
MIT Open Access Articles

Live Programming of Mobile Apps in App Inventor

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Schiller, Jeffrey I. et al. "Live Programming of Mobile Apps in App Inventor."
Proceedings of the 2nd Workshop on Programming for Mobile & Touch (PROMOTO '14), October
2014, Portland, Oregon, Association for Computing Machinery (ACM), 2014.

As Published: http://dx.doi.org/10.1145/2688471.2688482

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/124933

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/124933
http://creativecommons.org/licenses/by-nc-sa/4.0/

Live programming of mobile apps in App Inventor

Jeffrey Schiller
Hal Abelson

José Dominguez
Andrew McKinney

MIT
{jis,hal,josed,mckinney}@mit.edu

Franklyn Turbak
Johanna Okerlund

Wellesley College
{fturbak,jokerlun}@wellesley.edu

Mark Friedman
Google

markf@google.com

Abstract
MIT App Inventor is a programming environment that lowers the
barriers to creating mobile apps for Android devices, especially
for people with little or no programming experience. App Inventor
apps for a mobile device are constructed by arranging components
with a WYSIWYG editor in a computer web browser, where the
development computer is connected to the device by WiFi or USB.
The behavior of the components is specified using a blocks-based
graphical programming language. A key feature in making App
Inventor accessible to beginning programmers is live programming:
Developers interact directly with the state of the evolving program
as it is being constructed, and changes made in the web browser
are realized instantaneously in the running app on the device. This
paper describes the live programming features of App Inventor and
explains how they are implemented.

Categories and Subject Descriptors D.1.7 [Programming Tech-
niques]: Visual Programming

General Terms mobile app development, visual languages, live-
ness, live programming, live coding, debugging, software develop-
ment tools

Keywords mobile app development, live programming, Android,
interpretation

1. Introduction
In a live programming environment, code changes are immediately
and continually reflected in a constantly running program. Liveness
makes program development more interactive by incorporating the
effect of program edits more quickly than the traditional edit-
compile-run-test approach.

Here we describe the live programming capability of MIT App
Inventor [17], an environment for developing mobile apps for An-

[Copyright notice will appear here once ’preprint’ option is removed.]

droid smartphones and tablets.1 The App Inventor environment
runs in a web browser where the user specifies the components and
behavior of an Android app to be executed on a real or emulated
Android device. The App Inventor source code is available under
an open source license [18], so that anyone can deploy App In-
ventor servers. MIT also operates a large public service that hosts
87,000 users weekly, with a total of 2.2 million registered users,
who among them have developed 5.5 million apps [17]. App In-
ventor’s main goal is to democratize mobile app development by
giving people with little or no programming experience appropri-
ate app-building tools, empowering them to become app producers
rather just downloaders.

Some App Inventor features designed to lower barriers to app
creation for novices are:

• Apps are assembled from components that encapsulate features
of the Android SDK. Each component advertises a collection of
methods, properties, and events. The components of an app, in-
cluding the arrangement of its graphical user interface elements,
are specified using a WYSIWYG drag-and-drop editor.

• Components’ behaviors are specified in a blocks programming
language, in which fragments shaped like jigsaw-puzzle pieces
are connected to form programs. Blocks shapes eliminate frus-
trating syntax errors. Menu-based naming features reduce er-
rors like misspelled names and unbound variables [28], and
menu-based drawers of related blocks with labeled sockets help
programmers choose the correct blocks and remember the num-
ber and order of their operands.

• Blocks provide access to high-level behaviors, making it easy
to build apps that incorporate Android device features like
touch-based interfaces, phone calls and texting, location aware-
ness, accelerometer sensor, orientation sensor, camera, sound
recorder, speech synthesis and speech recognition, language
translation, social media, persistent data storage, cloud-based
data storage, sprite-based gaming, and interacting with web
services. Many simple but compelling apps can be created with
fewer than ten blocks, and nontrivial useful apps can be created
with just a few dozen blocks [29].

Another key feature of the App Inventor environment is that
apps are typically created using live development mode, where the
environment in the web browser is connected to a running app on
an Android device, and changes made to the app’s user interface or

1 The implementation described here is App Inventor 2, which was released
in December 2013. The predecessor App Inventor Classic system was
released in March 2012. App Inventor Classic is in turn based on an earlier
system developed at Google Research from 2008–2012.

Live programming of mobile apps in App Inventor 1 2014/9/21

code blocks are immediately reflected on the device. There is also
an ability (DoIt) to immediately execute any block in the context
of the running app and see the value, if any, produced by that exe-
cution. Such live development enhances the experience of creating,
testing and debugging apps by eliminating the tedious edit-build-
install-test cycle traditionally associated with mobile app develop-
ment. New and seasoned App Inventor programmers alike often
remark that live development mode is one of the most important
features of App Inventor. Using the browser to interactively de-
velop and test a running app on an Android device connected via
WiFi is an experience that many users describe as “magical.”

In this paper, we explain how the “magic” of live development
is achieved. The key is a special app running on the target device,
the App Inventor Companion. Although apps can ultimately be
compiled to produce ordinary apk files, browser interaction during
live development is accomplished by the Companion, which serves
as an interpreter for the App Inventor language. The Companion
also manages the WiFi connection between browser programs and
external devices with the aid of a rendezvous server and enables
powerful debugging tools that allow users to probe the running app
on the mobile device.

2. App Inventor Live Development Example
We introduce the live programming features of App Inventor in the
context of building a simple app in which a ball is flung with a
finger and bounces off the edges of an enclosing canvas.

In App Inventor, we build an app in a web browser on a com-
puter that we connect to an Android device. We begin by visiting
http://ai2.appinventor.mit.edu in the browser and starting
a new project. This puts us in the Designer window for the app,
where we specify its user interface components (in this case, a can-
vas and ball) and behavioral components (there are none initially,
but later we will modify the app to have a clock component).

(a) (b)

Figure 1. Steps in connection App Inventor to an Android device.

To illustrate live development, we will connect the browser to
the device via WiFi before adding any components to the app. First,
in the browser, we select Connect>AI Companion, which displays
a six-character code and its corresponding QR code (Fig. 1a). Next,
on the device, we launch the MIT AI2 Companion app, which
we have downloaded from the Google Play Store. This presents
an interface in which we can either type in the six-character code
or, equivalently, scan the QR code (Fig. 1b). Once we do so, the
AI2 development environment in the browser and the device are
“connected”, and changes to the app made in the browser are
reflected on the device. Initially, the device shows an empty screen
labeled Screen1 because the app has no components yet (Fig. 2a).

In the Designer, we add a Canvas1 component to the app
by dragging it from the Drawing and Animation palette onto a

representation of Screen1 within the Designer. In the Properties
pane, we edit the properties of Canvas1: set its color to cyan
(Fig. 2b), width to 200 pixels (Fig. 2c), and height to 300 pixels
(Fig. 2d). Each property edit is reflected both in the representation
of Screen1 in the Designer and on the actual device screen.

We add a ball sprite Ball1 to the canvas by dragging it from
the Drawing and Animation palette. The ball immediately appears
within the canvas on the device (Fig. 2e).

To make the ball move, in response to flinging it with a fin-
ger, we go to the Blocks Editor in the browser, and assemble a
Ball1.Flung event handler from blocks selected from various
drawers of blocks (Fig. 3). Once this is done, the ball on the canvas
moves when flung. We do not have to activate the event handler by
compiling or sending it to the device; the mere presence of an event
handler in the Blocks Editor makes it active on the device.

Figure 3. Blocks event handler for flinging Ball1.

We can make the ball larger by assembling the blocks in Fig. 4
and selecting the DoIt option in the context-sensitive menu for the
set Ball1.Radius block. This immediately changes the ball’s
radius on the device, even if the ball is currently moving.

Figure 4. Selecting the DoIt option on these blocks immediately
changes Ball1’s radius, even if it is moving.

Suppose we want to show the path taken by the ball. In the
Designer, we can add a Clock component from the Sensor palette
that has a timer interval of 100ms, and then in the Blocks Editor
assemble the blocks in Fig. 5. This causes a red dot to be drawn
on the canvas at the center of the ball every 100ms, thus showing
the path taken by a moving ball. If the Clock1.Timer blocks are
assembled while the ball is moving, the dots will be drawn as soon
as the event handler is fleshed out. An example of the path taken by
a flung ball is shown in Fig. 2f.

Figure 5. An event handler that draws a red dot at Ball1’s center
every time the timer fires.

When ball hits the right edge of the canvas, it hugs the edge until
it gets stuck in the bottom corner. This is because it can’t move
past the right edge but still has a downward velocity component.
We can change this behavior by adding the event handler in Fig. 6,
which makes the ball bounce off an edge that it hits. When this
event handler is completed, the bouncing behavior takes effect
immediately. For example, suppose we fling the ball out of the
bottom right corner, and we finish the handler as the ball is hugging
the left canvas edge. As shown in Fig. 2g, the ball will first bounce
off the left edge at the point (to which the green arrow points)

Live programming of mobile apps in App Inventor 2 2014/9/21

(a) (b) (c) (d) (e) (f) (g)

Figure 2. Android device screen shots from intermediate steps of ball-in-canvas example.

Figure 6. An event handler that causes Ball1 to bounce off the
edges of the canvas.

when the Ball1.EdgeReached handler is completed. The ball will
continue bouncing off other edges afterwards.

We have shown live app development with complete event han-
dlers, but the device executes even partially defined handlers. E.g.,
in the Clock1.Timer handler, if the blocks for the x argument of
Canvas1.DrawPoint are missing, the handler will still execute,
but the Blocks Editor on the browser will report a missing argu-
ment error. This error will not stop the motion of the ball; it will
just stop the drawing of the dots. This underscores the liveness of
the system — any code on the screen within an event handler is
executed on the device when the corresponding event occurs, even
if the handler is incomplete.

3. Implementing Liveness in App Inventor
3.1 App Inventor System Architecture

Figure 7. The key elements and interactions in the App Inventor
system. The browser and Android device are assumed to be con-
nected and communicating as explained in Sec. 4.

App Inventor has four main architectural components (Fig. 7).
Two of these — the web browser with the App Inventor environ-
ment and the Android device on which live development is per-

formed — were introduced in the above example. The device can
be a physical device, such as a phone or a tablet, or it can be a
virtual device such as the Google-distributed Android emulator.

A third component is the App Inventor server, which provides
the App Inventor environment implementation downloaded by the
browser and also hosts cloud-based storage for user projects.

3.2 Packaging Applications with YAIL, Kawa, and Forms
App Inventor also has a fourth component that does not partici-
pate in live programming. This is the build server, which compiles
a complete App Inventor program into an Android packaged ap-
plication (apk file) suitable for distribution, including distribution
through the Google Play App Store. When a user invokes the Build
option, App Inventor uploads the complete project to the build
server; the resulting app can be downloaded to the device via a
QR code scanned from the browser or downloaded as a file to the
user’s local computer for further distribution.

In order to create a packaged application, the components and
blocks for each screen of an App Inventor project are first con-
verted to YAIL (Young Android Intermediate Language), a lan-
guage defined as a collection of macros and functions in Kawa
[3], a Java-based implementation of Scheme [24]. Kawa was cho-
sen by the original App Inventor implementers [8] because it com-
bines Scheme’s flexibility for defining embedded languages with
the ability to integrate with Java libraries and compile to Java Vir-
tual Machine (JVM) bytecodes, and it had been demonstrated as a
framework for building Android apps [4]. The build server com-
piles YAIL code to JVM bytecodes, which are then converted to
Dalvik Virtual Machine bytecodes when creating the apk file.

For instance, Fig. 8 shows YAIL code that creates the canvas
and ball and defines the flinging handler for the example from
Sec. 2. define-form creates an instance of Form, a Java class
in the App Inventor implementation that is a subclass of An-
droid’s Activity class, a fundamental unit of an Android app.
add-component creates an App Inventor component (also an in-
stance of a Java class, in this case one that abstracts over an Android
device feature) and adds it to a form; its properties are changed by
set-and-coerce-property! define-event creates an event
handler registered with the current form. init-runtime connects
the Android event handler to the App Inventor event handlers.

App Inventor users are often surprised to learn that Java source
code is never generated during the implementation process. In
particular, the blocks code is never converted to Java.

3.3 Interactive YAIL Interpretation in the Companion
Beyond compilation and packaging apps, YAIL-in-Kawa is also the
essence of live programming in App Inventor. The reason is that
Kawa provides an interpreter that functions in a Read/Eval/Print
loop (REPL). A REPL is the main interactive construct of any in-
terpreted language that provides an interactive shell for evaluating

Live programming of mobile apps in App Inventor 3 2014/9/21

(d e f i n e−form a p p i n v e n t o r . a i t e s t u s e r . B o u n c i n g B a l l . Sc reen1
Sc reen1)

; ; ; Sc reen1
(do−a f t e r −form−c r e a t i o n

(s e t−and−coe rce−p r o p e r t y ! ’ Sc reen1 ’ T i t l e ” Sc reen1 ” ’ t e x t))

; ; ; Canvas1
(add−component Sc reen1 Canvas Canvas1

(s e t−and−coe rce−p r o p e r t y ! ’ Canvas1 ’ BackgroundColor
#xFF00FFFF ’ number)

(s e t−and−coe rce−p r o p e r t y ! ’ Canvas1 ’ Width 200 ’ number)
(s e t−and−coe rce−p r o p e r t y ! ’ Canvas1 ’ He igh t 300 ’ number))

; ; ; B a l l 1
(add−component Canvas1 B a l l B a l l 1

(s e t−and−coe rce−p r o p e r t y ! ’ B a l l 1 ’X 46 ’ number)
(s e t−and−coe rce−p r o p e r t y ! ’ B a l l 1 ’Y 27 ’ number))

(d e f i n e−e v e n t B a l l 1 Flung ($x $y $speed $ h e a d i n g $ x v e l $ y v e l)
(s e t−t h i s−form)
(s e t−and−coe rce−p r o p e r t y ! ’ B a l l 1 ’ Speed

(l e x i c a l −v a l u e $speed) ’ number)
(s e t−and−coe rce−p r o p e r t y ! ’ B a l l 1 ’ Heading

(l e x i c a l −v a l u e $ h e a d i n g) ’ number))

(i n i t −r u n t i m e)

Figure 8. Some YAIL code for the example in Sec. 2.

individual expressions (e.g., Scheme, Lisp, Perl, Python, PHP, and
many Javascript implementations). In contrast, in languages with-
out an interactive interpreter (such as C and Java), whole program
units must be compiled before they can be executed.

The Companion App that an App Inventor user runs on the de-
vice during development contains a Kawa REPL that can evaluate
individual YAIL expressions sent from the browser.2

This REPL is embedded within an instance of the ReplForm
subclass of the Form class. An instance of ReplForm is itself an
Android activity with access to the screen and all phone events;
it also has access to the App Inventor implementation libraries (in-
cluding all App Inventor components) and the Android libraries. So
YAIL code executed within the Companion’s REPL has access to
all the runtime state of the phone and can potentially do anything
that any App Inventor app can do. Given the right YAIL expres-
sions as inputs, the Companion App can faithfully impersonate any
single-screen App Inventor app.

Reconsider the example from Sec. 2 in this context. When the
Companion App starts, it has an empty screen named Screen1.
When the user adds a canvas to the app, sets the canvas proper-
ties, and then adds the ball, the browser sends a sequence of YAIL
expressions to the Companion that in real time builds the user in-
terface on the device as shown in Figs. 2b–2e, providing liveness in
the construction of the app’s GUI. Then, when the Ball1.Flung
handler is completed, the the browser sends the following YAIL
code to the Companion:

(p r o c e s s−r e p l−i n p u t 36 ; ID number o f t h e h a n d l e r b l o c k
(d e f i n e−e v e n t B a l l 1 Flung ($x $y $speed $ h e a d i n g $ x v e l

$ y v e l)
(s e t−t h i s−form)
(s e t−and−coe rce−p r o p e r t y ! ’ B a l l 1 ’ Speed

(l e x i c a l −v a l u e $speed) ’ number)
(s e t−and−coe rce−p r o p e r t y ! ’ B a l l 1 ’ Heading

(l e x i c a l −v a l u e $ h e a d i n g) ’ number)))

2 The note [8] describes how live programming came about somewhat
serendipitously in App Inventor as a consequence of choosing Kawa as the
implementation language. Live programming, for all its importance, was
not part of App Inventor’s original design.

This defines and installs the flinging handler for Ball1, at which
point the ball immediately becomes flingable.

Every time blocks change in the Blocks Editor, the YAIL code
associated with all top-level declaration blocks (event handlers,
procedure definitions, and global variable definitions) is regener-
ated. If the newly generated YAIL differs from a cached copy of
the previously generated code, the browser sends the new YAIL to
the device. This accounts for much of the liveness experienced by
App Inventor programmers. For example, if we change Ball1.Y
to Ball.X in Fig. 5, the browser will send a new (define-event
Clock1 Timer ...) expression to the device with the new event
body, and that body will execute the next time the timer fires. If we
disconnect the blocks in y operand from Canvas1.DrawPoint, the
brower will again send a new handler declaration, this time with
an incomplete body. When Canvas1.DrawPoint is called with a
missing argument, an exception is raised that is caught by a top-
level exception handler in the REPL, and information about the er-
ror is packaged into a return value (retval for short) that is transmit-
ted back to the browser (see Fig. 7). An appropriate error message
is then displayed in the browser window.

Remarkably, the Companion App is itself an app created with
App Inventor, but it does use a few special-purpose blocks that are
normally hidden from regular users. Because it can behave like any
App Inventor app, the Companion must request device permissions
for all possible App Inventor apps. Also, since the Companion
encapsulates the code for all App Inventor components and the App
Inventor runtime system, any time one of these is modified (e.g., to
add a new component feature or fix a bug) in a new release of the
App Inventor environment, a new version of the Companion App
is created, and this must be downloaded by all App Inventor users.
This is handled through automatic updates of Google Play Store
apps. MIT’s distribution system for App Inventor also arranges
for automatic updating of Companion apps that were not obtained
through the Play Store.

3.4 Live debugging with DoIt and Watch
The REPL-based nature of the Companion App makes it easy to
execute arbitrary blocks (not just top-level declarations) relative to
the current state of the running app. This is the essence of a pow-
erful debugging feaure called DoIt feature. When the programmer
selects the DoIt option for a block, the browser simply generates its
YAIL code and sends that code to the Companion to be evaluated.
For example, here is the YAIL generated by DoIt for the example
in Fig. 4 (where 186 is the ID of the set Ball1.radius block):
(p r o c e s s−r e p l−i n p u t 186 (s e t−and−coe rce−p r o p e r t y ! ’ B a l l 1

’ Rad ius 10 ’ number))

When DoIt is performed on an expression block (a block that
produces a result value, as indicated by a plug on its left-hand side),
the REPL sends back to the browser a retval that associates a string
representation of the resulting value with the ID of the block. The
browser displays the value on the associated block. For example,
Fig. 9, shows the result of invoking DoIt on the + block. No visual
feedback is shown on non-expression blocks. Invoking DoIt on the
set global num block in Fig. 9 changes the value of the global
num variable to 42, but no value is displayed.

DoIt is a powerful debugging tool because it lets the program-
mer interactively probe the running app on the mobile device: an
example of live debugging. It contributes to the liveness of App In-
ventor by helping users obtain a more immediate understanding of
the changing state of the running program. More generally, it adds
to the sense of play and experimentation that is, or at least should
be, particularly important to programmers, especially novices.

An extension to DoIt is Watch, which shows a sequence of all
the values of a block, not just the most recent one (e.g., Fig. 10)
[20]. This is implemented simply by tagging the YAIL expression

Live programming of mobile apps in App Inventor 4 2014/9/21

Figure 9. Invoking DoIt on an expression block displays the value
of that block, as calculated by the interpreter on the device.

for the block as a watch expression with its block ID. When
the interpreter on the device encounters a watch expression, it
evaluates the body, and sends back to the browser a retval tagged
as a watch result with the block ID and value.

Figure 10. Selecting Watch on an expression within a loop shows
all values of that expression when the loop is executed.

3.5 Apps with Multiple Screens
An App Inventor app may have multiple screens, only one of which
is active (visible on the device) at any time. New screens are de-
clared in the Designer. The open another screen block sus-
pends the currently active screen, pushing it on a stack of suspended
screens, and creates a new instance of its operand screen that be-
comes the new active screen. The close screen block deletes the
current active screen, pops the top screen off the stack of suspended
screens, and makes that the active screen. To allow interscreen com-
munication, there are also versions of the screen opening and clos-
ing blocks that pass values between the screens.

Multiple screens interact with live development in two ways.
First, the screen being edited in the browser is always synchronized
with the active screen on the Companion. If the user changes
screens in the browser, the YAIL for the new screen is sent to the
Companion. And if the active screen changes in the Companion (as
a result of executing open another screen or close screen),
the Companion sends a special retval to the browser indicating that
the Blocks Editor should display the blocks for the new active
screen. This synchronization the Blocks Editor with the active
screen of the Companion is essential for liveness. A lack of such
synchronization would cause confusion — what would it mean to
change blocks for ScreenA in the Blocks Editor if ScreenB were
active on the Companion?

Second, the Companion’s handling of multiple screens in live
development mode is not exactly faithful to the behavior of multiple
screens for packaged apps. In a packaged app, a suspended screen is
a running Form instance (an Android activity) that can still process
certain events unrelated to the user interface, like timer events.
Also, when the top suspended app becomes active, its state is the
same as when it was suspended (modulo changes made by events
handled while it was suspended). In contrast, in live development,
there is only one instance of ReplForm that attempts to simulate
multiple screens, but this simulation is imperfect. In particular, (1)

a suspended app never processes any events, and (2) when the top
suspended app is activated, its suspension state is lost because all
of its components and global variables are reinitialized. We can
potentially increase the faithfulness of the Companion’s simulation
of multiple screens by saving a screen’s state when it is suspended
and reinstalling that state when it is activated. This would address
problem #2, but addressing problem #1 (having suspended apps
process events in live development) would be very challenging.

3.6 Liveness and the Designer
In the current version of App Inventor, every change in the De-
signer (such as adding a component to the screen, deleting a com-
ponent, renaming a component, or changing the initial value of a
property) stops the current app being simulated by the Companion
and reinitializes its user interface and program. From the viewpoint
of liveness, this is undesirable.

For example, suppose the bouncing ball app from Sec. 2 is in
the state shown in Fig. 2e, and we have added the Ball1.Flung
event but have not added the Clock1 component. Suppose we fling
the ball. While the ball is in motion, we would like to be able to add
the Clock1 component and a Clock1.Timer event for tracing the
ball’s trajectory without stopping the program. However, adding the
clock component stops the program and reinitializes its interface,
including resetting the ball to its original position and setting its
speed and heading to 0.

Reinitialization simplifies the implementation, but there is no
deep reason why App Inventor could not be more clever and just
modify the changed component without modifying the others. We
plan to investigate this opportunity to improve liveness.

One issue is what users expect to happen in the running app
when they change a property value within the Designer. Suppose
Ball1 is moving with a heading of 45 degrees the user changes the
heading property of Ball1 to 90 within the Designer. Does this
mean that the user wants the moving ball’s heading to immediately
change to 90, or that they want its heading to be 90 the next time the
app launches? Since they can already use DoIt to change the ball’s
current heading, it may be preferable for property changes in the
Designer not to be reflected in the running app. This is a situation
where an experimental study of user expectations may be in order.

4. Browser/Device Communication
The architecture for live development in Fig. 7 assumes two-way
communication between the App Inventor environment running in
a web browser and the Companion App running on an Android
device. But how can we connect a web browser to an Android de-
vice and get them to communicate? This is a challenging technical
problem whose solution we describe in this section.

4.1 Connecting the device with the browser
App Inventor runs in a web browser, so the logical approach for
communication is to have the device act as a web server. The
browser can then send YAIL to the device as an Asynchronous
Javascript (AJAX) call, the same technology used by many web-
based applications. Before AJAX calls can be made, the App In-
ventor environment needs to know the Internet Protocol (IP) ad-
dress of the device to talk to. This is done in one of two ways. The
App Inventor programmer can declare that they wish to connect to
their device via a USB cable, or via a wireless (WiFi) connection.

If the device is connected via USB, then the IP address is a
known quantity and communication can begin immediately. If a
WiFi connection is needed, a rendezvous server is used. When the
programmer requests a wireless connection, the browser displays a
randomly generated six-character code and its associated QR code
(Fig. 1). When this code is entered on the device, the Companion

Live programming of mobile apps in App Inventor 5 2014/9/21

(1) sends the code and its IP address to the rendezvous server and
(2) launches a small web server listening on port 8001.

At the same time, the browser queries the rendezvous server,
once per second, asking for the IP address for the displayed code.
Until the device provides the address, the rendezvous server returns
an empty response. However once it has learned the device’s IP
address, the rendezvous server can provide the device’s IP address
to the browser. Now the browser can use AJAX requests to deliver
YAIL expressions to the Companion.

There are a few details that are needed to make this connection
technique work reliably and securely. First, all communications in
the protocol use the MD5 hash of the six-character code, rather
than the code itself. Since the six-character code is never sent in
plaintext through the network, it can be used as a shared secret
between the browser and the device, a fact we leverage later to
secure the communication between them.

Second, the App Inventor environment in the browser and the
Companion App both use AJAX calls to communicate with the
rendezvous server. Normally, JavaScript’s Same Origin Policy pre-
vents AJAX communication with a server that is not the one from
which the JavaScript code being executed was downloaded. This
restriction can be mitigated by using appropriate Cross Origin Re-
source Setting (CORS) declarations on the rendezvous server.

4.2 Two-way communication
Once the handshake with the rendezvous server is complete, the
browser and Android device can communicate directly. Upon con-
nection, the browser will send the application’s YAIL to the An-
droid device using AJAX requests.3 When the Companion receives
each AJAX request, it evaluates the YAIL and returns an indication
of success or failure to the browser.

Since much processing in the Companion occurs asynchronously,
errors may occur after an AJAX request is processed. There are
also situations where the Companion needs to send unsolicited
messages to the browser. To facilitate this, the browser makes sep-
arate AJAX requests for any values or other information that the
Companion may have for the browser.

The Companion maintains an internal queue of requests to the
browser. When a AJAX request for information is sent by the
browser to the Companion, it will supply all pending requests as
its response. We call the AJAX request that supplies YAIL code to
be evaluated a newblocks request and the AJAX request to receive
returned values a values request.

There are two other details governing the AJAX-based commu-
nication between the browser and the device. First, we would like
to prevent one person from “hacking” another by sending malicious
YAIL code to the other person’s device. Each newblocks request
from the browser to the device includes a Message Authentication
Code (MAC) calculated based on (1) the YAIL expression, (2) the
block ID it is associated with (or -1 if there is none), (3) a sequence
number maintained by the browser, and (4) the six-character con-
nection code. Because the six-character code is a shared secret be-
tween the browser and device, an attacker cannot create the MAC.
However, Companion can verify the MAC, and will only evaluate
YAIL code whose MAC it verifies.

Second, an AJAX values request used by the browser to re-
quest information from the device times out after ten seconds and
is reissued. So at all times there is a request outstanding from the
browser to the Companion for any information it may have. Having
at least one AJAX request between the browser and device every ten

3 The Companion App also provides the appropriate CORS headers so the
browser knows it can send AJAX request to the Companion even though
the JavaScript running in the browser was not loaded originally from the
device.

seconds addresses a practical problem. Many peer-to-peer connec-
tions will be on a local network governed by a router with Network
Address Translation (NAT) active. Such routers will often drop en-
tries in their address translation tables if there is no communication
between devices. Sending a request at least once every ten seconds
tends to keep these connections alive.

4.3 Using the USB Cable and/or the Android Emulator
Although we encourage App Inventor programmers to use a WiFi
connection when engaging in live development, doing so is not
always possible. They may not have a usable local network, or their
local network may not support peer-to-peer networking. In these
cases, a USB cable can be used to connect the personal computer
(PC) running the App Inventor environment to an Android device.

In some cases, the App Inventor programmer may not have
access to an Android device. In this case, they can use the Android
emulator, which is part of the Google supported Android Software
Development Kit (SDK).

Using the USB cable or emulator is architecturally very similar.
In both cases we use the adb command in the Android SDK to com-
municate between the PC and the Android device. This command
is used to perform various Android debugging tasks. In our case we
use it to create a virtual network between the PC and the USB ca-
ble or emulator. In particular we instruct adb to set up a forwarding
of Internet connections to port 8001 on the PC to port 8001 on the
connected device or emulator. USB and Emulator connections do
not require the rendezvous server, as the device will always be at
IP address 127.0.0.1 (the Internet standard “loopback” address that
connects a computer to itself).

The final problem is getting the PC’s web browser to be able
to execute commands like adb. This is done by launching an
aistarter application on the PC that runs a little web server
that awaits instructions from the browser and executes them on the
PC. The application has full access to PC commands like adb.

The MIT App Inventor team distributes a package of setup tools
for the Windows, Macintosh, and Linux platforms. These setup
tools include the necessary parts of the Android SDK needed for
the USB and emulator connections, as well as the aistarter ap-
plication. This setup package is not required for a WiFi connection.

5. Related Work and Discussion
5.1 Influences on our Design
Born out of a collaboration between MIT and Google, and inspired
by a long tradition of constructionism-based systems at MIT, App
Inventor shares a number of characteristics with other systems cre-
ated at the institute, such as Logo [21] and Scratch [16]. It also
draws from external influences, such as Storytelling Alice [14] and
Google’s Simple [7]. App Inventor was envisioned as a transforma-
tive tool that could turn passive consumers of technology into cre-
ators of their own inventions. The work of Caitlin Kelleher in Sto-
rytelling Alice [14] reinforced the vision that certain populations,
generally underrepresented in the computer science field, could be
attracted to the more social uses that mobile devices provide.

Live development as a main characteristic of the system has
been described as a story of serendipitous engineering [8]. While
Scheme and its REPL capability was first selected as a tool to help
with development of the system itself, mostly for ease of debugging
and the possibility of incremental development, it turned out to be,
not with some additional hard work, the core of live development as
it is available in the system now. This would not have been possible
without previous experience with REPL-centric environments that
utilize a REPL to interact with running programs, such as Smalltalk
[9] (which inspired DoIt), Lisp, and Emacs.

Live programming of mobile apps in App Inventor 6 2014/9/21

5.2 Mobile App Development Frameworks
Most app development frameworks are targeted to experienced pro-
grammers. There are a number of mainstream mobile platforms and
each of them provide their own tooling, generally around a partic-
ular programming language. Android [10] programming is mostly
done in Java, on an IDE such as Android Studio or Eclipse; iOS [2]
apps can be written in ObjectiveC or Swift, using an IDE provided
by Apple; Hybrid and web apps are generally written in JavaScript
and other web standard languages. There are a number of efforts to
move away from the tooling and restrictions of languages provided
by the main platforms. Among others, the Xamarin framework [30]
can produce multi-platform apps from a single codebase written in
C#, and the RubyMotion project [12] can create native iOS apps
written in Ruby.

All of these solutions are very much rooted in the traditional
edit-compile-run cycle; the concept of liveness is not present and
new testing cycles will reset the app to its initial default state.
A number of these systems, though, start showing similarities to
some of the basic capabilities that power live development in App
Inventor as described in the previous section. Live modifications on
apps can be remotely made with systems like RubyMotions [13] or
languages like Clojure [22].

In the case of web standard powered apps, development tools
such as the Chrome developer tools [11] can also provide some
level of interaction with the application running live, by adding
breakpoints and even being able to modify certain parts of the code
that the browser can automatically re-run. All of these solutions
are very barebones, have no visual interfaces, and are targeted to
experienced software developers.

Systems such as TouchDevelop [27] provide an interface that
is more visual (even providing a ’run’ button that can get a script
started), but running an app still requires compilation and execution
of the new code. A similar example is basic4Android [1], which
also simplifies many tasks related to the programming of an app
through its visual UI, but coding of the app is textual and the full
recompilation cycle is needed.

The closest case to live development as it happens in App In-
ventor is Mozilla Appmaker [19], a system based on the web com-
ponents emerging web standard with a target audience of non-
programmers. The programming models that both systems provide
to their users are very different. Appmaker apps are developed in a
web browser, and they are created from bricks that provide a cer-
tain functionality and a series of input and output channels of com-
munication. Bricks can be connected to each other through those
channels in order to exchange messages. For instance, a button can
be connected to a text box to send it a message that changes the
contents of the box. This all happens with no edit-compile-run cy-
cle and no state loss. Programming an app in Appmaker is an ex-
ercise of connecting predefined inputs to outputs in the available
bricks. Although there exists bricks to create more advanced con-
nections between elements in the app (such as input filters, split-
ters, or transformers), and the system also provides rather high level
bricks such as a chat room, there is no concept of programming in
terms of many of the most basic computer science principles such
as loops, functions, or data structures. Appmaker also provides a
preview mode that is not directly live accessible from a device, and
the apps that the tool creates at the time of this writing are limited
to Firefox OS devices or to installation in browsers such as Firefox
for Android.

5.3 Live Programming
Many discussions of live programming involve a single linear
dimension measuring liveness (e.g., [6, 25, 26]). But evaluating
and comparing the liveness of programming environments requires
considering multiple dimensions.

One dimension is the granularity of program change to which
the environment responds, and what actions the programmer must
take in order for the system to respond to such a change. An
interactive interpreter that responds to individual expressions is
more live than a system that processes only whole programs. And
a system that responds to individual character edits, such as the
code canvas used in Khan Academy programming lessons (e.g.,
[15]), is even more live. App Inventor’s granularity is fairly small:
any change within the blocks of a top-level declaration causes that
declaration to be re-evaluated. DoIt and Watch can be used on any
block for debugging, but DoIt requires an explicit action on the part
of the programmer in order to cause a response.

Another dimension is how changes are integrated into a run-
ning program. What counts as “live” in this context depends sig-
nificantly on the domain. When the output of the program is visual
artifact like a picture or a GUI, it makes sense to re-execute the
whole program to produce the correct output.4 In other domains,
like interactive synthesized music, there’s no need to re-generate
past music; only new music going forward should be affect by pro-
gram changes.

App Inventor is an interpreter-based approach to live program-
ming in which the only re-execution is re-installing top-level dec-
larations (event handlers, global variable declarations, procedure
declarations) whenever they change. Users experience this as inter-
active because code changes are observable in subsequent events,
some of which require simple interactions with the device (e.g.,
touching the screen, shaking/tilting the device), but many of which
are automatic (e.g., events that fire due to timers, receiving phone
calls and texts, and and callbacks initiated by various methods, such
as requesting data from a web service).

App Inventor does not support re-execution-based live pro-
gramming features of other environments. Consider a program that
draws a face on an App Inventor canvas, similar to the one in Khan
Academy [15]. Simply redefining an App Inventor variable used by
the face-drawing program will not automatically cause the face to
be redrawn in the canvas. In order to get this kind of behavior, the
App Inventor programmer would have to embed the face-drawing
code in some sort of event handler, such as a timer, or create their
own use interface slider element associated with the variable that
redraws the face every time the variable is changed.

However, in the context of mobile phone apps with potentially
very complex behaviors, we view this lack of general re-execution-
based live programming as a feature, not a bug. In order to program
effectively with re-execution-based live programming, a user must
have a very good model of what code is re-executed and what is
not re-executed. Consider the concrete example of a button whose
text label is initially 0 and is incremented by the value of the global
variable n (initially 5) each time it is pressed (Fig. 11).

Figure 11. Button click adds the value of n to the displayed text.

If the button is clicked twice, its label text changes first to 5,
then to 10. Now suppose we edit the definition of n to be 3. Should
anything happen to the current label on the button? In certain re-
execution models, the two previous button clicks should be re-

4 Sometimes only certain parts of the program need to be re-executed. For
example, TouchDevelop cleverly separates GUI-generating code from other
code so that GUI updates can be rendered quickly [5].

Live programming of mobile apps in App Inventor 7 2014/9/21

played, and the button value would change to 6. But in App In-
ventor, changing n to 3 does not change the current label on the
button. However, if we click the button after this change, the button
label will change to 10 + 3 = 13. App Inventor users can have a sim-
ple model in which changes to their program will only affect future
behavior starting at the current system state, not past behavior. In
this context, we say that App Inventor obeys the principle of least
surprise [23], since it would be surprising for users if changing n
were to re-execute the previous clicks of the button. And this is a
very simple scenario; reasoning about replay in the context of the
huge number of events encountered in a typical mobile app would
be very hard indeed.

Some limitations of the current version of App Inventor sim-
plify our approach to live programming. For example, all user in-
terface elements must be manually created and arranged within the
Designer; it is not possible to write App Inventor programs that dy-
namically create and arrange such elements. This makes it easy to
show the programmer’s changes to the user interface. If we enhance
App Inventor to allow the dynamic creation of user interfaces, we
will need to reconsider how this interacts with live development.

6. Conclusion and Future Work
Live programming is one of the key attractions of App Inventor.
It permits the programmer to actually see their program evolve as
they write it. By utilizing an intermediate language that supports
both interpretive use and compiled code, we can provide both a
live interpreted experience for the programmer and native code
performance to the application end-user in the finished product.

As we look toward the future, we expect to improve the liveness
of the Designer by supporting incremental updates when properties
are updated in the Designer, avoiding the full application reload we
experience today. We also are looking to enhance the way we use
the network to better support hotel and school networks, where it
is a challenge to get the browser to communicate with the Android
device.

Acknowledgments
This work was partially supported by Wellesley College Faculty
Grants, by sabbatical funding from Wellesley College, and by
the National Science Foundation under grants DUE-1226216 and
DUE-1225745.

We thank all the developers of App Inventor, current and past,
who have contributed to its design and implementation.

References
[1] Anywhere Software. Basic4Android, http://www.basic4ppc.

com/, accessed Sep. 2, 2014.

[2] Apple Inc. iOS Development Center, https://developer.apple.
com/devcenter/ios/index.action, accessed Sep. 2, 2014.

[3] P. Bothner. The Kawa Scheme language. http://www.gnu.org/
software/kawa/, accessed Sep. 2, 2014.

[4] P. Bothner. Hello world in Scheme for Android, 2008. http://per.
bothner.com/blog/2008/AndroidHelloScheme/, accessed Sep.
2, 2014.

[5] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato. It’s alive! continuous feedback in ui pro-
gramming. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, pages
95–104, 2013.

[6] M. M. Burnett, J. W. Atwood Jr, and Z. T. Welch. Implementing level 4
liveness in declarative visual programming languages. In Proceedings
of the IEEE Symposium on Visual Languages, VL ’98, pages 126–134,
1998.

[7] H. Czymontek. Simple, http://google-opensource.blogspot.
com/2009/07/programming-made-simple.html, accessed Sep.
2, 2014.

[8] M. Friedman. The creation of live programming in App Inventor.,
Aug. 2014. http://furious-ideas.blogspot.com/2014/08/
the-creation-of-live-programming-in-app.html, accessed
Sep. 2, 2014.

[9] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its
Implementation. 1983.

[10] Google Inc., . Android Developers, http://developer.android.
com/index.html, accessed Sep. 2, 2014.

[11] Google Inc., . Chrome developer tools, https://developer.
chrome.com/devtools, accessed Sep. 2, 2014.

[12] HipByte.com, . RubyMotion project, http://www.rubymotion.
com/, accessed Sep. 2, 2014.

[13] HipByte.com, . RubyMotion remote REPL example, https://www.
youtube.com/watch?v=rejYKzLglSE, accessed Sep. 2, 2014.

[14] C. Kelleher. Storytelling Alice, http://www.alice.org/
kelleher/storytelling/, accessed Sep. 2, 2014.

[15] Khan Academy. Introduction to Variables, https://www.
khanacademy.org/computing/cs/programming/variables/
p/intro-to-variables, accessed Sep. 2, 2014.

[16] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. East-
mond. The Scratch Programming Language and Environment. ACM
Transactions on Computing Education, 10(4):1–15, 2010. ISSN
19466226. URL http://portal.acm.org/citation.cfm?id=
1868363\&CFID=113276735\&CFTOKEN=59812236.

[17] MIT Center for Mobile Learning. App Inventor website, http:
//appinventor.mit.edu, accessed Sep. 2, 2014.

[18] MIT Center for Mobile Learning. MIT App Inventor
Public Open Source, https://github.com/mit-cml/
appinventor-sources, accessed Sep. 2, 2014.

[19] Mozilla Corp. Mozilla Appmaker, https://apps.webmaker.org,
accessed Sep. 2, 2014.

[20] J. Okerlund. Improving app inventor debugging support, may 2014.
Wellesley College undergraduate senior honors thesis.

[21] S. Papert. Mindstorm: Children, Computers, and Powerful Ideas.
Basic Books, 1980.

[22] W. Peng. Clojure TBNL remote REPL example, https://www.
youtube.com/watch?v=jC-aaIewNkc, accessed Sep. 2, 2014.

[23] J. H. Saltzer and F. Kaashoek. Principles of computer system design:
an introduction. Morgan Kaufmann, 2009.

[24] M. Sperber, R. k. Dybvig, M. Flatt, A. Van straaten, R. Findler, and
J. Matthews. Revised6 report on the algorithmic language Scheme.
Journal of Functional Programming, 19(S1):1–301, Aug. 2009.

[25] S. Tanimoto. A perspective on the evolution of live programming. In
Live Programming (LIVE), 2013 1st International Workshop on, pages
31–34, May 2013. .

[26] S. L. Tanimoto. Viva: A visual language for image processing. J. Vis.
Lang. Comput., 1(2):127–139, June 1990.

[27] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and S. Burck-
hardt. Touchdevelop: App development on mobile devices. In Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE ’12, 2012.

[28] F. Turbak, D. Wolber, and P. Medlock-Walton. The design of naming
features in app inventor 2. In IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC ’14), Aug. 2014.

[29] D. Wolber, H. Abelson, E. Spertus, and L. Looney. App Inventor:
Create your Own Android Apps. O’Reilly Media, Inc., Apr. 2011.

[30] Xamarin Inc. Xamarin Platform, http://xamarin.com/, accessed
Sep. 2, 2014.

Live programming of mobile apps in App Inventor 8 2014/9/21

View publication statsView publication stats

https://www.researchgate.net/publication/288640786

