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ABSTRACT 28 

 29 

A monetized flash flood casualty reduction benefit model is constructed for 30 

application to meteorological radar networks. Geospatial regression analyses show that 31 

better radar coverage of the causative rainfall improves flash flood warning performance. 32 

Enhanced flash flood warning performance is shown to decrease casualty rates. 33 

Consequently, these two effects in combination allow a model to be formed that links radar 34 

coverage to flash flood casualty rates. When this model is applied to the present-day 35 

contiguous U.S. weather radar network, results yield a flash-flood-based benefit of $316 36 

million (M) yr-1. The remaining benefit pools are more modest ($13M yr-1 for coverage 37 

improvement and $69M yr-1 maximum for all areas of radar quantitative precipitation 38 

estimation improvements), indicative of the existing weather radar network’s effectiveness 39 

in supporting the flash flood warning decision process. 40 

41 
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1. Introduction 42 

Weather radars are generally acknowledged to be a valuable asset to society (e.g., 43 

Saunders et al. 2018). They provide observational data that improve weather forecasts and 44 

present essential situational awareness to many users. Radars, however, are expensive to 45 

acquire, operate, and maintain. In planning for future sensor networks, monetization of 46 

their benefits is needed to assess the trade-off between more expensive options (higher 47 

performance and/or coverage) and benefits (people’s lives and time saved). 48 

Although meteorological radar observations help improve weather forecast model 49 

performance through data assimilation (e.g., Stensrud et al. 2009), their most direct impacts 50 

are made through the detailed and continuously updated depiction of precipitating weather 51 

for real-time decision making. Sometimes these decisions are life or death matters. In the 52 

last thirty years (1989-2018), the top three weather-related fatality causes in the U.S. were 53 

excessive heat, floods, and tornadoes (NOAA 2019). The National Weather Service (NWS) 54 

issues warnings for these hazards, and weather radar data plays an absolutely crucial role 55 

for the latter two (Polger et al. 1994). Thus, we focused on tornadoes and floods in 56 

quantifying the benefits that meteorological radars provide to society. A benefit model for 57 

tornadoes was published previously (Cho and Kurdzo 2019a; Cho and Kurdzo 2019b; 58 

collectively, CK19 hereafter). In this paper, we move on to a benefit model for heavy-rain-59 

induced flash floods. 60 

For this study, we hypothesized that better weather radar coverage improves flash 61 

flood warning performance, which, in turn, reduces casualties. The second half of this 62 

causality chain is intuitive. Flash flood warnings can provide the impacted populace time 63 

to take appropriate action to help prevent loss of life and potentially reduce property 64 
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damage (e.g., Sene 2013). Empirical evidence exists that such warnings do decrease flash 65 

flood fatalities (e.g., DeKay and McClelland 1993). The first half of the proposed causality 66 

chain, however, requires more explanation on how flash flood warning decisions are made. 67 

In the U.S., operational flash flood warning decisions rely primarily on the concept of 68 

flash flood guidance (FFG; Ostrowski et al. 2003). Based on basin hydrological models 69 

with soil moisture and stream flow as initial conditions, FFG outputs rainfall accumulation 70 

needed in 1-, 3-, 6-, or 12-hour periods to cause flash flood conditions on a typical small 71 

stream or urban area in the region of interest. There are different types of FFG models used 72 

at different weather forecast offices (WFOs)—lumped FFG, gridded FFG, distributed FFG, 73 

flash flood potential index. However, regardless of type, the basic idea is that the forecaster 74 

looks for accumulated quantitative precipitation estimation (QPE) to exceed the FFG rain 75 

accumulation threshold in a given catchment basin when issuing a flash flood warning; 76 

decision support tools such as the flash flood monitoring and prediction (FFMP) system 77 

aid the forecaster in this process (Clark et al. 2014). 78 

By definition, flash floods occur within six hours of the causative event (NWS 2019). 79 

Thus, when the cause is heavy rain, in order for the WFO to issue a timely flash flood 80 

warning, forecasters mostly utilize multisensor precipitation estimator (MPE) products for 81 

comparison with FFG thresholds. (Waiting for flow level measurements from stream 82 

gauges delays the decision, and, in any case, many potential flash flood areas are in 83 

ungauged headwaters.) MPE ingests radar, rain gauge, and geostationary satellite data; rain 84 

gauge data are used to help correct biases in the radar and satellite estimates. The dominant 85 

MPE contributor is radar QPE, while satellite QPE is mainly used to fill gaps in radar 86 

coverage (Kitzmiller et al. 2013). Also, with finer spatial resolution hydrological models 87 
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becoming feasible for operational use, the value of highly resolved rainfall estimates from 88 

radars is expected to rise in the future (Gourley et al. 2014). Forecasters have started to 89 

consult short-term rainfall nowcasts as well (Ahnert et al. 2012).  90 

The flash flood warning decision process, therefore, depends on the accuracy of the 91 

FFG and MPE products. FFG threshold errors are dependent on FFG type and are specific 92 

to each catchment basin. There are various sources of MPE errors, including those for radar 93 

QPE such as choice of algorithm, radar calibration, and rain gauge density (e.g., Cecinati 94 

et al. 2017). The situation is further complicated by the fact that the WFOs do not utilize a 95 

uniform set of data products and decision support tools. To analyze the impacts of input 96 

data errors on flash flood warning performance would require an in-depth case study at a 97 

particular WFO using a detailed hydrological model of a catchment basin—this is not 98 

conducive to a national-scale statistical analysis. 99 

In this study, we took a simple approach. Since poor radar coverage is a significant 100 

source of radar QPE error (Rogalus and Ogden 2012; Kurdzo et al. 2018), we hypothesized 101 

that flash flood warning performance would depend on radar coverage, even without taking 102 

into account the other error sources in the warning decision process—this is proved true in 103 

sections 2d and 2e. By linking radar coverage directly to warning performance, we 104 

bypassed the very complex problem of characterizing MPE and FFG product errors, 105 

considerably simplifying the analysis. We believe a clear statistical signal was extractable 106 

due to the large number of cases nationwide used in the analysis. 107 

To summarize briefly, we propose an original geospatial model for monetizing flash 108 

flood casualty reduction benefits of a meteorological radar network.  This analysis, along 109 

with the earlier tornado benefit effort (CK19), was conducted for the National Oceanic and 110 
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Atmospheric Administration (NOAA) as part of a larger program that is studying future 111 

radar systems beyond the Weather Surveillance Radar-1988 Doppler (WSR-88D).  112 

Benefits must be weighed carefully against costs in considering advanced technologies 113 

such as active phased array radars (Weber et al. 2007; Zrnić et al. 2007) and/or a denser 114 

network of smaller radars (McLaughlin et al. 2009). 115 

In dealing with the complex nature of the problem, we employed only the bare 116 

essentials in objectively modeling the radar effects.  In contrast to detailed hydrological 117 

simulation or survey-based case studies, we relied on the power of large data sets to yield 118 

statistically meaningful results with simple models. We made conservative choices when 119 

there was uncertainty. Statistically insignificant variables were disregarded.  Our 120 

geographic scope was limited to the contiguous United States (CONUS), as that is where 121 

most of the relevant data were available and wide variation in radar coverage exists. 122 

 123 

2. Model Development 124 

Following the successful radar network benefit modeling approach of CK19 for 125 

tornadoes, we sought to establish statistical relationships using historical flash flood data 126 

between (1) radar coverage metrics and flash flood warning performance, and (2) flash 127 

flood warning performance and casualty rate. With these two links established, the flash 128 

flood casualty rate could be computed geospatially for any given weather radar network. 129 

With casualty monetized, the difference between a baseline case (e.g., the current WSR-130 

88D network) and a hypothetical radar network would yield the benefit (or loss). The 131 

methodologies used throughout follows closely those used by CK19. 132 
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To provide a visual aid for understanding both the model development process and the 133 

model usage, Figure 1 gives high-level block diagram views of these procedures. The 134 

reader is encouraged to refer back to this figure while reading the detailed explanations in 135 

the following sections. 136 

 137 

a. Analysis data source and time period 138 

We needed to use as much data as possible to achieve statistically significant results. 139 

At the same time, however, we had to maintain uniform conditions for unbiased regression 140 

results. Our primary source was the U.S. Flash Flood Observation Database (Gourley et al. 141 

2013) compiled by the Flooded Locations and Simulated Hydrographs (FLASH) project 142 

(Gourley et al. 2017). Although the earliest-processed NWS storm reports in the FLASH 143 

database are from 2006, the official transition from county-based flash flood reporting (a 144 

single point indicating an event somewhere in the county) to polygon-based reporting did 145 

not occur until 1 October 2007. Thus, we limited our analysis period to begin on this 146 

transition date (the transition from county-based to storm-based warnings also took place 147 

on the same day). Furthermore, because the FLASH storm report database only extended 148 

to July 2013, we supplemented that data with storm reports pulled from NOAA’s National 149 

Center for Environmental Information (https://www.ncdc.noaa.gov/stormevents/) up to 31 150 

December 2018, which we then processed to match the content and format of the FLASH 151 

data. This yielded about twelve years of flash flood data to analyze. Only reports with an 152 

associated cause of “heavy rain” were retained. 153 

Storm warning data for the matching period were obtained from the Iowa 154 

Environmental Mesonet NWS Watch/Warnings archive 155 
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(https://mesonet.agron.iastate.edu/request/gis/watchwarn.phtml).  If any part of the flash 156 

flood polygon was inside the warning polygon and if any segment of the flash flood time 157 

span overlapped the warning valid interval, then the warning was considered a hit; 158 

otherwise, it was labeled a false alarm.  The lead time for a hit was computed as the 159 

beginning time of the flash flood minus the initial warning issuance time.  For the 160 

remainder of the paper, we will refer to the fraction of flash floods with warning 161 

interchangeably with probability of detection (POD) for brevity. 162 

 163 

b. Radar coverage metrics 164 

The radar observational characteristics important for QPE accuracy are vertical 165 

coverage, horizontal resolution, and availability of dual-polarization products (Kurdzo et 166 

al. 2019). The data update rate might also have an impact on flash flood warning 167 

performance. An ongoing study aims to answer this question, and early results show that 168 

QPE from faster radar scans can improve agreement between measured and simulated 169 

stream gauge levels during flash floods (Wen et al. 2018). 170 

With vertical coverage, the most crucial aspect is the radar antenna beam’s minimum 171 

height above ground level (AGL), since the aim of QPE is to match the rainfall 172 

measurement at the surface. However, information aloft is also useful to forecasters for 173 

determining location of the radar bright band (Austin and Bemis 1950), regions of mixed-174 

phase precipitation (Balakrishnan and Zrnić 1990), and for ingest to QPE correction 175 

algorithms such as Vertical Profiles of Reflectivity (VPR; Kirstetter et al. 2010). 176 

Additionally, future uses such as Quasi-Vertical Profiles (QVP; Ryzhkov et al. 2016) may 177 

be of use to forecasters for determining rainfall rates. Thus, we decided to employ the same 178 
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coverage metric, fraction of vertical volume observed (FVO) between 0 to 20 kft AGL 179 

(1 kft = 304.8 m), as we did for the CK19 tornado study. The rationale for picking 20 kft 180 

as the FVO ceiling is that the current WSR-88D network (on which we base the statistical 181 

analysis) has essentially perfect coverage above 20 kft (Figure 2); therefore, no information 182 

content is added by moving the ceiling higher, whereas moving it lower progressively 183 

eliminates actual deficiencies in coverage from consideration. FVO includes the effects of 184 

the Earth’s curvature, terrain blockage, and the radar’s overhead “cone of silence” due to 185 

its limited elevation scanning angle, so it is a convenient and effective metric. 186 

Details of the beam blockage calculations are given by Cho (2015).  The minimum 187 

and maximum elevation coverage angles were assumed to be 0° and 20°, roughly 188 

corresponding to the bottom and top sides of the main antenna lobe at the WSR-88D scan 189 

angle limits of 0.5° and 19.5°.  These limits are approximations, as the maximum elevation 190 

angles vary for different volume coverage patterns (VCPs) and the minimum angle has 191 

recently been lowered slightly at a few high-altitude sites (Steadman and Brown 2007). 192 

Cross-radial horizontal resolution (CHR), which is approximately range times 193 

azimuthal angular resolution, is also relevant. (Along-range horizontal resolution is 194 

constant everywhere for monostatic radars, so it is not of value here.) Azimuthal angular 195 

resolution is dependent on dwell length and antenna beamwidth (Zrnic and Doviak 1976).  196 

The WSR-88D beamwidth is just under 1°. Presently, it has a “superresolution” mode that 197 

outputs data every 0.5°; however, the effective angular resolution is about 1° based on the 198 

antenna beamwidth and time-series data window (Torres and Curtis 2006).  Taking all this 199 

into account, we took the angular resolution to be 1° for the analysis period. Consequently, 200 

for the current WSR-88D, the resulting CHR is functionally the same as the distance from 201 
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the radar.  CHR could become a more meaningful performance metric, since future radar 202 

networks may have varying angular resolutions—for example, with a mix of powerful 203 

narrow-beam radars augmented by gap-filling broad-beam systems (Chandrasekar et al. 204 

2012), or with the angle-dependent resolution of fixed planar phased arrays (Weber et al. 205 

2017). 206 

During the analysis period (October 2007 to December 2018), the WSR-88D CONUS 207 

network underwent two relevant changes. First, a new radar was added at Langley Hill, 208 

Washington in September 2011. Second, the network was upgraded from single 209 

polarization to dual polarization. To address the first change, we produced two sets of FVO 210 

and CHR maps corresponding to before and after the Langley Hill deployment. For the 211 

second network change, we conducted our analysis over the entire database timespan as 212 

well as the single polarization period and the post-dual-polarization upgrade period. To 213 

ensure that there would be no cross-contamination between the two polarization eras, the 214 

end of the single polarization period was marked by the first operational CONUS 215 

deployment of dual polarization (8 March 2011), and the start of the dual polarization 216 

period was marked by the completion of CONUS deployment (16 May 2013). 217 

Although we included Terminal Doppler Weather Radars (TDWRs) in our earlier 218 

analysis for tornadoes, because we determined that forecasters utilize TDWR data for 219 

tornado warning decisions, we did not include them for flash floods, since TDWRs are not 220 

used for QPE purposes. 221 

 222 

c. Mapping flash flood event to corresponding basin 223 
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Flooding location is different from the place where the causative rain falls.  In order 224 

to study the relationship between the quality of radar coverage (which affects QPE 225 

accuracy) and flash flood warning performance, we had to match each flood event to the 226 

appropriate upstream catchment basin. To do this we utilized the United States Geological 227 

Survey (USGS) National Hydrography Dataset Plus (NHDPlus; 228 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/streamgagebasins.xml). This database 229 

contains the location of 19 031 stream gauges with corresponding catchment basin 230 

boundaries. 231 

For each flood event, we searched for a stream gauge located inside the event polygon, 232 

and computed the mean radar coverage metric over the matching source basin (Figure 3). 233 

If more than one stream gauge was found inside the event polygon, then the radar coverage 234 

metric means were computed over all corresponding basins. If no stream gauge was 235 

situated in the polygon, then we looked for the nearest stream gauge; if the distance to the 236 

mean polygon latitude-longitude coordinate was less than 10 km, the stream gauge match 237 

was accepted. (This means the matched stream gauge was even closer to the polygon 238 

border.) With this procedure, 24 236 flash flood events were matched to source basins over 239 

the analysis period. All the analyses conducted on flash floods described in the rest of this 240 

paper were based on this set of events. 241 

 242 

d. Detection probability dependence on radar coverage 243 

Flash flood warning POD statistics were computed vs. the basin-averaged radar 244 

coverage parameters (Figure 4, top row). For FVO, the data were binned based on 245 

cumulative distribution percentage intervals of [0, 1], (1, 5], (5, 25], (25, 50], (50, 75], and 246 
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(75, 100]. For CHR, the data were binned based on cumulative distribution percentage 247 

intervals of [0, 25], (25, 50], (50, 75], (75, 95], (95, 99], and (99, 100]. The asymmetric 248 

interval distributions help draw out the steep change regimes where data were sparse. Note 249 

that the abscissa values plotted do not correspond to the center of the data bins—instead, 250 

they are the actual means of the binned FVO or CHR data.  The vertical and horizontal 251 

error bars denote the 95% confidence intervals along both dimensions (see CK19 for 252 

further details). 253 

Flash flood POD unambiguously increases with FVO and decreases with CHR.  This 254 

is a very important result, because it connects better radar coverage to flash flood warning 255 

performance improvement, and allows a continuous functional mapping between the two. 256 

(This result is also consistent with a prior study that showed a positive dependence of POD 257 

on WSR-88D low-level coverage over NWS WFO areas; Meléndez et al. 2018.) We 258 

modeled these relationships by two-segment linear fits with input uncertainty in both 259 

dimensions using the “fitexy” function from Numerical Recipes (Press et al. 1992).  Fitting 260 

results are given in Table 1, where a is the y intercept, b is the slope, a and b are the 261 

standard deviations of a and b, 2 is the fitted chi-squared value, and Q is the goodness-of-262 

fit probability. 263 

As can be seen in the POD vs. FVO plot of Figure 4, there is a discernible change in 264 

slope between FVO = 0.7 and 0.8. (The slope change is more gradual in the FAR vs. FVO 265 

plot.) If we assume that all of the observation loss occurs at the bottom of the volume 266 

(which is true except for the small fraction attributable to the radar cone of silence at the 267 

top of the volume), FVO = (20 kft – minimum observation height) / 20 kft. Note, then, that 268 

FVO of 0.7 and 0.8 approximately correspond to floors of 6000 and 4000 ft AGL. Thus, if 269 
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one had to pick one altitude as the “critical floor” for radar coverage with respect to flash 270 

flood warning performance, it would be ~5000 ft AGL; the top left plot in Figure 2 271 

corresponds to this height. 272 

Flash flood detection can be defined based on only positive lead times or all lead times 273 

(including zero and negative lead times). We decided on the latter, because the casualty 274 

regression statistics were better with all lead times included (section 2h). For a measure of 275 

model sensitivity, we also did the analysis with detections defined with only positive lead 276 

times.  As expected, the primary impact of excluding zero and negative lead times was to 277 

reduce the POD values; however, POD still increased with FVO, POD decreased with 278 

CHR, and the fits remained significant. 279 

We also tried combining the FVO and CHR relationships in the flash flood POD model 280 

via weighted additions of the two relationships. The mean-squared sums of the difference 281 

between data and model were minimized to obtain the optimal weighting.  The error was 282 

minimized with a 0.86 weight on the FVO relationship and a 0.14 weight on the CHR 283 

relationship. 284 

 285 

e. False alarm ratio dependence on radar coverage 286 

To compute flash flood warning false alarm ratio (FAR) statistics vs. the radar 287 

coverage metrics, we matched each warning to the relevant catchment basin(s) following 288 

the method outlined in section 2c for flood events. In this case, however, the event polygon 289 

depicted in Figure 3 is replaced by the warning polygon. With this procedure, 32 438 flash 290 

flood warnings were matched to source basins over the analysis period. (All the analyses 291 

conducted on flash floods described in the rest of this paper were based on this set of 292 
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warnings.) The radar coverage parameter values were then averaged over the 293 

corresponding basin boundaries. 294 

The resulting FAR vs basin-averaged radar coverage parameters plots are shown in 295 

the bottom row of Figure 4. For FVO, the data were binned based on cumulative 296 

distribution percentage intervals of [0, 1], (1, 10], (10, 25], (25, 50], (50, 75], and (75, 100]. 297 

For CHR, the data were binned based on cumulative distribution percentage intervals of 298 

[0, 25], (25, 50], (50, 75], (75, 90], (90, 99], and (99, 100].  299 

FAR clearly decreases with FVO and increases with CHR.  This result is consistent 300 

with an earlier analysis that showed a negative dependence of FAR on WSR-88D low-level 301 

coverage over NWS WFO areas (Meléndez et al. 2018). Unfortunately, however, because 302 

the casualty regression analysis did not yield a statistically meaningful relationship 303 

between historical FAR and casualty rate (section 2h), we were not able to exploit this clear 304 

dependency of flash flood FAR on radar coverage for our benefit model. (Hence, linear fits 305 

to the bottom row plots in Figure 4 are not given.) 306 

Note that we did not use a combined warning performance metric such as the critical 307 

success index (CSI) due to a couple of reasons. First, POD could be applied to the casualty 308 

regression model (section 2h) on a per-event basis via the binary warning presence 309 

variable, whereas FAR and CSI could not. Second, for a geospatial mapping of historical 310 

warning performance (for use by the regression model), the mismatch in spatial boundaries 311 

for computing POD (event polygons) and FAR (warning polygons) presented a problem in 312 

combining them for CSI; hence, only FAR was tried for that purpose. 313 

As for warning lead time, our analysis did show a positive correlation between 314 

increased radar coverage and lead time. However, because flash flood lead time did not 315 
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correlate negatively with casualty rate (section 2h), we could not include it as part of our 316 

benefit model. 317 

 318 

f. Impact of dual polarization upgrade 319 

  To investigate the impact of the WSR-88D dual polarization upgrade on flash flood 320 

warning performance, we computed the mean CONUS POD and FAR over two periods: 321 

(1) 1 October 2007 to 7 March 2011 and (2) 16 May 2013 to 31 December 2018. As 322 

explained in section 2b, these dates were chosen based on the first operational CONUS 323 

dual polarization deployment (8 March 2011) and the completion of the CONUS upgrade 324 

deployment (16 May 2013). Table 2 lists the corresponding POD and FAR values for these 325 

periods as well as for the entire analysis period. The plus/minus values indicate the 95% 326 

confidence intervals for the means. 327 

The mean flash flood warning values did not yield statistically meaningful differences 328 

between the single polarization and dual polarization eras. This stands in contrast to case 329 

studies that showed dramatic improvement in flash flood warning performance when the 330 

nation’s meteorological radar network was upgraded to the WSR-88D from the WSR-57 331 

and WSR-74 (Polger et al. 1994). One of the challenges with QPE in the dual-polarization 332 

era is the ongoing difficulty with differential reflectivity (ZDR) calibration, leading to 333 

difficulties obtaining consistent QPE results for use in the flash-flood warning process 334 

(Ryzhkov et al. 2005). As a result, the NWS has approved the transition to an R(A) 335 

algorithm based on specific attenuation (Snow 2017). The R(A) technique uses a slope of 336 

the ZDR/Z (horizontal reflectivity factor), meaning that constant offsets in ZDR across the 337 

tilt/volume theoretically will not cause as much of an error in QPE (Cocks et al. 2018; 338 
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Ryzhkov and Zrnić 2019).  Initial results of the R(A) algorithm have shown promise 339 

relative to the R(Z, ZDR) method when polarimetric bias is introduced (Kurdzo et al. 2019).  340 

It is possible that the eventual use of R(A) will impact our results in the future.  341 

The good news is that the flash flood warning vs. radar coverage statistics as 342 

exemplified by the Figure 4 plots were quite stable over the single and dual polarization 343 

periods. This was another confirmation that these relationships are meaningful and robust, 344 

and further justified their use in the benefit estimation model. 345 

 346 

g. Non-flash flood warnings vs. radar coverage 347 

Although this study focused on flash floods (and they account for the majority of 348 

flood-related fatalities; Ashley and Ashley 2008), we took the opportunity to investigate 349 

the relationship between radar coverage and non-flash flood warning performance. Using 350 

the same procedure employed for the flash flood analysis yielded no discernible coherent 351 

relationship between POD and FVO or CHR, and between FAR and FVO or CHR. These 352 

null results are perhaps not surprising, given that warning decisions for longer-term events 353 

must be based primarily on model forecast data, and the importance of QPE to the flood 354 

forecasting process diminishes with increasing time horizon as stream gauge data and 355 

quantitative precipitation forecast (QPF) become more relevant (e.g., Hudlow et al. 1984). 356 

These results preclude the addition of non-flash floods to our radar network benefit model. 357 

 358 

h. Casualty dependence on flash flood warning 359 

With the causal link between radar coverage and flash flood warning performance 360 

clearly established, we proceed to discuss the connection between flash flood warnings and 361 
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casualty rates. Among the factors that are thought to affect flash flood casualty rate are 362 

population, time of day, building type, catchment basin size, water flow velocity and depth, 363 

rate of water level rise, and warning lead time, and they appear to interact in various ways 364 

to impact casualty rates. For example, while most casualty events occur around headwater 365 

catchments in rural areas (because flash floods are generated by the rapid response time of 366 

small basins to heavy rainfall), when they do occur downstream in urban areas, the casualty 367 

rates are higher (Špitalar et al. 2014). The same article reports that while flash flood 368 

occurrence in the U.S. peaks around 1700 local time (LT), the per-event casualty rate 369 

reaches a maximum at 2100 LT, hinting at the importance of human factors such as 370 

inability to see in the dark for those outside. We refer the reader to informative past reviews 371 

on this topic (e.g., Jonkman et al. 2008; Smith and Rahman 2016). For the purposes of 372 

developing a radar network benefit model, only variables that could be geospatially 373 

characterized were considered. Temporal predictors like season and time of day were 374 

excluded, since they were not germane to our time-independent benefit model. However, 375 

in the future, the model could be extended to capture temporal effects. 376 

The flash flood casualty variance was more than twenty times larger than the mean 377 

statistics over our analysis period. Thus, instead of a Poisson distribution that is often used 378 

for counting statistics, we adopted a negative binomial distribution model for the casualty 379 

count, 380 

 381 

𝐶~NegBin(𝜇, 𝜃) ,                                                   (1) 382 

 383 
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for our casualty regression analysis, where  is the distribution mean, and  is the 384 

dispersion parameter.  The regression model then was a linear combination of candidate 385 

predictor variables set equal to ln . This is the same scheme that we used for the CK19 386 

tornado study. 387 

At this point, casualties were not divided between fatalities and injuries. Since the vast 388 

number of events have zero (no casualty) outcomes, increasing the number of non-zero 389 

outcome cases by aggregating fatalities and injuries improves statistical robustness. While 390 

the database includes direct and indirect casualties separately, we only used direct 391 

casualties in our analysis, because we sought the tightest causal bond between flash floods 392 

and their effects on people.  In the monetization stage (section 2i), we parsed the model 393 

results into fatalities and two types of injuries based on historical averages.   394 

The predictor variables that we tried in the regression analysis were (1) logarithm of 395 

the population, (2) fraction of population in mobile housing, (3) historical flash flood 396 

warning FAR, (4) catchment basin size (as a proxy for basin response time), (5) flood 397 

flashiness, (6) flash flood warning presence (binary—0 or 1), and (7) flash flood warning 398 

lead time. (1), (2), and (3) were averaged over the flood event polygon. The predictor 399 

variables were tested both individually and in combination to elucidate any cross-400 

correlation effects. We also tried FVO and CHR (averaged over the source basins) as 401 

casualty predictors to see if a direct link could be established between radar coverage and 402 

casualty rate, but there was no meaningful statistical relationship, consistent with the 403 

findings of Meléndez et al. (2018). 404 

We acquired population data from the Center for International Earth Science 405 

Information Network (CIESIN 2017) with latitude-longitude spacing that matched our 30-406 
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arcsec model grid resolution. Measured population for 2005, 2010, 2015 were available, as 407 

well as projected population for 2020; linear interpolation yielded corresponding data for 408 

the other years. In a nod to statistics that showed most flash flood fatalities occurring while 409 

people were away from their residences (predominantly while driving, but also during 410 

hiking, camping, etc.; Terti et al. 2017), we set a floor of 1 in the population field 411 

everywhere. Also, in cases where the event casualty count exceeded the population in the 412 

event polygon, the population was set to the casualty count for logical consistency. 413 

Otherwise, we relied on a general spatial correlation between residential population and 414 

transient mobile population. 415 

Flood flashiness, defined as the peak flow above flood stage divided by the product of 416 

basin area and time from flood stage exceedance to peak flow (Saharia et al. 2017), was 417 

considered, because it seemed to hold promise as a predictor of flash flood casualty rate. 418 

Since the NWS storm events database did not contain quantitative data on water flow or 419 

depth, we computed flashiness from USGS streamflow measurements (2016V1; 420 

https://blog.nssl.noaa.gov/flash/database/database-2016v1/) archived under the FLASH 421 

database (Gourley et al. 2013). However, in comparing the NWS flash flood events to the 422 

USGS streamflow measurements by time and location, only a small fraction of the former 423 

found matched with the latter. Therefore, any casualty regression results that included 424 

flashiness as a predictor variable was handicapped by the reduction in input data points. 425 

The fraction of the population living in mobile housing was an effective predictor 426 

variable for tornado casualties (CK19). Intuitively, one might expect the heightened 427 

vulnerability of mobile housing to be washed away by flood waters to be a factor in casualty 428 

rate. In fact, about a third of building-related flash flood casualties was estimated to have 429 
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occurred in mobile homes (Terti et al. 2017). Mobile housing and trailer parks are also 430 

often located near rivers (Marrero 1979), while a proposed flash flood severity index 431 

codifies the sweeping away of mobile homes as a category-defining characteristic 432 

(Schroeder et al. 2016). The gridded fraction of the population in mobile housing were 433 

computed from data obtained from the American Community Survey database for 2015 434 

(USCB 2016) and the Decennial Census for 2000 (Manson et al. 2018). We combined the 435 

population in the “mobile home” and “boat, RV, van, etc.” categories to arrive at the mobile 436 

housing population, which was normalized by the total population in each census block 437 

group to yield the fraction of population in mobile housing. We sampled and mapped this 438 

data to our 30-arcsec latitude-longitude model grid. See CK19 for further details. In the 439 

regression analysis, linearly interpolated maps (between 2000 and 2015) were used for the 440 

years 2007–2014, and the 2015 map (Figure 5) was used for 2015–2018.   441 

For the negative binomial regression analysis, we utilized the “glm.nb” function from 442 

the open software package R (https://www.R-project.org/).  An exhaustive search of 443 

predictor combinations yielded a clear winner based on statistical reliability. The best 444 

regression fit statistics were obtained by keeping only population (P), fraction of 445 

population in mobile housing (M), and warning presence (W) in the statistical model, 446 

 447 

ln 𝜇 = 𝛼 ln 𝑃 + 𝛽𝑀 + 𝛾𝑊 + 𝑘 ,                                         (2) 448 

 449 

where k is the intercept constant, and , , and  are the regression coefficients.  For the 450 

definition of warning presence we tried including all lead times vs. only positive lead times, 451 

and the better result was obtained by including all lead times. The fit results are given in 452 
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Table 3. The probability of the “null hypothesis being true” for each predictor was less than 453 

0.0003, much smaller than the typically used threshold of 0.05.  Additionally, comparison 454 

of the casualty regression relation with and without each predictor via degree-of-freedom 455 

chi-square tests showed that each variable was a statistically significant predictor. 456 

Applying the same flash flood events input data to (2) with the estimated coefficients 457 

gave a casualty count of 681, which is reasonably close to the actual count of 631.  The 458 

presence of a flash flood warning reduces casualty rate by 44% according to this model. 459 

 460 

i. Monetizing casualties 461 

The value of a statistical life (VSL) is commonly used to monetize casualties in benefit 462 

analyses.  As we did previously (CK19), we followed the guidance of the Department of 463 

Transportation (DOT 2016), which established a VSL of $9.6 million (M) in 2015 dollars.  464 

To update the value to 2019 dollars, we used the DOT’s equation, 465 

 466 

VSLT = VSL0
CPIT

CPI0
(
MUWET

MUWE0
)
𝑞

 ,                                               (3) 467 

 468 

where CPI is the consumer price index, MUWE is the median usual weekly earnings, q is 469 

income elasticity, and the subscripts T and 0 signify updated base year and original base 470 

year.  We got CPIT/CPI0 = 1.08 (https://www.bls.gov/data/inflation_calculator.htm) and 471 

MUWET/MUWE0 = 1.12 (https://www.bls.gov/cps/cpswktabs.htm) from the U.S. Bureau 472 

of Labor Statistics database, for a baseline of January 2015 and updated time of January 473 

2019.  Taking the DOT’s recommended value of q = 1 yielded a 2019 VSL of $11.6M. 474 

Accepted for publication in Journal of Applied Meteorology and Climatology.   DOI 10.1175/JAMC-D-19-0176.1.

https://www.bls.gov/data/inflation_calculator.htm
https://www.bls.gov/cps/cpswktabs.htm


 21 

We did not distinguish between fatalities and injuries in our casualty regression model 475 

as explained in section 2h. We used the actual mean ratio calculated over the analysis 476 

period to parse the model output into the two casualty types, which yielded 61% fatalities 477 

and 39% injuries. 478 

Injuries were monetized as fractions of VSL, relying on a Federal Emergency 479 

Management Administration (FEMA) formulation (FEMA 2009) specifying injuries 480 

requiring hospitalization as level 4, and injuries resulting in treatment and release as level 481 

2.  With the DOT setting level 4 injury cost at 0.266 × VSL and level 2 injury cost at 482 

0.047 × VSL (DOT 2016), these costs are $3.09M and $0.545M, respectively, in 2019 483 

dollars. 484 

Because the flood event database does not categorize injuries by severity, we scoured 485 

the Internet for papers and news reports that contained flash flood injury outcome 486 

information. We found usable reports on twelve events between 1956 and 2018 with 3336 487 

total injuries, with the count being dominated by the 9 June 1972 Rapid City, South Dakota 488 

event. In order to avoid being biased by one event, we computed the ratio of injury types 489 

for each event then took the mean of the ratios. The result was 43% for injuries requiring 490 

hospitalization vs. 57% for injuries that were treated and released. 491 

 492 

j. CONUS grid computation 493 

All the individual model components can now be integrated to generate mean annual 494 

CONUS flash flood casualty cost.  The modeled casualty rate (per year, per grid cell) is 495 

given by 496 

 497 
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𝑅𝑖𝑗
𝐹,𝐻,𝑅 = 𝑌𝐹,𝐻,𝑅[𝑟𝑖𝑗(1)𝐵𝑖𝑗 + 𝑟𝑖𝑗(0)(1 − 𝐵𝑖𝑗)]𝑂𝑖𝑗 ,                           (4) 498 

 499 

where B is the probability of warning per flash flood (POD), O is the flash flood occurrence 500 

rate, i and j are the latitude and longitude grid indices, and the superscripts indicate fatal 501 

(F), injured—hospitalized (H), and injured—treated and released (R).  The grid cell size is 502 

1/120° × 1/120°. The casualty type fractions are broken down as 503 

 504 

𝑌𝐹 = 𝑓 ,                                                            (5) 505 

𝑌𝐻 = (1 − 𝑓)ℎ , and                                                   (6) 506 

𝑌𝑅 = (1 − 𝑓)(1 − ℎ) ,                                                (7) 507 

 508 

where f is the fatality fraction and h is the fraction of injured that are hospitalized.  From 509 

(2) we get the casualty rate per flash flood, 510 

 511 

𝑟𝑖𝑗(𝑊) = exp[𝛼 ln(𝑃𝑖𝑗) + 𝛽𝑀𝑖𝑗 + 𝛾𝑊 + 𝑘] ,                               (8) 512 

 513 

with (W = 1) and without (W = 0) a flash flood warning.   514 

To generate the flash flood POD map, we applied the Table 1 fitted parameters to the 515 

radar network FVO and CHR maps and summed them with weights given in section 2d. 516 

However, a geospatial mapping was needed, because equation (4) is computed over the 517 

grid cells of flash flood occurrence, not radar observation of the source rainfall. Thus, we 518 

mapped every CONUS grid cell to the nearest USGS NHDPlus stream gauge (Figure 6), 519 

which was mapped to the corresponding source basin grid cells. The modeled flash flood 520 
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POD computed based on mean radar FVO and CHR over the source basins were then able 521 

to be mapped onto the flash flood occurrence areas. The modeled POD values were 522 

computed from 0.86 × POD(FVO) + 0.14 × POD(CHR). POD(FVO) and POD(CHR) were 523 

calculated using the piecewise-linear relationships given by the a (y intercept) and b (slope) 524 

coefficients in Table 1 (and expressed by the red lines in Figure 4). The resulting flash 525 

flood POD map for the current WSR-88D network is shown in Figure 7. 526 

The mean annual flash flood occurrence rate was computed for each CONUS grid cell 527 

using the NWS storm database over the period 2006–2018. Earlier NWS data were not 528 

used, because the cause of flooding was not recorded. In order to obtain better coverage 529 

and statistics (since flash floods occur relatively rarely and the NWS database is not a 530 

comprehensive source), we also computed occurrence rate with the USGS streamflow 531 

measurements that date back to 1936, based on exceedance of the action stage. Since these 532 

observations came from single point locations, we counted the floods as having occurred 533 

in the four closest grid cells. In joining the results from the two disparate data sets, we took 534 

the greater occurrence rate value in each grid cell instead of combining them in order to 535 

avoid double counting. For visualization purposes, Figure 8 shows the mean annual 536 

CONUS flash flood occurrence rate density mapped from the event locations to the 537 

corresponding source basins. Without this mapping, the occurrence rates at the actual 538 

locations are too small to be discernible at the national level—they appear as sparse dots 539 

on the CONUS map.  540 

We arrived at the predicted CONUS flash flood casualty rate parsed by casualty type 541 

by summing (4) over all grid indices.  The total estimated annual CONUS flash flood 542 
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casualty cost was obtained by multiplying the individual casualty rates with the 543 

corresponding casualty type costs and summing. 544 

 545 

3. Example results 546 

In order to estimate the value provided by the current radar network, as well as the 547 

remaining benefit pool, we computed modeled flash flood casualty costs for three basic 548 

scenarios: the current WSR-88D network, no radar coverage, and perfect WSR-88D-like 549 

coverage.  No radar coverage was simulated by setting FVO = 0 and CHR = ∞ everywhere.  550 

Perfect WSR-88D-like coverage was simulated by setting FVO = 1 and CHR = 0 551 

everywhere. 552 

Table 4 lists the flash flood casualty estimates for all scenarios and the actual average 553 

annual casualty rates.  The agreement between the baseline model estimates and the actual 554 

casualty rates is very good, especially with the median actual rates.  Table 5 gives the 555 

corresponding flash flood casualty costs in 2019 dollars. 556 

Differences from the current baseline are provided in the “Delta baseline” columns of 557 

Tables 4 and 5.  This shows that today’s WSR-88D network provides over $300M dollars 558 

in flash flood benefits annually compared to a CONUS without weather radars. Perfect 559 

radar coverage of the CONUS yields a benefit of only $13M yr-1 over the baseline. The 560 

remaining benefit pool with respect to improved coverage is, therefore, quite modest for 561 

flash flood casualty reduction, especially compared to the tornado case, which has an order 562 

of magnitude larger benefit pool (CK19). Evidently, for the purposes of QPE to support 563 

flash flood warning decisions, the coverage provided by the current baseline is quite good. 564 

Accepted for publication in Journal of Applied Meteorology and Climatology.   DOI 10.1175/JAMC-D-19-0176.1.



 25 

To estimate the benefit provided by flash flood warnings independent of radar 565 

coverage, we also ran the model on a CONUS with no flash flood warnings and with 100% 566 

warnings (Tables 4 and 5). The results indicate that over $390M yr-1 benefit is realized by 567 

the current flash flood warning system compared to a world without warnings, and the 568 

remaining benefit pool for warnings is about $69M yr-1—this corresponds to the 569 

hypothetical situation of having 100% warning on flash floods. (The impact of lead time 570 

and false alarm ratio improvements could not be modeled, because these variables were 571 

not statistically significant predictors of casualty rate.) This value also corresponds to the 572 

upper-bound benefit for radars, since, in principle, improvements to radar QPE through 573 

non-coverage aspects such as rapid scanning and product algorithm enhancements could 574 

help push flash flood POD toward 100%. 575 

Because the average fraction of injured that are hospitalized (h = 0.43) used in the 576 

model was based on a small number of cases, we tested the model sensitivity by changing 577 

this parameter to 0.25 and 0.75. For h = 0.25, the magnitude of the benefits in Tables 4 and 578 

5 decreased by 2%, and for h = 0.75, the magnitude of the benefits increased by 4%. Thus, 579 

the model appears to be fairly stable with respect to even large variances in this parameter. 580 

Figure 9 shows geospatially the casualty cost density difference between perfect radar 581 

coverage and the WSR-88D network. The cost densities were mapped from the casualty 582 

locations to the source basins of the flash floods in order to show where improvements in 583 

radar coverage may help with respect to flash flood casualty reduction. Impacts from both 584 

the flash flood occurrence rate (Figure 8) and modeled warning probability (Figure 7) are 585 

discernible in Figure 9. For example, the mountainous region west of Charlottesville, 586 

Virginia has both fairly high flash flood occurrence rate and low modeled warning 587 
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probability (corresponding to a radar coverage gap noticeable in the Figure 2, 5000-ft AGL 588 

plot), resulting in a larger benefit pool. The poor low-altitude radar coverage in the 589 

Mountain West, however, does not generally lead to a greater benefit pool, except in areas 590 

with more frequent occurrence of flash floods (and perhaps population). 591 

There are, of course, a number of cautionary notes regarding this analysis. First is the 592 

incomplete nature of the flash flood data. For example, the NWS flood event data are based 593 

on reports by human observers, and floods that occurred in remote locations or had no 594 

impact on people may have been missed. Fortunately, the benefits are accumulated in areas 595 

with people, so biases in the event data may not greatly affect the modeled benefit 596 

estimates. Rapid housing development in remote areas prone to flooding, however, might 597 

lead to slight localized underestimates of future benefits. 598 

Second, there are factors that influence the flash flood warning decision process not 599 

accounted for in our model, such as the skill of individual forecasters, procedural 600 

heterogeneity across regional forecast centers, evolution of the QPE and FFG products, 601 

FFG errors, density of rain gauge network, availability of other data sources, storm type, 602 

and basin hydrological features. Also, temporal evolution of a basin, such as when a fire 603 

decimates vegetation, can greatly affect runoff response time. However, as the statistical 604 

stability of the radar-coverage-to-warning-performance relationship over the pre- and post-605 

dual-polarization eras attests, variances due to these other factors appear to largely get 606 

averaged out over the large number of data points ingested in the analysis. 607 

Finally, the circumstances of flash flood casualties are very complex and difficult to 608 

model statistically. Many flash flood fatalities in the U.S. occur while the victim is away 609 

from their residence, which cannot be precisely characterized with population data. It is 610 
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difficult to capture factors like real-time access to flash flood warnings and likelihood of 611 

response (Knocke and Kolivras 2007; Parker et al. 2009; Morss et al. 2016), while data on 612 

event characteristics such as flow speed and depth are not universally available. In our 613 

casualty regression analysis, we considered potential causative factors with data available 614 

geospatially on a national basis, and discarded those that were not statistically reliable 615 

predictors. The resulting regression model is necessarily a simple one, but, again, the large 616 

number of data points used in the analysis provides a high level of statistical robustness 617 

that would not be available in a more detailed case study. 618 

 619 

4. Summary discussion 620 

We constructed a geospatial model for computing meteorological radar network 621 

benefits for flash flood casualty reduction.  We showed unambiguously that better radar 622 

coverage of the causative rainfall leads to improved flash flood warning statistics. We also 623 

established that the casualty rate decreases by 44% when a flash flood warning is present. 624 

Combining these two effects, the model was able to generate benefit estimates on a high-625 

resolution spatial grid.  The model can work on an arbitrary radar network configuration. 626 

Our model showed that today’s WSR-88D network provides over $300M yr-1 in flash 627 

flood casualty reduction.  There is a modest remaining benefit pool of $13M yr-1 for 628 

coverage improvements, which is indicative of the effective coverage provided for this 629 

purpose by the current weather radar network. Inclusive of all aspects of flash flood 630 

warning POD improvements, including better radar QPE, the maximum benefit pool is 631 

$69M yr-1. 632 
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A radar benefit model could not be established for non-flash floods, since our analysis 633 

did not yield a meaningful relationship between radar coverage and warning performance. 634 

This negative result was not entirely a surprise, given that warning decisions for longer-635 

term events must be based primarily on model forecast data, and the importance of QPE to 636 

the flood forecasting process diminishes with increasing time horizon as stream gauge data 637 

and QPF become more relevant. 638 

 Potential benefits from flash flood property damage reduction could be worth 639 

investigating, although loss mitigation options may be limited in this scenario (relocating 640 

vehicles, moving valuables from basements and first floors to upper levels, etc.). Also, 641 

damage reduction is expected to be less for shorter lead time flash flood events compared 642 

to longer lead time non-flash flood events (Day 1970). A preliminary analysis using 643 

population as a proxy for property value did not yield any statistically meaningful 644 

relationship between flash flood warning performance and property damage. For a proper 645 

study, geospatial data of real estate property type and value as well as vehicle count would 646 

likely be needed.  647 
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TABLE CAPTIONS 848 

 849 

Table 1. POD vs. radar coverage parameters linear fit results. 850 

Table 2. Mean CONUS flash flood POD and FAR. 851 

Table 3. Flash flood casualty model regression results. 852 

Table 4. Annual CONUS flash flood casualty estimates.  Actual average injured 853 

counts are totals, not broken out by injury type. 854 

Table 5. Annual CONUS flash flood casualty cost estimates. 855 

  856 
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FIGURE CAPTIONS 857 

 858 

Fig. 1. Development and usage block diagrams of the radar network flash flood 859 

casualty cost model. Input data are indicated by gray rectangles, intermediate data products 860 

by green rectangles, and final monetized cost output by a blue rectangle. Computational 861 

model units are shown as orange ovals. 862 

Fig. 2.  WSR-88D coverage at the indicated height slices. 863 

Fig. 3.  Illustration of how a flood event is matched to the source basin. 864 

Fig. 4.  Plots of (top left) flash flood POD vs. FVO, (top right) flash flood POD vs. 865 

CHR, (bottom left) flash flood FAR vs. FVO, and (bottom right) flash flood FAR vs. CHR. 866 

Solid red lines are linear fits to the data. 867 

Fig. 5. Fraction of population living in mobile housing as derived from the 2015 868 

American Community Survey data given at the census block group level.  869 

Fig. 6.  Areas associated with nearest USGS NHDPlus stream gauge colored according 870 

to the logarithm of the number of grid points enclosed. 871 

Fig. 7.  Modeled flash flood warning probability for the current WSR-88D network. 872 

Fig. 8.  Mean annual flash flood occurrence rate density with the rates mapped from 873 

the event locations to the corresponding source basins. Computed based on combined 874 

USGS and NWS flash flood data from 1936 to 2018. 875 

Fig. 9.  Modeled annual flash flood casualty cost density difference between the 876 

current WSR-88D network and perfect radar coverage.  877 
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Table 1. POD vs. radar coverage parameters linear fit results. 878 

 879 

Parameter FVO CHR 

Segment Low FVO High FVO Low CHR High CHR 

a 0.11 0.68 0.88 1.1 

b 0.89 0.20 -1.4 × 10-5 -1.2 × 10-4 

a 0.12 0.074 0.011 0.075 

b 0.15 0.084 8.1 × 10-6 3.2 × 10-5 

2 0.037 0.13 1.2 0.89 

Q 0.85 0.94 0.54 0.35 

 880 

881 
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Table 2. Mean CONUS flash flood POD and FAR. 882 

 883 

Period 
2007-10-1 to 

2018-12-31 

2007-10-1 to 

2011-3-7 

2013-5-16 to 

2018-12-31 

POD (all lead times) 0.853 ± 0.005 0.857 ± 0.008 0.853 ± 0.006 

POD (positive lead times only) 0.774 ± 0.005 0.776 ± 0.010 0.775 ± 0.007 

Number of points averaged (POD) 24 236 7097 13 408 

FAR 0.452 ± 0.005 0.434 ± 0.010 0.453 ± 0.007 

Number of points averaged (FAR) 32 438 9729 17 518 

 884 

  885 
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 886 

Table 3. Flash flood casualty model regression results. 887 

 888 

Parameter Estimate Std. error z Pr (> |z|) 

 0.166 0.020 8.13 4 × 10-16 

 2.20 0.435 5.05 4 × 10-7 

 -0.572 0.160 -3.59 3 × 10-4 

k -4.58 0.206 -22.2 < 2 × 10-16  

 0.105 7.16 × 10-4 N/A N/A 

 889 

  890 
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Table 4. Annual CONUS flash flood casualty estimates.  Actual average injured counts 891 

are totals, not broken out by injury type. 892 

 893 

Scenario Fatal 
Injured 

(hospitalized) 

Injured 

(treated and 

released) 

Total 
Delta 

baseline 

WSR-88D 52.6 14.5 19.2 86.3 —— 

No radar coverage 77.6 21.4 28.4 127.4 41.1 

Perfect coverage 51.5 14.2 18.9 84.6 -1.7 

0% warned 83.6 23.1 30.6 137.2 50.9 

100% warned 47.2 13.0 17.3 77.4 -8.9 

Actual mean (2007–

2018) 

63 ± 10 41 ± 15 104 ± 20 N/A 

Actual median 

(2007–2018) 

59 ± 7 23 ± 8 86 ± 13 N/A 

 894 

  895 
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Table 5. Annual CONUS flash flood casualty cost estimates. 896 

 897 

Scenario 
Fatal 

($M) 

Injured 

(hospitalized)  

($M) 

Injured 

(treated and 

released)  

($M) 

Total 

($M) 

Delta 

baseline 

($M) 

WSR-88D 609.9 44.8 10.5 665.2 —— 

No radar coverage 899.8 66.1 15.5 981.3 316.1 

Perfect coverage 597.7 43.9 10.3 651.9 -13.3 

0% warned 969.6 71.2 16.7 1057.4 392.2 

100% warned 547.0 40.2 9.4 596.5 -68.7 

 898 

  899 
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 900 

Fig. 1. Development and usage block diagrams of the radar network flash flood casualty 901 

cost model. Input data are indicated by gray rectangles, intermediate data products by green 902 

rectangles, and final monetized cost output by a blue rectangle. Computational model units 903 

are shown as orange ovals.  904 
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 905 

 906 

 907 

Fig. 2.  WSR-88D coverage at the indicated height slices.  908 
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 909 

Fig. 3.  Illustration of how a flood event is matched to the source basin. 910 

  911 

Source basin 

Event polygon 

Stream gauge 

Flood of St. Johns River, FL (2007-10-3) 
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 912 

Fig. 4.  Plots of (top left) flash flood POD vs. FVO, (top right) flash flood POD vs. 913 

CHR, (bottom left) flash flood FAR vs. FVO, and (bottom right) flash flood FAR vs. CHR. 914 

Solid red lines are linear fits to the data. 915 

  916 
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 917 

Fig. 5.  Fraction of population living in mobile housing as derived from the 2015 918 

American Community Survey data given at the census block group level. 919 

  920 
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 921 

Fig. 6.  Areas associated with nearest USGS NHDPlus stream gauge colored according 922 

to the logarithm of the number of grid points enclosed. 923 

  924 
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 925 

Fig. 7.  Modeled flash flood warning probability for the current WSR-88D network. 926 

  927 
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 928 

Fig. 8.  Mean annual flash flood occurrence rate density with the rates mapped from 929 

the event locations to the corresponding source basins. Computed based on combined 930 

USGS and NWS flash flood data from 1936 to 2018. 931 

  932 
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 933 

Fig. 9.  Modeled annual flash flood casualty cost density difference between the 934 

current WSR-88D network and perfect WSR-88D-like coverage. 935 
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