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ABSTRACT 
Sketching and prototyping of design concepts have long 

been valued as tools to support productive early stage 
design. This study investigates previous findings about the 
interplay between the use and timing of use of such design 
tools. This study evaluates such tools in the context of team 
design projects. General trends and statistically significant 
results about “sketchstorming” and prototyping suggest that, 
in certain constrained contexts, the focus should be on the 
quality of information rather than on the quantity of 
information generated, and that prototyping should begin as 
soon as possible during the design process. Ramifications of 
these findings are discussed in the context of educating 
future designers on the efficient use of design tools. 

 
INTRODUCTION 

In the early stages of design, designers and teams of 
designers are known to employ a range of techniques to 
represent and explore design concepts, from sketching to 
physical prototyping and CAD modeling.  

Extensive literature can be found on the respective 
advantages and drawbacks of design tools. For instance, 
sketches have been shown to be highly useful in supporting 
the ideation process because of their ability to preserve 
ambiguity yet allow the expression of key detail, thus 
enabling designers to explore a spectrum of variants 

intuitively. Designers also rely on the development of 
various types of physical prototypes during early phase 
design in order to understand a design's functionality, its 
usability, or its role. In later stages of design, 3D CAD 
modeling is valued for the dynamic and rendered 
visualizations it offers as well as the ability to run 
simulations and computational analysis. 

Though research has been conducted on the value of 
individual design tools and techniques, there is currently no 
single "best practice" for determining when and how 
designers should employ these various representations to 
explore and evaluate design concepts. This paper operates 
under the assumption that using the wrong representational 
technique at the wrong phase of design or in the wrong way 
can lead to decreased design quality and efficiency and poor 
use of precious design resources during this critical phase. 

This paper explores the notion of optimal timing and 
guidelines for use of two of these design tools, namely 
sketches and physical prototypes. 

This study is conducted in the context of design project 
in a graduate class of mid-career professionals, and examines 
the interplay of both of these design tools to observe if: 
• the way students currently use both design tools, in 

terms of timing and quantity of information generated, 
can influence the quality of design outcome; 

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 01/11/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

 2 Copyright © 2012 by ASME 

• we can, as researchers and teachers, develop guidelines 
for “best practices” in using these design tools. 
 

RELATED WORK 
1. Sketches as Design Tools 

There is abundant literature on the advantages of 
sketches (and, to a lesser extent, limitations) since they have 
always have been considered the most natural, low cost and 
widely used way to generate concepts during the preliminary 
design phase. 

Sketching is indeed known as a fast, intuitive technique 
to represent the opportunistic flow of ideas [1]. Sketches 
reduce cognitive load and provide mnemonic help [2, 3]; 
they enable efficient and broad problem/solution exploration 
with minimal content [4, 5] and spur unexpected discoveries 
by keeping the exploration dynamic (“see-transform-see 
process”, [6]). They also enable ambiguous, highly personal 
content [7] that permits adaptability to all kinds of 
communicative purposes [8, 9]. The contents of sketches can 
be implicit and have limited structure (making them difficult 
to interpret); their rigid and static aspects make them “old-
fashioned” compared to more reactive representations [7]. 

Sketches can also be analyzed in regard to their 
applications or content. Several “types” of drawings are 
recognized (thinking sketch [10]; communicative or talking 
sketch [11]; reminder sketch [12]). Do and Gross [13] and  
Lim [14] define various taxonomies for sketches, while 
others [15, 16] try to determine underlying principles for 
sketching. At a more detailed level, McGown, Green and 
Rodgers [8, 17] are interested in the graphical complexity of 
traces. 

Specific aspects of hand-generated sketches, across all 
domains, have generally been analyzed separately from those 
of other design tools like Computer-Aided Design tools or 
physical prototyping. Some research exists comparing some 
of these tools [18, 19], but there is little research that 
considers their respective uses in the context of either design 
practice or the design classroom.  

 
2. Prototypes as Design Tools 

Prototypes may vary from rough to very detailed, and 
are known to facilitate the progressive exploration of design 
ideas, the communication of concepts as well as the 
understanding of user-experiences [20]. They are powerful 
tools to construct knowledge, to raise issues, and are more 
and more used inside various professional environments for 
their potential to maintain motivation through constant 
learning and sense of progress [21]. These authors observe 
that “with the increasing widespread adoption and 
proliferation of design practices […], low-fidelity 
prototyping [is] under increased scrutiny by non-designers. 
Therefore, a more sophisticated and empirically validated 
explanation for why a practice works, including both 
anticipated and non-anticipated outcomes is needed” (pp. 
78-79), which underline the necessity to quickly foresee if 
there is, indeed, best practices in generating such types of 
representations. 

When it comes to prototypes, one of the most frequent 
questions considered concerns their suggested level of 
fidelity. After categorizing these various levels of fidelity 
and developing new terminologies [22 – 24], some research 
underlines how simple prototypes, with fewer parts and 
requiring less building time, seem to lead to more efficient 
processes and outcomes [25]. Levels of efficiency in using 
prototypes in many cases seem to be linked to the type of 
audience they refer to as well as the time constraints they 
have to adapt to [23], and phenomena like the “Sunk Cost 
Effect” (or the “reluctance to choose a different path of 
action since significant money, time and effort is invested”) 
may explain fixation on premature concepts [26] and may be 
avoided by building multiple types of prototypes [27]. 

As for studies of side-by-side comparisons of 
prototypes with other design tools, and their respective 
contributions to the design process, Christensen and Schunn 
[28] showed that prototypes are more prone to generate 
within-domain analogies, whereas sketches are better to 
stimulate between-domain analogies. Without being sure 
about how these types of analogies impact the nature and 
quality of design output, the authors nevertheless tentatively 
suggest “to use sketching and idea generation unsupported 
by external representation in the early stages of design and, 
perhaps, to postpone prototyping until several promising 
concepts have been developed” (p. 37). These authors do not 
offer empirical evidence that such timing is indeed better for 
the overall quality of the designed object. It seems that more 
research has to be done to better understand how, when and 
why prototypes should be used for effective preliminary 
design. 
 
3. Timing and Instructions of Use 

While specific qualities of design tools have been well 
documented, when is the best time to use those tools is 
generally less studied. In the area of sketches, Yang found 
statistically significant, positive correlations between the 
time students spent on “design” (including the sketching 
phase) and the final grade they received for their project 
[25]. Time spent on early sketching of dimensioned drawings 
was found to correlate with better design outcomes. 

In terms of prototyping, Yang suggests that the time 
spent on early building could correlate positively with design 
outcome. It is at least the case for one of the classes she 
studied, while the trend seems less clear for a second group 
of students. Acuna and Sosa [29], by suggesting that a higher 
investment on sketching and model-making time tends to be 
linked to more original solutions, share the same idea but do 
not mention when this timing should be preferentially 
scheduled.  

In terms of how both representation techniques should 
be used, design tools’ advantages, as summarized above, 
tend to encourage some behaviors.  

The task- and cost-efficiency of low-fidelity (or 
throwaway) prototypes during preliminary design, built very 
quickly with materials at hand, is well known in design 
practice. The ambiguity, fluidity and range of sketches, on 
the other hand, are qualities one should try to adopt. In terms 
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of types of drawings, two-dimensional drawings, such as 
sections and elevations, are used 80% of the time during 
ideation in fields like architecture [30], while 3D perspective 
sketches are more prevalent in fields like product design. 

Other design techniques that have been considered 
include the creative effort a designer should put forth during 
ideation. Houde and Hill recommend making many rough 
prototypes, and consider how each of them can respectively 
support the “look and feel”, “role” or “implementation” 
aspects of the product being designed [23].  

Previous work on sketching and annotation suggests that 
they are highly efficient ways to generate ideas during 
creative sessions (individual or collective), and that the more 
fluidly and quickly ideas are multiplied, the better. However, 
contradictory results can be found in the literature when it 
comes to the benefit of generating as many concepts as 
possible. Much research on productive creative techniques, 
such as brainstorming or divergent thinking, argue that 
quantity eventually leads to creative quality during 
preliminary design (Osborn, 1957; Diehl & Stroebe, 1987; 
1991, all quoted by [31]). Other observations suggest 
caution: Sutton and Hargadon find evidence of trade-offs 
between quantity and creativity in organizational contexts 
(1996, quoted by [31]), and further research shows that 
performance and the number of prototypes cannot 
immediately be correlated [27]. Reining and Briggs [32] 
suggest alternative models to link the number of ideas with 
the number of good ideas (Figure 1).  

 

 
Figure 1. “THREE POSSIBLE SHAPES FOR THE IDEATION 

FUNCTION”, SOURCE [32]. 
 
Litchfield underlines that several researchers emphasize 

that some distinction should be made between “ideas” in 
general and “good ideas,” provided that one can determine a 
robust way to differentiate context-dependent ideas [31]. 

 

RESEARCH QUESTIONS 
Previous work was concerned with design tools’ 

respective characteristics as well as what can be considered 
“best practices” for using them. We have seen how sketches 
and annotations are crucial for generating ideas, and how 
their use early on in the process correlates with good design, 
but it is still unclear how many ideas should be generated, 

and more specifically what type of ideas or information 
should preferentially be supporting “sketchstorming” (i.e., 
concept generation through sketching, annotating and 
brainstorming). 

In contrast, more evidence is needed as to when 
prototypes should be used during preliminary design. 

The high level aim of this work is the definition of best 
practices for using design tools and more specifically, when 
and how information should be generated. This paper poses 
the two following research questions:  
• does a certain type of information generated during 

preliminary design correlate with design outcome? 
• does the time spent on early prototyping correlate with 

design outcome? 
 

METHODS 
1. Context 

This work draws on data generated by 68 engineers and 
designers with an average of 8 years of work experience 
enrolled in a semester long, graduate level design course. 
These students worked in 13 teams and were asked to tackle 
the general theme of “healthcare and healthy living”. In this 
specific context, they were asked to define a user need 
through firsthand observation, to generate design concepts, 
and to fabricate a working prototype using a budget of $800. 

The semester was structured into 7 time periods (or 
TP’s) of about 2 weeks. These time periods sometimes 
corresponded to project milestones, including the selection of 
3 potential user groups at the end of TP 1, reporting of 3 
preliminary concepts at the end of TP 2 and the evaluation of 
drawings in the middle of TP 5. These milestones structured 
the design process, though students were still free to proceed 
as they wished. 

 
2. Type of Collected Data and Final Grading 

The evolution of each team's projects was captured 
through online time sheets, individual sketch notebooks, and 
brief reports that accompanied built prototypes. 

Time sheets were completed every two weeks, and 
students were asked to describe how they spent their efforts 
throughout the project (time spent on the various phases of 
the design process, on prototyping, on working in notebooks, 
on doing end-users’ analysis and so on). 

In addition, students were required to scan and return at 
least 3 significant (and new) sheets from their personal 
notebooks every 2 weeks. Some students submitted more 
than the 3 sheets required, and others sometimes didn’t 
submit them at all. A total of 512 sheets was collected, 
bringing together 721 sketches, 23 screen captures of 3D 
CAD models as well as an uncounted number of diagrams, 
doodles, annotations and tags. 

Brief reports were required each time a team constructed 
a prototype. These reports aimed at understanding how the 
prototype helped in pushing the design further on, in 
understanding functioning as well as errors and omissions or 
in generating open questions and surprises. Each team built 
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an average of 3 to 5 prototypes (including the final one) 
during the semester. 

At the end of Time Period 7, the final projects were 
demonstrated before a panel of 12 industry professionals, 8 
of whom had not seen the projects or met the students before. 
Intermediary and final project presentations counted for 40% 
of the final grades, another 40% of grading was attributed to 
team assignments (determining market opportunities; 
assessing users needs, building prototypes or developing a 
business case for the design) while the remaining 20% were 
allotted to individual contribution (notebooks, timesheets, 
etc.) and team contribution (anonymous peer evaluation 
throughout the semester). 
 
3. Analysis Methodology 

 A two-step methodology was followed in analyzing the 
data. The first step consisted of globally verifying the data 
consistency. Indeed, we anticipated that students might not 
have completed and returned their timesheets, reports and 
notebook sheets as regularly as required, and therefore we 
expected some irregularities in the way data had been 
collected, time period by time period. It was thus necessary 
to sort out which data was really usable. Due to somewhat 
low agreement between jury members, we also looked at 
different methods of clustering the teams.  

Once the coherence of the data and the evaluation 
process had been tested, the second step (leading to our main 
results) included two different approaches. 

The first approach consisted of analyzing correlations 
between time spent on specific activities and whether a team 
belonged to the “second tier” or “top tier” category. 

The second one consisted of clustering and analyzing 
the type of information generated at each step of the design 
process in order to test if a positive correlation, in favor of a 
better design outcome, could be found in regard to a specific 
behavior. In order to do that, we carefully examined the 
information provided in the notebooks as they were 
considered sufficiently representative of the overall work 
done by each team. A preliminary qualitative analysis of the 
content of these notebooks showed that the information (i.e. 
sketches, doodles, check-lists, annotations, calculations, 
pictures…) mainly related to three types of items: 

(i) definition of different types of end-users (clustered 
in User Groups, or UG);  

(ii)  definition of different problems these end-users 
encounter (clustered in Problems, or P); 

(iii) generation of concepts (products or services) 
tackling these end-users’ problems (clustered in 
Concepts, or C). 

 
Observing this, we decided to structure the notebooks 

information in hierarchical diagrams (or “trees”) following 
Kim, Bracell and Wallace’s methodology [33], but focusing 
on high-level information (User Groups, Problems and 
Concepts) rather than on the detail design information the 
authors exploit for their software, DRed. The first three 
layers of these trees respectively referred to each of the three 
categories (User Groups, Problems and Concepts), while 

further layers would connect information about how the 
concepts had been developed, the various decisions taken, 
the issues raised etc. An example of such a tree appears in 
Annex A. Each item (node) corresponds to a different piece 
of information, chronologically connected to parent items 
referring to the same UG, P or C. This way, each tree 
presents a global view of how and why concepts were 
generated, explored, sometimes abandoned or further 
developed.  

Complementary information was eventually added to 
each tree, in order to more precisely reflect the context in 
which each item had been generated. For instance, a color 
was assigned to each student of each team, and a type of line 
to each time period, in order for each item to be easily and 
visually connected to its author and chronological 
emergence. When identical items re-appeared in several 
notebooks, we concluded that the information was generated 
during a collective work session, and was consequently 
colored differently. Additional information was also noted 
next to each item, such as the number of sketches directly 
referring to it (added in an extra bubble), the fact that the 
item was issued from end-user feedback (in italics) or the 
fact that this particular item was part of the final chosen 
concept (extra-circle around the node). 

Creating a chronological tree for each team made it 
easier for the three researchers to independently and 
systematically proceed with consecutive analysis and 
counting of the nodes and connections. 
 

RESULTS AND DISCUSSION 
1. Data Consistency 

1.1 Ranking of Teams  In order to tackle our 
two research questions (i.e. finding out if the type of 
information generated during the preliminary design phase 
and/or the time spent on early prototyping correlate with the 
design outcome) we had to assess the quality of the final 
projects for each team. Three sets of data were available: (i) 
the ratings on many different criteria by each reviewer, (ii) 
the overall ranking of each team by each reviewer, 
performed after all ratings had been made (but completely 
independent from those ratings), and (iii) a final, single set of 
rankings by the judges as a whole after group discussion 
(individually ranking changing substantially after they met as 
a group and discussed).  

Ratings showed how each project performed 
considering different criteria, but to assess the overall 
performance we needed to determine a weighting for each of 
those criterion. Simulation of the various possible weightings 
was performed to determine the sensitivity of the overall 
rating with respect to the weighting1. However, the 
                                                             

1 Note that aggregating the rating information into a single overall 
rating for each team requires one additional step to compare it with ranking 
information. To map the rating of different criteria by each reviewer, we 
must aggregate the rating to different criteria into a combined rating of each 
reviewer, followed by aggregating the combined rating of each reviewer into 
a final single rating. On the other hand, ranking is already implicitly 
aggregated by the reviewer into a single combined ranking and we just need 
to combine each reviewer’s ranking into an aggregated ranking. This 
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consistency for reviewer’s ratings for each of criteria was 
poor (represented by Krispperdorff’s Alpha values ranging 
from 0.07 to -0.03), there was no optimal linear weighting 
that improved inter-rater reliability of the aggregated ratings. 
This is most likely caused by the difference in reviewers’ 
expertise and demonstrates the difficulty in assessing the 
quality of a product. Because the overall rating turns out to 
be sensitive to the weighting, individual ranking information 
was used to quantify the quality of the teams in this paper. 
Note that these ratings and ranking are collected separately 
from each reviewer. 

The rankings reflected each judge's assessment of the 
teams' overall performance. However, one limitation of using 
the ranking is that it differed somewhat from the ratings by 
the reviewers. 

For the ranking data, we used the mean, median and two 
types of Borda counts for each team to sort them. Ideally, 
this aggregation of rankings should be the same, regardless 
of which sorting criteria was chosen. For example, if every 
reviewer picked team A as their first, team B as their second 
and team C as their third choice, then no matter what the 
aggregation scheme was applied, the aggregated ranking 
would always order the teams A, B and C (from best to 
worst). 

However, in this case, such a pattern did not emerge, 
and the final order of the teams from best to worst depends 
on which of the four sorting methods is used. This 
demonstrates that in this particular context of selection, the 
perceived value of the final product is highly dependent on 
the panel of judges (because of their inter-personal 
subjectivity or because of the complexity of the evaluation 
process). 

Given the fact that the aggregated team rankings are so 
dependent on the aggregation scheme, instead of trying to 
rank all teams individually, we tried to look for some 
consensus among clusters of teams, i.e. if the majority of 
reviewers may have thought, for instance, that teams A and 
B were ranked as top tier, teams C and D as middle tier, E 
and F as bottom tier and so on.  In order to assess this, we 
ran a cluster analysis whose results depend on the particular 
chosen algorithm (K-mean, Ward’s, etc.) and on the 
definition of distances. We applied sensitivity analysis with 
respect to each algorithm choice and distance to determine if 
distinct clusters of teams could emerge. Our results showed 
that two distinct clusters of teams (“second tier” and “top 
tier” teams) could indeed be found, while smaller size 
clustering became too sensitive to the distance definition and 
algorithm choice. This showed that jury members did agree 
on which teams were “second tier” and which teams were 
”top tier”, but weren’t able to find a consensus on how a 
particular team performed on an ordinal scale within these 
two groups. 
 
 
 
                                                                                                        
additional step makes rating more sensitive to aggregation schemes. This 
aggregation problem can also be linked to the fact that the chosen weighting 
for each criterion depends on each reviewer. 

1.2 Completion of Timesheets The timesheets 
students completed every two weeks proved to be a rich 
resource for our research, especially for testing correlations 
between time spent on different activities and the design 
outcome. The overall response rate for the timesheets was 
85.5%. 

Noticing this, we ran a few simulations to evaluate if 
the missing information could be imputed without impacting 
the overall results. Two sets of data were made: inside the 
first one, called “original data”, missing information was just 
left as “holes” inside the data set. In other words, if students 
didn’t return information about the time spent on some 
activities, we just assumed they worked 0 hours on those. In 
the second set, called “imputed data”, we assigned values for 
the missing data by calculating an average effort level for 
each student: comparing each student’s work time to the 
work times of his/her teammates in general, we were able to 
extrapolate how much time the fragmentary student must 
have worked in reality. For example, if a specific student 
always reported working twice as much as his/her average 
team members, but didn’t submit a report for the third Time 
Period, we assumed that this student did twice as much work 
as the average teammate during this third TP. 

We will see below how, by running different 
correlation tests between time spent and overall success of 
each team, we were able to confirm that both methods 
(filling in the timesheets or not) produced similar outcomes 
and final results were not impacted. Thus, our analysis is 
robust to imputation methods. 
 
2. Results 

2.1 Impact of the type of information on design 
outcome  Once the main concerns about data 
consistency were settled, we ran a preliminary, qualitative 
analysis in order to evaluate how the type of information 
submitted could impact the overall team success. 

The contents of the notebooks were our main data set 
for this particular question. Could this simple medium, a few 
sheets of paper, contain the solution to a good design 
outcome? 

The first test we did, before diving deeper into the type 
of information contained in these notebooks, was to evaluate 
if the quantity of sketches could be linked to the design 
outcome. Being such a quick and intuitive activity, 
preliminary qualitative analyses of timesheets showed that 
students had difficulties evaluating the time they spent on 
sketching and drawing tasks. Furthermore, sketches can be 
created rather quickly, which means that timesheets may not 
be the optimal way to evaluate sketching effort. Instead, we 
looked at how many sheets of paper were filled and how 
many sketches each team generated. 

Figure 2 shows the total number of sheets each team 
submitted (collectively) at each Time Period. The five “top 
tier” teams are labeled “A” to “E”, while the eight remaining 
“second tier” teams are respectively labeled “F” to “M”. No 
specific correlation tests were run in this case: visual 
inspection indicates that there is no specific link between the 
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number of sheets returned and the overall success of each 
team. 

 
Figure 2. TOTAL NUMBER OF NOTEBOOKS SHEETS SUBMITTED 

BY EACH TEAM, PER TIME PERIOD. 
 

Notebooks contained everything from checklists, text, 
doodles, quick annotations, to dimensioned drawings and 
calculations. The quantity of sheets generated could therefore 
not be linked to any specific type of information generated. 
In order to refine this approach, we then focused specifically 
on free-hand sketches, which were in this case mainly 
obvious representations of generated concepts (with very few 
sketches of existing products or problems).  

Figure 3 shows the total number of sketches submitted 
by each team, this time during the whole semester. If a 
minimal number of sketches might contribute to the overall 
success of the five “top tier” teams, no clear trend could 
however be found in this graph, either. At least for teams “I”, 
“K” and “M”, one could underline that generating as many 
conceptual sketches as possible does not seem to have an 
impact on the quality of the final design outcome. This is 
consistent with the findings of Yang [34], which observes 
that early-dimensioned sketches correlated with outcome, 
rather than overall sketch quantity. 

 
Figure 3. TOTAL NUMBER OF SKETCHES SUBMITTED BY EACH 

TEAM, DURING THE WHOLE SEMESTER. 
 

After assessing that quantity (quantity of work done in 
general, quantity of sketching concepts in particular) does 
not lead, in our specific case, to a minimum level of quality 
(contrary to what is suggested by other research), we wanted 
to analyze more deeply if certain types of information could 
nevertheless correlate with a good design output.  

Starting from the trees built for each team, three 
researchers independently counted three specific values: (i) 
the number of User Groups generally considered all along 
the design process (directly or not directly linked to the final 
product); (ii) the number of problems (encountered by the 
chosen end-user group) that were tackled, at least partially, 
by the final design; and (iii) the number of concepts 
generated that appeared in the final design. As a specific 
assignment required the students to quickly focus on one 
specific User Group (for example, each final product 
couldn’t expand too much toward other potential end-users), 
the decision was taken to keep an overall point of view on 
the number of User Groups generated, in contrary to the 
Problems and Concepts.  

Figure 4 shows the average of the User Groups’ 
counted by the three independent researchers, for each team. 

 

 
Figure 4. AVERAGE OF USER GROUPS GENERATED BY EACH 

TEAM, DURING THE WHOLE DESIGN PROCESS. 
 

The five “top tier” teams (A to E) imagined, on 
average, between 7 and 22.3 different User-Groups, while 
the eight “second tier” teams (F to M) rank from 7 to 38.3 
different User-Groups. 

Considering these preliminary results, we tried to 
determine an optimal cutoff for the decision boundary for 
binary classification, between second tier and top tier teams, 
using the number of User Groups as a single predictor. In 
other words, we tried to find any cutoff number of User 
Groups that would separate the teams between “low value” 
and “high value” and that would create a statistically 
significant contingency table, this table translating a 
statistically significant trend. 

Results showed that the best Kolmogorov-Smirnov (K-
S) statistics we could obtain was 0.35, for a ranking cutoff at 
11.67 (Table 1). Even if the K-S value is fairly robust, 
Fisher's Exact Test shows a p-value of 0.2929 for this 
particular confusion matrix, and it is thus not statistically 
significant. No clear trend can be concluded from this 
approach, certainly because of the limited sample size. 
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Table 1. BEST CONTINGENCY TABLE FOR A RANKING CUTOFF AT 
11.67. 
 

 Number of top tier  
teams 

Number of second tier 
teams 

Low value ( < 11.67) 3 2 

High value ( > 11.67) 2 6 

 
We then attempted to fit a logistic regression by 

treating this data as a classification problem again (logistic 
regression rather than linear regression is used because we 
are determining the likelihood that a particular team will be 
classified as a “second tier” team given the number of User 
Groups generated). We assigned “top tier” teams a “0” value 
and “second tier” teams a “1” value.  As with previous 
analysis, in this case, the coefficient in front of User Group is 
0.07091 (which is positive rather than negative), implying 
that as more User Groups are explored, the more likely the 
team will be classified as a lower performing team. When we 
looked at a 95% confidence interval for the coefficient, it 
appears to be between [-0.056, 0.276]. Because this 
confidence interval covers both positive and negative values, 
this result is not statistically significant in the global 
direction of the trend.  

Although neither cutoff and contingency table or 
logistic regression approaches showed strong, statistically 
significant results, the general trend nevertheless tends to go 
in the opposite direction of the generally accepted theory: the 
smaller the number of items (here, User Groups) generated, 
the better the ranking. In coherence to our results in terms of 
number of sheets and sketches generated, an extensive 
generative session about all possible end-users in the general 
field of “healthcare and healthy living” does not necessarily 
correlate positively with better design outcome. 

Similar analyses have been conducted considering the 
number of Problems and Concepts generated (and appearing 
in the final design). Again, in both cases, there is no 
statistically significant trend observed. Unlike the number of 
User Groups, the emergent trend does not seem to be linear, 
though is not significant. There seems to be an optimal range 
of problems and concepts to generate (i.e., too few or too 
many problems or concepts is not good). Thus, rather than 
having 1 decision boundary, we implemented 2 decision 
boundaries to determine the expected class for each of the 
teams. 

For the number of Problems, results showed that the 
best Kolmogorov-Smirnov (K-S) statistics we could obtain 
was 0.475, for a cutoff inferior or equal to 3, and superior to 
4.5 (see Table 2), i.e. results showed that the optimal range 
of Problems one should generate, in this case, is between 3 to 
4.5, anything less or more tending to push the team towards 
the worse performing group (Figure 5). If we look at Figure 
5, there are indeed 3 “top tier” teams and one “second tier” 
team that are within the range of 3 to 4.5, while two “top 
tier” teams and 7 “second tier” teams lie outside of that 
range. This corresponds to the elements in the contingency 
table (see Table 2). 
 

Table 2. BEST CONTINGENCY TABLE FOR A CUTOFF AT ! 3 AND > 
4.5 PROBLEMS 
 

 Number of top tier 
teams 

Number of second tier  
teams 

Class 1 (> 3 and < 4.5) 3 1 

Class 2  (< 3 or > 4.5) 2 7 

 

 
 

Figure 5. AVERAGE OF PROBLEMS GENERATED BY EACH TEAM, 
OPTIMAL RANGE CALCULATED: BETWEEN 3 AND 4.5 

PROBLEMS. 
 

As for the number of Concepts, results showed that the 
best Kolmogorov-Smirnov (K-S) statistics we could obtain 
was also equal to 0.475, for a cutoff inferior or equal to 9, 
and superior to 10.5 (Table 2). Results showed that the 
optimal range of Concepts one should generate is between 9 
to 10.5, anything less or more also pushing the team towards 
the worse group (see Figure 6). 

In these two cases, we did not attempt to fit a logistic 
regression (because it assumes a monotonic trend) or other 
nonlinear regression models, because it tends to over-fit due 
to the limited sample size (only 13 data points). The fractions 
in the numbers of Problems and Concepts come from the 
limited disparity between the different author’s accounting. 

 
Table 3. BEST CONTINGENCY TABLE FOR A CUTOFF AT ! 9 AND > 
10.5 CONCEPTS 
 

 Number of top tier 
teams 

Number of second 
tier teams 

Class 1 (> 9 and <= 10.5) 3 1 

Class 2 (< 9 and > 10.5) 2 7 
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Figure 6. AVERAGE OF CONCEPTS GENERATED BY EACH TEAM, 
OPTIMAL RANGE CALCULATED: BETWEEN 9 AND 10.5 

CONCEPTS.  
 

For both problems and concepts, it seems that 
generating higher quantity, as generally observed in literature 
and taught in design classes, does not systematically lead to 
the best final ranking. Three suggestions are made to explain 
these non-traditional trends: 

1) given the limited time provided in such specific 
education contexts, students need to generate a decent 
number of items (number of Problems potentially 
encountered by the chosen end-user; number of Concepts) 
but at the same time, should be weary of wasting time 
generating meaningless items; 

2) there could be a link between the number of 
Problems/Concepts generated and the level of similarity of 
those Problems/Concepts, i.e. we can guess that students 
should not develop too many similar items on similar topics; 

3) it has been said that “quantity breeds quality” [35], 
but it may be that there are diminishing returns on quantity 
after some minimum value is meant. 

 
Considering the selection of the three preliminary 

concepts at the end of Time Period 2, two additional results 
were provided by the analysis of the timesheets. Looking at 
the imputed data (i.e., the data where missing information 
was filled-in), there was a negative significant correlation 
between the percentage of time spent on Concepts’ selection 
during the second Time Period, and the overall ranking. This 
significant trend appeared when considering both the 
percentage of time spent on Concept Selection, in time 
period 2, out of the total time spent on concept selection 
throughout the whole semester (Rho -0.634 / P.Val 0.02) and 
the percentage of time spent on Concept Selection out of the 
total time spent on all activities during the whole semester 
(Rho -0.592 / P. Val 0.033). 
 

Overall, teams that spent more time debating and 
picking their three preliminary concepts did worse than 
teams who chose more quickly. 
 
 
 

2.2 Relationship between the time spent on 
early prototyping and the design outcome  For 
both data sets (original, i.e. not filled-in, and imputed, i.e. 
filled-in) we looked at five different ways to correlate design 
outcome with the time spent on building prototypes: 

1) Absolute time spent on prototyping vs. overall 
success; 

2) Cumulative time spent since the beginning of the 
course vs. overall success; 

3) Percentage of time spent on prototyping out of the 
total time spent on all activities during a certain time period, 
vs. overall success. For instance, if a team worked 100h total 
during Time Period 3, and if they spent 10h on prototyping 
during the same TP, then we compare “10% of time spent” 
with the overall success; 

4) Timing of prototyping, regardless of how much time 
they spent on prototyping throughout the course in total. We 
correlated the percentage of their total prototyping time 
during a specific time period.  

5) Looking at the percentage of total time spent on 
prototyping during specific time periods, and comparing this 
ratio with overall success (so if a team spent 4000 hours in 
total on the project, and if they spent 40 hours on prototyping 
during Time Period 5, then we compare the 1% of time spent 
on prototyping with the success of the team). 
 

Considering specifically the time spent on prototyping, 
we ran a Spearman correlation analysis and compared our 
results for the times spent in the five different ways 
mentioned above. We found that, regardless of the chosen 
data set (original or imputed), prototyping in Time Periods 1, 
2 and to some extent 3, correlates with a better overall 
ranking for the concerned teams (results are positively and 
statistically significant, see Tables 4 and 5). In other words, 
the sooner the teams prototype, the better the team performs. 
This result supports Yang’s previous observations [25]. 
 
Table 4. IN BOLD, STATISTICALLY SIGNIFICANT CORRELATION 
BETWEEN TIME SPENT ON PROTOTYPING (DURING SPECIFIC 
TIME PERIODS) AND DESIGN OUTCOME. ORIGINAL DATA. 
 

 
 
Table 5. IN BOLD, STATISTICALLY SIGNIFICANT CORRELATION 
BETWEEN TIME SPENT ON PROTOTYPING (DURING SPECIFIC 
TIME PERIODS) AND DESIGN OUTCOME. IMPUTED DATA. 
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CONCLUSION 
This paper explored whether the type of information 

generated during preliminary design and/or the time spent on 
early prototyping correlates with design outcome. 

 Research in the field of design, architecture, 
engineering and creativity in general often involves jury 
members to evaluate the overall quality of a project (in terms 
of creativity, quality, team efficiency etc.), and in design 
practice, designs are often evaluated by multiple 
stakeholders. Our study brought into focus the nuances in 
assessing the consistency of these ratings and rankings, since 
it is challenging for humans to objectively deal with complex 
evaluation processes.  

This paper moreover brings several other results in 
light: 

1) In this study, teams that generated the most design 
information in the form of sketches and potential end-user 
groups did not also have a better design outcome, contrary to 
some current literature. In our case, even if results were not 
strongly statistically significant, the overall trend suggested 
that the smaller the number of User Groups generated, the 
better the overall ranking of the teams; 

2) Rather than developing as many Problems and 
Concepts as possible, our results suggests that design teams 
should focus on meaningful and non-redundant items. In the 
specific educational context we looked at, there seems to be 
an optimal range of items one should develop (between 3 to 
4.5 Problems and between 9 and 10.5 Concepts); 

3) Statistically significant results generated from 
analyzing the timesheets showed that the more time teams 
spent on selecting the (in this case, three) preliminary 
concepts, the worse they performed; 

4) Finally, the timesheets also provided statistically 
significant positive correlations between the time spent early 
on prototyping and the overall design outcome. 
 

The results in the paper moreover suggest ways to 
rethink how mid-career professionals are taught design, and 
more broadly, how students should be guided through 
project-based design projects.  
 

FUTURE WORK 
Future work will consider this type of analysis of design 

process in other contexts, including controlled studies and in 
situ studies of design teams in practice. What role does idea 
generation, sketching, and prototypes play in these other 
types of contexts? Each of these strategies have their own 
trade-offs in terms of the amount of data we'll be able to 
obtain and the realism and length of design tasks that may be 
tested.  

Future work will develop new, finer tuned instruments 
for collecting data from other design courses as well as from 
design projects in industry. Of particular interest will be the 
formulation of approaches for reconciling design assessment 
by design juries and groups of stakeholders. 

Comparisons with future classes will also enable us to 
consider the impact of the specific contexts with more 

granularity, including problem definition, team structure, and 
the role of different stakeholders on the level of creativity 
and quality of design output. 

Finally, further analysis will be done on this specific set 
of data. We will try to capture how team cohesion (on User 
Groups, Problems and Concepts) impacts the design 
outcome, by looking at how many teammates have explored 
similar ideas, individually. Further research on the level of 
similarity between the different items generated will also be 
done. 
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ANNEX A 

TREE BUILT FOR ONE OF THE TEAM
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