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Abstract: A search is performed for events consistent with the pair production of a

new heavy particle that acts as a mediator between a dark sector and normal matter,

and that decays to a light quark and a new fermion called a dark quark. The search is

based on data corresponding to an integrated luminosity of 16.1 fb−1 from proton-proton

collisions at
√
s = 13 TeV collected by the CMS experiment at the LHC in 2016. The

dark quark is charged only under a new quantum-chromodynamics-like force, and forms

an “emerging jet” via a parton shower, containing long-lived dark hadrons that give rise

to displaced vertices when decaying to standard model hadrons. The data are consistent

with the expectation from standard model processes. Limits are set at 95% confidence level

excluding dark pion decay lengths between 5 and 225 mm for dark mediators with masses

between 400 and 1250 GeV. Decay lengths smaller than 5 and greater than 225 mm are also

excluded in the lower part of this mass range. The dependence of the limit on the dark

pion mass is weak for masses between 1 and 10 GeV. This analysis is the first dedicated

search for the pair production of a new particle that decays to a jet and an emerging jet.
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1 Introduction

Although many astrophysical observations indicate the existence of dark matter [1], it

has yet to be observed in the laboratory. While it is possible that dark matter has only

gravitational interactions, many compelling models of new physics contain a dark matter

candidate that interacts with quarks. One class of models includes new, electrically-neutral

fermions called “dark quarks”, QDK, which are not charged under the forces of the standard

model (SM) but are charged under a new force in the dark sector (“dark QCD”) that

has confining properties similar to quantum chromodynamics (SM QCD) [2, 3]. Unlike

models based on the popular weakly interacting neutral particle paradigm [4], such models

naturally explain the observed mass densities of baryonic matter and dark matter [5].

We consider, in particular, the dark QCD model of Bai, Schwaller, Stolarski, and Weiler

(BSSW) that predicts “emerging jets” (EMJ) [6, 7]. Emerging jets contain electrically

charged SM particles that are consistent with having been created in the decays of new

long-lived neutral particles (dark hadrons), produced in a parton-shower process by dark

QCD. In this model, dark QCD has an SU(NCDK
) symmetry, where NCDK

is the number

of dark colors. The particle content of the model consists of the dark fermions, the dark

gluons associated with the force, and a mediator particle that is charged under both the

new dark force and under SM QCD, thus allowing interactions with quarks. The dark

fermions are bound by the new force into dark hadrons. These hadrons decay via the

mediator to SM hadrons.
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Figure 1. Feynman diagrams in the BSSW model for the pair production of mediator particles,

with each mediator decaying to a quark and a dark quark QDK, via gluon-gluon fusion (left) and

quark-antiquark annihilation (right).

The mediator XDK is a complex scalar. Under SM QCD, it is an SU(3) color triplet, and

thus can be pair produced via gluon fusion (figure 1, left) or quark-antiquark annihilation

(figure 1, right) at the CERN LHC. The mediator has an electric charge of either 1/3

or 2/3 of the electron charge, and it can decay to a right-handed quark with the same

charge and a QDK via Yukawa couplings. There are restrictions on the values of the

Yukawa couplings from searches for flavor-changing neutral currents, neutral meson mixing,

and rare decays [8–11]. We abide by these restrictions by assuming that all the Yukawa

couplings are negligible except for the coupling to the down quark [8–11].

The decay length of the lightest dark meson (dark pion) [7], is given by eq. (1.1):

cτ ≈ 80 mm

(
1

κ4

)(
2 GeV

fπDK

)2(100 MeV

mdown

)2(2 GeV

mπDK

)(mXDK

1 TeV

)4
, (1.1)

where κ is the appropriate element of the NCDK
×3 matrix of Yukawa couplings between the

mediator particle, the quarks, and the dark quarks; fπDK is the dark pion decay constant;

and mdown, mπDK , and mXDK
are the masses of the down quark, the dark pion, and the

mediator particle, respectively.

The signature for this search thus consists of four high transverse momentum (pT)

jets, two from down quarks and two from dark quarks. The dark quark jets contain many

displaced vertices arising from the decays of the dark pions produced in the dark parton

shower and fragmentation. For models with dark hadron decay lengths comparable to the

size of the detector, there can also be significant missing transverse momentum (pmiss
T ).

The main background for this signature is SM four-jet production, where jet(s) are tagged

as emerging either because they contain long-lived B mesons or because of track misrecon-

struction, and large artificial pmiss
T is created because of jet energy mismeasurement. We

use a photon+jets data sample to measure the probability for an SM jet to pass selection

criteria designed for emerging jets, and use this probability in estimating the background,

as described in section 5.

2 The CMS detector and event reconstruction

The CMS detector is a multipurpose apparatus designed to study physics processes in

proton-proton (pp) and heavy ion collisions. A superconducting solenoid occupies its cen-
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tral region, providing a magnetic field of 3.8 T parallel to the beam direction. The silicon

tracker system consists of 1 440 silicon pixel and 15 148 silicon strip detector modules. The

trajectories of charged particles within the pseudorapidity range |η| < 2.5 are reconstructed

from the hits in the silicon tracking system using an iterative procedure with a Kalman

filter [12]. The tracking efficiency for prompt hadrons is typically over 98% for tracks with

pT above 1 GeV. For nonisolated particles with 1 < pT < 10 GeV and |η| < 1.4, the track

resolutions are typically 1.5% in pT and 25–90 (45–150)µm in the transverse (longitudi-

nal) impact parameter [12]. The reconstruction efficiency is low for tracks with an impact

parameter larger than 25 cm [12].

A lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator

hadron calorimeter (HCAL) surround the tracking volume and cover |η| < 3. A steel and

quartz-fiber Cherenkov hadron forward calorimeter extends the coverage to |η| < 5. The

muon system consists of gas-ionization detectors embedded in the steel flux return yoke

outside the solenoid, and covers |η| < 2.4. The first level of the CMS trigger system [13]

is designed to select events in less than 4 µs, using information from the calorimeters and

muon detectors. The high-level trigger (HLT) processor farm then reduces the event rate

to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the

coordinate system and the relevant kinematic variables, can be found in ref. [14].

The pp interaction vertices are reconstructed by clustering tracks on the basis of their

z coordinates along the beamline at their points of closest approach to the center of the

luminous region using a deterministic annealing algorithm [15]. The position of each vertex

is estimated with an adaptive vertex fit [16]. The resolution in the position is around 10–

12µm in each of the three spatial directions [12].

The reconstructed vertex with the largest value of summed physics-object p2
T is taken

to be the primary pp interaction vertex (PV). The physics objects are the jets, clustered

using the jet finding algorithm [17, 18] with the tracks assigned to the vertex as inputs,

and the associated pmiss
T , taken as the negative vector sum of the pT of those jets. Other

vertices in the same event due to additional pp collisions in the same beam crossing are

referred to as pileup.

The particle-flow (PF) algorithm [19] is used to reconstruct and identify each individ-

ual particle, with an optimized combination of information from the various elements of

the CMS detector. The energy of each photon is directly obtained from the ECAL mea-

surement, corrected for zero-suppression effects. The energy of each electron is determined

from a combination of the track momentum at the PV, the corresponding ECAL cluster

energy, and the energy sum of all bremsstrahlung photons attached to the track. The

energy of each muon is obtained from the corresponding track momentum. The energy of

each charged hadron is determined from a combination of the track momentum and the

corresponding ECAL and HCAL energies, corrected for zero-suppression effects and for the

response functions of the calorimeters to hadronic showers. Finally, the energy of neutral

hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

The analysis involves two types of jets: SM QCD jets and emerging jets. For each

event, the reconstruction of both types of jets starts with the clustering of reconstructed
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particles with the infrared and collinear safe anti-kT algorithm [17, 18], with a distance

parameter R of 0.4. The jet momentum is determined as the vectorial sum of the momenta

of associated particles. Additional identification criteria for the emerging jets are given

in section 4. For the SM jets, the momentum is found in the simulation to be within 5

to 10% of the true momentum for jets, created from the fragmentation of SM quarks and

gluons, over the entire pT spectrum and detector acceptance. Additional proton-proton

interactions within the same or nearby bunch crossings can contribute additional tracks

and calorimetric energy depositions to the jet momentum. To mitigate this effect, charged

hadrons not associated with the PV are removed from the list of reconstructed particles

using the pileup charged-hadron subtraction algorithm [19], while an offset correction is

applied to correct for remaining contributions [20–22]. Jet energy corrections are derived

from simulation and are confirmed with in situ measurements with the energy balance of

Drell-Yan+jet, dijet, multijet, and photon+jet events [23].

Jets consistent with the fragmentation of b quarks are identified using the Combined

Secondary Vertex version 2 (CSVv2) discriminator [24]. The loose working point corre-

sponds to correctly identifying a b quark jet with a probability of 81% and misidentifying

a light-flavor jet as a b quark jet with a probability of 8.9%.

The ~pmiss
T is the negative vector sum of the ~pT of all PF candidates in an event. Its

magnitude is referred to as pmiss
T .

3 Simulated samples

Simulated Monte Carlo (MC) samples are used for the estimation of the signal acceptance

A, defined as the fraction of MC events passing the selection criteria, and thus including,

e.g., tracking and other efficiencies. These samples are also used for the construction

of the templates for background estimation and the validation of background estimation

techniques. The simulation of SM processes, unless otherwise stated, is performed at

leading order in the strong coupling constant using MadGraph5 amc@nlo 2.2.2 [25]

or pythia 8.2 [26] with the NNPDF3.0 [27] parton distribution functions (PDFs). The

strong coupling constant at the Z mass scale is set to 0.130 in the generator. Parton shower

development and hadronization are simulated with pythia using the underlying-event tune

CUETP8M1 [28].

Signal samples are generated with the “hidden valley” model framework in pythia 8.212,

using modifications discussed in ref. [7]. The model has several parameters: the mass of

the mediator particle, the width of the mediator particle, the number of dark colors, the

number of dark flavors, the matrix of Yukawa couplings between the QDK and the quarks

with the same electric charge as the mediator, the dark force confinement scale, the masses

of the QDK (one for each dark flavor), the mass of the dark pion, the dark pion proper

decay length, and the mass of the dark rho meson. Following ref. [7], we assume that there

are three dark colors and seven dark flavors as suggested in ref. [6]. We assume that all

QDK (and therefore dark pions) are mass degenerate and that the QDK mass equals the

dark force confinement scale. The mass of the dark pion is assumed to be one half the

mass of the QDK. The mass of the dark rho meson is taken to be four times larger than
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Signal model parameters List of values

Dark mediator mass mXDK
[GeV] 400, 600, 800, 1000, 1250, 1500, 2000

Dark pion mass mπDK [GeV] 1, 2, 5, 10

Dark pion decay length cτπDK [mm] 1, 2, 5, 25, 45, 60, 100, 150, 225, 300, 500, 1000

Table 1. Parameters used in generating the 336 simulated signal event samples. A sample corre-

sponding to a single model was created for each possible set of parameter values.

the mass of the dark pion. The width of the mediator particle is assumed to be small as

compared with the detector mass resolution. These assumptions leave the mediator mass

mXDK
, the dark pion mass mπDK , and the dark pion proper decay length cτπDK as free

parameters. Samples are generated for all permutations of the values of these parameters

listed in table 1. Each set of values defines a single model.

The range in the mediator particle mass over which the search is sensitive depends on

the mediator particle pair production cross section. The mediator particle has the same

SM quantum numbers as the supersymmetric partner of an SM quark (squark) [7]. Because

we assume three dark colors, the signal production cross section is assumed to be three

times larger than that for the pair production of a single flavor of squark of the same

mass. We use a calculation of the squark pair production cross section that is based on

simplified topologies [29–33], with other squarks and gluinos decoupled. The cross section

is calculated at next-to-leading order in SM QCD with next-to-leading logarithm soft-gluon

resummation [34].

For all samples, multiple minimum-bias events simulated with pythia, with the mul-

tiplicity distribution matching that observed in data, are superimposed with the primary

interaction event to model the pileup contribution. Generated particles are processed

through the full Geant4-based simulation of the CMS detector [35, 36].

4 Event selection

The analysis is based on data from pp collisions at
√
s = 13 TeV, corresponding to an

integrated luminosity of 16.1 fb−1 collected by the CMS detector in 2016. The data were

obtained using a trigger based on the pT of the jets in an event. At the HLT, events

were selected if they passed a 900 GeV threshold on the scalar pT sum of all hadronic jets.

This analysis used only a portion of the data collected during 2016 because, for part of that

running period, saturation-induced dead time was present in the readout of the silicon strip

tracker. Such data were not analyzed because of hard-to-model instantaneous luminosity-

dependent inefficiencies for the reconstruction of tracks, in particular those tracks with

impact parameters larger than 10 mm that are key to the selection of the emerging jet

signature.

An emerging jet contains multiple displaced vertices and thus multiple tracks with

large impact parameters. Since impact parameter-based variables give good discrimination

between SM and emerging jets, we do not attempt to reconstruct the individual decay

vertices of the dark pions. Emerging jet candidates are required to have |η| < 2.0, corre-
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sponding to the region of the tracker where the impact parameter resolution is best. Tracks

are associated with the candidate if they have pT > 1 GeV, pass the “high-purity” quality

selection described in ref. [12], and are within a cone of R =
√

(∆η)2 + (∆φ)2 = 0.4 (where

φ is azimuthal angle in radians) around the direction of the jet momentum. Emerging jet

candidates are required to have at least one associated track so that the impact parameter

can be estimated. The jet candidates are also required to have less than 90% of their energy

from electrons and photons, to reduce backgrounds from electrons. Four variables, similar

to the ones defined in ref. [37], are used to select the emerging jets. The median of the

unsigned transverse impact parameters of associated tracks (〈IP2D〉) is correlated with the

dark meson proper decay length, and should be small for SM jets and large for emerging

jets. The distance between the z position of the track at its distance of closest approach to

the PV and the z position of the PV (PUdz) is used to reject tracks from pileup vertices.

A variable called DN, defined as

DN =

√[
zPV − ztrk

0.01 cm

]2

+ [IPsig]2, (4.1)

where zPV is the z position of the primary vertex, ztrk is the z of the track at its closest

approach to the PV, and IPsig is the transverse impact parameter significance of the track

at its closest approach to the PV, is used to identify tracks that have an impact parameter

that is inconsistent with zero within uncertainties. The variable DN is smaller for tracks

from prompt particles. A variable called α3D, which is the scalar pT sum of the associated

tracks whose values of DN are smaller than a threshold, divided by the scalar pT sum of

all associated tracks, is used to quantify the fraction of the pT of the jet that is associated

with prompt tracks. This variable should be large for SM jets and small for emerging jets.

Figure 2 shows the distributions of 〈IP2D〉 for background and for signals with a mediator

mass of 1 TeV and a dark pion of various masses and with a proper decay length of 25 mm.

Figure 3 shows the distributions of α3D for background and for signals with a mediator

mass of 1 TeV and a dark pion mass of 5 GeV.

Since the efficacy of the variables used to select emerging jets depends on the correct

identification and reconstruction of the PV, additional selections are used to remove rare

cases observed in simulated background events where the PV was either not reconstructed

or a pileup vertex was chosen as the PV. We require that the chosen PV be the vertex with

the largest scalar pT sum of its associated tracks. We also require that the scalar pT sum

of tracks whose extrapolated separation in z from the PV, at the point of closest approach,

is less than 0.01 cm, be larger than 10% of the sum over all tracks.

Selected candidate events are required to have four jets with |η| < 2.0 and to pass a

threshold on the scalar pT sum of these jets (HT). They must have either two jets tagged

as emerging, or one jet tagged as emerging and large pmiss
T . The selection requirements

on the jet-pT thresholds and the emerging jet selection criteria were optimized for each

signal model listed in table 1 as follows. For each variable listed in tables 2 and 3, a set

of potential selection thresholds were chosen based on the distribution of the variable for

signal and background. For each permutation of all the selection thresholds, we calculated

the predicted pseudo-significance for each signal model, defined as S/
√
S +B + (0.1B)2,
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Figure 2. Distributions of 〈IP2D〉 for background (black) and for signals with a mediator mass of

1 TeV and a dark pion proper decay length of 25 mm, for various dark pion masses.
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Figure 3. Distributions of α3D for background (black) and for signals with a mediator mass of

1 TeV and a dark pion mass of 5 GeV for dark pion proper decay lengths ranging from 1 to 300 mm.

where S and B correspond to the number of signal and background events and the 0.1

corresponds to an estimate of the systematic uncertainty. In order to limit the final number

of background calculations, the pseudo-significances were used to find the minimum number

of selection criteria where the difference in pseudo-significance between the best selection

thresholds and a chosen selection threshold is no more than 10%, resulting in a total of

seven selection sets. In table 2, the selection criteria used to select emerging jets are

listed. These jet-level selection criteria, along with event-level kinematic selection criteria,

comprise the final selection criteria, given in table 3. There are six groups of criteria

used to select emerging jets. The seven selection sets used to define signal regions are

given in table 3 (sets 1 to 7), which gives the selections on kinematic variables, along with

the corresponding emerging jet criteria from table 2. Two basic categories of selections
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Criteria group PUdz (<) [cm] DN (<) 〈IP2D〉 (>) [cm] α3D (<)

EMJ-1 2.5 4 0.05 0.25

EMJ-2 4.0 4 0.10 0.25

EMJ-3 4.0 20 0.25 0.25

EMJ-4 2.5 4 0.10 0.25

EMJ-5 2.5 20 0.05 0.25

EMJ-6 2.5 10 0.05 0.25

EMJ-7 2.5 4 0.05 0.40

EMJ-8 4.0 20 0.10 0.50

Table 2. Groups of requirements (associated operator indicated in parentheses) on the variables

used in the identification of emerging jets. The groups EMJ-1 to -6 are used for the selection sets

that define the signal regions, while the groups EMJ-7 and -8 are used to define SM QCD-enhanced

samples for the tests of the background estimation methods.

emerge. Other than set 3, the signal region selection sets require two jets pass emerging

jet criteria, and have no requirement on pmiss
T . Selection set 3 requires that one jet satisfies

the emerging jet criteria, and includes a requirement on pmiss
T . Note that in addition to the

pmiss
T requirement, the EMJ-3 group imposes the loosest criteria on PUdz and DN, and the

tightest requirement on 〈IP2D〉, favoring more displaced tracks. Selection set 3 is used for

signal models with dark pions with large proper decay lengths. The selection on 〈IP2D〉
is large enough that it removes most events containing b quark jets with tracks with large

impact parameters due to the b lifetime; most SM jets thus selected have tracks with large

impact parameters due to misreconstruction. The substantive requirement on the pmiss
T for

this selection set is essential to attain background rejection equivalent to that obtained

when requiring two emerging jet candidates.

Since the initial optimization only used a rough estimate of the systematic uncer-

tainty, the final selection set for each model is chosen from among the seven as the one

that gives the most stringent expected limit, taking into account more realistic systematic

uncertainties.

We also define two additional groups of jet-level criteria that are used to test the

effectiveness of the background estimation methods, described in section 5. The EMJ-

7 group has the same PUdz, DN, and 〈IP2D〉 criteria as EMJ-1 set, but loosens only

α3D < 0.4, while the EMJ-8 group has the same PUdz and DN criteria as EMJ-3 set, but

loosens 〈IP2D〉 > 0.10 and α3D < 0.5. These two groups of jet-level criteria are more

efficient for quark or gluon jets than those used for the final selections in the analysis,

improving the statistical power of the tests.

The acceptance of the selection criteria for signal events ranges from a few percent for

models with a mediator mass of 400 GeV to 48% for more massive mediators with a dark

pion decay length of 25 mm. Figure 4 shows an example of the signal acceptance of models

with dark pion mass of 5 GeV as a function of the mediator mass and the dark pion proper

decay length, with text indicating the corresponding selection set number.
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Set number HT pT,1 pT,2 pT,3 pT,4 pmiss
T nEMJ(≥) EMJ group no. models

1 900 225 100 100 100 0 2 1 12

2 900 225 100 100 100 0 2 2 2

3 900 225 100 100 100 200 1 3 96

4 1100 275 250 150 150 0 2 1 49

5 1000 250 150 100 100 0 2 4 41

6 1000 250 150 100 100 0 2 5 33

7 1200 300 250 200 150 0 2 6 103

8 900 225 100 100 100 0 2 7
SM QCD-enhanced

9 900 225 100 100 100 200 1 8

Table 3. The seven optimized selection sets used for this search, and the two SM QCD-enhanced

selections (sets 8 and 9) used in tests of the background estimation methods. The headers of the

columns are: the scalar pT sum of the four leading jets (HT) [GeV], the requirements on the pT of

the jets (pT,i) [GeV], the requirement on pmiss
T [GeV], the minimum number of the four leading jets

that pass the emerging jet selection (nEMJ), and the EMJ criteria group described in table 2. The

last column is the total number of models defined in table 1 for which the associated selection set

gives the best expected sensitivity.

Figure 4. The signal acceptance A, defined as the fraction of simulated signal events passing the

selection criteria, for models with a dark pion mass mπDK
of 5 GeV as a function of the mediator

mass mXDK
and the dark pion proper decay length cτπDK

. The corresponding selection set number

for each model is indicated as text on the plot.
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5 Background estimation

The production of events containing four SM jets can mimic the signal when two of the

jets pass the emerging jet criteria, or when one passes and jet mismeasurement results in

artificial pmiss
T . The background contributions for each of the selection sets are calculated

in two different ways, using the probability for an SM QCD jet to pass the emerging jet

requirements.

In the first method, for selection sets 3 and 9 that require at least one emerging jet

candidate and pmiss
T , the background is calculated using eq. (5.1),

Nbkg,EMJ =
∑

events

PEMJ, (5.1)

where Nbkg,EMJ is the predicted background and PEMJ is the probability for at least one

of the four leading pT jets to pass the emerging jet criteria. The sum is over all events in

a “control sample” defined using all the selection requirements for this set except for the

requirement of at least one emerging jet candidate. Instead, events are vetoed if one of the

four leading pT jets passes the emerging jet selection. The misidentification probability of

each jet is calculated using eq. (5.2).

εf = εfbfb + εfl (1− fb) . (5.2)

Here εfb is the misidentification probability for b jets, εfl is the misidentification probability

for light-flavor jets, and fb is the probability that the jet is a b jet. The methodology used

to estimate εfb, εfl, and fb is described below. The probability PEMJ is calculated as shown

in eq. (5.3).

PEMJ =
∑
i∈jets

εf
∏
j 6=i

(1− εf) +
1

2

∑
i,j∈jets

εfεf
∏
k 6=i,j

(1− εf)

+
1

3

∑
i,j,k∈jets

εfεfεf
∏

m 6=i,j,k
(1− εf) +

1

4

∑
i,j,k,m∈jets

εfεfεfεf .

(5.3)

The other selection sets (1 to 8, excluding set 3) require at least two of the four pT lead-

ing jets to pass emerging jet selection requirements. The background is estimated using

eq. (5.1) as well, except that the control sample requires exactly one jet to pass the corre-

sponding emerging jet criteria as well as all other selection requirements for the selection

set. In this case, PEMJ is the probability for one additional jet to pass the emerging jet

requirements, and is calculated using eq. (5.4).

PEMJ =
1

2

∑
i∈jets not candidate

εf
∏
j 6=i

(1− εf) +
1

3

∑
i,j∈jets not candidate

εfεf
∏
k 6=i

(1− εf)

+
1

4

∑
i,j,k∈jets not candidate

εfεfεf .

(5.4)

In eq. (5.4) the sum is over jets that do not pass the emerging jet selection criteria.
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The probability for an SM jet to pass the emerging jet selection criteria (misidentifica-

tion) depends on the flavor of the jet and on the number of tracks associated with the jet.

The probability for a jet initiated by a b quark (b jet) to pass the selection can be a factor

of ten larger than that for a jet initiated by any other type of parton (light-flavor jet). For

EMJ-3, because of the requirement that 〈IP2D〉 be large, the misidentification probability

for b jets and light-flavor jets is similar. The misidentification probability has a strong

dependence on track multiplicity, ranging from a few percent at low track multiplicities, to

values several orders of magnitude smaller at the highest multiplicities.

The misidentification probability is measured as a function of track multiplicity using

a sample of events collected with a trigger that requires the presence of an isolated photon

with pT > 165 GeV. We do not expect any signal contamination in this sample. Two

subsamples are created: one with an enhanced and one with a suppressed b quark fraction.

The sample with an enhanced fraction of b jets is selected by requiring the event to contain

at least one additional jet with pT > 50 GeV, beyond the one used in the misidentification

probability calculation, that has a value for the discriminator of the CSVv2 algorithm

greater than 0.8. The sample with suppressed probability of containing a b jet requires

an additional jet with pT > 50 GeV with a CSVv2 discriminator value below 0.2. The b

quark fraction of each subsample fb is determined by fitting the observed distribution of

the CSVv2 discriminator to the sum of two templates, one created using simulated b jets

and the other simulated light-flavor jets. The misidentification probability as a function of

the initiating parton type can then be calculated as follows:(
εfb
εfl

)
=

 1−fb2
fb1−fb2

−(1−fb1)
fb1−fb2

−fb2
fb1−fb2

fb1
fb1−fb2

(εf1
εf2

)
, (5.5)

where εf1, fb1, εf2, and fb2 represent the respective misidentification probability and b jet

fraction in the two samples. Figure 5 shows the measured misidentification probability for

EMJ-1 set.

When convolving the misidentification probabilities with the kinematic characteristics

and parton composition of the kinematic samples using eqs. (5.3) and (5.4), the parton

composition of the kinematic sample is determined by fitting the CSVv2 distribution to b

jet and light-flavor jet templates obtained from MC simulation. Figure 6 shows the resulting

fit for the kinematic sample of selection set 1. The b quark content, fb, is determined

separately for all events and for events with at least one jet passing the emerging jet criteria.

The first is used for predicting the background fraction for selection set 3, which is the only

selection set to require only one emerging jet, the second for the other selection sets.

The method for estimating the background was tested by using the same procedure

on simulated samples, verifying that the predicted number of selected events was in good

agreement with the results obtained when applying the selection criteria to the samples.

For example, the average expected number of events obtained by applying the background

estimation method to simulated samples (average expected number of events passing the

selection in simulated samples) are 207 ± 30 (231 ± 18) and 52.8 ± 9.2 (52.1 ± 6.2) for

selection sets 8 and 9, respectively. The background estimation method was also verified
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Figure 5. Measured misidentification probability distribution as a function of track multiplicity

for the EMJ-1 criteria group defined in table 2. The red up-pointing triangles are for b jets while

the blue down-pointing triangles are for light-flavor jets. The horizontal lines on the data points

indicate the variable bin width. The uncertainty bars represent the statistical uncertainties of εf1,

εf2, fb1, and fb2 in eq. (5.5), where the uncertainties in εf1 and εf2 correspond to Clopper-Pearson

intervals [38].
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Figure 6. Determination of the b jet fraction by fitting the CSVv2 discriminator distribution. The

red and blue distributions are the CSVv2 discriminator templates of b jets and light-flavor jets,

respectively. The black points with uncertainty bars show the data distribution. The uncertainties

in the upper panel include statistical uncertainties of the b jet and light-flavor jet templates, and

the fit uncertainties, summed in quadrature. The goodness of fit is given by the χ2 divided by the

number of degrees of freedom (ndof). The bottom panel shows the difference between data and the

fit result, divided by the combination of the statistical uncertainty of data and the uncertainty from

the upper panel. The distributions are derived from kinematic samples resulting from selection set

1 in table 3.
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Figure 7. The HT (left) and number of associated tracks (right) distributions for the observed data

events (black points) and the predicted background estimation (blue) for selection set 8 (SM QCD-

enhanced), requiring at least two jets tagged by loose emerging jet criteria. The bottom panel shows

the difference between observed data and predicted background, divided by the sum in quadrature of

the statistical uncertainty in data and the predicted uncertainties from misidentification probability

estimation.

using data in the SM QCD-enhanced regions, and the predicted (observed) numbers of

events are 317± 35 (279) and 115± 28 (98), as shown in figures 7 and 8 for selection sets

8 and 9, respectively. The uncertainty in the predicted number combines those due to the

number of events in the control sample and statistical uncertainties in the misidentification

probabilities.

The background estimation was also tested using a second method for estimating the

fraction of b jets in the control samples. The distribution of the measured number of b jets

(nbtag) per event in a sample is related to the distribution of the true number of b jets per

event, the distribution of the true number of non-b jets, the identification probability for b

jets, and the misidentification probability for non-b jets. This relationship can be written

in the form of a matrix:
Nm,0

Nm,1

Nm,2

Nm,3

Nm,4

 =


A0,0 A0,1 A0,2 A0,3 A0,4

A1,0 A1,1 A1,2 A1,3 A1,4

A2,0 A2,1 A2,2 A2,3 A2,4

A3,0 A3,1 A3,2 A3,3 A3,4

A4,0 A4,1 A4,2 A4,3 A4,4




Nt,0

Nt,1

Nt,2

Nt,3

Nt,4

 , (5.6)

where Nt,i is the number of events with i b jets and 4 − i non-b jets, Nm,i is the number

of events with i jets passing the CSVv2 loose identification requirements and 4 − i failing

them, and Ai,j is the appropriate combination of the CSVv2 efficiencies for a b jet to pass

the identification requirement and for a non-b jet to pass the identification requirement,
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including combinatorics. As these probabilities depend on the jet kinematics, the value

used is a weighted sum over the jets in the events. This matrix can be inverted to get the

number of events as a function of true b jet multiplicity from the number of events as a

function of the number of identified b jets. Once the true b jet and non-b jet multiplicities

are known, the misidentification probabilities measured from the photon+jets data can be

applied.

To build the matrix, first a sample of events passing all the selection requirements of a

selection set, except the requirement on the number of emerging jet candidates, is selected.

This sample is dominated by SM four-jet production. The number of events with zero,

one, two, three, or all of the four leading jets satisfying the CSVv2 loose working point

is counted, and the array described in eq. (5.6) is constructed. The array is inverted to

obtain the probability w({ν}, nbtag) for each of the {ν} possibilities for the true number of

b quarks (0–4). The background is then calculated using eq. (5.7), where each probability

is weighted with the appropriate combination of misidentification probabilities, efficiencies,

and their combinatorics.

Nbkg,EMJ(nEMJ) =
∑

events

4∑
ν=0

PEMJ(nEMJ|{ν|nbtag}) . (5.7)

The probability PEMJ represents the probability of having at least nEMJ jets pass the

emerging jet selections given ν true b jets, and is calculated using eq. (5.8).

PEMJ(nEMJ|{ν|nbtag}) =
∑

{nEMJ|{ν}}

w({ν}, nbtag)

ncomb(ν)

∏
i∈{nEMJ}

pi
∏
j 6=i

(1− pj)

pk = pk(ϕ({ν})) =

{
εfb

εfl

ncomb(ν) =

(
4

ν

)
=

4!

ν!(4− ν)!
.

(5.8)

Here pk is the flavor-dependent misidentification probability of jet k, and ϕ({ν}) represents

all possible flavor assignments of the four jets. The combinatoric factor (ncomb) is the

binomial coefficient, to account for combinatorics in each permutation in {ν}.
The respective numbers of predicted background events for selection sets 8 and 9 are

209.2 ± 1.3 and 53.1 ± 1.2 in simulated samples, and are 312.2 ± 2.0 and 112.0 ± 1.6 for

data in SM QCD-enhanced regions. The predicted numbers include only the uncertainty

due to the control sample event statistics. The predictions are in good agreement with the

primary background estimation method.

6 Systematic uncertainties

The main sources of systematic uncertainty in the background estimate are due to the

limited number of events in the photon+jets data and in the simulated samples used for

the misidentification probability estimation. Two other sources are the uncertainties in
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Figure 8. The HT (left) and number of associated tracks (right) distributions of the observed

data events (black points) and the predicted background estimation (blue) for selection set 9 (SM

QCD-enhanced), requiring at least one jet tagged by loose emerging jet criteria and large pmiss
T .

The bottom panel shows the difference between observed data and predicted background, divided

by the sum in quadrature of the statistical uncertainty in data and the predicted uncertainties from

misidentification probability estimation.

the determination of fb for each of the samples used in the misidentification probability

determination and the uncertainties due to differences in the composition of the non-b jets

in the sample used in determining the misidentification probability compared to that in the

kinematic samples. We estimate the first uncertainty by using the value of fb predicted by

simulation instead of that obtained by the template fit. We estimate the second uncertainty

by using the method on MC simulation. The uncertainty is estimated as the difference in

the prediction when using a misidentification probability determined using an MC sample

of events containing a high-pT photon and when using a misidentification probability de-

termined using an MC sample of SM QCD multijet production. The estimated resulting

uncertainty for each selection set is given in table 4.

The main source of uncertainty in the estimation of the signal acceptance is the mod-

eling of displaced tracks in the simulation. Other sources include uncertainties in PDFs,

MC modeling of the trigger efficiency, integrated luminosity determination, jet energy

scale (JES), pileup reweighting, and statistical uncertainties due to the limited size of the

MC samples. Systematic uncertainties are largest for the models with the shortest decay

lengths.

The uncertainty due to the track modeling in simulation is evaluated by smearing

the tracks in signal events using the resolution functions that respectively transform the

simulated distributions of zPV− ztrk and 2D impact parameter in photon+jet MC samples

so that they agree with those in data. The change in signal acceptance when using this

transformation is taken as the uncertainty.
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Set number
Source of uncertainty (%)

b quark fraction non-b quark composition

1 2.8 1.4

2 0.6 4.4

3 2.9 28.3

4 5.0 4.4

5 0.9 4.0

6 1.6 2.1

7 1.0 6.3

Table 4. Systematic uncertainties affecting the background estimate from control samples in data.

For the definition of the selection sets, see table 3.

Source Uncertainty (%)

Track modeling <1–3

MC event count 2–17

Integrated luminosity 2.5

Pileup <1–5

Trigger 6–12

JES <1–9

PDF <1–4

Table 5. Ranges of systematic uncertainties over all models given in table 1 for which a 95% CL

exclusion is expected, for the uncertainties from different sources.

The acceptance is evaluated using both the MC trigger selection and using a trig-

ger efficiency determined using SM QCD multijet events. The difference is taken as an

uncertainty in the acceptance.

The uncertainty in the integrated luminosity determination is 2.5% [39]. The uncer-

tainty due to pileup modeling is measured by varying the total inelastic cross section by

4.6% [40] and reweighting the simulation accordingly. The effect of the JES uncertainty is

evaluated by shifting the pT of jets by the JES uncertainty, and measuring its effect on sig-

nal acceptance [23]. The shift in signal acceptance is taken as the uncertainty. We account

for variations of the acceptance due to the PDF uncertainties following the PDF4LHC

prescription [41]. The resulting ranges of the systematic uncertainties are given in table 5.

7 Results

The number of events passing each selection set, along with the background expectation,

is given in table 6. Figure 9 shows a graphical representation of one of the events passing

the selection requirements. This event passes both selection set 1 and selection set 5. The

display on the left shows the four jets. The display on the right shows the reconstructed

tracks in the ρ–φ view. The filled circles represent reconstructed secondary vertices, while

the grey lines represent the innermost layer of the silicon pixel tracker.
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Set number Expected Observed Signal
Model parameters

mXDK
[GeV] mπDK [GeV] cτπDK [mm]

1 168 ± 15 ± 5 131 36.7 ± 4.0 600 5 1

2 31.8 ± 5.0 ± 1.4 47 (14.6 ± 2.6)×102 400 1 60

3 19.4 ± 7.0 ± 5.5 20 15.6 ± 1.6 1250 1 150

4 22.5 ± 2.5 ± 1.5 16 15.1 ± 2.0 1000 1 2

5 13.9 ± 1.9 ± 0.6 14 35.3 ± 4.0 1000 2 150

6 9.4 ± 2.0 ± 0.3 11 20.7 ± 2.5 1000 10 300

7 4.40 ± 0.84 ± 0.28 2 5.61 ± 0.64 1250 5 225

Table 6. Expected (mean± syst1 ± syst2) and observed event yields for each selection set. Uncer-

tainties due to the limited number of events in the control sample and statistical uncertainties in

the misidentification probabilities are denoted by “syst1”, while “syst2” combines the systematic

uncertainty sources discussed in table 4. The “Signal” column shows the expected event yield for

the heaviest mediator mass that can be excluded for each set, with the systematic uncertainties

from sources discussed in table 5 summed in quadrature. The associated model parameters are

specified in the last three columns.

Figure 9. Event display of an event passing both selection set 1 and selection set 5. The event

contains four jets (jets 1 and 4 pass the emerging jet criteria), consistent with the decay of two

massive mediator particles, each decaying to an SM quark and a dark QCD quark. In such a

scenario, the dark mesons produced in the fragmentation of the dark quark would decay back to

SM particles via the mediator, resulting in displaced vertices with decay distances on the mm scale.

(Left) 3D display: the green lines represent reconstructed tracks, the red (blue) truncated pyramids

represent energy in the ECAL (HCAL) detectors, respectively. (Right) Reconstructed tracks in ρ–φ

view. The filled blue circles represent reconstructed secondary vertices, while the filled red circle is

the PV. The solid grey lines represent the innermost layer of the silicon pixel detector.

No significant excess with respect to the SM prediction is observed. A 95% confidence

level (CL) cross section upper bound is calculated following the modified frequentist CLs

prescription [42–44], using an asymptotic approximation [45] for the profile likelihood ratio

based test statistic, where the systematic uncertainties are taken as nuisance parameters.

The 95% CL limits on the signal cross section, expected, and observed exclusion contours

on signal parameters are shown in figure 10 for mπDK = 5 GeV. The dependence of the

limit on mπDK is weak for mπDK between 1 and 10 GeV. Dark pion decay lengths between 5
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Figure 10. Upper limits at 95% CL on the signal cross section and signal exclusion contours derived

from theoretical cross sections for models with dark pion mass mπDK
of 5 GeV in the mXDK

− cτπDK

plane. The solid red contour is the expected upper limit, with its one standard-deviation region

enclosed in red dashed lines. The solid black contour is the observed upper limit. The region to

the left of the observed contour is excluded.

and 225 mm are excluded at 95% CL for dark mediator masses between 400 and 1250 GeV.

Decay lengths smaller than 5 and greater than 225 mm are also excluded in the lower part

of this mass range.

8 Summary

A search is presented for events consistent with the pair production of a heavy mediator

particle that decays to a light quark and a new fermion called a dark quark, using data

from proton-proton collisions at
√
s = 13 TeV corresponding to an integrated luminos-

ity of 16.1 fb−1. The dark quark is assumed to be charged only under a new quantum-

chromodynamics-like dark force, and to form an emerging jet via a parton shower, contain-

ing long-lived dark hadrons that give rise to displaced vertices when decaying to standard

model hadrons. The data are consistent with the expected contributions from standard

model processes. Limits are set at 95% confidence level excluding dark pion decay lengths

between 5 and 225 mm for dark mediators with masses between 400 and 1250 GeV. Decay

lengths smaller than 5 and greater than 225 mm are also excluded in the lower part of this

mass range. The dependence of the limit on the dark pion mass is weak for masses between
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1 and 10 GeV. This analysis is the first dedicated search for the pair production of a new

particle that decays to a jet and an emerging jet.
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Université Libre de Bruxelles, Bruxelles, Belgium

D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney,

G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic,

N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, Belgium

T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino,

M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis
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C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka,

W. Lohmann18, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli,

G. Mittag, J. Mnich, V. Myronenko, S.K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi,

P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot,

A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, E. Garutti,

D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klan-

ner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup,

M. Niedziela, C.E.N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger,

C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück,
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Centro de Investigaciones Energéticas Medioambientales y Tecnológicas

(CIEMAT), Madrid, Spain
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P. Vischia, J.M. Vizan Garcia

Instituto de F́ısica de Cantabria (IFCA), CSIC-Universidad de Cantabria,

Santander, Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez,
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K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, N. Smith, W.H. Smith, N. Woods

†: Deceased

1: Also at Vienna University of Technology, Vienna, Austria
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