SH waves.

For the discussion of P and Rayleigh waves, the relevant

motion in two dimensions (t', E,') will be

(Lai V3 (W)(9-11)

where-

S ( -~'l Cos~ 11(6 (e~r +a- cc 5 h Cc3 (
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(033(0-r)- S- - 5h3lpCo o (05 y (0 cg- ) a c f1

Cos2j Co2 3(e-0 )

+ (9Co-5 s2p C osc(6sr) + <-

1

c 32~

- ( ( -( .- SA) ( s(-r 4

(3sepCposs%30-35>pcosp 4'2(o-d 0)

+ ( SA A) s 1'y Co5't Co5 <-r)+ ( X +coly3(s 6 )

- 6 Sl$ ate-r) + (asp 4cos-)]..J[Ap cosp Cos (6-6 + PS CO
(A 2.S).) S W j Cosp GS (e-f)

S ~ Cc~3 Co

±6Co5a~Co$~(e~~) '1

(oS 09-r

2f

6'52 c 5 R Co S (e-) + S A 3 spco(e-t)

2 4SA)SW3 (cost<s1 -r)

+ (( 2) p + A 5 ('12P + > )5 ) 2Jj

I

r2[ )3
2.

(9-12)

4 ; (go= %3S)z(V

,Zo1k)=

+
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In the particular case that symmetry axis is parallel to

the free surface and at an angle r with f , equation (9-11)

is reduced to equation (4-1) with the angle e replaced by 6-r

The boundary condition that normal stress r' F.=0

at the free surface X =o can also be obtained by following

the procedure of carrying out the transformation of the tensor

components. Among the three components of ,' = ,

the condition ('. ~). 0'o can be ignored. The remaining

two are approximately

± 54 C5 2 5 -t os''(-f )H- 3 np - )

+ 2.A-5 X) S np Cosp c(o-6)

. 'A S Co p PCo(9-) + J I Cos2.P Cos(9-1)

-( ,A-4SA)S 1Pcop Cos t C-G)

(9-13)
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+ 5 $2 2 - S +o-

-1 ~ ~ ~ I -' ((55-b S pcspCos (e-r)+ ,9 $ 'i Cos o (Oosc5-)>-i' pcosp oj

(9-13)

The operators +() t j'(9g) are a linear combination

of b , 3I and , . For sinusoidal disturbance, a

is replaced by - which is purely imaginary in the case

of surface wave and hence we see from (9-11), (9-12), (9-13)

and the assumption of the displacement potentials of the form

(4-12) that the modified Rayleigh's equation will become a

polynomial with complex coefficients on the assumption that

. Q, 0.51r, then the solution for phase velocity would be

complex in general. It means that steady Rayleigh waves no

longer exist in homogeneous transversely isotropic medium
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unless the symmetry axis is parallel to the free surface or

vertical, confirming the result of Synge (1957).

Let us consider a unit hemisphere H: X- 4 x" = (x, o)

in which any point can be specified by two angular variables

p, r, then its differential area element would be CoSpAgdo~

Let W(p,Y) be any weighting function that averages over H

defined in the following way:

V W(pP-)\o

Then if -r) is any function

<f >=H #(fr) w(par) Cosp4 4A (9-14)

is the average of over the whole hemisphere.

We can extend the average of functions to the average of any

partial differential operator T =1--~ ai3
by setting K--~ ( (9-15)

n AI ' f
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then the averaged equation of motion becomes

k3t + [ ( 6 (w)~d) W)±4 (V ) + (9-16)

The average of Voigt's approach is that it can simplify

our calculation. It is easy to see that for integers fi, n

)tr, (S C'OSt(e-r) =O if>Ap is odd positive integer.

Then equation (9-11) can be averaged to calcel out some terms

to make (9-16) become a equation of motion for a homogeneous

transversely isotropic medium with symmetry axis parallel to

the free surface.

To avoid bulky expressions, the following abbreviation

will be adopted.

(-(1 +7

C 3±+ .~i(9-17)
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Hence equation of motion becomes

f1L, a Wa+d%]+4[Z&, +rs]

Z~c,+ ((3+ ~b~dILLI}

in which

l(Aiw)+
CQ5 Co52 (8)t - A 4 Co sp Co-(e -,)

t (S Cf)cosm46-r + 6 Cos5P
(~ 6A-~)1I1
$ j~1~X'e-~)

Co 51 (o52(e -r) + S f(A + CO -r)
-($S),"0 COS,-(G-r) b9

4, + s; % C2- )(C54-SA)
<- Ct C051. (6 - + 94O p3$ -)

(Ali+2-t) +(S 4- 3pA

(9-18)

C'

(9-19)

-, f 44 a I

(2 A4ox3
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Let 4p(e) be the Rayleigh wave phase velocity. Set

~(e) -

---
and combine the theory

in Section 4 with (9-18) and the boundary condition at the

free surface

ICL3 ± 3~& .

'C 3 0 (9-20)

the modified Rayleigh's equation becomes

(C.-C'L') .+ (a t' -- L A' 2 c' 2)c'L'A']C

4 ( 'A'*~Z F'CA + ') - L (2 F'C' ---2.C'))

(9-21)

where

F'=

L'

-L' (c''A'*- 2 f''C'A' t F'* ) =0
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Let and Cy be the P and SV wave velocity respectively, then

(9-22)

S -- L- (9-23)

We shall consider two averaging schemes. In one scheme,

we average the orientation of the symmetry axis over a segment

of the horizontal great circle on the hemisphere H which is

symmetric with respect to the axis parallel to % through

the origin. In the other, the average is taken over a section

of H enclosed by a cone which is also symmetric with respect

to the axis parallel to 9 through the origin. For simplicity,

we shall approximate the weighting function by two sequences of

step functions defined in the following way:

For each positive integer n and real number O<A<1,

a closed interval M) on the hemisphere is defined by

( 'x) rX) s,4 0.AII Ids 0,3Ai (9-24)

Let
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7r

\ .....................................................
.... .................................... .......V.,.....................

......................
................ ......... .... ................................

............. ...... ... .......... ............ .............. ....... ...e ................................ A........... .... ..............................n ..... ...................... .. .............'.r

e2

Figure 4. Upper half part of (the shaded region) on

hemisphere H =(Ku, xaI 4. 1 + , Ka

Boundary of APX" is defined by kIe5Nr, fj=a5ir
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E VP( .8X) ~ dJEVn (/,y)d3
-E A

X4
7r

Figure 5. ,) defined on closed

interval as a function of t, where 7

the area below each Jv rd
is equal to unity.

2)
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(A)
Wn

Figure 6. The sequence

n= 0

{ W plotted against

and r. The volume under each

equal to unity.

"e is
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P( SM r) C

(9-26)

Their schematic figures are shown in Figure 4, 5 and 6. The

significant difference between these two sequences is that

rL gives uniform distribution of the orientation of the

symmetry axis (or crystallographic a axis) within a cone

enclosed by D4') on H, while

confines the uniform distribution of the symmetry axis to

the horizontal great circle within DI due to the factor

6(p) in (9-25) which is the dirac delta function in

angular variable only. It is obvious that both Af*'t

and W//*' are weighting functions with Dirac Delta function

in angular variables 6 and ' as their sequence limit.

It is noted that the delta function served as a weighting

function will give rise to the same equations and results

in a homogeneous transversely isotropic medium with 4

as the symmetry axis and each V and W *'9 will give

certain degree of uniform distribution of the orientation of
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Table 6A. P, SV and SH phase velocity anisotropy calculated
for Voigt scheme for the weighting function VA"-f

e (Degree) e (P" 5. )

8.8267
8.8267
9.0680
8.4991
9.3167
8.2659
9.5218
8.1424
9.6655
8.0839
9.7571
8.0566
9.8868
8.0297

4.6962
4.6962
4.7492
4.6426
4.7938
4.5965
4.8244
4.5643
4.8436
4.5439
4.8551
4.5317
4.8705
4.5152

4.9670
4.9670
4.9873
4.9873
4.9774
4.9774
4.9500
4.9500
4.9230
4.9230
4.9028
4.9028
4.8708
4.8710

Table 6B. P, SV, and SH phase velocity anisotropy calculated
for Reuss scheme for the weighting function I't

- (Degree)

0
90
0
90
0
90
0
90
0
90
0
90
0
90

I~ (X%)e

0
0
1
1
2
2
3
3
4
4
5
5
14
14

8{6t5

8.6853
8.6853
8.9442
8.3444
9.2036
8.0950
9.4127
7.9567
9.5576
7.8873
9.6493
7.8529
9.7785
7.8156

4.6743
4.6743
4.7340
4.6138
4.7842
4.5620
4.8187
4.5254
4.8403
4.5023
4.8531
4.4884
4.8706
4.4697

4.9362
4.9362
4.9501
4.9501
4.9433
4.9433
4.9246
4.9246
4.9061
4.9061
4.8924
4.8924
4.8704
4.8704
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Table 6C. P, SV, and AH phase velocity anisotropy calculated
for VRH scheme for the weighting function

8 (Degree)

0
90
0
90
0
90
0
90
0
90
0
90
0
90

8.7562
8.7562
9.0023
9.4674
9.2603
8.1809
9.4674
8.0501
9.6117
7.9862
9.7034
7.9554
9.8328
7.9234

4.6853
4.6853
4.7416
4.6282
4.7890
4.5792
4.8215
4.5449
4.8419
4.5231
4.8541
4.5101
4.8704
4.4925

4.9517
4.9517
4.9687
4.9687
4.9604
4.9604
4.9474
4.9374
4.9145
4.9145
4.8976
4.8976
4.8707
4.8707

g - ( 9 A -/ )
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Table 7. P wave and Rayleigh wave phase velocity anisotropies
calculated for three averaging schemes by choosing
Wn (0.95) as the weight function.

-- -----------------------------------------------------------
Voigt Reuss VRH

0 00 8.4940 0.9972 8.3355 0.9991 8.4151 0.9982
0 90* 8.4940 0.9972 8.3355 0.9991 8.4151 0.9982
1 00 8.5453 1.0028 8.3926 1.0048 8.4693 1.0038
1 90* 8.4255 0.9913 8.2601 0.9930 8.3417 0.9922
2 00 8.6034 1.0086 8.4567 1.0107 8.5304 1.0097
2 90* 8.3527 0.9853 8.1862 0.9868 8.2699 0.9861
3 0* 8.6673 1.0144 8.5264 1.0167 8.5971 1.0156

3 90* 8.2890 0.9795 8.1183 0.9809 8.2041 0.9802

4 0* 8.7355 1.0201 8.5997 1.0225 8.6678 1.0213

4 90* 8.2335 , 0.9741 8.0586 0.9752 8.1465 0.9747
5 0* 8.8060 1.0254 8.6750 1.0279 8.7407 1.0267

5 90* 8.1870 0.9691 8.0079 0.9700 8.0980 0.9696
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the symmetry axis. The phase velocity anisotropies of the P,

S waves and Rayleigh waves calculated from the average of the

symmetry axis of the three schemes given in section 6 by

means of the weighting functions will be given in Table 6

and Table 7. All these results will agree with the results

obtained in Section 6-8 as n goes to infinity.

Each V of the sequence { V' ) 5 gives consistently

large P wave velocity or higher P wave velocity anisotropies

than the observed value. However, the sequence { W

give e% values that fit the observed data, and agree

with the observed 2% anisotropy of Rayleigh wave phase

velocity closely.

10. Conclusion

We have presented the detailed derivation of the

modified Rayleigh's equation, and the body wave phase

velocities for a homogeneous transversely isotropic medium

in which the symmetry axis is parallel to the free surface.

The motivation for the derivation is the observed aniso-

tropies of the Pn wave and Rayleigh wave.

We started with the 'fracture zone model', in which

the earth is considered as a lamination of fracture zone

and normal crust-mantle, approximated by an equivalent

homogeneous transversely isotropic medium in the long wave
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limit. The computed results for any reasonable values of

the rigidities of the fracture zones give much weaker

anisotropy than observed. On the other hand, the 'Olivine'

model proposed by Francis (1969) gives much greater

anisotropy than observed.

In order to obtain agreement with observation, we

introduced a distribution of the symmetry axis of the

transverse isotropy randomly oriented about the boundary

surface of a circular cone which is symmetric with respect

to the horizontal axis normal to the ridge. The averaging

of elastic constants over distributed orientation was

carried out by the use of a sequence of weighting function

which has the maximum in the horizontal direction

normal to the ridge axis but slowly decreasing away from this

direction.

The seismic refraction measurements show the observed

magnitude of P wave anisotropies from 3% to 8%. Table 7

shows calculated values for the P wave and Rayleigh wave

phase velocity anisotropies for the modified Olivine

model averaged by the weighting sequence { W N--o

The calculated C values from n=2 to n=5 fall within the

range of all the measured values approximately; whereas,

the corresponding magnitudes of Rayleigh wave phase velocity

anisotropy range from 2.3% to 5.7% which is higher than
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observed value of 2% (Forsyth, 1972). The small discrepancy

may be attributed to the fact that the Rayleigh velocities

were measured over greater area than the Pn velocities, and

anisotropy may be diminished when averaged over a larger area.
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