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Accuracy assessment of fusion transcript
detection via read-mapping and de novo
fusion transcript assembly-based methods
Brian J. Haas1* , Alexander Dobin2, Bo Li1,3, Nicolas Stransky4, Nathalie Pochet1,5 and Aviv Regev1,6

Abstract

Background: Accurate fusion transcript detection is essential for comprehensive characterization of cancer
transcriptomes. Over the last decade, multiple bioinformatic tools have been developed to predict fusions from
RNA-seq, based on either read mapping or de novo fusion transcript assembly.

Results: We benchmark 23 different methods including applications we develop, STAR-Fusion and TrinityFusion,
leveraging both simulated and real RNA-seq. Overall, STAR-Fusion, Arriba, and STAR-SEQR are the most accurate and
fastest for fusion detection on cancer transcriptomes.

Conclusion: The lower accuracy of de novo assembly-based methods notwithstanding, they are useful for
reconstructing fusion isoforms and tumor viruses, both of which are important in cancer research.
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Background
Chromosomal rearrangements leading to the formation
of fusion transcripts are a frequent driver in certain can-
cer types, including leukemia and prostate cancer [1],
and contribute to many others [2]. These include BCR–
ABL1, found in ~ 95% of chronic myelogenous leukemia
(CML) patients [3]; TMPRSS2–ERG in ~ 50% of prostate
cancers [4]; and DNAJB1–PRKACA, the hallmark and
likely driver of fibrolamellar carcinoma [5]. Determining
the driver of a given tumor is important to inform diag-
nosis and therapeutic strategies. For example, tyrosine
kinase inhibitors have been highly effective in the treat-
ment of tumors harboring kinase fusions in leukemia
and other cancers [6–9].
Transcriptome sequencing (RNA-seq) has emerged as

an effective method to detect fusion transcripts in the
precision medicine pipeline. While point mutations and
indels can be readily captured from whole exome se-
quencing (WES), detecting genome rearrangements typ-
ically requires whole genome sequencing (WGS). RNA-
seq yields the “expressed exome” of the tumor, capturing

only the transcriptionally active regions of the genome,
and thus provides a cost-effective means to acquire evi-
dence for both mutations and structural rearrangements
involving transcribed sequences, which can reflect on
functionally relevant changes in the cancer genome.
Over the past decade, multiple bioinformatics methods

and software tools have been developed to identify can-
didate fusion transcripts from RNA-seq (reviewed in [10,
11]), with select methods leveraged in recent efforts to
build catalogs of fusions across thousands of tumor sam-
ples [12, 13]. Following the two general strategies for
RNA-seq analyses [14], RNA-seq-based fusion detection
falls into two conceptual classes: (1) mapping-first ap-
proaches that align RNA-seq reads to genes and ge-
nomes to identify discordantly mapping reads that are
suggestive of rearrangements and (2) assembly-first ap-
proaches that directly assemble reads into longer tran-
script sequences followed by identification of chimeric
transcripts consistent with chromosomal rearrangements
(Fig. 1a). Evidence supporting predicted fusions is typic-
ally measured by the number of RNA-seq fragments
found as chimeric (split or junction) reads that directly
overlap the fusion transcript chimeric junction, or as dis-
cordant read pairs (bridging read pairs or fusion span-
ning reads) where each pair of reads maps to opposite
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sides of the chimeric junction without directly overlap-
ping the chimeric junction itself (Fig. 1a).
Implementations of the various prediction methods

vary in the read alignment tools employed, the genome
database and gene set resources used, and criteria for
reporting candidate fusion transcripts and for filtering
out likely false positives. Available fusion predictors vary
in prediction accuracy, installation complexity, execution
time, robustness, and hardware requirements. Depend-
ing on the fusion prediction tool chosen, processing one
RNA-seq sample containing tens of millions of reads can
take several days’ worth of computing and result in a list
of hundreds to thousands of gene fusion candidates,

including many likely false positives, with little evidence
supporting these predictions. Thus, fast and accurate
methods for fusion detection are urgently needed, par-
ticularly as RNA-seq is increasingly adopted in precision
medicine and clinical diagnostics.
Earlier evaluations of fusion prediction methods based

on RNA-seq have highlighted the shortcomings of con-
temporary methods, but were mostly limited to small
numbers of fusion candidates, compared few tools, and
relied heavily on simulated test data for accuracy assess-
ment [15, 16]. Here, we advance fusion transcript pre-
diction benchmarking to include thousands of fusion
transcripts at varied expression levels, devise a strategy

Fig. 1 Methods for fusion transcript prediction and accuracy evaluation. a The two general paradigms for fusion transcript identification include
(left) mapping reads to the genome and capturing discordant read pairs and chimeric read alignments and (right) performing genome-free de
novo transcript assembly followed by identification of chimeric transcript alignments. b Given a well-defined truth set of fusions, true- and false-
positive predictions are tallied according to minimum threshold for fusion-supporting reads. F1 accuracy values are computed at each minimum
evidence threshold to determine the threshold that yields peak prediction accuracy for each method. Similarly, precision and recall values are
computed at each minimum evidence threshold, plotted as a precision-recall curve, and the area under the curve (AUC) is computed as a
measure of overall prediction accuracy
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to benchmark fusion accuracy leveraging real cancer
transcriptome data without a priori defined gold stand-
ard truth sets, and test a large number of tools. Specific-
ally, we evaluate 23 different fusion detection methods
(from 19 different software packages) that can leverage
solely RNA-seq as input for fusion transcript detection
(Table 1, Fig. 1b). This includes two software packages
that we developed, STAR-Fusion and TrinityFusion:
STAR-Fusion leverages chimeric and discordant read
alignments identified by the STAR aligner [18, 51, 52] to
predict fusions and TrinityFusion leverages chimeric
reads and Trinity de novo transcriptome assembly [48,
53] to reconstruct fusion transcripts and identify fusion
candidates. We assess each method, evaluating sensitiv-
ity and specificity of fusion detection, and identify those
methods best suited for accurate fusion detection from
cancer RNA-seq.

Results
A panel of methods for fusion transcript detection
We assessed 23 methods for fusion transcript detection,
including 18 methods primarily based on read-
alignments (Table 1): Arriba [17], ChimeraScan [19],
ChimPipe [21], deFuse [24], EricScript [25], Fusion-
Catcher [28], FusionHunter [30], InFusion [31], JAFFA-
Direct [32], MapSplice [34], nFuse [36], Pizzly [37],
PRADA [39], SOAPfuse [40], STARChip [42], STAR-
Fusion, STAR-SEQR [44], and TopHat-Fusion [45], and
four methods primarily based on transcript assembly:
JAFFA-Assembly [32] and three execution modes of Tri-
nityFusion: TrinityFusion-C, TrinityFusion-D, and
TrinityFusion-UC. An additional assessed method,
JAFFA-Hybrid [32], leverages a combination of both
read mapping and de novo assembly approaches. For
each method, we used its own recommended alignment
and analysis strategy and parameters, as implemented in
its respective package (Table 1). We benchmarked each
method using simulated data and real RNA-seq from
cancer cell lines. In certain cases, we assessed methods
in either alternative execution modes, or according to
assigned fusion confidence levels (see the “Methods” sec-
tion). For example, we assessed Arriba using either all
predicted fusions or restricting to only those that Arriba
labeled as high confidence predictions (Arriba_hc). We
assessed TrinityFusion in each of its three alternative
execution modes, involving assembly of all input reads
(TrinityFusion-D), only chimeric reads (TrinityFusion-
C), or both unmapped and chimeric reads (TrinityFu-
sion-UC). We assessed accuracy using both strict and le-
nient scoring criteria: while strict scoring relied on the
pair of gene symbols corresponding to the genes pre-
dicted to be fused, lenient scoring also allowed for likely
paralogs to serve as acceptable proxies for fused target
genes. We show lenient scoring here unless indicated

otherwise and point the reader to the “Methods” section
for further details and examples.

Fusion transcript prediction accuracy using simulated
data
To assess accuracy in the context of a known ground
truth, we applied each of the 23 methods to predict fu-
sions on ten simulated RNA-seq data sets (Add-
itional file 1: Tables S1, S2), each containing 30M
paired-end (PE) reads and each data set incorporating
500 simulated fusion transcripts expressed at a broad
range of expression levels. To examine the effect of read
length on fusion prediction accuracy, five of the data sets
were based on 50 base reads and the other five on 101
base reads, reflecting typical read lengths of contempor-
ary RNA-seq data sets and technologies.
We compared fusion detection accuracy for all

methods by several measures (Fig. 1b). We scored true-
and false-positive predictions for each method according
to minimum fusion evidence support (Additional file 2:
Figures S1, S2), and from these, we measured precision
(positive predictive value (PPV or P)) and recall (sensi-
tivity or true positive rate (TPR or R)). We calculated
the area under the precision-recall (P-R) curve (AUC) as
the overall accuracy for each method (Fig. 1b) and ex-
amined the distribution of AUC values across samples
for each method (Fig. 2a).

Read length and fusion expression level affect sensitivity
for fusion detection
On the simulated data, accuracy was almost entirely a
function of sensitivity for fusion detection, as most
methods exhibited few false positives (1–2 orders of mag-
nitude lower). Only ChimeraScan accumulated large num-
bers of false-positive predictions with longer reads,
particularly involving fusions predicted with few support-
ing reads (Additional file 2: Figures S1–S3). Arriba, Pizzly,
STAR-SEQR, and STAR-Fusion were the best performers
on simulated data, with many close contenders. Methods
requiring de novo transcriptome assembly, including Tri-
nityFusion and JAFFA-Assembly, were among the least
accurate; each exhibited high precision but suffered from
comparably low sensitivity (Additional file 2: Figures S1-
S3). Nearly all methods had improved accuracy with lon-
ger vs. shorter reads, except for FusionHunter and SOAP-
fuse, which yielded higher accuracy with the shorter reads,
and PRADA, which performed similarly regardless of read
lengths examined.
Fusion detection sensitivity was affected by fusion ex-

pression level (Fig. 2b). Most methods were more sensi-
tive at detecting moderately and highly expressed
fusions, but differed substantially in their ability to de-
tect lowly expressed fusions. These were more readily
detected with longer vs. shorter reads, and de novo
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Table 1 RNA-seq-based fusion transcript predictors evaluated

Method Class* Brief overview of methodology

Arriba [17] R Arriba extracts gene fusions from the chimeric alignments reported by STAR [18] by applying a collection of filters which
recognize frequent types of artifacts found in RNA-Seq data.

ChimeraScan
[19]

R Identifies candidate fusions from discordant Bowtie [20] genome alignments. Unmapped reads are trimmed and realigned.
Junction breakpoint reads are resolved by aligning to candidate fused exons. Fusions are filtered based on abundance of
fusion-supporting reads.

ChimPipe [21] R The GEMtools RNA-seq pipeline [22] and GEM alignment utility [23] are used to capture discordant and chimeric read
alignments, and fusion candidates are filtered according to fusion evidence and additional gene-based filters.

deFuse [24] R Aligns reads to spliced and unspliced gene sequences using Bowtie [20], resolves split read junctions using a novel
dynamic programming algorithm, and uses an AdaBoost classifier to discriminate between likely true vs. false fusions.

EricScript [25] R BWA [26] is used to align reads to the genome. Discordant reads are used to identify candidate gene fusions. BLAT [27] is
then used in an iterative local alignment step to define precise fusion breakpoints by aligning to customized targets of
fused exons. An AdaBoost classifier trained with synthetic data is used to score and rank fusion predictions.

FusionCatcher
[28]

R Leverages a collection of alignment utilities including Bowtie [20], Bowtie2 [29], BLAT [27], and STAR [18] with a collection
of customized target databases to identify and characterize fusion candidates. Rigorous filtering of fusion predictions
according to gene and fusion annotations is employed.

FusionHunter
[30]

R First uses Bowtie to align reads to the genome and identify candidate fusions based on discordant read pairs. Then creates
a “pseudoreference” by positioning candidate fusion genes with canonical ordering, realigns reads using a custom
algorithm and identifies both split and spanning reads providing evidence for gene fusions.

InFusion [31] R Reads are first aligned to the reference transcriptome using Bowtie2. Unaligned and discordantly aligned reads are further
examined in the context of the genome and transcriptome to cluster evidence and define candidate fusions.

JAFFA-Assembly
[32]

A After removing intronic and intergenic region aligning reads defined by Bowtie genome alignments, the remaining reads
are assembled using Oases [33] and the assembled contigs are mapped directly to the transcriptome using BLAT. Chimeric
BLAT alignments are further assessed as fusion candidates.

JAFFA-Direct
[32]

R After removing intronic and intergenic region aligning reads defined by Bowtie genome alignments, the remaining reads
are mapped directly to the transcriptome using BLAT. Chimeric BLAT alignments are further assessed as fusion candidates.

JAFFA-Hybrid
[32]

R,A After removing intronic and intergenic region aligning reads defined by Bowtie genome alignments, the remaining reads
are assembled using Oases. Both the assembled transcripts and the original reads that failed to map to the genome are
then mapped directly to the transcriptome using BLAT. Chimeric BLAT alignments are further assessed as fusion
candidates.

MapSplice [34] R An RNA-seq aligner based on Bowtie similar to TopHat [35] and includes fusion-finding capabilities, although specific algo-
rithmic details are lacking.

nFuse [36] R Designed for use with WGS-seq and RNA-seq but can be executed with RNA-seq only, leveraging its included deFuse with
Bowtie2.

Pizzly [37] R Uses a k-mer based strategy to examine reads that do not map to isoforms consistently via kallisto [38] pseudoalignment.

PRADA [39] R Reads are aligned to a combined genome and transcriptome reference using BWA. Discordant reads identify fusion
candidates, and junction reads are identified by mapping to a database of all possible 5′-3′ chimeric exon junction
database.

SOAP-fuse [40] R The SOAP2 aligner [41] is used to map reads to genomes and spliced transcripts to identify fusion candidates.

STARChip [42] R Uses chimeric reads reported by STAR aimed primarily at identifying circular RNAs but also reports fusion candidates.

STAR-Fusion [43] R Uses chimeric read alignments reported by STAR in its Chimeric.out.junction file to identify candidate fusions followed by
extensive filtering of likely artifacts.

STAR-SEQR [44] R Uses chimeric reads reported by STAR to find fusions.

TopHat-Fusion
[45]

R A modified execution of the TopHat aligner [35, 46] to examine initially unmapped reads as supporting fusion events.

TrinityFusion-C
[47]

A De novo assembles only the chimeric reads defined by STAR using the Trinity assembler [48], and subsequently leverages
GMAP [49, 50] for chimera candidate detection.

TrinityFusion-D
[47]

A De novo assembles all input reads using Trinity, and subsequently leverages GMAP for chimera candidate detection.

TrinityFusion-UC
[47]

A De novo assembles both chimeric and unmapped reads defined by STAR using the Trinity assembler, and subsequently
leverages GMAP for chimera candidate detection.

*Class of fusion detection method: R read mapping, A assembly followed by alignment
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assembly-based methods made the most notable gains
due to increased read length. Of the de novo assembly-
based methods, JAFFA-assembly (but not TrinityFusion)
had a decrease in sensitivity at the most highly expressed
fusions; this could be partly due to JAFFA-assembly using
the Oases assembler [33] as opposed to the Trinity assem-
bler [48] used by TrinityFusion. By restricting assembly to
chimeric reads or to the combined chimeric and un-
mapped reads, TrinityFusion-C and TrinityFusion-UC
greatly outperformed TrinityFusion-D, which uses all in-
put reads and had low to poor sensitivity for all but the
most highly expressed fusions. TrinityFusion-D often pref-
erentially reconstructed the normal (unfused) transcripts
instead of rather than in addition to the fusion transcript
(e.g., Additional file 2: Figure S4).

Fusion transcript detection accuracy with RNA-seq from
cancer cell lines
We next turned to benchmark fusion detection accuracy
using RNA-seq from 60 cancer cell lines. A major chal-
lenge in benchmarking using real RNA-seq is that the
truth set cannot be perfectly defined. Earlier

benchmarking studies of fusion prediction accuracy
using RNA-seq from cancer cell lines [15, 28, 32, 54, 55]
relied on 53 experimentally validated fusion transcripts
from four breast cancer cell lines: BT474, KPL4, MCF7,
and SKBR3 [56–59] (Additional file 1: Table S3). How-
ever, these fusions arguably represent too small a target
truth set for rigorous benchmarking, and the catalog of
true fusions for these four cell lines may still be
incomplete.
As an alternative, we pursued a “wisdom of crowds”

approach [60], where we define true fusions for bench-
marking purposes as those predicted by at least n differ-
ent methods, false predictions as those predicted
uniquely by any single method, and unsure (unscored)
fusions as those non-unique fusions predicted by fewer
than n different methods (alternative scoring schemes
had mostly minimal effects (see the “Methods” section)).
To this end, we called fusion predictions on the cancer
cell line transcriptomes (Additional file 1: Table S4).
To evaluate the merits of this approach, we first com-

posed truth sets this way for the four breast cancer cell
lines above. Only one of the 53 experimentally validated

Fig. 2 Fusion prediction accuracy on simulated fusion RNA-seq data. a Distribution of AUC values across replicates for both the 50 base length
(PE 50) and 101 base length (PE 101) simulated paired-end RNA-seq fusion data sets. JAFFA-Hybrid and JAFFA-Direct were incompatible with the
shorter PE 50 data set and so only results for longer PE 101 data are shown. b Heatmaps illustrating sensitivity for fusion detection according to
fusion expression levels. Fusions were divided into bins based on log2(TPM) expression levels, and the percent of fusions identified within each
expression bin are indicated according to color and intensity

Haas et al. Genome Biology          (2019) 20:213 Page 5 of 16



fusions (SKBR3|CSE1L--AL035685.1) was predicted by a
single method (FusionCatcher). Of a total of 86 fu-
sions predicted by at least three methods, we found
44 experimentally validated fusions (Fig. 3a). As we
define potential fusion transcript truth sets by requir-
ing an increasing number n of methods to agree,
there was an increased enrichment for experimentally
validated fusions (Fig. 3b). Thus, by pursuing this ap-
proach, rather than being limited to a single truth set,
we could explore all possible truth sets defined by a
range of values for n and examine the distribution of
leaderboard rankings for methods across all evaluated
truth sets. Accordingly, for the remaining 56 cancer
cell line transcriptomes, we evaluated each truth set
from n = 3 to 10 and examined each method’s leader-
board ranking given each corresponding truth set
(Fig. 4a). Notably, relative rankings were mostly stable
regardless of which n value was used to define the
truth set.

Top-performing fusion prediction methods assessed
using cancer RNA-seq
STAR-Fusion had the best ranking across methods in
most cases, followed by Arriba and STAR-SEQR (Fig.
4a). Our TrinityFusion-C method was ranked highest
among the de novo assembly methods. Notably, the top
three ranked methods all leverage the STAR aligner;
conversely, STARChip, which also uses STAR, had mod-
erate accuracy, lacking sensitivity and specificity com-
pared to other STAR-based methods. STARChip was
primarily developed to detect circular RNAs and so may
not have been fully optimized towards the detection of
fusions. Restricting Arriba to its self-declared high confi-
dence predictions results in slightly lower accuracy than
leveraging its full set of predictions (Fig. 4a, c), stemming
from decreased sensitivity that is not sufficiently offset
by its increased precision (Fig. 4d).
Execution times varied dramatically across methods

(Fig. 4b). The fastest methods include Pizzly, an

Fig. 3 Identification of experimentally validated fusions in breast cancer cell lines BT474, KPL4, MCF7, and SKBR3. a All fusions identified by at
least three different methods are shown and ranked from being predicted by fewest to most methods in an UpSetR [61] style plot (UpSetR code
forked and modified to show individual fusion group memberships here [62]). Previously reported experimentally validated fusions are shaded to
facilitate identification. b Bar plot showing the number of experimentally validated fusions (left axis) contained within the union of all predictions
supported by at least the specified number of fusion prediction methods. Also shown is the corresponding percent of the union of predictions
containing experimentally validated fusions (blue line, right axis)
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alignment-free kmer-based approach, followed by the
STAR-based methods and FusionCatcher. While
STAR-Fusion does not have an alignment-free ap-
proach, it does have an “alignment-previous” ap-
proach, such that if STAR was run previously as part
of another RNA-seq pipeline (e.g., for transcript
quantitation), it can use the chimeric junction data
file generated during that alignment. This STAR-
Fusion “kickstart” mode had the fastest time for fu-
sion discovery (Fig. 4b).

Considering both accuracy and execution time, the
most accurate methods, including STAR-Fusion, Arriba,
and STAR-SEQR, were also among the fastest (Fig. 4c).
ChimPipe and TrinityFusion-C were also found as high
ranking for accuracy, but required far longer execution
times. Based on sensitivity and precision at a point of
peak prediction accuracy, we ascertain two groups of
moderate-to-high accuracy predictors, either positioned
towards high sensitivity or high precision (Fig. 4d,
dashed rectangles). STAR-Fusion, Arriba, and STAR-

Fig. 4 Fusion prediction accuracy on 56 cancer cell lines. a The distribution of leaderboard rankings for accuracies assessed using the varied truth
sets. Methods are ranked from left to right according to median accuracies. b The distributions of execution times for all cancer cell lines are
shown. All methods were run on the Broad Institute computing grid with commodity hardware and allocated single cores, with the exception of
the two slowest methods, TrinityFusion-UC and TrinityFusion-D, which were each given four cores. c Median rankings are plotted vs. median run
times, with a black dashed box drawn around the most accurate and fastest methods. d The PPV and TPR are shown at maximum point accuracy
(F1) for an example trial involving the truth set defined as requiring at least seven methods to agree. The most accurate methods are found to
cluster into groups of high sensitivity (top dashed rectangle) or high precision (right dashed rectangle)

Haas et al. Genome Biology          (2019) 20:213 Page 7 of 16



SEQR comprise the high-sensitivity group, whereas
PRADA, ChimPipe, SOAP-fuse, and the different execu-
tion modes of TrinityFusion were in the high-specificity
group. This pattern was robust for most truth sets ex-
plored (Additional file 2: Figure S5).

Exploration of de novo reconstructed transcripts of
potential foreign origin
In addition to de novo reconstruction for fusion transcript
identification, TrinityFusion, JAFFA, and other de novo
assembly-based methods allow us to explore other tran-
scripts that are not well represented by the reference gen-
ome sequence or that are lacking from the reference
altogether. In patient samples, these help provide insight
into viruses or microbes evident in the sample, which may
contribute to tumorigenesis or disease progression [63, 64].
We thus further explored those TrinityFusion-

reconstructed transcripts from cancer cell lines that may
be of viral or microbial origin. We searched all Trinity-
Fusion (modes D, UC, and C)-reconstructed transcripts
against available viral and bacterial sequences using Cen-
trifuge [65] (Additional file 1: Table S5). Most cell lines
(56/60) had at least one Trinity-reconstructed transcript
classified by Centrifuge as likely of foreign origin. The
vast majority of those (77%) were derived from
TrinityFusion-UC, followed by TrinityFusion-D (23%),
and included only two transcripts from TrinityFusion-C.
Next, we aligned all TrinityFusion-UC-reconstructed
transcripts against the combined viral, bacterial, and hu-
man genome database (blastn [66], e value threshold
10−10, with reconstructed sequences and alignment coor-
dinates provided in Additional file 1: Table S6). We only
detected significant alignments to known mammalian vi-
ruses and bacteriophage. Half of the cell lines had evi-
dence of murine type C retrovirus (30/60), and Trinity
fully or nearly fully reconstructed these viruses in cell
lines VCaP_85 (9.5 kb contig) and G28050.KMM-1.1
(8.4 kb contig), with this pair of viruses sharing 94% nu-
cleotide identity. Consistently, the VCaP_85 retrovirus
sequence was previously reported as a xenotropic mur-
ine leukemia virus in prostate cancer cell line VCaP [67].
Nine cell lines had evidence of “squirrel monkey retro-
virus”—originally identified in a lymphoblastoid cell [68].
Other notable examples included a 40-kb contig corre-
sponding to the phage lambda genome that we recon-
structed from the K562 cell line RNA-seq reads
(possibly a spike-in control or sequencing library con-
tamination), and a bovine polyomavirus in breast cancer
cell line SKBR3, likely reflecting contamination through
fetal bovine serum albumin [69].

Discussion
Fast and accurate fusion detection is important in both
cancer research and the precision medicine pipeline.

Despite dozens of tools and utilities being available,
users have few guidelines as to which to pursue, and de-
velopers do not have clear benchmarks to assess the util-
ity of newly proposed methods. Our comprehensive
benchmarking shows that only a few of the available
tools were both fast and accurate, highlighting those best
suited to meet the demands of large-scale tumor sample
screening.
In particular, STAR-Fusion, Arriba, and STAR-SEQR

had the best combination of speed and accuracy com-
pared to 19 other methods evaluated on cancer tran-
scriptome data. These were also among the most
accurate methods when evaluated with simulated RNA-
seq, which mostly differentiated methods based on sensi-
tivity rather than precision of fusion prediction. Al-
though FusionCatcher was not among the top
performing methods on simulated data, its overall accur-
acy and execution times were impressive. Note that an
earlier version of FusionCatcher (v0994e) had a slightly
improved accuracy in our evaluations compared to the
contemporary release (v1.10), with the latest release
seemingly tuned for improved recall at the cost of re-
duced precision (Additional file 2: Figures S1–S3, S5). In
contrast to an earlier assessment of fusion prediction ac-
curacy that found EricScript to be top-ranking [16], in
our assessment, EricScript was the least accurate method
on cancer cell line RNA-seq, suffering mostly from a
high rate of false positives. Unless indicated otherwise,
we used default parameters for all methods. Adjustments
in parameters could certainly impact accuracy character-
istics, and the framework for benchmarking fusion de-
tection methods that we established here facilitates
exploration of the parameter space for further
optimization, and exploring accuracy characteristics
across software versions.
While our RNA-seq simulations were useful for defin-

ing an unambiguous truth set, and evaluating the impact
of fusion expression levels and read length, some charac-
teristics of real RNA-seq data are not presently modeled,
such as reverse transcription artifacts and off-target
transcription (e.g., non-spliced introns and intergenic
transcription). Future developments that improve on
RNA-seq simulations should further the use of simulated
data for benchmarking fusion detection and related
methods.
Our application of the “wisdom of crowds” approach

towards defining truth sets for benchmarking fusion de-
tection with real cancer transcriptome data allowed us
to extend our benchmarking with real data well beyond
the small set of cancer cell lines for which there are
known experimentally validated fusions. The wisdom of
crowds approach enriched for validated fusions when
applied to the four breast cancer cell lines. In addition to
the 44 validated fusions predicted by at least three
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methods on the four breast cancer cell lines, we identi-
fied additional well-supported fusions that have not yet
been experimentally tested to our knowledge. One of
these fusions, SULF2--ZNF217 predicted by nine differ-
ent methods in cell line MCF7, was recently predicted to
be a potential driver of breast cancer [70]. Future follow-
up investigations are likely to capture experimental evi-
dence for many of these additional fusions as well.
The read-mapping-based approaches to fusion detec-

tion have a level of sensitivity that is not met by de novo
assembly-based methods, requiring at minimum a small
number of fusion-supporting reads that would unlikely
assemble into a sufficiently long transcript contig. By
restricting the assembly to the chimeric and unmapped
reads, TrinityFusion demonstrated greater accuracy in
fusion detection than from assembling all of the input
reads, presumably due to the reduced search space and
the depletion of reads from the non-fused counterparts
that could interfere with robust fusion isoform assembly.
De novo methods do have other advantages in addition
to recovering fusion isoform sequences. By exploring the
de novo reconstructed transcripts derived from chimeric
and unmapped reads, we identified transcripts of likely
foreign origin among many of the cancer cell lines, in-
cluding tumor viruses. Our TrinityFusion-UC method
for assembly and analysis of de novo reconstructed tran-
scripts based on unmapped and chimeric reads should
continue to prove useful in future studies that extend to
patient samples.
While there have been substantial advances in fusion

detection algorithms over the last decade, there remain
opportunities for improving fusion transcript prediction
accuracy, developing more realistic RNA-seq simula-
tions, and expanding the catalog of experimentally vali-
dated fusion transcripts. As sequencing technologies and
experimental protocols continue to evolve, the universe
of available methods and software will surely continue to
expand. Our fusion transcript benchmarking framework
provides a flexible system for evaluating these newly de-
veloped methods as they become available. All bench-
marking software and data are freely available at https://
github.com/fusiontranscripts/FusionBenchmarking .

Conclusion
In applying our fusion transcript benchmarking frame-
work to 21 different methods, leveraging simulated and
real cancer RNA-seq, we identified STAR-Fusion,
Arriba, and STAR-SEQR as top performers and likely
best suited for current applications in processing cancer
transcriptome samples. While the de novo assembly-
based fusion detection methods are unable to attain the
sensitivity of the read-mapping-based approaches, they
provide more complete fusion isoform sequence evi-
dence and can reconstruct foreign transcripts such as

tumor viruses. Our fusion transcript benchmarking
methods and software provide a framework and metrics
for systematic benchmarking and evaluation of add-
itional methods as they become available.

Methods
Benchmarking fusion prediction accuracy
We assessed fusion prediction accuracy using simulated
and real RNA-seq and compared 23 fusion prediction
methods including methods we developed and described
here: STAR-Fusion [43] and three execution modes of
TrinityFusion [47]. Specifically, we downloaded and in-
stalled each of (1) Arriba [17], (2) ChimeraScan [19], (3)
ChimPipe [21], (4) deFuse [24], (5) EricScript [25], (6)
FusionCatcher [28], (7) FusionHunter [30], (8) InFusion
[31], (9) JAFFA-Assembly [32], (10) Jaffa-Direct [32],
(11) JAFFA-Hybrid [32], (12) MapSplice [34], (13) nFuse
[36], (14) Pizzly [37], (15) PRADA [39], (16) SOAPfuse
[40], (17) STARChip [42], (18) STAR-SEQR [44], and
(19) TopHat-Fusion [45, 46]. To ensure consistency, we
reconfigured SOAPfuse and TopHat-Fusion to leverage
the GENCODE v19 annotation. Programs and parame-
ters used are provided in Additional file 1: Table S7.
Benchmarking data, scripts, and the analysis protocols
followed are further provided at [71].

Simulated fusion transcripts and RNA-Seq
We generated simulated chimeric transcripts using cus-
tom scripts, developed and released here as the Fusion-
Simulator Toolkit [72]. FusionSimulator selects two
protein-coding genes at random from the GENCODE
v19 annotations [73]. It then constructs a fusion tran-
script by randomly fusing a pair of exons selected at ran-
dom from each gene, requiring that each gene
contributes at least 100 bases of transcript sequence to
the generated fusion and that the fusion breakpoint oc-
curs between two exons that have consensus dinucleo-
tide splice sites. In generating a set of fusion genes, any
gene participating as a fusion partner is allowed to exist
in only one fusion pair.
We simulated RNA-Seq reads using “rsem-simulate-

reads” in the RSEM software [74]. RSEM was first used
to estimate the expression values of the GENCODE v19
reference transcripts supplemented with the simulated
fusion transcripts. Next, the expression values of the
simulated fusion transcripts were reset randomly accord-
ing to a log2 distribution of transcripts per million
(TPM) expression values in the dynamic range of 1 to
15. Simulated read lengths and read quality characteris-
tics were modeled based on real RNA-seq data sets as
described below. Note, however, that while the read se-
quence simulations model sequence and fragment length
characteristics of real RNA-seq data, the current simula-
tions do not model reverse transcription template
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switching or other important confounding characteris-
tics of real RNA-seq data that are relevant to fusion de-
tection. After directly setting fusion transcript
expression values, all transcript expression values were
renormalized to TPM values (summing to 1 million) and
subject to RNA-seq read simulation using rsem-
simulate-reads.
This process was applied separately for ten samples,

each generating 500 random fusions and simulating 30
million PE Illumina RNA-seq reads. Half of the simu-
lated samples generated 50 base reads (PE-50) and the
other half 101 base reads (PE-101). The PE-50 reads
were modeled on short RNA-seq reads generated by the
Illumina Human Body Map 2.0 study (ArrayExpress
study E-MTAB-513 [75];), and the PE-101 based on a
set of cancer cell lines from the Cancer Cell Line
Encyclopedia (CCLE) [76] (sources for the targeted data
sets are listed in Additional file 1: Table S8). Simulated
fusion transcripts and simulated RNA-seq are made
available at [77].

Fusion prediction in cancer cell line transcriptomes
Paired-end Illumina RNA-seq were obtained from 60
publicly available cancer cell line data sets, spanning a
variety of cancer types (data sources and representative
cancer types are listed in Additional file 1: Table S9).
Cancer cell lines included 52 from the CCLE project and
further supplemented with 8 other cancer cell lines
popularly studied for fusion detection including the
breast cancer cell lines BT474, KPL4, MCF7, and SKBR3
[56]; VCaP (prostate cancer); LC2/ad and H2228 (lung
adenocarcinoma); and K562 (erythroleukemia). To facili-
tate benchmarking and runtime analysis, 20 million
paired-end reads were randomly sampled from each data
set and targeted for fusion prediction. All sampled can-
cer cell line RNA-seq data targeted for fusion discovery
are available at [78]. For CCLE RNA-seq, the names of
the reads leveraged are provided, and the sequences
must be obtained from the CCLE project according to
their data use agreement. For other publicly available
cell line RNA-seq, the FASTQ files as used here are dir-
ectly accessible.

Fusion prediction accuracy computation
True-positive (TP), false-positive (FP), and false-negative
(FN) fusion predictions were assessed for each method.
The true positive rate (TPR; or recall or sensitivity),
positive predictive value (PPV, precision), and F1 accur-
acy measure (the harmonic mean of TPR and PPV) were
computed according to standards:

Recall ¼ TPR ¼ TP= TPþ FNð Þ
Precision ¼ PPV ¼ TP= TPþ FPð Þ

F1 ¼ 2� TPR�PPVð Þ= TPRþ PPVð Þ

TP and FP were assessed at each minimum supporting
evidence threshold to generate precision-recall curves,
and prediction accuracy was measured as the area under
the precision-recall curve (AUC), which is better suited
than the popular receiver operating characteristic curve
for studies such as fusion prediction where the numbers
of true negatives (at least ~ 20k2, considering possible
gene pairings) far exceed the number of true-positive fu-
sions [79].
Fusion accuracy computations as described here were

performed using lenient scoring criteria as follows.
Given a true fusion pair “GeneA–GeneB”, the following
predictions would be scored as true positives:

� “GeneB–GeneA” having the fusion partners in
reverse order

� “GeneZ–GeneB” where GeneZ physically overlaps
the genomic coordinates of GeneA

� “GeneZ–GeneB” where GeneZ is a potential paralog
of GeneA

Further, in the case where multiple fusions are pre-
dicted and there is uncertainty as to which paralogous
family member is the true fusion partner (i.e., “GeneA–
GeneB” is predicted in addition to GeneZ–GeneB, the
fusion GeneA–GeneB is scored as a single TP, and
GeneZ–GeneB is ignored. Each of the rules described
above applies identically for cases where GeneZ replaces
GeneB instead of GeneA. This lenient scoring mostly
serves to reduce numbers of FP resulting from paralog
confusion or uncertainty, as shown in Additional file 2:
Figure S6.
For the cancer cell lines, truth sets were defined by fu-

sions agreed upon by at least n different methods. The
pairwise correlations among fusion predictions by
methods are shown in cr 2: Additional file 2: Figure S7.
To avoid including highly correlated methods that would
otherwise bias the wisdom of crowds approach, JAFFA-
Hybrid was excluded due to its high correlation with
JAFFA-Direct. Furthermore, TrinityFusion-C but not the
other TrinityFusion modes contributed votes. Since we
did not utilize DNA-seq data here, nFuse was executed
using its included version of deFuse as instructed [80];
since nFuse (deFuse) was not found highly correlated
with the original deFuse predictions, we retained both.
Finally, while Arriba_hc was scored separately from
Arriba, those fusion predictions did not contribute votes
independently from Arriba. Fusions predicted by at least
two methods but fewer than n methods were treated as
uncertain and ignored. Uniquely predicted fusions (those
not predicted by at least two of the counted methods)
were assigned as FP. The effect of using alternative
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scoring schemes that penalize the uncertain predictions
or fail to account for paralog uncertainty are shown in
Additional file 2: Figures S8,S9.

Fusion prediction by STAR-Fusion
STAR-Fusion is a component of the Trinity Cancer
Transcriptome Analysis Toolkit (CTAT) project [81]
and leverages a precompiled bundle of genomic re-
sources and metadata provided as a CTAT genome li-
brary (described below). The STAR-Fusion pipeline
(Additional file 2: Figure S10) takes Illumina RNA-seq
data as input and generates lists of candidate fusion
transcripts as output. STAR-Fusion release v1.5 was
used with the STAR aligner v2.6.1a. The STAR aligner
command is as follows (example provided for cell line
K562 test data):
STAR –genomeDir CTAT_GENOME_LIB/GRCh37_

gencode_v19_CTAT_lib_Feb092018/ctat_genome_lib_
build_dir/ref_genome.fa.star.idx --outReadsUnmapped
None --chimSegmentMin 12 --chimJunctionOverhang-
Min 12 --chimOutJunctionFormat 1 --alignSJDBover-
hangMin 10 --alignMatesGapMax 100000
--alignIntronMax 100000 --alignSJstitchMismatchNmax
5 -1 5 5 --runThreadN 1 --outSAMstrandField intro-
nMotif --outSAMunmapped Within --outSAMtype
BAM Unsorted --readFilesIn K562/reads. SRR521460_
1.fastq.20M.fq.gz K562/reads. SRR521460_2.fastq.20
M.fq.gz--outSAMattrRGline ID:GRPundef --chimMulti-
mapScoreRange 10 --chimMultimapNmax 10 --chim-
NonchimScoreDropMin 10 –peOverlapNbasesM 0.1
--genomeLoad NoSharedMemory --twopassMode Basic
--readFilesCommand “gunzip -c”.
The resulting “Chimeric.out.junction” file containing

all chimeric split and discordant reads is leveraged as in-
put to STAR-Fusion.
STAR-Fusion maps the reads to exons of reference

gene structure annotations based on coordinate overlaps.
STAR-Fusion primarily focuses on filtering the align-
ment evidence and preliminary fusion predictions to re-
move likely artifacts and likely false-positive predictions.
First, read alignments between pairs of genes that are lo-
calized to sequence similar regions between those genes
are excluded (Additional file 2: Figure S11). A database
of all-vs-all blastn matches between all reference cDNA
sequences is queried to identify regions of sequence
similarity between candidate fusion genes. If chimeric
read alignment evidence overlaps sequence similar re-
gions, the alignment is discarded. Duplicate paired-end
read alignments are removed, and the remaining align-
ments are assigned to preliminary fusion gene pair can-
didates. STAR-Fusion selects those candidate gene pairs
for which the fusion-supporting evidence indicates a
sense-sense orientation between the fusion pairs and
scores them according to the number of split reads

supporting the fusion breakpoint and the number of
paired-end fragments that span the breakpoint.
These preliminary fusion gene candidates are filtered

in two stages: a basic filtering stage that requires mini-
mum fusion evidence support and an advanced filtering
stage that examines characteristics of the genes involved
in the candidate fused gene pairs. The basic filtering re-
quires that at least two RNA-seq fragments support the
fusion and at least one of the reads is a split read that
defines the fusion breakpoint within the spliced tran-
scripts (Additional file 2: Figure S12a). If the fusion
breakpoint does not correspond to annotated reference
exon splice sites, then at least three split reads are re-
quired to provide evidence for that breakpoint. If there
are no spanning fragments and only split reads support-
ing the fusion, then we require at least 25 base length
alignment on each side of the splice junction (Additional
file 2: Figures S12b).
The advanced fusion filtering involves a series of oper-

ations that examine characteristics of the fusion genes in
the context of the individual fusion pair and in compari-
son to other fusion predictions called in that sample:

� Fusion paralog filter: excludes fusion candidate
GeneA–GeneB if GeneA is a likely paralog of
GeneB. Also, if there exists a candidate “GeneA–
GeneC” such that GeneC is a likely paralog of
GeneB, and the fusion evidence supporting GeneA–
GeneB > GeneA–GeneC, then GeneA–GeneC is
discarded assuming GeneA–GeneB is the correct
fusion and the evidence for GeneA–GeneC likely
stems from mismapping.

� Promiscuous fusion filter: if candidate GeneA–
GeneB exists along with alternative fusion
candidates GeneA–GeneC and GeneA–GeneD, and
the fusion evidence supporting GeneA–GeneB
greatly exceeds that of the alternative fusions (at
least 20× support), the alternatives are discarded and
the dominant fusion pair is retained. If afterwards,
GeneA is found to have at least ten fusion partners,
all GeneA-containing fusion pairs are excluded from
the sample altogether.

� “Red herring” filter: fusion pairs are annotated using
FusionAnnotator [82] with the CTAT Human
Fusion Lib database release v0.1.0 [83]. Any fusion
pair annotated as having been found in normal
RNA-seq data sets, including a mitochondrial or
HLA gene partner, is discarded. Any fusion involv-
ing gene pairs that are both immunoglobulin gene
segments are also discarded.

� Fusion expression filter: the abundance of RNA-seq
fragments supporting the fusion are normalized ac-
cording to sequencing depth as fusion fragments per
million total RNA-seq fragments (FFPM). Fusion

Haas et al. Genome Biology          (2019) 20:213 Page 11 of 16



candidates having less than 1 evidence fragment per
10 M total reads (0.1 FFPM) are discarded as insuffi-
ciently supported. The 0.1 FFPM corresponds to the
0.99 quantile of FFPM values for non-recurrent fu-
sions identified in GTEx samples (data not shown).

The advanced fusion filtering described above is im-
plemented in our “FusionFilter” [84] software module
shared among CTAT fusion software. STAR-Fusion
code and documentation is available on GitHub at [43].
STAR-Fusion was executed from with a Docker image
containing all software, including the FusionAnnotator
and FusionFilter modules, as provided on DockerHub
[85].

Fusion prediction by TrinityFusion
An overview of the TrinityFusion pipeline is provided as
Additional file 2: Figure S13. The TrinityFusion pipeline
uses the Trinity assembler to de novo reconstruct tran-
script sequences from RNA-seq, and GMAP [49, 50] to
then align the transcripts to the genome to identify can-
didate chimeric sequences. The fusion candidates are ex-
amined to remove likely assembly artifacts, and read
support for the fusion is estimated by leveraging Bowtie2
[29] to align the original RNA-seq reads to the Trinity
fusion transcripts to further classify reads as fusion span-
ning or junction reads.
TrinityFusion has three different execution modes

based on the inputs to be used for de novo reconstruc-
tion and subsequent fusion detection:

� TrinityFusion-D performs Trinity de novo assembly
on all input reads.

� TrinityFusion-C restricts Trinity de novo assembly
to only those reads defined as chimeric or
discordant according to STAR genome alignments.

� TrinityFusion-UC utilizes both the chimeric and
discordant reads along with all reads that fail to
align to the genome according to STAR.

For execution modes TrinityFusion-C and
TrinityFusion-UC, there is a prerequisite that STAR has
been executed (as described above for STAR-Fusion) to
generate the genome read alignments (bam output file)
and the STAR Chimeric.out.junction that defines the
discordant and chimeric read alignments. TrinityFusion
uses these reports to define the target reads and then ex-
tracts them from the input FASTQ files to create inputs
for Trinity de novo assembly.
The reconstructed transcripts are aligned to the hu-

man reference genome as provided in the CTAT gen-
ome lib (see below) like so, using GMAP:
gmap -D $GMAP_DB_DIR -d $GMAP_DB_NAME

Trinity.fasta -f 3 -n 0 -x 30 -t $CPU > gmap.gff3.

The chimeric alignments defined by GMAP are then
further annotated according to overlap with reference
gene annotations. To avoid likely false positives arising
from misassembly of related sequences, we examine the
precision of the alignment at the breakpoint between the
two gene candidates. Each candidate chimeric transcript
assembly sequence is extracted and split with 25 base
overhangs at the putative breakpoint. Then, each split
sequence with overhang is realigned to the reference
genome using GMAP to determine the extent of the
alignment into the overhang region at each putative
chimeric locus. If alignments extend beyond 12 bases
into the overhang region, that candidate fusion tran-
script is eliminated as a likely assembly artifact between
sequence-similar genes. This fuzzy alignment logic was
inspired by a similar process performed by JAFFA-
assembly [32] that examines fuzzy boundaries of candi-
date chimeric BLAT [27] alignments.
All input reads are then aligned against the remaining

candidate assembled chimeric fusion transcripts using
Bowtie2 like so:
bowtie2 -k10 -p 4 --no-mixed --no-discordant --very-

fast --end-to-end -x $bowtie2_target -1 $left_fq_file -2
$right_fq_file
Reads spanning or overlapping the fusion breakpoint

are counted. The breakpoint is required to precisely
match reference exon splice sites, as allowing for non-
reference splice junctions was found to greatly inflate
the false-positive rate (data not shown). At least two
RNA-seq fragments must align across or span the break-
point supporting the fusion. If there are only
breakpoint-overlapping reads and no spanning frag-
ments, then we ensure that the 12 bases on both sides of
the breakpoint are of sufficient sequence complexity, re-
quiring an entropy ≥ 1.5.
Finally, fusion gene pairs are filtered according to the

same “advanced” filtering criteria leveraged by STAR-
Fusion as implemented in the FusionFilter module, con-
sidering paralogs, promiscuity, and potential red herrings.
TrinityFusion software organization: TrinityFusion, as

other Trinity CTAT software pipelines, is implemented
as a set of software modules that can be easily shared
among Trinity CTAT applications for flexible execution
wherever shared functionality is desirable. The Trinity-
Fusion discordant and unmapped read assembly is en-
capsulated by a DISCASM module [86]. The assembled
transcript chimeric alignment detection is encapsulated
by our GMAP-fusion module [87]. Both DISCASM and
GMAP-fusion are then leveraged as shared submodules
that define the TrinityFusion software. TrinityFusion
software code and documentation is available on GitHub
at [88]. TrinityFusion was executed as a Singularity
image built from the Docker image available at Docker-
Hub [89].
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The CTAT genome library leveraged by STAR-Fusion and
TrinityFusion
The CTAT genome library includes the human refer-
ence genome, reference gene structure annotations, and
a database of all-vs-all blastn alignments among the ref-
erence transcript sequences used for paralog detection
and evaluating potential read mismappings between
similar gene sequences. The CTAT genome library used
in this study includes the human hg19 reference genome
and GENCODE v19 gene annotations [73]. Blastn align-
ments were generated separately for reference coding se-
quences (CDS) supplemented with long noncoding
RNAs (lncRNAs) and for reference cDNA sequences (in-
cluding untranslated regions) as follows:
All-vs-all blastn search using CDS and lncRNAs:

“blastn -query ref_annot.cdsplus.fa -db ref_annot.cds-
plus.fa -max_target_seqs 10000 -outfmt 6 -evalue 1e-10
-num_threads $CPU -dust no > ref_
annot.cdsplus.allvsall.outfmt6”
All-vs-all blastn search using cDNA sequences: “blastn

-query ref_annot.cdna.fa -db ref_annot.cdna.fa -max_tar-
get_seqs 10000 -outfmt 6 -evalue 1e-10 -num_threads
$CPU -dust no > ref_annot.cdna.allvsall.outfmt6”
The above-generated “ref_annot.cdsplus.allvsal-

l.outfmt6” alignments are used for candidate paralog de-
tection, and the above “ref_annot.cdna.allvsall.outfmt6”
alignments are used for assessing read alignments be-
tween gene pairs. This latter file includes alignments be-
tween UTR regions that may confound read mappings
but may not indicate evolutionarily relatedness between
corresponding genes (i.e., alignments among repeats in
UTR regions).
The CTAT genome lib also incorporates our human

fusion library [83], which incorporates lists of fusions
relevant to cancer, and those identified among normal
tissues and unlikely to be relevant to cancer biology. The
cancer-relevant fusions include those reported in the
Mitelman Database of Chromosome Aberrations and
Gene Fusions in Cancer [90], ChimerDB 2.0 [91], COS-
MIC [92, 93], and fusions discovered in cancer cell lines
and surveys of tumor samples [1, 94, 95]. Those fusions
found in normal tissues comprise our red herrings list
and include those previously identified via our internal
screens of GTEx data, our exploration of the Illumina
human body map data [75], previous reports of fusions
found in normal tissue samples [96–98], and lists of
gene families and paralogs that may confound fusion
prediction [99, 100]. FusionCatcher uses many of these
same resources, and we credit FusionCatcher for inspir-
ing the development of our growing collection and our
companion utility FusionAnnotator [82] for annotating
gene fusions accordingly. FusionAnnotator comes bun-
dled as a shared software module in both CTAT fusion
tools STAR-Fusion and TrinityFusion.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1842-9.

Additional file 1. Table S1. simulated 50 base PE read fusion
predictions; Table S2. simulated 101 base PE read predictions; Table S3.
known experimentally validated fusions; Table S4. fusion predictions on
cancer cell lines; Table S5. Centrifuge-based viral and microbial source
predictions for Trinity-assembled transcripts; Table S6. Viral assignments
of Trinity-UC assembled transcripts via blastn; Table S7. Fusion prediction
software commands; Table S8. sources of RNA-seq data for modeling
simulated RNA-seq; Table S9. Cancer cell lines targeted for fusion
discovery.

Additional file 2: Figure S1. Prediction counts vs. minimum sum
evidence fragments for the simulated 50 base length PE reads; Figure
S2. Prediction counts vs. minimum sum evidence fragments for the
simulated 101 base length PE reads; Figure S3. TPR and PPV at
maximum F1 for fusion predictions based on simulated data sets; Figure
S4. Contrasting de novo transcript reconstructions according to
TrinityFusion execution mode; Figure S5. TPR vs. PPV at maximum F1 for
each truth set; Figure S6. Adjustments in counts of TP and FP after
accepting likely paralogs as proxies for known fusion partners; Figure S7.
Correlation of fusion predictions among methods on the cancer cell line
data sets; Figure S8. Impact of ‘allow paralogs’ and ‘ignore uncertain’
fusions on accuracy rankings; Figure S9. Distribution of accuracy
rankings with the paralog proxy allowance disabled; Figure S10.
Overview of the STAR-Fusion pipeline; Figure S11. Filtering of chimeric
and discordant reads; Figure S12. Basic criteria for filtering preliminary
fusion candidates; Figure S13. TrinityFusion Pipeline.

Additional file 3. Review history.

Acknowledgements
We thank our many collaborators including Timothy Tickle, Asma Bankapur,
Carrie Ganote, Thomas Doak, Jing Sun, Catherine Wu, and Xiao Yang for
contributions towards our earliest efforts in the development of our fusion
detection methods, supporting community access to Trinity CTAT execution,
and in applications to patient samples. We additionally thank Daniel Nicorici,
author of FusionCatcher, for inspiration and guidance. We finally thank Leslie
Gaffney and Ania Hupalowska for assistance with graphical illustrations.

Peer review information
Yixin Yao was the primary editor on this article and managed its editorial
process and peer review in collaboration with the rest of the editorial team.

Review history
The review history is available as Additional file 3.

Authors’ contributions
BH wrote the STAR-Fusion and TrinityFusion software, developed the bench-
marking data sets, performed the benchmarking, and wrote the initial draft
of the manuscript. AD enhanced his STAR aligner software to further im-
prove support for fusion detection and collaborated with BH in the develop-
ment of STAR-Fusion. BL contributed to benchmarking methods and related
code. NS conceptualized the earliest invocation of STAR-Fusion and collabo-
rated with BH on further development and implementation. Similarly, NP
conceptualized the earliest invocation of TrinityFusion and collaborated with
BH on further development and implementation. AR is the principal investi-
gator, guided efforts, and contributed to writing the final manuscript. All au-
thors read and approved the final manuscript.

Funding
This work has been supported by Howard Hughes Medical Institute, the
Klarman Cell Observatory, and National Cancer Institute grants U24CA180922,
R50CA211461, R21CA209940, and U01CA214846 collaborative set aside.

Availability of data and materials
All software and data are publicly and freely available. The software and
documentation is made available through GitHub, including software
packages STAR-Fusion https://github.com/STAR-Fusion/STAR-Fusion/wiki [43],

Haas et al. Genome Biology          (2019) 20:213 Page 13 of 16

https://doi.org/10.1186/s13059-019-1842-9
https://doi.org/10.1186/s13059-019-1842-9
https://github.com/STAR-Fusion/STAR-Fusion/wiki


TrinityFusion https://github.com/trinityrnaseq/TrinityFusion/wiki [47], and our
fusion simulation https://github.com/FusionSimulatorToolkit/FusionSimulator-
Toolkit/wiki [72] and benchmarking code https://github.com/fusiontran-
scripts/FusionBenchmarking/wiki [71]. Our benchmarking data are made
publicly available from our Broad data repository, including the samples with
simulated 50 or 101 base PE reads https://data.broadinstitute.org/Trinity/
CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/ [77], and samples
corresponding to the 60 cancer cell lines https://data.broadinstitute.org/Trin-
ity/CTAT_FUSIONTRANS_BENCHMARKING/on_cancer_cell_lines/ [78].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
AR is a founder of and equity holder in Celsius Therapeutics and an SAB
member of ThermoFisher Scientific, Neogene, and Syros Pharmaceuticals. All
other authors declare that they have no competing interests.

Author details
1Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. 2Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. 3Center for
Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy,
and Immunology, Massachusetts General Hospital and Harvard Medical
School, Boston, MA 02129, USA. 4Celsius Therapeutics, Cambridge, MA 02139,
USA. 5Ann Romney Center for Neurologic Diseases, Department of
Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA 02115, USA. 6Howard Hughes Medical Institute, and Koch Institute for
Integrative Cancer Research, Department of Biology, Massachusetts Institute
of Technology, Cambridge, MA 02140, USA.

Received: 19 May 2019 Accepted: 28 September 2019

References
1. Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, et al. The

landscape and therapeutic relevance of cancer-associated transcript fusions.
Oncogene. 2015;34(37):4845–54.

2. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase
fusions in cancer. Nat Commun. 2014;5:4846.

3. Lim TH, Tien SL, Lim P, Lim AS. The incidence and patterns of BCR/ABL
rearrangements in chronic myeloid leukaemia (CML) using fluorescence in
situ hybridisation (FISH). Ann Acad Med Singap. 2005;34(9):533–8.

4. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al.
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate
cancer. Science. 2005;310(5748):644–8.

5. Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, Lim II, et al.
Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar
hepatocellular carcinoma. Science. 2014;343(6174):1010–4.

6. Zhao Z, Verma V, Zhang M. Anaplastic lymphoma kinase: role in cancer and
therapy perspective. Cancer Biol Ther. 2015;16(12):1691–701.

7. Shaw AT, Solomon BJ. Crizotinib in ROS1-rearranged non-small-cell lung
cancer. N Engl J Med. 2015;372(7):683–4.

8. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N,
et al. Five-year follow-up of patients receiving imatinib for chronic myeloid
leukemia. N Engl J Med. 2006;355(23):2408–17.

9. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP. Targeting cancer with
kinase inhibitors. J Clin Invest. 2015;125(5):1780–9.

10. Latysheva NS, Babu MM. Discovering and understanding oncogenic gene
fusions through data intensive computational approaches. Nucleic Acids
Res. 2016;44(10):4487–503.

11. Wang Q, Xia J, Jia P, Pao W, Zhao Z. Application of next generation
sequencing to human gene fusion detection: computational tools, features
and perspectives. Brief Bioinform. 2013;14(4):506–19.

12. Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, et al. Driver
fusions and their implications in the development and treatment of human
cancers. Cell Rep. 2018;23(1):227–38 e3.

13. Hu X, Wang Q, Tang M, Barthel F, Amin S, Yoshihara K, et al. TumorFusions:
an integrative resource for cancer-associated transcript fusions. Nucleic
Acids Res. 2018;46(D1):D1144–D9.

14. Haas BJ, Zody MC. Advancing RNA-Seq analysis. Nat Biotechnol. 2010;28(5):
421–3.

15. Carrara M, Beccuti M, Lazzarato F, Cavallo F, Cordero F, Donatelli S, et al.
State-of-the-art fusion-finder algorithms sensitivity and specificity. Biomed
Res Int. 2013;2013:340620.

16. Kumar S, Vo AD, Qin F, Li H. Comparative assessment of methods for the
fusion transcripts detection from RNA-Seq data. Sci Rep. 2016;6:21597.

17. Uhrig S. Arriba - Fast and accurate gene fusion detection from RNA-Seq
data 2019. Available from: https://github.com/suhrig/arriba.

18. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

19. Iyer MK, Chinnaiyan AM, Maher CA. ChimeraScan: a tool for identifying
chimeric transcription in sequencing data. Bioinformatics. 2011;27(20):2903–4.

20. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10(3):R25.

21. Rodriguez-Martin B, Palumbo E, Marco-Sola S, Griebel T, Ribeca P, Alonso G,
et al. ChimPipe: accurate detection of fusion genes and transcription-
induced chimeras from RNA-seq data. BMC Genomics. 2017;18(1):7.

22. GEMTools. GEMTools 2019. Available from: http://gemtools.github.io/.
23. Marco-Sola S, Sammeth M, Guigo R, Ribeca P. The GEM mapper: fast, accurate

and versatile alignment by filtration. Nat Methods. 2012;9(12):1185–8.
24. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, et al.

deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data.
PLoS Comput Biol. 2011;7(5):e1001138.

25. Benelli M, Pescucci C, Marseglia G, Severgnini M, Torricelli F, Magi A.
Discovering chimeric transcripts in paired-end RNA-seq data by using
EricScript. Bioinformatics. 2012;28(24):3232–9.

26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

27. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
28. Nicorici D, Satalan M, Edgren H, Kangaspeska S, Murumagi A, Kallioniemi

O,Virtanen S, Kilkku O et al. FusionCatcher - a tool for finding somatic fusion
genes in paired-end RNA-sequencing data. bioRxiv 011650. 2014. https://
doi.org/10.1101/011650.

29. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9(4):357–9.

30. Li Y, Chien J, Smith DI, Ma J. FusionHunter: identifying fusion transcripts in
cancer using paired-end RNA-seq. Bioinformatics. 2011;27(12):1708–10.

31. Okonechnikov K, Imai-Matsushima A, Paul L, Seitz A, Meyer TF, Garcia-Alcalde F.
InFusion: advancing discovery of fusion genes and chimeric transcripts from
deep RNA-sequencing data. PLoS One. 2016;11(12):e0167417.

32. Davidson NM, Majewski IJ, Oshlack A. JAFFA: high sensitivity transcriptome-
focused fusion gene detection. Genome Med. 2015;7(1):43.

33. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-
seq assembly across the dynamic range of expression levels. Bioinformatics.
2012;28(8):1086–92.

34. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. MapSplice:
accurate mapping of RNA-seq reads for splice junction discovery. Nucleic
Acids Res. 2010;38(18):e178.

35. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics. 2009;25(9):1105–11.

36. McPherson A, Wu C, Wyatt AW, Shah S, Collins C, Sahinalp SC. nFuse:
discovery of complex genomic rearrangements in cancer using high-
throughput sequencing. Genome Res. 2012;22(11):2250–61.

37. Melsted P, Hateley S, Joseph IC, Pimentel H, Bray N, Pachter L. Fusion
detection and quantification by pseudoalignment. bioRxiv. 2017:166322.
https://doi.org/10.1101/166322.

38. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34(5):525–7.

39. Torres-Garcia W, Zheng S, Sivachenko A, Vegesna R, Wang Q, Yao R, et al.
PRADA: pipeline for RNA sequencing data analysis. Bioinformatics. 2014;
30(15):2224–6.

40. Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, et al. SOAPfuse: an algorithm
for identifying fusion transcripts from paired-end RNA-Seq data. Genome
Biol. 2013;14(2):R12.

41. Hurgobin B. Short read alignment using SOAP2. Methods Mol Biol. 2016;
1374:241–52.

Haas et al. Genome Biology          (2019) 20:213 Page 14 of 16

https://github.com/trinityrnaseq/TrinityFusion/wiki
https://github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/wiki
https://github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/wiki
https://github.com/fusiontranscripts/FusionBenchmarking/wiki
https://github.com/fusiontranscripts/FusionBenchmarking/wiki
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_cancer_cell_lines/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_cancer_cell_lines/
https://github.com/suhrig/arriba
http://gemtools.github.io/
https://doi.org/10.1101/011650
https://doi.org/10.1101/011650
https://doi.org/10.1101/166322


42. Akers NK, Schadt EE, Losic B. STAR chimeric post for rapid detection of
circular RNA and fusion transcripts. Bioinformatics. 2018;34(14):2364–70.

43. Haas BJ. STAR-Fusion code and documentation on GitHub 2019. Available
from: https://github.com/STAR-Fusion/STAR-Fusion/wiki.

44. STAR-SEQR. STAR-SEQR code and documentation on GitHub 2019. Available
from: https://github.com/ExpressionAnalysis/STAR-SEQR.

45. Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel
fusion transcripts. Genome Biol. 2011;12(8):R72.

46. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol. 2013;14(4):R36.

47. Haas BJ. TrinityFusion - Fusion and foreign transcript detection via RNA-seq de novo
assembly 2019. Available from: https://github.com/trinityrnaseq/TrinityFusion/wiki.

48. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-
length transcriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol. 2011;29(7):644–52.

49. Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ. GMAP and GSNAP for
genomic sequence alignment: enhancements to speed, accuracy, and
functionality. Methods Mol Biol. 2016;1418:283–334.

50. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program
for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–75.

51. Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc
Bioinformatics. 2015;51:11 4 1–9.

52. Dobin A, Gingeras TR. Optimizing RNA-Seq mapping with STAR. Methods
Mol Biol. 2016;1415:245–62.

53. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De
novo transcript sequence reconstruction from RNA-seq using the Trinity
platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.

54. Zhao J, Chen Q, Wu J, Han P, Song X. GFusion: an effective algorithm to
identify fusion genes from cancer RNA-Seq data. Sci Rep. 2017;7(1):6880.

55. Paciello G, Ficarra E. FuGePrior: a novel gene fusion prioritization algorithm
based on accurate fusion structure analysis in cancer RNA-seq samples. BMC
Bioinformatics. 2017;18(1):58.

56. Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, et al.
Identification of fusion genes in breast cancer by paired-end RNA-
sequencing. Genome Biol. 2011;12(1):R6.

57. Kangaspeska S, Hultsch S, Edgren H, Nicorici D, Murumagi A, Kallioniemi O.
Reanalysis of RNA-sequencing data reveals several additional fusion genes
with multiple isoforms. PLoS One. 2012;7(10):e48745.

58. Maher CA, Palanisamy N, Brenner JC, Cao X, Kalyana-Sundaram S, Luo S,
et al. Chimeric transcript discovery by paired-end transcriptome sequencing.
Proc Natl Acad Sci U S A. 2009;106(30):12353–8.

59. Asmann YW, Hossain A, Necela BM, Middha S, Kalari KR, Sun Z, et al. A novel
bioinformatics pipeline for identification and characterization of fusion transcripts in
breast cancer and normal cell lines. Nucleic Acids Res. 2011;39(15):e100.

60. Surowiecki J. The wisdom of crowds : why the many are smarter than the
few and how collective wisdom shapes business, economies, societies, and
nations, vol. xxi. 1st ed. New York: Doubleday; 2004. p. 296.

61. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization
of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–40.

62. Haas BJ. forked and modified UpSetR code on GitHub 2019. Available from:
https://github.com/brianjohnhaas/UpSetR/tree/devel.

63. Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–6.
64. Akram N, Imran M, Noreen M, Ahmed F, Atif M, Fatima Z, et al. Oncogenic

role of tumor viruses in humans. Viral Immunol. 2017;30(1):20–7.
65. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive

classification of metagenomic sequences. Genome Res. 2016;26(12):1721–9.
66. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.

BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
67. Sfanos KS, Aloia AL, Hicks JL, Esopi DM, Steranka JP, Shao W, et al.

Identification of replication competent murine gammaretroviruses in
commonly used prostate cancer cell lines. PLoS One. 2011;6(6):e20874.

68. Oda T, Ikeda S, Watanabe S, Hatsushika M, Akiyama K, Mitsunobu F.
Molecular cloning, complete nucleotide sequence, and gene structure of
the provirus genome of a retrovirus produced in a human lymphoblastoid
cell line. Virology. 1988;167(2):468–76.

69. Nairn C, Lovatt A, Galbraith DN. Detection of infectious bovine
polyomavirus. Biologicals. 2003;31(4):303–6.

70. Zhao J, Li X, Yao Q, Li M, Zhang J, Ai B, et al. RWCFusion: identifying
phenotype-specific cancer driver gene fusions based on fusion pair random
walk scoring method. Oncotarget. 2016;7(38):61054–68.

71. Haas BJ. Fusion Transcript Benchmarking Toolkit 2019. Available from:
https://github.com/fusiontranscripts/FusionBenchmarking/wiki.

72. Haas BJ. Fusion Transcript Simulation Toolkit 2019. Available from: https://
github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/wiki.

73. EMBL-EBI. GENCODE Human Release 19 (GRCh37.p13) 2019. Available from:
https://www.gencodegenes.org/human/release_19.html.

74. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics. 2011;12:323.

75. "EMBL-EBI". E-MTAB-513 - RNA-Seq of human individual tissues and mixture
of 16 tissues (Illumina Body Map) 2019. Available from: https://www.ebi.ac.
uk/arrayexpress/experiments/E-MTAB-513/.

76. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.
The Cancer Cell Line Encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature. 2012;483(7391):603–7.

77. Haas BJ. Simulated Fusion Benchmarking Data 2019. Available from: https://
data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_
simulated_data/.

78. Haas BJ. Cancer Cell Line Fusion Benchmarking Data 2019. Available from:
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/
on_cancer_cell_lines/.

79. Davis JaG M. The relationship between precision-recall and ROC curves. In:
Proceedings of the 23rd International Conference on Machine Learning;
2006.

80. nFuse-wiki. nfuse - GettingStarted.wiki 2019. Available from: https://code.
google.com/archive/p/nfuse/wikis/Tutorial.wiki.

81. Haas BJ. Trinity Cancer Transcriptome Analysis Toolkit 2019. Available from:
https://github.com/NCIP/Trinity_CTAT/wiki.

82. Haas BJ. FusionAnnotator 2019. Available from: https://github.com/
FusionAnnotator/FusionAnnotator/wiki.

83. Haas BJ. CTAT_HumanFusionLib 2019. Available from: https://github.com/
FusionAnnotator/CTAT_HumanFusionLib/wiki.

84. Haas BJ. FusionFilter 2019. Available from: https://github.com/FusionFilter/
FusionFilter/wiki.

85. Haas BJ. Docker image used for STAR-Fusion: docker pull trinityctat/
ctatfusion:1.5.0 2018. Available from: https://hub.docker.com/r/trinityctat/
ctatfusion.

86. Haas BJ. DISCASM: Discordant and Unmapped Read De Novo
Transcriptome Assembly 2019. Available from: https://github.com/DISCASM/
DISCASM/wiki.

87. Haas BJ. GMAP-fusion 2019. Available from: https://github.com/GMAP-
fusion/GMAP-fusion/wiki.

88. Haas BJ. TrinityFusion software code and documentation on GitHub 2019.
Available from: https://github.com/trinityrnaseq/TrinityFusion/wiki.

89. Haas BJ. TrinityFusion Docker image used from DockerHub: docker pull
trinityctat/trinityfusion:0.2.0 2019. Available from: https://hub.docker.com/r/
trinityctat/trinityfusion.

90. "Mitelman F JBaMFE. Mitelman Database of Chromosome Aberrations and
Gene Fusions in Cancer 2019. Available from: http://cgap.nci.nih.gov/
Chromosomes/Mitelman.

91. Kim P, Yoon S, Kim N, Lee S, Ko M, Lee H, et al. ChimerDB 2.0--a
knowledgebase for fusion genes updated. Nucleic Acids Res. 2010;
38(Database issue):D81–5.

92. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC:
somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):
D777–D83.

93. "Wellcome Sanger Institute". COSMIC Catalogue of Somatic Mutations in
Cancer 2019. Available from: https://cancer.sanger.ac.uk/cosmic.

94. Alaei-Mahabadi B, Bhadury J, Karlsson JW, Nilsson JA, Larsson E.
Global analysis of somatic structural genomic alterations and their
impact on gene expression in diverse human cancers. Proc Natl
Acad Sci U S A. 2016;113(48):13768–73.

95. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, et al. A
comprehensive transcriptional portrait of human cancer cell lines. Nat
Biotechnol. 2015;33(3):306–12.

96. Greger L, Su J, Rung J, Ferreira PG, Geuvadis C, Lappalainen T, et al.
Tandem RNA chimeras contribute to transcriptome diversity in
human population and are associated with intronic genetic variants.
PLoS One. 2014;9(8):e104567.

97. Babiceanu M, Qin F, Xie Z, Jia Y, Lopez K, Janus N, et al. Recurrent chimeric
fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016;44(6):
2859–72.

Haas et al. Genome Biology          (2019) 20:213 Page 15 of 16

https://github.com/STAR-Fusion/STAR-Fusion/wiki
https://github.com/ExpressionAnalysis/STAR-SEQR
https://github.com/trinityrnaseq/TrinityFusion/wiki
https://github.com/brianjohnhaas/UpSetR/tree/devel
https://github.com/fusiontranscripts/FusionBenchmarking/wiki
https://github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/wiki
https://github.com/FusionSimulatorToolkit/FusionSimulatorToolkit/wiki
https://www.gencodegenes.org/human/release_19.html
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_simulated_data/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_cancer_cell_lines/
https://data.broadinstitute.org/Trinity/CTAT_FUSIONTRANS_BENCHMARKING/on_cancer_cell_lines/
https://code.google.com/archive/p/nfuse/wikis/Tutorial.wiki
https://code.google.com/archive/p/nfuse/wikis/Tutorial.wiki
https://github.com/NCIP/Trinity_CTAT/wiki
https://github.com/FusionAnnotator/FusionAnnotator/wiki
https://github.com/FusionAnnotator/FusionAnnotator/wiki
https://github.com/FusionAnnotator/CTAT_HumanFusionLib/wiki
https://github.com/FusionAnnotator/CTAT_HumanFusionLib/wiki
https://github.com/FusionFilter/FusionFilter/wiki
https://github.com/FusionFilter/FusionFilter/wiki
https://hub.docker.com/r/trinityctat/ctatfusion
https://hub.docker.com/r/trinityctat/ctatfusion
https://github.com/DISCASM/DISCASM/wiki
https://github.com/DISCASM/DISCASM/wiki
https://github.com/GMAP-fusion/GMAP-fusion/wiki
https://github.com/GMAP-fusion/GMAP-fusion/wiki
https://github.com/trinityrnaseq/TrinityFusion/wiki
https://hub.docker.com/r/trinityctat/trinityfusion
https://hub.docker.com/r/trinityctat/trinityfusion
http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://cgap.nci.nih.gov/Chromosomes/Mitelman
https://cancer.sanger.ac.uk/cosmic


98. "Laboratory for Integrated Bioinformatics R, Japan",. ConjoinG: Database of
Conjoined Genes 2018. Available from: https://metasystems.riken.jp/
conjoing/index.

99. Biogenouest. Duplicated Genes Database 2010. Available from: http://dgd.
genouest.org/.

100. ebi.ac.uk. Human gene families 2017. Available from: ftp://ftp.ebi.ac.uk/pub/
databases/genenames/genefam_list.txt.gz.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Haas et al. Genome Biology          (2019) 20:213 Page 16 of 16

https://metasystems.riken.jp/conjoing/index
https://metasystems.riken.jp/conjoing/index
http://dgd.genouest.org/
http://dgd.genouest.org/
ftp://ftp.ebi.ac.uk/pub/databases/genenames/genefam_list.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/genenames/genefam_list.txt.gz

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	A panel of methods for fusion transcript detection
	Fusion transcript prediction accuracy using simulated data
	Read length and fusion expression level affect sensitivity for fusion detection
	Fusion transcript detection accuracy with RNA-seq from cancer cell lines
	Top-performing fusion prediction methods assessed using cancer RNA-seq
	Exploration of de novo reconstructed transcripts of potential foreign origin

	Discussion
	Conclusion
	Methods
	Benchmarking fusion prediction accuracy
	Simulated fusion transcripts and RNA-Seq
	Fusion prediction in cancer cell line transcriptomes
	Fusion prediction accuracy computation
	Fusion prediction by STAR-Fusion
	Fusion prediction by TrinityFusion
	The CTAT genome library leveraged by STAR-Fusion and TrinityFusion

	Supplementary information
	Acknowledgements
	Peer review information
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

