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Defect tolerance: fundamental limits and examples
Jennifer Tang, Da Wang, Yury Polyanskiy, Gregory Wornell

Abstract—This paper addresses the problem of adding redun-
dancy to a collection of physical objects so that the overall
system is more robust to failures. In contrast to its informa-
tion counterpart, which can exploit parity to protect multiple
information symbols from a single erasure, physical redundancy
can only be realized through duplication and substitution of
objects. We propose a bipartite graph model for designing
defect-tolerant systems in which defective objects are replaced
by judiciously connected redundant objects. The fundamental
limits of this model are characterized under various asymptotic
settings and both asymptotic and finite-size systems that approach
these limits are constructed. Among other results, we show that
simple modular redundancy is suboptimal when object types are
repeated. As we develop, this combinatorial problem of defect
tolerant system design has a natural interpretation as one of
graph coloring, and the analysis is significantly different from
that traditionally used information redundancy for error-control
codes.

Index Terms—Defect-tolerant circuits, bipartite graphs, color-
ing, combinatorics, worst-case errors

I. INTRODUCTION

Classical Shannon theory established principles of adding
redundancy to data for combating noise and, dually, of re-
moving redundancy from data for more efficient storage. The
central object of the classical theory is information, which
unlike physical objects, can be freely copied and combined.
In fact, the marvel of error-correcting codes is principally
based on the counter-intuitive property that multiple unrelated
information bits X1, . . . , Xk can be simultaneously protected
by adding “parity-checks” such as

Y = X1 + · · ·+Xk mod 2 . (1)

In this example, the added parity-check Y allows the recovery
of the original message even if the vector

(X1, X2, . . . , Xk, Y )

undergoes an erasure of an arbitrary element.
Physical objects (e.g., transistors in a chip) may also be

subject to erasures (failures) and thus it is natural to ask
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about ways of insuring the system against failure events. Note,
however, that for physical objects operations such as (1) are
meaningless. If the failure renders an object completely use-
less, then protecting against these failures would entail adding
spare (redundant) elements. The required operation is to copy
and then substitute.1 It may, therefore, seem that nothing better
than simple replication can guard against failures. This paper
shows otherwise. Indeed, there exist non-trivial ways to add
redundancy as long as the objects’ diversity does not exceed
their number. That is, if the number of types of objects is
smaller than the total number of them.

The objective of this paper is to develop a study of adding
redundancy to a physical system where certain objects in the
system fail and can only be replaced by substitutes. This paper
will explore what are good design choices in this scenario and
find fundamental limits for specific settings.

A. Reconfigurable defect-tolerant circuits

To facilitate defining the problem we intend to study, we will
first present the application which informed the main model
we developed for studying redundancy of physical objects, and
that is the application of reconfigurable circuits.

Consider a chip design process, in which the chip is
composed of many similar cells (e.g., standard-cell designs of
ASICs). Layout of elements in each cell is dictated by the chip
manufacturer. Each cell has k input/output buses and k place-
holders (nodes) that can be filled in with logic realizing one of
q functions. Now because of manufacturing defects, not all k
elements in the cell will operate correctly (call these primary
elements). For this reason, each cell also contains provisions
for redundant elements. In particular, there are m placeholders
designated as redundant elements. The designer then selects
what type of logic to instantiate into these redundant elements.
Once the chip is manufactured and placed on the testbed,
the testing equipment probes each cell and determines which
primary elements are defective. Programmable switches are
then used to reconnect input/output buses from the defective
primary elements to one of the redundant elements containing
the same logic. So the summary of the events happening to
each cell during this process is:

1) Choose the layout of the placeholders and interconnect
(these are provisional wires)

2) Choose components (from available collection of possible
types) to fill in the primary elements for the reconfig-
urable circuit

1We assume for physical objects, the “error-correction” should provide an
exact copy of the object, not merely something functionally equivalent to
the object. An example of what is not considered as “correction” would be
replacing a cell storing two bits (b1, b2) with a cell storing (b1, b1 ⊕ b2).



3) Based on primary elements chosen, choose redundant
components (from the same collection) to place in re-
dundant placeholders

4) Build the circuit with these components
5) Based on where the defects occurred, reconfigure the

interconnect (i.e., enable provisional wires with pro-
grammable switches) of the circuit to correct the defects.

In the above summary, step 5 of reconfiguring the defects
is a simple operation which requires minimal programming
(or switching) of the provisional wiring. This is precisely the
advantage of choosing a good layout for the placeholders and
provisional wires in step 1. Notice that this layout is universal
in the sense that any choice of components in step 2 (which
may be arbitrarily dictated by the manufacturer later) should
still lead to guarantees on the number of correctable defects.
The focus of this work is to study optimal choices of layouts
in step 1 so that the rest of the steps in the procedure are
possible.

With respect to this application, our goal is to understand
what wiring topologies for the layout the chip manufacturer
should try to implement in order to attain the optimal trade-off
between the number of redundant elements, provisional wires
and defect-tolerance. Notice that the two metrics, redundancy
and wiring, both correspond to necessary additional resources.
Adding redundancy requires more silicon area and the pro-
visional wires requires additional metal and programmable
switches.2

Certainly, there are other procedures and layout constraints
we could have chosen to study defects in hardware. For
instance, there could be a 2-hop system between the primary
elements and redundant elements, decreasing the amount of
wiring needed. However, multi-hop interconnects could intro-
duce more latency and make signal propagation delays unpre-
dictable, which is why we do not discuss this in this work,
but this is a scenario left for future work (see Section VI-E).

B. Relation to prior work

Prior work on the subject of designing digital electronics
robust to noise has been traditionally approached with the
goal of combating dynamic noise. This is epitomized in the
line of work started by von Neumann [1] and contemporary
variations [2]. Although significant progress has been made in
understanding fundamental limits in von Neumann’s model,
see e.g., [3]–[11], the practical applications are limited due to
a prohibitively high level of redundancy required [12].

Here, instead, we are interested in circuits robust to static
manufacturing failures. As illustrated previously, this scenario
has the advantage of being able to test which parts of the
circuit failed and attempt to configure out (or “wire around”)
the defective parts. This side information enables significant
savings in redundancy [13]. In fact, this method of testing
the performance of a device followed by some configuration

2There are certainly other metrics (such as geometric constraints or re-
sources to adjust the wiring between primary elements) which are relevant
for circuit applications, but we leave consideration of them to future work.

is rather popular in practice, used in multi-core CPUs [14],
analog-to-digital converters [15], sense-amplifiers [16], self-
replicating automatons [17], parallel computing [18], [19], etc.

This paper can be seen as an attempt to provide theoretical
foundations for the static defect scenario. (In fact, this was our
original motivation.)

C. Problem formulation

We study the following problem formulation: Given k
objects (“primary nodes”), connect each one of them to some
of the available m spares (“redundant nodes”) in such a way
that in the event that t ≥ 1 of the objects fail (originals
or spares) the overall system can be made to function after
a repair step. Such a repair step consists of replacing each
failed primary node with one of the working spares that it is
connected to. Each spare can only replace one failed primary
node. The key assumptions are 1) the primary nodes are one
of q different types (called labels) 2) the spares have to be
programmed to one of the q labels before the failure events
are known and 3) the same connections need to repair all
possible choices of labels for the k primary nodes. We are
interested in minimizing the number of spare nodes and the
number of connections to spare nodes.

Key to our problem formulation is the idea that we want to
design the interconnect (wires) before any of the node labels
are determined. One might argue that in some applications
the interconnect could be allowed to depend on the labeling
of primary nodes. Indeed, the latter will be known before the
final topology for the chip is made. However, our procedure
insists that the interconnect does not depend on this labeling.
The advantage of this is that in the reconfigurable circuits
framework, the provisional wire-layout is usable regardless
of where any element is placed, providing the same defect
tolerance guarantee for every possible placement. We seek a
universal design, which is independent of element types and
thus could serve as the new standard cell for all defect-tolerant
circuits. We further discuss alternative design methodologies
in Section VI.

We intentionally abstracted our problem to a simple model
which is more fundamental and relates to other applications
needing redundancy for objects and a universal design. For
example, instead of parts of a reconfigurable circuit, objects
can represent elements in a programmable logic device (e.g.,
look-up tables (LUTs) in an FPGA). As part of periodical
firmware update, a manufacturer assigns values of LUTs (both
primary and redundant) without knowledge of locations of
device-specific failures. Then, a built-in algorithm for each
failed LUT T reconnects it to an adjacent spare LUT R, with
the requirement that R and T be equivalent. This built-in
local algorithm is a computationally non-demanding way to
reconfigure around defective LUTs. Note that the interconnect
of the LUTs need to be universal so that any update chosen
by the manufacturer (these updates change the configuration
of the primary LUTs) has the same guarantee against defects.

For q = 2 our problem is equivalent to finding sparsity vs.
edge-size trade-off for (t, t)-colorable hypergraphs, cf. [20].



See Section VI-C. Other applications potentially arise in
warehouse planning, operations research, public safety etc.
Such applications can be conceived after realizing that our
interconnect may be thought of as a transportation network
between a collection of “sinks” and “sources” so that each
sink can be serviced by at least t sources, where each sink
has a type and can be serviced only by sources of the same
type.

Expressed mathematically, we are looking for a k × m
bipartite graph with the property that for any q-coloring of
the left-side nodes there is a q-coloring of the right-side nodes
such that each of the k left-side nodes is connected to at least t
nodes of its color. The goal is to find bipartite designs which
have efficient trade-off in redundancy m/kt vs. number of
edges.

The high-level summary of our main findings is that when
q ≥ k, no strategy is better than straightforward t-fold repli-
cation. When q < k, there exist designs that provide savings
compared to repetition. We fully or partially characterize
the fundamental trade-off between redundancy m/kt and the
average number of edges per primary node in the following
cases:

1) q, t fixed and k,m→∞;
2) q fixed and k,m, t→∞;
3) q, k fixed and m, t→∞.

Perhaps surprisingly, in this (combinatorial) problem it is pos-
sible to obtain exact analysis for asymptotics. The organization
of the paper is as follows. Section II introduces the problem
formally and overviews main results. Section III demonstrates
small-size examples that show non-triviality of the problem.
Sections IV and V address the trade-off in the regime of
fixed t and t→∞ respectively. Finally, Section VI discusses
implications and extensions of our results.

The notation [n] denotes positive integers 1, 2, ..., n. The
notation 1{·} denotes the indicator function. An underlined
letter (e.g, x) stands for a vector quantity.

II. PROBLEM SETUP AND MAIN RESULTS

A. Defect-tolerance model

This paper focuses on bipartite graph designs.3 The left-
side nodes of the bipartite graph are called the primary nodes.
These are denoted by circles and there are k of these in the
bipartite graph. The right-side nodes are the redundant nodes.
These are denoted by squares and there are m of these in the
bipartite graph.

Let X be a finite alphabet where q = |X |.

Definition 1. Fix an alphabet of labels X with size q. A k×m
bipartite graph is called a t-defect correcting design if for
any labeling of k primary nodes with elements of X there
exists a labeling of m redundant nodes with elements of X
such that every primary node labeled x ∈ X has at least t

3The word choice of “design” is not intended to relate to the notion
of combinatorial (Steiner) designs or any other established mathematical
definitions.

(a) Design

A

A B

(b) Primary node labeling

A

A B

A

A

B

B

(c) Redundant node labeling

Fig. 1. Example of a 2-defect correcting design for an alphabet X = {A,B}
of size q = 2. The design is bipartite with the circles representing the left-
side nodes and the squares representing the right-side nodes. Fig. 1(b) shows a
labeling of the primary (circle) nodes. To each such labeling, we strategically
choose a labeling of the redundant (square) nodes, so that each primary node
has t = 2 neighbors with matching labels (see Fig. 1(c)). Since such a choice
is possible for each of the 23 = 8 possible labelings of primary nodes, we
conclude that this design is t = 2 defect correcting in the sense of Definition 1
and is a (3, 4, 2, 9)2-design.

neighbors labeled x. We will call such a graph a (k,m, t, E)q-
design, with E denoting the number of edges. (See Fig. 1 for
an illustration.)

This paper is devoted to characterizing the fundamental
trade-off between the two basic parameters of t-defect cor-
recting designs: redundancy and wiring complexity. The re-
dundancy of a (k,m, t, E)q-design is ρ = m/(kt). The wiring
complexity (or average degree per defect) of a (k,m, t, E)q-
design is ε = E/(kt). This trade-off can be encoded in a
two-dimensional region:

Definition 2. For a fixed q and t ≥ 1 we define the region Rt
as the closure of the set of all achievable pairs of (ε, ρ):

Rt
4
= closure

{(
E

kt
,
m

kt

)
: ∃(k,m, t, E)q-design

}
. (2)

To interpret between Definition 1 and reconfigurable circuits
(and other applications), we present the following association.

Proposition 1. An interconnect for a reconfigurable circuit
can tolerate any t manufacturing defects for any choice of
primary nodes if and only if the interconnect is a t-defect
correcting design.

Proof. If the interconnect corrects fewer than t defects, there
is some primary node labeling where any labeling of the
redundant nodes would result in some primary node with label
x having fewer than t neighbors with the same label x. If this
primary node and all its matching neighbors have defects, then
the defect in the primary node cannot be corrected.



If the interconnects is a t-defect correcting design, with the
correct redundant node labeling scheme, any primary node
labeled x has t redundant neighbors with the same label x. If
there are only t defects, either this primary node is working, or
this primary node has a defect and at most t−1 of its neighbors
have a defect or are used to correct another primary node. In
the latter case, there is at least one redundant node with label x
available which can be used to replace this primary node.

As noted earlier, our performance metrics, ρ and ε, cor-
respond to the extra silicon area and wiring (and fan-out)
required respectively for defect-tolerance.

Before proceeding further, we summarize some of the basic
properties of regions Rt.

Proposition 2. (Properties of Rt) Regions Rt satisfy the
following:

1) (ε, ρ) ∈ Rt iff there exists a sequence of (k,m, t, E)q-
designs with E

kt → ε, mkt → ρ as k,m→∞;
2) If (ε, ρ) ∈ Rt and ε′ ≥ ε, ρ′ ≥ ρ then (ε′, ρ′) ∈ Rt;
3) Rt are closed convex subsets of R2

+;
4) We have

lim sup
t→∞

Rt = closure

⋃
t≥1

Rt

 4
= R∞ . (3)

5) The limiting region R∞ is also a closed convex subset of
R2

+ characterized as

R∞
4
= closure

{(
E

kt
,
m

kt

)
: ∃(k,m, t, E)q − design

}
.

(4)

See Section IV-B for proofs.

B. Preview of main results for binary alphabet

Notice the wiring complexity and redundancy metrics repre-
sent the linear scaling between the quantities E and m respec-
tively with the product kt. Designs which satisfy Definition 1
must have the number of redundant nodes and number of edges
grow linearly with the product kt. The goal of our results is
to find a tight understanding of the coefficient in this linear
scaling.4

In this section, for the purpose of illustration, we give a
summary of our results for the case of binary alphabet X
(i.e., q = 2). The rest of the paper will present various bounds
and constructions which apply to general alphabet sizes, (i.e.,
arbitrarily values of q).

There are three separate results which are the main con-
tributions of this paper. One is characterizing the region Rt
in the regime where t is small, specifically for values where
t = 1 and t = 2. The second main result is characterizing
the region R∞, which corresponds to the limit of regions Rt
when t tends to infinity. The third is characterizing the result

4For all our results, q is always fixed. How wiring complexity and
redundancy scales with q is left for future work.

when the number of primary nodes k is finite (the first two
results have infinite k) and t tends to infinity.

The theorem for the small t case is the following:

Theorem 3. For binary alphabet X , if t = 1 or t = 2, we
have

Rt = {(ε, ρ) : ε ≥ 1, ρ ≥ 0 and ε ≥ 2− ρ} . (5)

This will be proved in Section IV-D. The immediate con-
clusion from this result is that the designs for t = 1 and t = 2
achieve the same number of redundant nodes and edges needed
per primary node per defect asymptotically over k. The region
in Theorem 3 has two corner points. We will also discuss the
designs which attain these corner points.

The theorem for the asymptotic t case is the following:

Theorem 4. Let X be a binary alphabet. The region R∞
defined in (3) is the closure of the set of points (ε, ρ) defined
as follows. For every distribution PS on Z+ with finite support,
we define

ε =
E [S]

F (PS)
, ρ =

1

F (PS)
, (6a)

where

F (PS)
4
= min

0≤λ≤1
max

0≤f(·,·)≤1
min

{
E
[
L0

λ
f(L0, L1)

]
,

E
[
L1

1− λ
(1− f(L0, L1))

]} (6b)

where the expectations are over S ∼ PS and given S the
distribution of L1 ∼ Bino(S, λ) and L0 = S − L1.

This theorem parametrically characterizes R∞ in terms of
the function F (PS), which is evaluated on every PS with finite
support. Note that evaluation of the bound (6a) is non-trivial
as we will discuss in Section V-E.

The generalization of Theorem 4 to larger alphabet sizes
is given by Theorem 12 and is developed in Section V. Here
the designs achieving the best trade-off are more complicated
than those associated with Theorem 3. We call them subset
designs and develop them in Section III-B.

The resulting achievable regions for Theorem 3 and Theo-
rem 4 are depicted in Fig. 2. Via these results we can determine
at any fixed redundancy level, how many connections are
necessary. For example, at redundancy level 10%, the figure
indicates that there exists designs which:
• correct 1 defect if each primary node is connected on

average to about 1.9 redundant nodes
• correct 2 defects if each primary node is connected on

average to about 1.9× 2 redundant nodes
• correct 103 defects if each primary node is connected on

average to about 1.7× 103 redundant nodes.
Immediate from Fig. 2 is that the region R∞ contains the

regions R1 and R2 implying that increasing the number of
defects t allows for lower redundancy and wiring complexity
(recall both these quantities are divided by t). In this sense, it
is more efficient to correct more defects.
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Fig. 2. Achievable regions for redundancy and wiring complexity trade-off
when q = 2. Regions R1 and R2 are shown in darker gray. Region R∞
includes lighter and darker gray areas. All other regions Rt lie between R1

and R∞. The boundary of the region R∞ is calculated using the methods
in Appendix E.

According to (4) all regions Rt will lie between R1 and
R∞, approaching the latter as t→∞. It is perhaps surprising
that unlike most known asymptotic combinatorial problems,
this one (for t→∞) admits a relatively simple solution.

The third and the more practically useful result is the
characterization of the achievable regions for asymptotic t but
with finite k. This is developed in Section V-F.

III. EXAMPLES OF GOOD DESIGNS

Before developing the main results, we will first introduce
a few basic designs and analyze their performances. Some of
these examples play major roles in subsequent developments.

We denote by K(k,m) a complete bipartite graph with k
primary nodes (circles) and m redundant nodes (squares). The
two most basic designs are the following:

1) Complete designs: K(k, qt) (recall that q = |X |) is t-
defect correcting. (Just label redundant nodes to hold
t copies of each value X . No matter how the primary
nodes are labeled, each primary node will be connected
to t redundant nodes with the same label as itself.) See
Fig. 3(a) for illustration.

2) Repetition designs: K(1, t) is capable of correcting t de-
fects over an arbitrary alphabet. (Just label all t redundant
nodes the same label as the neighboring primary node.)
Taking k disjoint copies of K(1, t), denoted by kK(1, t),
we get a repetition design achieving ρ = ε = 1. See
Fig. 3(b) for illustration.

If we take k → ∞, the complete design achieves ε = q
and ρ = qt

kt → 0 for any fixed t and q, which is the best
possible trade-off given the value of ε. For finite k, however,
the complete design is not the design with the minimal number
of edges: it is possible to remove some of the edges and still
maintain a t defect correcting property, as we will show in the
next subsection.

(a) Example of complete design. (Design
written as K(3, 4)). This design is 2-
defect correcting for q = 2 and 4-defect
correcting for q = 1.

(b) Example of repetition design. (Design
written as 2K(1, 3)). This design corrects
3 defects for any q.

Fig. 3. Two elementary designs.

The repetition design uses the minimal number of edges
(since any primary node needs at least t edges in order to be
a t-defect correcting design). If all primary nodes have exactly
t edges, then it is necessary for each primary node to have a
distinct neighborhood, illustrating that the repetition design
achieves the best trade-off at minimal wiring complexity.

A. Smallest non-trivial designs

We now present designs which have the fewest number of
edges given some fixed number of primary nodes k, redundant
nodes m, and defect tolerance t.

If k ≤ q then all primary nodes can have different values
and thus one is forced to use the repetition design kK(1, t) to
correct t defects. For k = q + 1 the question becomes more
interesting. First, notice that the minimal possible m equals qt
(this is achieved by the complete design and cannot be reduced
since t nodes with the same label can have defects and this
can occur for each of the q different labels). However, some
of the edges can be removed from the complete design while
still preserving the number of defects corrected.

The optimal designs with k = q + 1, m = q and t = 1 are
as follows:
• Binary alphabet (q = 2): k = 3, m = 2 with 5 edges.

See Fig. 4(a).
• Ternary alphabet (q = 3): k = 4, m = 3 with 8 edges.

See Fig. 4(b). (There exist two non-isomorphic optimal
designs. Fig. 4(b) shows the symmetric one.)

• Quaternary alphabet (q = 4): k = 5, m = 4 with
12 edges. See Fig. 4(c). (There exist multiple non-
isomorphic optimal designs. Only one is shown.)



(a) q = 2

(b) q = 3

(c) q = 4

Fig. 4. Smallest non-trivial 1-defect correcting designs.

The optimal designs with k = q+ 1, m = 2q and t = 2 are
as follows:
• Binary alphabet (q = 2): k = 3, m = 4 with 9 edges,

see Fig. 5(a). This design is what we call the Hamming
block. Fig. 1 shows how it can correct 2 defects. We will
discuss its optimality in Corollary 18.

• Ternary alphabet (q = 3): k = 4,m = 6 with 15 edges,
see Fig. 5(b). (There exist two non-isomorphic optimal
designs. Fig. 5(b) shows the symmetric one.)

• Quaternary alphabet (q = 4): k = 5,m = 8 with 21
edges, see Fig. 5(c).

Some of these designs were found analytically and others
by exhaustive search. None of these designs are at the per-
formance boundary of any Rt regions. To obtain designs that
near the optimal trade-off boundary, we need to use a larger
number of primary and redundant nodes (see Proposition 9).
However, a few of these designs, like the Hamming block in
Fig. 5(a), achieve the best trade-off when restricted to the finite
k setting (as we will develop in Section V-F).

B. Subset designs

Designs that form a key ingredient of our asymptotic (i.e.,
large t) constructions are subset designs. A subset design
S(k, s) is a bipartite graph with k primary nodes and m =

(
k
s

)

(a) q = 2

(b) q = 3

(c) q = 4

Fig. 5. Smallest non-trivial 2-defect correcting designs.

redundant nodes, each connected to a distinct s-subset of
{1, . . . , k}. Note that the degree of each primary node is(
k−1
s−1
)
.

In general, we allow subset designs to have multiple and
possibly different subset sizes. For two values s1 and s2, where
s1, s2 ∈ [k], a bipartite graph S(k, s1) ∨ S(k, s2) is defined
to be the result of identifying the k primary nodes in two
disjoint copies of S(k, s1) and S(k, s2). The resulting graph
has k primary nodes and m =

(
k
s1

)
+
(
k
s2

)
redundant nodes.

We call the operation (∨) graph merging, which we state more
precisely below. We will develop the properties of merging
later.

Definition 3 (Merging). For any collection of designs Gj on
the same number of primary nodes k, the merging of Gj ,
denoted G =

∨
j Gj is a graph formed by taking disjoint

copies of Gj and identifying primary nodes.

See Fig. 6 for an illustration of merging.

Definition 4 (Subset design). Given k and (not necessarily
distinct) positive integers s1, s2, . . . , sr ∈ [k],

S(k, s1) ∨ S(k, s2) ∨ · · · ∨ S(k, sr) (7)

is a subset design with k primary nodes and m =
∑r
j=1

(
k
sj

)
redundant nodes.

For example, the Hamming block, Fig. 5(a), is S(3, 2) ∨
S(3, 3), the repetition design is S(k, 1)∨· · ·∨S(k, 1) (t times)



v =

Fig. 6. Example of merging two designs.

Fig. 7. Example of a subset design. This design is S(4, 3) ∨ S(4, 2). The
redundant nodes corresponding to S(4, 3) are shown on the left side and those
corresponding to S(4, 2) are shown on the right side.

and the complete design is S(k, k) ∨ · · · ∨ S(k, k) (qt times).
Fig. 7 shows the subset design S(4, 3) ∨ S(4, 2).

Subset designs are characterized by the following property:

Definition 5 (Permutation invariance). A design is called
permutation invariant if there exists a group of bipartite-graph
automorphisms (thus preserving the left/right partition) that
acts as the full symmetric group Sk on primary nodes.5

Proposition 5. A design is permutation invariant if and only
if it is a subset design.

Proof. Invariance of subset designs is clear. Conversely, given
a permutation invariant design and an integer s ≥ 1, consider
the subgraph induced by all degree-s redundant nodes and
their neighborhoods. By permutation invariance this subgraph
must contain all k primary nodes and itself be permutation
invariant (since automorphisms preserve degrees of nodes).
Therefore, every s-subset of the primary nodes must appear
as a neighborhood of n redundant nodes for some integer n.
This degree-s subgraph corresponds to merging of n copies
of S(k, s) and the original graph is a merging of degree-s
subgraphs.

The number of redundant nodes used in subset designs
is large and therefore it should be able to correct many
defects. We will find sharp estimates for the defect-correcting

5For those not familiar with bipartite-graph automorphisms: Consider
identifying each primary node and redundant node in the design with a
distinct number. Primary node number i is connected to some set of numbered
redundant nodesMi. We can equivalently say a design is permutation invariant
if for all possible permutations of the numbers of the primary nodes, there is
a way to permute the numbers of the redundant nodes, so that the new design
still has primary node i connected to the set of redundant nodes Mi.

properties of subset designs later (Proposition 14 below), but
for now we can give a simple order-of-magnitude result:

Proposition 6. Fix alphabet X and size s ≥ 1. As k → ∞
the design S(k, s) corrects t = Θ(ks−1) defects.

Proof. We know that t = O(ks−1), since each primary node
has at most

(
k−1
s−1
)

= O(ks−1) neighbors. To show that
t = Ω(ks−1), fix a labeling of the primary nodes with the
elements of X . Consider the following procedure for labeling
redundant nodes. First we declare an element of x ∈ X to
be rare if the number of primary nodes labeled x is less than
k
q . Now each redundant node is labeled the value x ∈ X if
either all of its neighbors have label x or if x is the only
rare label in its neighborhood. (Some redundant nodes may
not be labeled, but the contribution from these nodes can
be disregarded for this particular order of magnitude result.)
To see that this is an labeling that corrects Ω(ks−1) defects,
simply notice that a non-rare primary node labeled x has
at least

(
k/q−1
s−1

)
= Ω(ks−1) neighboring redundant nodes

with all neighbors labeled x. Similarly, for any choice of
non-rare label x, each rare-labeled primary node has at least(
k/q−1
s−1

)
= Ω(ks−1) neighboring redundant nodes connected

to it such that all other neighbors of this redundant node is
labeled x. Since x is non-rare, these Ω(ks−1) are labeled the
value of the rare primary node.

As we will see, subset designs turn out to be optimal for
achieving the boundary of R∞. In other words, they can be
tuned to get the optimal speed of growth for redundancy and
wiring complexity as t→∞.

IV. BOUNDS FOR FINITE t

In this section we prove a number of basic results, which
will lead to the proof of Theorem 3. We will first show
how two basic operations, copying and merging, can be used
to combine existing designs into a new design with certain
properties. Using these operations, we then proceed to prove
the claims in Proposition 2.

Using the convexity results from Proposition 2, we show
achievability for Theorem 3. Following the achievability, we
show the converse for Theorem 3 which uses a technique we
call covering.

A similar result for the achievable region for ternary alpha-
bet is stated at the end of the section.

A. Two basic operations on designs

Definition 6 (Copying). A disjoint union, which we call
copying, of two designs G1 and G2 is denoted by G1 + G2.
A disjoint union of a collection of designs Gj is denoted by∑
j Gj . A disjoint union of n identical designs G is denoted

as nG.

Copying is simply the idea of creating a new design from
two designs where each design is a disjoint component of the
new design. Defining this operation formally is useful for our
analysis. See Fig. 8 for an illustration of copying.
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Fig. 8. Example of the copying operation on two designs.

Proposition 7 (Copying). Consider (kj ,mj , t, Ej)q-designs
Gj . Then

∑
j Gj , forms a (

∑
kj ,
∑
mj , t,

∑
Ej)q-design.

The proof is clear after realizing that the number of defects
corrected does not change while all other parameters must
add. We note here that the values of ε and ρ for G1 +G2 is
a convex combination of those of Gj . That is

ρ =
k1

k1 + k2
ρ1 +

k2
k1 + k2

ρ2 (8)

ε =
k1

k1 + k2
ε1 +

k2
k1 + k2

ε2 (9)

where ρj and εj refer to mj

kjt
and Ej

kjt
of Gj respectively.

Proposition 8 (Merging). Consider (k,mj , tj , Ej)q-designs
Gj and G =

∨
j Gj (see Definition 3). Then G is a

(k,
∑
jmj ,

∑
j tj ,

∑
j Ej)q-design.

(Note that it is possible that the merged design G =
∨
j Gj

can correct more than
∑
j tj defects.) The proof is clear after

realizing that the same labeling Gj used for redundant nodes
to be tj correcting for a specific labeling of the k primary
nodes can be used in the merged design. As an example, we
note that merging a design with itself, i.e., G∨G, doubles all
the parameters except k. However, the wiring complexity and
redundancy stays constant. This will be the basis for showing
convexity of R∞, cf. (4).

B. Proof of Proposition 2

With the help of the two basic operations, we can prove
the convexity of Rt and R∞, as well as the other properties
claimed in Proposition 2.

Proof of Proposition 2. Claim 1. From the definition of clo-
sure, (ε, ρ) ∈ Rt if and only if there is a sequence of points
{(εi, ρi)}i ∈ Rt approaching (ε, ρ). Each (εi, ρi) must be
associated with a (ki,mi, t, Ei)q-design Gi, where mi = ρikit
and Ei = εikit. To show that k,m,E → ∞, we can
copy Gi with itself ni times, where ni is chosen so that
niki, nimi, niEi →∞.

Claim 2. For any (ε, ρ) ∈ Rt, if there is a (k, ρkt, t, εkt)-
design G, then we can copy G with itself multiple times to

get a (k′, ρk′t, t, εk′t)-design G′ where k′ is arbitrarily large.
We can always add more redundant nodes or more edges to
G′ (this is possible since ρk′t can be arbitrarily large and
adding a finite number of redundant nodes does not change
the redundancy) to G′ to get a design with parameters (ε′, ρ′).
If (ε, ρ) is a limit point achieved by a sequence of designs,
we can always similarly add more redundant nodes and edges
to each design in the sequence that attains the limit.

Claim 3. This holds using copying from Proposition 7.
If a pair of values (ε1, ρ1) and (ε2, ρ2) are in Rt, there are

sequences (ε1,i, ρ1,i) → (ε1, ρ1) and (ε2,i, ρ2,i) → (ε2, ρ2),
where for each i there exists a (k1,i, ρ1,ik1,it, t, ε1,ik1,it)q-
design G1,i and a (k2,i,ρ2,ik2,it, t, ε2,ik2,it)q-design G2,i. For
any 0 ≤ α ≤ 1, we can find a sequence of rational numbers
αi = pi

qi
where pi, qi ∈ Z+ and αi → α. The copy k2,ipiG1,i+

k1,i(qi − pi)G2,i achieves the point (εi, ρi) = (αiε1,i + (1−
αi)ε2,i, αiρ1,i + (1 − αi)ρ2,i) in Rt and (εi, ρi) → (αε1 +
(1− α)ε2, αρ1 + (1− α)ρ2).

Claim 4. Any point (ε, ρ) in R∞ and any point in
closure {

⋃∞
t=1Rt} must both be the limit of some sequence

of (ki,mi, ti, Ei)q-designs. To see that R∞ = lim supRt, by
merging in Proposition 8, for any t, we have Rt ⊂ R2t ⊂
R4t ⊂ R8t . . . .

Claim 5. This holds using merging from Proposition 8.
Given two designs G1 and G2, where G1 is
a (k1, ρ1k1t1, t1, ε1k1t1)q-design and G2 is a
(k2, ρ2k2t2, t2, ε2k2t2)q-design, if we want to create a design
G with the parameter (αε1 + (1−α)ε2, αρ1 + (1−α)ρ2) for
α = p

q where p, q ∈ Z+, then we can let

G = pk2

(
t2∨
i=1

G1

)
+ (q − p)k1

(
t1∨
i=1

G2

)
. (10)

From here on, the proof proceeds similarly to the proof of
Claim 3.

C. Elementary achievability

From the previous propositions, we can immediately make
statements on what each region Rt must contain. Recall that
for any t, the point (1, 1) in Rt is achievable using the
repetition design. The point (q, 0) is asymptotically achievable
using the complete design. Thus, the line of points between
(1, 1) and (q, 0) is achievable by interpolating between the
repetition design K(1, t) and the complete design K(k, qt).
We summarize this below:

Proposition 9. The following region is achievable for any
t ≥ 1 and q ≥ 2:

R(K)
t

4
= {(ε, ρ) : ε ≥ q + (1− q)ρ, ε ≥ 1, ρ ≥ 0} . (11)

Furthermore, every point such that (ε − 1) is a multiple of
(q − 1) can be achieved via a design with constant degree ε
primary nodes.

Proof. The corner points (1, 1) and (q, 0) are achieved by the
repetition design and the complete design, respectively. By
Proposition 2 the region Rt is convex and hence must contain



R(K)
t . All rational points near the boundary ofRt are achieved

by r1K(1, t) + r2K(k, qt) for some choice of integers r1, r2
and k.

In order to get a design where the primary nodes have
regular degree, we can combine the repetition design and
complete design by merging. Find two integers t1, t2 where
t1 + t2 = t. The combination kK(1, t1) ∨ K(k, qt2) also
achieves the boundary point at ε = (t1 + qt2)/t as k → ∞.
This proves the last sentence of the Proposition 9.

The region R(K)
t is an inner bound on all achievable

regions, but for q = 2 and t = 1, 2 the region R(K)
t happens

to be tight and is the region plotted in Figure 2.6

D. Covering converse

This section presents a general converse bound which holds
for all Rt and all q, but in particular this converse shows that
R(K)

2 is tight for q = 2.

Theorem 10. Fix q = |X |, t and suppose (ε, ρ) ∈ Rt. Then
there exists πt, πt+1, . . . , πqt ≥ 0 satisfying

1

t

qt∑
j=t

jπj ≤ ε (12)

qt∑
j=t

πj = 1 (13)

qt∑
j=t+1

πj logqbj/tc ≥ 1 + (t− 1)πt − ρt . (14)

In other words the smallest achievable ε for a given ρ is lower
bounded as

ε∗(ρ, t) ≥ min

1

t

qt∑
j=t

jπj : πj ≥ 0 satisfy (13)-(14)

 (15)

Proof. The key idea of this proof is to look at how the
degree of primary nodes relates to whether a design can
correct defects for all sequences of labelings. Let us define
πj , j = t, t+ 1, ..., qt− 1 to be the fraction of primary nodes
with degree j. (Notice that every primary node clearly should
have degree at least t.) Define πqt to be the fraction of primary
nodes of degree qt or larger. The fact that this satisfies (12)-
(13) is obvious. We only need to show (14).

To that end, for each labeling rm ∈ Xm of redundant nodes
let Gt(rm) be the set of primary node labelings for which
conditions of Definition 1 are satisfied (we say that rm covers
Gt(rm) of the labelings). The design is t-defect correcting if
and only if every possible labeling is covered by some rm.
We can count the number of primary node labelings covered
by some rm and make sure this is equivalent to all possible

6Note that in the worst case, the rate of convergence to get ε close to a
point on the boundary of R(K)

t requires k to be on the order of 1
ε

. This
occurs when trying to achieve the boundary point (qt, 0). On the other hand,
achieving point the boundary point (1, 1) can be done with k = 1. For other
points on the boundary away from (qt, 0), it is not clear what the best rate
of convergence is.

primary node labelings. Thus, a design is t-defect correcting
if and only if ∣∣∣∣∣ ⋃

rm∈Xm

Gt(rm)

∣∣∣∣∣ = |X |k = qk . (16)

We are aiming to apply the union bound to the right-hand side
to get inequality (14). Before doing so we make the following
observation.

Two primary nodes of degree t should have disjoint neigh-
borhoods (otherwise labeling them different values clearly
violates Definition 1). Thus Gt(rm) is empty unless each such
neighborhood has a constant label. This shows that for the tkπt
redundant nodes connected to the primary nodes of degree t,
we are restricted to only qkπt choices, while the rest contribute
qm−tkπt more choices.

Given any of the qm−(t−1)kπt choices of rm we can
estimate |Gt(rm)| from above by assuming that each primary
node of degree d can take any of the bd/tc label in X while
still satisfying the t-wise coverage condition of Definition 1.
This yields

|Gt(rm)| ≤
qt∏
j=t

bj/tckπj , (17)

and thus applying the union bound to (16), we get (14).

For t = 1, 2 and q = 2, it is only necessary to evaluate
(15) at three separate points (two of which are ε = 1 and
2, the third is anywhere inbetween) in order to show that the
boundary of R1 or R2 from ε = 1 to 2 is linear. In particular,
for t = 2, we can first choose ε = 3/2. No matter how we
choose the values of π2, π3 and π4, to satisfy (14) we must
have ρ ≥ 1/2.

Proof of Theorem 3. Achievability follows from Proposi-
tion 9. The converse is determined by evaluating 15.

Remark 1. While the bound (15) is tight for t = 1 and t = 2
when q = 2, it is not tight in general. It however allows us
to make a general conclusion: since the bound is piecewise
linear, it follows that the slope of Rt at the point (qt, 0) of
minimal redundancy is non-zero. It is also the best bound
known to us for values of ε near qt.

In the next section, we will discuss a bound that is better for
ε away from q and when t is large. This converse outperforms
the covering converse (Theorem 10) at certain ρ even for q = 2
and t = 3.

E. Ternary alphabet and t = 1

Further progress on computing regions Rt for values of
q > 2 seems to require finer arguments on graph structure.
We can show the following result for q = 3 but the proof
requires significant casework.

Theorem 11. For q = 3 and t = 1 we have

R1 = {(ε, ρ) : ε ≥ 3− 2ρ, ε ≥ 1, ρ ≥ 0} (18)

and is achievable by the interpolation (11).

We give the proof in Appendix A.



V. FUNDAMENTAL LIMIT FOR t→∞

Recall that as t → ∞ the fundamental limit R∞
4
=

lim supRt can be characterized as the set of wiring
complexity-redundancy pairs, namely

ε =
E

kt
, ρ =

m

kt
(19)

over all values of t (see Proposition 2.) The goal of this section
is to prove the following result, that generalizes the binary
version stated earlier in Theorem 4.

Theorem 12. Fix alphabet |X | = q. The region R∞ defined
in (3) is the closure of the set of points (ε, ρ), parameterized
by the distribution PS on a finite support of Z+, and

ε =
E [S]

F (PS)
, ρ =

1

F (PS)
, (20)

F (PS)
4
= min

PX

max
PY |L

min
j∈[q]

1

PX(j)
E [Lj1{Y = j}] (21)

where E [·] is computed over random variables S ∈ Z+, X ∈
[q], L = (L1, . . . , Lq) ∈ {0 ∪ Z+}q, Y ∈ [q] with joint
distribution

PS,L,Y (s, `, y)
4
= PS(s)PL|S(`|s)PY |L(y|`) . (22)

where7

PL|S(`|s) 4=
(

s

`1, · · · , `q

) q∏
j=1

PX(j)`j . (23)

Theorem 12 gives Theorem 4 by substituting
PY |L(0|(L0, L1)) with f(L0, L1), PX(0) with λ, and
PX(1) with 1 − λ. Also, the multinomial distribution is
replaced by the binomial distribution.

We start the section by proving relevant properties of
F (PS). We then use these properties to prove the achievability
(i.e., upper bound) of Theorem 12. (This achievability proof
explains why the quantities used in Theorem 12 are important.)
Next, we present a symmetrization property which is the key
idea of the converse argument of Theorem 12. Putting these
elements together gives the complete proof.

Following the proof, we present a number of observations
about Theorem 12. These include a section about how we
compute Theorem 12 numerically and a section on the achiev-
able region for designs where k is finite, but t and m are
allowed to go to infinity. This result follows from the proof
of Theorem 12. We also discuss how the Hamming block is
optimal in this context.

A. Auxiliary results about F (PS)

Before proceeding further, we need to describe some tech-
nical properties of F (PS) and related quantities.8

7PL|S is the multinomial distribution, Mult(s, [PX(1), · · · , PX(q)])
8The notation 1

k
Z refers to the set of fractions with denominator k.

Definition 7 (Finitary F ). We define Fk,n(PS) and Fk(PS)
as follows:

Fk,n(PS)
4
= min
PX∈ 1

kZ
max

P
Y |L(k)∈ 1

nZ
min
j∈[q]

1

PX(j)
E [L

(k)
j 1{Y = j}] , (24)

Fk(PS)
4
= min
PX∈ 1

kZ
max
P

Y |L(k)

min
j∈[q]

1

PX(j)
E [L

(k)
j 1{Y = j}] , (25)

where E [·] is computed over random variables S ∈ [k], X ∈
[q], L(k) = (L1, . . . , Lq) ∈ {0 ∪ Z+}q, Y ∈ [q] with joint
distribution

PS,L(k),Y (s, `, y)
4
= PS(s)PL(k)|S(`|s)PY |L(k)(y|`) . (26)

where9

PL(k)|S(`|s) 4=

(
kPX(1)
`1

)
· · ·
(
kPX(j)
`j

)
· · ·
(
kPX(q)
`q

)(
k
s

) . (27)

Note that the definition of Fk,n is similar to that of F (PS),
see (21), but with two changes: 1) values of PX and PY |L(k)

(instead of PY |L) are required to be integer multiples of 1
k and

1
n , respectively; and b) PL(k)|S is (multivariate) hypergeomet-
ric, instead of multinomial. The function F (PS) which we are
ultimately interested in for this section is the limit of Fk(PS)
for k →∞, which itself is a limit of Fk,n(PS). The function
Fk(PS) is an important quantity which bounds the rate region
for designs with finite k, which we will discuss later in V-F.

Proposition 13. For any PS with finite expectation we have

Fk(PS)− E[S]

n
≤ Fk,n(PS) ≤ Fk(PS) . (28)

Also, there exists a sequence εk → 0 such that for any PS on
Z+ with finite third moment we have

|Fk(PS)− F (PS)| ≤ E [S3]

2k
+ εk . (29)

See Appendix B for proofs.

B. Subset design achievability and upper bound

The next proposition gives bounds on the performance of
subset designs in terms of Fk,n(PS) and Fk(PS).10

Proposition 14. Let q = |X | and fix k ∈ Z. Let G =
∨n
i=1G

′,
where G′ is a subset design with PS(s) as the proportion
of redundant nodes with degree s for s ∈ [k]. If G is a
(k,m, t, E)q-design, where E = mE[S] and t is the maximum
number of defects G can correct, then

m

k
Fk,n(PS) ≤ t ≤ m

k
Fk(PS) . (30)

9PL(k)|S is the multivariate hypergeometric distribution,
HyperGeom(s, k, [PX(1), · · · , PX(q)])

10This proposition initially used random coding as an argument. Random
coding has since been replaced.



Proof. First we show the upper bound that t ≤ m
k Fk(PS).

Consider any labeling wk ∈ X k of the k primary nodes
of G. Let the frequency which each label occurs in the
labeling have empirical distribution PX (that is, if ki of the
k primary nodes have label i, then PX(i) = ki

k ). Given this
labeling, we define the type of each redundant node v to be
` = (`1, · · · , `q), where `j is the number of primary nodes
with label j which is a neighbor of redundant node v. (If the
degree of the redundant node is s, then

∑q
i=1 `i = s.) Because

G is a subset design, the proportion of degree s redundant
nodes in G with type ` is

PL(k)|S(`|s) =

(
kPX(1)
`1

)
· · ·
(
kPX(q)
`q

)(
k
s

) . (31)

Now, for any choice of labeling rm ∈ Xm of the m
redundant nodes, let PY |L(k)(j|`) represent the proportion
(empirical distribution) of redundant nodes of type ` which are
labeled j. For each label j, we can count the average number
of matching redundant node neighbors a primary node u with
label j has by summing up all the edges between primary and
redundant nodes both with label j, and then dividing this by
the total number of primary nodes with label j. This average
is

t̃(j)
4
=

1

kPX(j)

∑
s

mPS(s)
∑
`

PL(k)|S(`|s)`jPY |L(k)(j|`)

(32)

=
m

k

1

PX(j)
E [Lj1{Y = j}] . (33)

The label j where this average is lowest determines the
upper bound on the number of defects G with labeling wk

and rm can correct. This upper bound is given by minj t̃(j).
We have the freedom to pick the redundant node labeling rm

with the empirical distribution PY |L(k) which maximizes the
average. The defect correcting number needs to hold for all
possible wk, so the empirical distribution PX which gives the
lowest value of maxP

Y |L(k)
minj t̃(j) determines t. This gives

the upper bound on t.
We now show the lower bound m

k Fk,n(PS) ≤ t.
Given any labeling wk ∈ X k of the primary nodes with

empirical distribution PX , let

PYn|L(k) = argmax
P

Y |L(k)∈ 1
nZ

min
j∈[q]

1

PX(j)
E [Lj1{Y = j}] . (34)

For each `, PYn|L(k)(j|`) =
cj
n for some cj ∈ Z+ ∪ 0,

and
∑
j cj = n. Because G is a merging of n copies of

G′, we can partition the copies of G′ in G into sets of size
c1, ..., cq . The jth set is a set of cj copies of G′. Label all
redundant nodes of type ` in the jth set the value j. We can
determine that each primary node u with label j has a total of
PS(s)m

`j
PX(j)kPL(k)|S(`|s) redundant nodes of type ` in its

neighborhood. This redundant node labeling scheme assigns
exactly PYn|L(k)(j|`) of these neighbors the label j.

Repeat this labeling process for each redundant node type `.
Summing over all ` and all s will get that the total number of

v =v

Fig. 9. Example merging permutations of the same design. The resulting
design is a subset design. In this example, for clarity, we did not show all 6
possible permutations of the 3 primary nodes in the original design. The 3
distinct permutations shown was enough to create a subset design.

redundant nodes with label j in the neighborhood of primary
node u is

∑
s,` PS(s)m

`j
PX(j)kPL(k)|S(`|s)PYn|L(k)(j|`).

Using this scheme, G can correct at least

t ≥ min
PX∈ 1

kZ
min
j∈[q]

∑
s,`

PS(s)m
`j

PX(j)k
PL(k)|S(`|s)PYn|L(k)(j|`)

(35)

=
m

k
min

PX∈ 1
kZ

max
P

Y |L(k)∈ 1
nZ

min
j∈[q]

1

PX(j)
E [Lj1{Y = j}]

(36)

=
m

k
Fk,n(PS) (37)

defects.

C. Converse and proof of Theorem 12

The converse needed to show Theorem 12 is surprisingly
simple. The main idea is the following:

Proposition 15 (Symmetrization). If there exists a
(k,m, t, E)q-design then there exists a permutation-invariant
(k,m · k!, t · k!, E · k!)q-design.

Proof. Let G be a (k,m, t, E)q-design. We will merge G
exactly k! number of times. The key is that each copy will
be merged by identifying with a permutation of the original
primary nodes.

Start with an ordering of the primary nodes in the design
G. For each σ ∈ Sk (the full symmetric group of k elements),
let Gσ be isomorphic to the design G, with the order of its
primary nodes transformed by σ. Then merge Gσ for all σ ∈
Sk identifying primary nodes in the same order.

Let the result be

GPERM =
∨
σ∈Sk

Gσ . (38)

GPERM is constructed to be permutation invariant. (For any
redundant node v in G, if v has degree s, every set of s nodes
in GPERM needs to be connected together by a copy of v.) By
Proposition 8 GPERM is a (k,m ·k!, t ·k!, E ·k!)q-design.

See Fig. 9 for an example of merging permutations to obtain
a subset design.

In view of Propositions 5 and 15, we see that in terms
of the values E

kt ,
m
kt every design on k primary nodes is at



most as good as a subset design on k primary nodes (meaning
the pair of values an arbitrary design will achieve has the
same or a worse trade-off than what a subset design can
achieve). Performance of the latter is completely characterized
by Proposition 14. Now we can combine the results to prove
Theorem 12.

Proof. Proof of Theorem 12
Achievability: Fix PS ∈ Q with finite support. For each k

and n, it is always possible to construct a subset design G′

on k primary nodes where the proportion of redundant nodes
of degree s are given by PS(s). Let G =

∨n
i=1G

′ so that
by Proposition 14, subset design G is a (k,m, t, E)q-design
so that tk

m ≥ Fk,n(PS) and E = mE[S]. Since Fk,n(PS) →
F (PS), there must exist a sequence of subset designs Gi which
are (ki,mi, ti, Ei)q-designs where

ε =
Ei
kiti
→ E[S]

F (PS)
, ρ =

mi

kiti
→ 1

F (PS)
. (39)

Thus (
E[S]

F (PS)
,

1

F (PS)

)
∈ R∞ . (40)

Since F (PS) is continuous in PS , (40) holds for any PS with
finite support.

Converse: For any design G which is a (k,m, t, E)q-design,
there exists a subset design G′ which is a (k,m · k!, t ·
k!, E ·k!)q-design by Proposition 15. Let PS be so that PS(s)
represents the proportion of redundant nodes in G′ with degree
s. Then E = mE[S]. Let t′ be the number of defects G′

can correct. Using Proposition 14 and Fk(PS) ≤ F (PS) (cf.
Lemma 23 in Appendix C),

t · k! ≤ t′ ≤ m · k!

k
Fk(PS) ≤ m · k!

k
F (PS) . (41)

Then for design G, ε = E
tk ≥ E[S]

F (PS) and ρ =
m
tk ≥

1
F (PS) . Thus, the limit of ( Ei

kiti
, mi

kiti
) for any se-

quence of (ki,mi, ti, Ei)q-designs must be in the closure of
( E[S]
F (PS) ,

1
F (PS) ) for all PS with a finite support.

D. Observations about Theorem 12

1) Threshold solution: The optimal value for PY |L tells us
what the optimal labeling of redundant nodes should be. It
turns out that for most values of `, PY |L(j|`) is either 0 or 1.

For an illustration of this, consider the binary alphabet (or
q = 2) case and the design S(k, s). The types are ` = (`0, `1).
Given any empirical distribution PX of the primary node
labels, the optimal labeling of the redundant nodes must be
so that redundant nodes with larger values of `1 are assigned
the label 1 instead of redundant nodes with smaller values of
`1. Otherwise, we can always swap the labelings and increase
the number of defects corrected. In fact, even when there are
multiple subset sizes, it is possible to find an optimal solution
where the value of PY |L depends only on the ratio of `0 to
`1.

Proposition 16. For X = {0, 1}, the solutions PY |L which
attain the maximum in (21) must have the following form

PY |L(0|`) =


1 if `0

`0+`1
> γ

0 if `0
`0+`1

< γ

µ(`0 + `1) if `0
`0+`1

= γ

(42)

where γ ∈ [0, 1] and µ(s) ∈ [0, 1] for each s ∈ Z+. 11

(See Appendix D for proof.) Generalizing to larger alphabet
sizes, the space of all possible ` will be partitioned into q
pieces depending on the relative ratios of values in `. The
interior of each piece will have all types assigned to the same
label, that is PY |L(j|`) = 1 for some j. The values of ` on
the boundary may be split between 2 or more values.

Notice that in light of Theorem 12 and Proposition 16,
computing the optimal redundant node labeling for subset
designs given a fixed primary node labeling is easy. For general
designs, this is NP-Hard.

2) Worst-case PX : The worst-case distribution of primary
node labels which gives the result in Theorem 12 is not
obvious, even in the binary alphabet case. When X = {0, 1},
we can easily determine that for subset designs S(k, s) with
even s, the worst-case PX is when PX(0) = PX(1) = 1

2 .
However, when s is odd, this is not true. When s = 3,
the worst-case PX is determined by a solution to a cubic
polynomial. When a merging of different subset designs are
used or a larger alphabet is used, it is unclear how to find the
worst-case PX analytically. This makes finding the worst-case
PX the main difficulty in evaluating the optimization equation
in Theorem 12 for given values of PS . (The equation is non-
convex in PX .)

E. Numerical upper and lower bounds

Since the optimization presented in Theorem 4 is difficult
to evaluate exactly, instead, we give an approximation for the
boundary by establishing computable almost tight upper and
lower bounds for when q = 2. The details can be found in
Appendix E and a comparison is presented on Fig. 10. As can
be seen, the gap between the bounds is on the order of 10−3

and virtually indistinguishable on the plot. The best known
achievable point in R∞ for selected fixed values of E [S] are
given in Table I. These points are found by searching and
using weights from the converse bound method presented in
Appendix E.

We observed the following effects about designs near the
boundary of R∞ while experimenting with Theorem 4:

• The design has 4 or 5 distinct subset sizes
• Odd number subset sizes are more common
• The subset sizes which make up most of the design are

consecutive, possibly skipping even subset sizes

11There is not necessarily a unique solution for µ(s). One such solution
has µ(sa) = µ(sb) for all sa, sb.
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TABLE I
ACHIEVABLE POINTS

E [S] Support set with corresponding PS Point (ε, ρ) in R∞
2 [1,3,4,5] , [0.62, 0.21, 0.10, 0.07] (1.24, 0.61)
3 [1,3,4,5] , [0.24, 0.41, 0.20, 0.14] (1.35, 0.45)
4 [3,4,5,6,7] , [0.52, 0.21, 0.13, 0.02, 0.12] (1.42, 0.35)
5 [3,4,5,7] , [0.31, 0.23, 0.28, 0.18] (1.40, 0.29)
6 [5,6,7,9] , [0.45, 0.31, 0.14, 0.10] (1.47, 0.29)
7 [5,6,7,8,9] , [0.35, 0.01, 0.13, 0.32, 0.19] (1.53, 0.22)
8 [7,8,9,11] , [0.40, 0.36, 0.16, 0.08] (1.56, 0.19)

F. Results for finite k
To develop the proof for Theorem 12, we showed interme-

diate results on designs with k primary nodes and observed
what occurs when k → ∞. We can use these intermediate
results to determine the achievable regions for designs on k
primary nodes.

Definition 8. For fixed q and k ∈ Z+, we define the region
Rk∞ as the closure of the set of all achievable pairs ( Ekt ,

m
kt ) :

Rk∞
4
= closure

{(
E

kt
,
m

kt

)
: ∃(k,m, t, E)q-design

}
. (43)

Similar to regions Rt and R∞, the region Rk∞ is convex.
We can apply the proof for Claim 5 in Proposition 2 replacing
the expression (10) with

G =

(
pt2∨
i=1

G1

)
∨

(q−p)t1∨
i=1

G2

 (44)

to show this.
Claims 1 and Claim 2 of Proposition 2 also hold for Rk∞.

Theorem 17. Fix alphabet |X | = q. The region Rk∞ defined
in (43) is the closure of the set of points (ε, ρ), parameterized
by the distribution PS on [k], where

ε =
E [S]

Fk(PS)
, ρ =

1

Fk(PS)
, (45)
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and Fk(·) is defined in (25).

Proof. The achievability and converse of this theorem follows
from Proposition 14 (with Fk(PS) is continuous in PS) and
Proposition 15 respectively.

Using (45), we can plot the achievable region R3
∞ when

q = 2 (see Fig. 11). The most salient aspect of R3
∞ is that

the point achieved by the Hamming block (see Fig. 5(a)) is a
corner point of this region. It is the only corner other than the
usual corner point (1, 1) achieved by the repetition design.

Corollary 18 (Hamming block corner point). The value given
by the Hamming block is a corner point of R3

∞ for X =
{0, 1}.

The proof for Corollary 18 and the methods used to calcu-
late R3

∞ are in Appendix F. The implication of this result is
that for any design on k = 3 primary nodes, no design has a
better trade-off between redundancy m

kt and wiring complexity
E
kt than the Hamming block, even if we allow the design to
have arbitrarily many edges and redundant nodes.

VI. DISCUSSION

We conclude with a discussion of some implications of our
results, some extensions and future work.

A. Implications on practical designs

The result for R1 and R2 (for q = 2) demonstrates that
for correcting small defects, the best solution in the limit
of a large number of primary nodes is a linear combination
of two basic designs, the repetition design and the complete
design. (Though this design is not optimal for finite k. Slight
improvements can be made by removing a few edges.)

Theorem 12 gives a result for asymptotic t, and while
practically no application is going to need to correct asymp-
totically many defects, the region defined by the result gives a
converse bound forRt for all finite t by virtue of Claim 4 from
Proposition 2. All regions Rt must lie between R1 and R∞,



approaching the latter as t→∞. Hence Theorem 12 describes
the fundamental limit for the trade-off between redundancy
and wiring complexity.

The numerical results for asymptotic t and q = 2 imply that
the designs which are close to optimal for large t use redundant
nodes with a limited set of degrees. The best achievable points
found for R∞ for fixed values of E [S] each use redundant
nodes with degrees within 2 or 3 values of E [S].

Results for Rk∞ define what is optimal for finite k in terms
of the number of defects correctable per use of redundancy
and edges. We know exactly what this region looks like for
k = 3 and can determine that the Hamming block is in fact the
optimal design. Evaluating Rk∞ for larger values of k gives
exactly what trade-offs are realizable.

Also note that in the asymptotic t results, the optimal trade-
off is obtainable by designs which has regular primary node
degree (since subset designs are always regular). Not only
that, but finding the best labeling of redundant nodes for
subset desgins corresponds to finding PY |L in the statement
of Theorem 12, which is easy to compute.

B. Comparison to other models for defect tolerance

This paper studies the defect-tolerance model where steps
proceed as follows:

a. bipartite graph (interconnect) is designed;
b. primary nodes get q-ary labeling;
c. redundant nodes are assigned q-ary labels (so that each

primary node has t neighbors with matching label).
There are two natural variations where the sequence of steps
are interchanged:
• adaptive graph: b.→a.→c.
• non-adaptive redundancy: a.→c.→b.

In the first case, the design of the edges of the graph is a
function of the q-ary labels, while in the second case the
redundant nodes are not allowed to depend on the labeling
of primary nodes.

It is clear that the setting considered in this paper
(a.→b.→c.) is an intermediate case. That is, any t-defect
correcting design in the sense of Definition 1 is also t-defect
correcting in the sense of the adaptive graph. Similarly every
design with non-adaptive redundancy should work in the sense
of Definition 1.

The fundamental redundancy-wiring complexity trade-off is
defined similarly to (2). However, for both cases it is rather
easy to determine this trade-off for any t ≥ 1:
• adaptive graph: Clearly the number of edges E ≥
kt. This can be attained with (asymptotically) zero-
redundancy by adding t redundant nodes of each label
(for a total of m = qt) and connecting every primary
node only to relevant t redundant nodes. Consequently,
here

Rt = {(ε, ρ) : ε ≥ 1, ρ ≥ 0} . (46)

• non-adaptive redundancy: Again, clearly the number of
edges is E ≥ qkt. This can be attained with (asymptot-
ically) zero-redundancy by adding t redundant nodes of
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each label (for a total of m = qt) and connecting every
primary nodes to all of qt redundant ones (i.e., using
K(k, qt) design). Consequently

Rt = {(ε, ρ) : ε ≥ q, ρ ≥ 0} . (47)

These observations are summarized in Fig. 12 for q = 2.

C. Relation to (t, t)-colorable hypergraphs

There is a purely graph-theoretic way to look at our prob-
lem. For this we bring up the concept of a (t, t)-graph coloring
introduced in [20]. A hypergraph is called (t, t)-colorable if
for every {0, 1}-coloring of hyperedges there exists a {0, 1}-
coloring of vertices so that each edge contains t vertices of its
color. Define

dt(k,m) = min(average edge-size:
all (t, t) colorable hypergraphs on

m vertices and k hyperedges) . (48)

It is not hard to see that our problem with binary X and
(t, t)-coloring are one-to-one related: the vertices correspond
to primary nodes and the hyperedges correspond to redundant
nodes. More precisely we have

Proposition 19. Fix binary X . The boundary of Rt is given
by

lim inf
k→∞

1

t
dt(k, dρkte) . (49)

The boundary of R∞ is given by

lim inf
t→∞

lim inf
k→∞

1

t
dt(k, dρkte) . (50)

Proof. Note that for a fixed t, if for some pair (ε, ρ) we
have 1

t dt(k, dρkte) = ε for some k, then by copying (Propo-
sition 7), there exists infinitely many values of k′ > k,
where 1

t dt(k
′, dρk′te) ≤ ε. It follows from Proposition 2 that



lim infk→∞
1
t dt(k, dρkte) must correspond to the boundary of

Rt.
Similarly, by merging (Proposition 8), any pair (ε, ρ) where

there is some t such that

lim inf
k→∞

1

t
dt(k, dρkte) = ε

for some t, must also have infinitely many values of t′ > t
where lim infk→∞

1
t′ dt′(k, dρkt

′e) ≤ ε.

Hypergraphs were used [20] to show a specific achievability
scheme for storing data with bitprobes. This achievability
scheme thresholds of the number of neighbors with value
0 to determine values of data points. Using the connection
our defect correcting designs have with hypergraphs, we can
use Theorem 4 to show a converse bound on the size of the
encoded vector for bitprobes that use thresholding. However,
the constants we get from applying our work to bitprobes does
not do better than those cited in [20]. For instance, for 3
bitprobes and vectors where at most 1/3 of the entries are
1, our result gives that the ratio of the length of the encoded
vector to the length of the original vector must be greater than
.21 whereas the method cited in [20] gives that the ratio must
be greater than .48.

D. Stochastic defects

This work considered correcting arbitrary (worst-case) de-
fect patterns. Suppose that instead we are interested in correct-
ing fraction α of defects (i.e., t = α(k+m)) on k primary and
m redundant nodes. In this scenario, the number of redundant
nodes m would need to grow as a function of k in order to
keep up with the number of defects needed to be corrected. If
α is too large, it is not possible to find designs which corrects
α(k +m) defects for arbitrarily large k.

To see this, note that correcting worst case t defects with
alphabet size q requires at least qt redundant nodes.

m ≥ qt (51)
m ≥ qα(k +m) (52)

m(1− qα) ≥ qαk . (53)

The quantity on the right-hand side of (53) needs to be
positive, so it must be that α < 1

q .
Additionally, the only designs which can correct fraction

α < 1
q of defects for growing k are designs with the

same redundancy and wiring complexity as complete designs.
From our results in Theorem 12, we know that there exists
(k,m, t, E)q-designs so that

m

kt
→ c (54)

for some constant c. When t = α(k +m),

m

kα(k +m)
> c (55)

m(1− ckα) > ck2α . (56)

In order for (56) to hold, the right-hand side must be
positive, so it must be that c → 0 as k becomes arbitrarily
large. The point in R∞ where m

kt → 0 corresponds to the
complete design.

In light of these results, it is natural to ask what happens
if instead we relaxed the requirement to correcting i.i.d.
Bernoulli(α) defects in the sense of high probability (com-
puted over distribution of defects and primary assignments). It
turns out that in such probabilistic model, correcting fraction-
α of defects is possible with designs possessing O(k log k)
edges and O(k) redundant nodes. See [21] Theorems 4.10
and 4.15 in Section 4.4 for more (pp. 63-66).

E. Future work

One direction for future work involves extensions beyond
the bipartite graph. We chose to study the one-level bipartite
graph model for simplicity, but experiments like Teramac [19]
have demonstrated the effectiveness of multi-level hierarchical
designs. This leads to the question of what are the optimal
trade-offs when hierarchical models of redundancy are used.
The hierarchical model would include intermediate nodes
which can facilitate connections of edges. The presence of the
intermediate nodes can greatly reduce the number of edges. To
correct t defects, we can connect each primary node to t in-
termediate nodes. Regardless of the number of primary nodes,
the intermediate nodes can connect to finitely many redundant
nodes. This way, we are able to achieve a wiring complexity
of t and redundancy of 0 (asymptotically). In such a case, we
would be interested in finding the fundamental trade-offs with
the number of intermediate nodes as a parameter.

F. Open Problems

Regions which are still to be determined include:
• Rt for t > 2 and q = 2
• Rt for t > 1 and q ≥ 3

For q = 2, it is also unknown what the smallest value of t is
for whichRt does not equal the region defined in Equation (5).
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APPENDIX

A. Proof of Theorem 11

Proof. Define R1 as in (18). We will show that all
(k,m, 1, E)3-designs must lie in R1. Let the primary nodes
have labels in X = {0, 1, 2}.

Instead of saying that a given bipartite graph is 1-defect
correcting for alphabet of size q = 3, we will say (for brevity)
that a graph satisfies property (*).

(*) is the property that for any labeling of the primary nodes
in X k, where k is the number of primary nodes, there exists a
labeling of the redundant nodes so that each primary node has
at least one redundant node neighbor with the same labeling.



The steps for this proof are:

1) Show that designs with primary nodes of degree 3 and
greater can be disregarded.

2) Show that in order to satisfy (*), designs with any primary
nodes of degree 1 must be in R1 .

3) Show that in order to satisfy (*), designs with primary
nodes all of degree 2 must be in R1 .

a) Show designs containing two disjoint cycles connected
by a path (see Fig. 13(a)) violate (*)

b) Show designs containing two cycles which intersect at
one point (see Fig. 13(b)) violate (*)

c) Show designs containing two cycles which intersect at
multiple points (see Fig. 13(c)) violate (*)

Step (1) The key to this step is to make a graph with
(almost) equivalent parameters where nodes of degree 3 or
more are in a separate component. For any (k,m, 1, E)3-
design G, define a new design G′ with the same number
of primary nodes k and the number of redundant nodes as
m′ = m + qt = m + 3. The added redundant nodes are
connected to each of the primary nodes that have degree (in
G) larger or equal to 3. The remaining primary nodes are
connected in G′ exactly as in G. It is clear that G′ still
satisfies (*), has the same (or smaller) number of edges and
(asymptotically in m) the same redundancy ρ. This shows,
that without loss of generality we can assume that there are
no primary nodes of degree greater than 3 and all nodes of
degree 3 form a complete bipartite graph disjoint from the rest
of the design. We can ignore this separate component.

Step (2) The main argument of this step is to show that if
the design has any primary node of degree 1, the design must
be a tree.

We will say a primary node is adjacent to another primary
node if the two primary nodes share a redundant node as a
common neighbor.

Suppose the design has a primary node u0 of degree 1 and
no primary nodes of degree 3 or more. For all primary and
redundant nodes, we will consider the node’s shortest distance
to u0. If a node is distance i from u0, we say that the node
is at level i. Since the design is bipartite, even levels have
primary nodes, and odd levels have redundant nodes. Let tier
n mean the levels 2n and 2n+ 1.

Consider the labeling of the primary nodes where all pri-
mary nodes in even tiers are labeled 0’s and all primary nodes
in odd tiers are labeled 1’s. Since u0 only has one neighbor,
in order to satisfy (*), we must label the one redundant node
in tier 0 the value 0. The primary nodes in tier 1 each have the
redundant node in tier 0 and some redundant node in tier 1 as
neighbors. The redundant node in tier 0 is already labeled a 0,
so all redundant nodes in tier 1 must be labeled 1’s in order to
satisfy (*). Since primary nodes in tier 2 are labeled with 0’s,
then all redundant nodes in tier 2 must also be labeled 0’s.
Continuing this argument by induction, all redundant nodes in
a tier must be labeled the same value as the primary nodes
in that tier. If the design is a tree, then this labeling scheme
satisfies (*).

Now suppose the design has cycles. Find the lowest tiered
primary node which completes a cycle, that is the lowest tiered
primary node uc in tier c which has one redundant node in
tier c − 1 and the other redundant node it has is shared by
a primary node in tier b, where b ≤ c. (It could be that two
nodes in tier c share the same redundant node in tier c. Pick
either as uc). Now switch the label of uc to 2 and keep all the
other labels the same. Both redundant neighbors of uc must
be labeled a 0 or 1, so we do not satisfy (*).

Condition (*) is not satisfied unless the design has no cycles
and is a tree. If the design is a tree, it must have at least the
same number of redundant nodes as primary nodes, so the
design lies in R1. We can now assume that all primary nodes
are of degree 2.

Notice having q ≥ 3 is important to avoid existence of even
cycles.

Step (3) Our goal is to prove that if all primary nodes
have degree 2, then m

k ≥
1
2 . We will instead prove something

stronger: For k > 4 we must have m ≥ k. For k = 4 we must
have m ≥ 3.

Because of copying (see (8)-(9)), it is sufficient to prove
the above for designs on a single component. If there is a
redundant node with degree 1, we can remove this redundant
node with its neighboring primary node from the design and
make it to a separate component. We can assume all redundant
nodes must also have degree 2 or more.

We will call a labeling of primary nodes alternating if
adjacent primary nodes have different labels.

Lemma 20. If a design with k primary nodes, all of degree 2,
and k− 1 or fewer redundant nodes, all of degree 2 or 3, can
be labeled alternatingly, then the design cannot satisfy (*).

Proof. If there is an alternating labeling, at most each redun-
dant node can only match the labeling of one of its neighboring
primary nodes. There can only be at most k − 1 matches,
so there exists one primary node which does not have a
neighboring redundant node with the same label as itself.

Suppose a design with all primary nodes of degree 2 is
such that m < k. Then, some redundant node in the design
must have degree 3 or more. Pick the separate component
with this redundant node, and let A be a cycle in this separate
component (if this component does not have cycles, then m ≥
k as in Step 2). In order for cycle A to be in this component,
a redundant node with degree more than 2 must also be in A.
Call this redundant node v0. Call the neighbor of v0 which is
not in A u0.

Build a path B in the design starting at primary node u0
as follows: The second node in path B will be the neighbor
of u0 which is not v0. We can pick the next node in the path
arbitrarily. The path ends when we reach a node in A or a
node already in B. To show that (*) does not hold on the
design, it is sufficient to show that (*) is not satisfied on the
subgraph A ∪B.

Depending on the endpoint of path B, we have several
cases:



Case (3a): Endpoint of B coincides with an intermediate
point of B (see Fig. 13(a))

Let v1 be the redundant node in path B where the path B
ends. Rename the cycle created by path B to cycle C. The
subgraph A ∪B ∪C satisfies the conditions of Lemma 20 so
we need only show that we can find an alternating label. The
nodes v0 and v1 are the only redundant nodes with degree 3. It
is clear that by starting with a alternating label of the neighbors
of v0, we can find an alternating label for the path between v0
and v1, and then an alternating label of the neighbors of v2.
After this, it is easy to find an alternating label for the rest of
A and C.

Case (3b): Endpoint of B is node v0 (see Fig. 13(b))
Let cycle C be the cycle formed using path B and v0. As

long as one of cycle A and cycle C have more than 2 primary
nodes, the design violates (*).

Consider when the labeling is so that the two primary nodes
in the larger cycle (assume this to be cycle A) neighboring
v0 are labeled the same value, say 0. The rest of the primary
nodes of A are labeled alternatingly, which is possible because
cycle A has at least three primary nodes. Let the two primary
nodes neighboring v0 in cycle C be labeled 1 and 2. Then v0
must be labeled 0 in order for each node in cycle A to have
a neighbor with the same label. Then if cycle C is labeled
alternatingly, we will violate (*).

If both cycles have only 2 primary nodes, it is possible for
this design to have k = 4 and m = 3 and satisfy (*). See
Fig. 14.

Case (3c): Endpoint of B is some node of A different
from v0 (see Fig. 13(c))

Two redundant nodes in the design have degree at least 3.
Call them v0 and v1. Cycle A and path B make up three
distinct paths which go from v0 to v1, which we will refer to
as E,F and G. As long as no two paths have only 1 primary
node, then we can find an alternating label and use Lemma 20.

Label ui,X to be the primary node neighboring vi and in
path X . If all paths E,F, and G have two or more primary
nodes, assign labels 0, 1, 2 to u0,E , u0,F , u0,G and 1, 2, 0 to
u1,E , u1,F , u1,G. Each path can be labeled alternatingly.

If there is one path with only one primary node, say path E,
assign labels 0, 1, 2 to u0,E , u0,F , u0,G and 2, 1 to u1,F , u1,G.
Each path can be labeled alternatingly.

If two paths both have one primary node, say E and F ,
as long as the third path G has at least 3 primary nodes,
the design can be labeled alternatingly. We can label the two
primary nodes cycle created by paths E and F the values 0
and 1. Then since G has at least 3 primary nodes, we can label
u0,G and u1,G the value 2 and label the rest of G alternatingly.

If G only has 2 primary nodes, then this is a design on
k = 4 and m = 3 which satisfies (*). See Fig. 15.

Note that the two exceptions with k = 4 are precisely the
minimal non-trivial 1 defect correcting designs. One of these
designs was discussed in Section III-A.

(a) Case (3a)

(b) Case (3b)

(c) Case (3c)

Fig. 13. Example designs for the different cases considered in the proof of
Theorem 11.

Fig. 14. Design which satisfies (*). Exception to case (3b).

B. Proof of Proposition 13

Before we present the proof of Proposition 13, we will first
show the following lemma:

Lemma 21. Fix PX ∈ 1
kZ and s ∈ Z+. Let L ∼ Mult(s, PX),

cf. (23), and L(k) ∼ HyperGeom(k, s, PX), cf. (27). Then we
have the following total variation estimate:12

TV(PL(k) , PL) ≤ s2

2k
. (57)

12Total variation distance TV for probability measures P and Q on sigma
algebra F defined as TV(P,Q) = supA∈F |P (A)−Q(A)|.

Fig. 15. Design which satisfies (*). Exception to case (3c).



Similarly, if M ∼ Mult(s− 1, PX) and M (k−1) has distribu-
tion

P[M (k−1) = m] =

(
kπ1

m1

)
· · ·
(
kπj−1
mj

)
· · ·
(
kπq

mq

)(
k−1
s−1
) (58)

for an arbitrary j, we also have

TV(PM , PM(k−1)) ≤
s2

2k
. (59)

Proof. Standard estimate for total variation via coupling states
that for any joint distribution PL,L(k) :

TV(PL(k) , PL) ≤ P[L(k) 6= L] . (60)

Notice that L(k) encodes the color distribution after sam-
pling s balls from a collection of k colored balls (with
composition given by PX ) without replacement, while L is
the color distribution for sampling s balls with replacement.
Let us couple these two samples as follows. Number all
balls from 1 to k and define infinite string of i.i.d. uniform
Xi ∈ [k]. Let our sample with replacement be the balls with
indices X1, . . . , Xs, while the sample without replacement be
the balls X1, Xi2 , . . . , Xis where it denotes the first element
of the sequence where t-th unique index appeared (e.g., for
X = (1, 2, 2, 3, . . .) we have i2 = 2, i3 = 4, etc). Now the
two samples are going to be different only if X1, . . . , Xs are
not distinct and this happens with probability at most

s−1∑
i=1

i

k
=
s2 − s

2k
<
s2

2k
. (61)

This proves (57). For (59) modify distribution of X sequence
by setting X1 = j and the rest are still i.i.d. uniform on [k].
Then M is the color composition of X2, . . . , Xs while M (k−1)

is the color composition of Xi2 , . . . , Xis . Again, X2, . . . , Xs

are not all distinct with probability at most (61).

Proof. Proof of (28): Simply by definition we have
Fk,n(PS) ≤ Fk(PS), so we focus on the opposite direction.
First, we show that if L(k) ∼ HyperGeom(s, k, [π1, · · · , πq]),
for any function f : L(k) → R and any fixed j ∈ [q] we have

1

πj
E[L

(k)
j f(L(k))] = E[S · f(M (k−1) + ej)] , (62)

where ej is a vector with one in j-th position and the rest
zeros, and M (k−1) has hypergeometric distribution

P[M (k−1) = m] =

(
kπ1

m1

)
· · ·
(
kπj−1
mj

)
· · ·
(
kπq

mq

)(
k−1
s−1
) . (63)

To that end, simply notice that

1

πj
E[L

(k)
j f(L(k))]

=
∑
s

PS(s)
∑
`

`j
πj

(
kπ1

`1

)
· · ·
(
kπq

`q

)(
k
s

) f(`) (64)

=
∑
s

PS(s)
∑
m

s

(
kπ1

m1

)
· · ·
(
kπj−1
mj

)
· · ·
(
kπq

mq

)(
k−1
s−1
) f(m+ ej) .

(65)

Now fix PX ∈ 1
kZ and PY ∗|L(k) to be the optimal distribu-

tions achieving Fk(PS) in (25). By rounding there must exist
PYn|L(k) ∈ 1

nZ so that |PYn|L(k)(j|`)−PY ∗|L(k)(j|`)| ≤ 1
n for

every `. Then for any fixed j ∈ [q] we have in view of (62)∣∣∣∣ 1

PX(j)
E[L

(k)
j 1{Y ∗ = j}]− 1

PX(j)
E[L

(k)
j 1{Yn = j}]

∣∣∣∣
≤ E[S]

n
.

(66)

Taking minj of (66) recovers the lower bound in (28).
We proceed to proving (29). Fix PS and let

h(PX , PY |L, j)
4
=

1

PX(j)
E [Lj1{Y = j}] , (67)

where given S = s we have L ∼ Mult(s, PX), cf. (22).
Similar to (62) we have

h(PX , PY |L, j) = E [S · PY |L(j|M + ej)] , (68)

where this time given S = s we have M ∼ Mult(s− 1, PX).
Now, for PX ∈ 1

kZ define also

hk(PX , PY |L, j)
4
=

1

PX(j)
E [L

(k)
j 1{Y = j}] , (69)

where given S = s we have L(k) ∼ HyperGeom(s, k, PX).
From (62), (68) and Lemma 21 (namely (59)) we have then

|h(PX , PY |L, j)− hk(PX , PY |L, j)| ≤
E [S3]

2k
. (70)

Finally, since

(PX , PY |L) 7→ min
j
h(PX , PY |L, j) (71)

is uniformly continuous on a compact set, we also have

(PX , PY |L) 7→ max
PY |L

min
j
h(PX , PY |L, j) (72)

is uniformly continuous by Proposition 22. Hence for some
εk → 0 we have∣∣∣∣∣ min

PX∈ 1
kZ

max
PY |L

min
j
h(PX , PY |L, j)−

min
PX

max
PY |L

min
j
h(PX , PY |L, j)

∣∣∣∣ ≤ εk . (73)



Using (70) to replace h with hk in the first term of the latter
we get (29).

Proposition 22. Let f : X × Y → R where X and Y are
compact and f is uniformly continuous. Then maxy f(x, y) is
uniformly continuous on X .

Proof. Let h(x) = maxy f(x, y). Because f is uniformly
continuous, for every ε > 0 there exists a δ so that if
the distance between (x1, y1) and (x2, y2) is less than δ,
then |f(x1, y1) − f(x2, y2)| < ε for all x1, x2 ∈ X and
y1, y2 ∈ Y . We want to show that for h, the same δ can be
used for each ε. Suppose there exists values x, x′ ∈ X where
|h(x′)−h(x)| > ε and |x−x′| < δ. Assume that h(x′) > h(x).
There exists a value of y so that f(x′, y) = h(x′). Since
|f(x′, y)−f(x, y)| ≤ ε then h(x′) = f(x′, y) ≤ f(x, y)+ε ≤
h(x) + ε, which is a contradiction.

C. Upper bound on Fk(PS)

Lemma 23. For any PS ∈ Q with finite support,

Fk(PS) ≤ F (PS) . (74)

Proof. Fix PS ∈ Q with finite support. First, we will show
that Fk(PS) ≤ F2k(PS) . Using Proposition 14 and (28)
from Proposition 13, for each k there exists a sequence
of subset designs Gi which are (k,mi, ti, Ei)q-designs with
Ei = miE[S], and tik

mi
→ Fk(PS).

For each Gi, we will construct subset design G′i on 2k
primary nodes by copying (see Proposition 7) two copies
of Gi. Then G′i is a (2k, 2mi, ti, 2Ei)q-design. By Proposi-
tion 15, for each G′i, there exists a subset design G′′i which is
a (2k, 2mi · (2k)!, ti · (2k)!, 2Ei · (2k)!).

F2k(PS) ≥ lim
i→∞

ti · (2k)!2k

2mi · (2k)!
= lim
i→∞

tik

mi
= Fk(PS) . (75)

Then, Fk(PS) ≤ F2k(PS) ≤ F4k(PS) ≤ F8k(PS) ≤
F16k(PS) · · · . Since F2ik(PS) → F (PS) monotonically with
convergence given by (29) from Proposition 13, this gives the
desired result.

D. Proof of Proposition 16

Proof. Fixed PS with finite support and let c = E[S]. Let
P̂S(s) = PS(s)s∑

s PS(s)s = 1
cPS(s)s. We can substitute in P̂ (s)

and take the expectation with respect to P̂S instead of PS by
adjusting (21) to

F (P̂S) = min
PX

max
PY |L

min

{
c

PX(0)

L0

S
1{Y = 0},

c

PX(1)

L1

S
1{Y = 1}

}
. (76)

Let the redundant node ratio of a redundant node with type
(`0, `1) be ν = `0

`0+`1
. Suppose that PY |L is a labeling so that

1) PY |L(1|`a) > 0 where `a so that `0 + `1 = sa and has
ratio νa

2) PY |L(0|`b) > 0 where `b so that `0 + `1 = sb and has
ratio νb

3) νa > νb

Let PY ′|L be equivalent to PY |L except that

PY ′|L(1|`a) = PY |L(1|`a)− αP̂S(sb)PL|S(`b|sb) (77a)

PY ′|L(0|`a) = PY |L(0|`a) + αP̂S(sb)PL|S(`b|sb) (77b)

PY ′|L(1|`b) = PY |L(1|`b) + αP̂S(sa)PL|S(`a|sa) (77c)

PY ′|L(0|`b) = PY |L(0|`b)− αP̂S(sa)PL|S(`a|sa) (77d)

for an appropriate α > 0 which is small enough so that PY ′|L
is still a valid distribution. Compared to PY |L, PY ′|L increases
both quantities in the brackets in (76). So PY |L cannot be
optimal and any optimal PY |L must have the form of (42).

For two redundant node type ratios where νa = νb, we can
also see from (77a)-(77d) that there is a value of α (possibly
negative unlike above) so that PY ′|L(0|`a) = PY ′|L(0|`b) and
the value of (76) is not affected by the change.

E. Numerical results derivation

Here we develop upper and lower bounds for the expression
found in Theorem 4 (the particular case when X = {0, 1}).

1) Almost tight lower bound: Our lower bound for the
boundary of R∞ will be parametrized by c. To get this lower
bound, we want to find an upper bound for

Z∗(c) = max
PS :E[S]=c

F (PS) . (78)

For notation, let λ = PX(0) and 1 − λ = PX(1). Let ` =
(`0, `1) and f(`0, `1) = f(`) = PY |L(0|`) where f can take
any value between [0, 1]. For a fixed λ and s, define random
variable M(s, λ) = (V, s− 1− V ) where V ∼ Bino(s− 1, λ)
and e0 = (1, 0) and e1 = (0, 1) according to Lemma 21 and
the proof of Proposition 13. (Just for clarity in this section,
we added arguments in paranthesis for M .) Fix PS to have
finite support.

First, we have that

F (PS) = min
0≤λ≤1

max
0≤f≤1

min

{
1

λ
E[L0f(L)],

1

1− λ
E[L1(1− f(L))]

}
(79)

= min
0≤λ≤1

max
0≤f≤1

min
0≤α≤1

αE[S · f(M(S, λ) + e0)]

+ (1− α)E[S · (1− f(M(S, λ) + e1))] (80)

≤ min
0≤λ≤1

1

2
E
[
S · max

0≤f≤1
(1

+f(M(S, λ) + e0)− f(M(S, λ) + e1))

]
(81)

= min
0≤λ≤1

1

2
E
[
S · (1+

max
0≤`0≤S−1

P[M(S, λ) = (`0, S − 1− `0)])

]
(82)

4
= min

0≤λ≤1
E[φ(S, λ)] (83)



where in (80) we use (68) and convexify the minimum using
α, and then (81) follows by setting α = 1

2 . To get (82), notice
that for a fixed s

E[1 + f(M(s, λ) + e0)− f(M(s, λ) + e1)] (84)

= 1 +

s−1∑
`0=0

P[M(s, λ) = (`0, s− 1− `0)]f(`0 + 1, s− 1− `0)

−
s−1∑
`0=0

P[M(s, λ) = (`0, s− 1− `0)]f(`0, s− `0)

(85)
= 1 + P[M(s, λ) = (x, s− 1− x)]f(x+ 1, s− 1− x)

+ P[M(s, λ) = (x+ 1, s− x)](1− f(x+ 1, s− 1− x)) .
(86)

By Proposition 16, the optimal f must have a threshold
solution. We can express this threshold solution by letting x
be be smallest value of `0 where f(`0, s − `0) is non-zero.
Applying the cancellations to (85), we get that only two terms
remains. The value of f which obtains the maximum must be
where only the maximum value of P[M(s, λ) = (x, s−1−x)]
over all x appears in (86), and this gives (82).

We will bound

Z∗(c) ≤ max
PS :E [S]=c

min
0≤λ≤1

E[φ(S, λ)] (87)

≤ max
PS :E [S]=c

min
λ∈Ln

E[φ(S, λ)] (88)

4
=Z ′n(c) (89)

where we defined13

Ln =

{
bs/2c
s

: where 1 < s ≤ 2n

}
.

Note that increasing n makes the approximation tighter.
Index the elements of Ln as λi where λ1 = 1

2 , λ2 =
1
3 , λ3 = 2

5 , ..., λn = n−1
2n−1 , so that minλ∈Ln E[φ(S, λ)] =

mini E[φ(S, λi)] .

The quantity Z ′n(c) is equivalent to maximizing the value of
t under the constraints that E[φ(S, λi)] ≥ t for all 1 ≤ i ≤ n
and E[S] = c. We can substitute

φ(s, λi) =
s

2

(
1 + max

1≤`0≤s
P[M(s, λi) = (`0, s− 1− `0)]

)
(90)

4
=
s

2
(1 + ψ(s, λi)) . (91)

Then E[φ(S, λi)] = 1
2E[S] + 1

2E[S · ψ(S, λi)] = c
2 + 1

2E[S ·
ψ(S, λi)]. Note that ψ(S, λi)→ 0 as s→∞ for all i.

For any value of πi ≥ 0, where 1 ≤ i ≤ n, η ≥ 0 and
µ ≥ 0, we can define

13Ln is defined so that Ln = {λ ∈ (0, 1
2
] : φ(s, λ) ≤

φ(s, λ′) for some 1 < s ≤ 2n and ∀λ′ ∈ [0, 1]} which is the set of all
λ which minimizes φ(s, λ) for some 1 < s ≤ 2n.

Z ′′n(c, π1, ..., πn, η, µ)]
4
=

max
Ps(s)≥0,∀s

t+
∑
i

πi

(
c

2
+

∞∑
s=1

PS(s)
s

2
ψ(s, λi)− t

)

− η

( ∞∑
s=1

PS(s)s− c

)
− µ

( ∞∑
s=1

PS(s)− 1

)
.

(92)
Consider the set of πi, η, µ which is the solution to the dual

problem

minimize
c

2
+ ηc+ µ (93a)

subject to
n∑
i

1

2
πiψ(s, λi)− η − µ

1

s
≤ 0, s ∈ Z+ (93b)

n∑
i=1

πi − 1 = 0 (93c)

η ≥ 0, µ ≥ 0, πi ≥ 0, 1 ≤ i ≤ n . (93d)

Such an optimization has a solution which is easy to find de-
spite having infinitely many constraints. The constraints (93b)
will hold for all s greater than some s0 because ψ(s, λi)→ 0.
By choosing a large enough s0, we can solve the optimization
by replacing it with an optimization where only the first s0
constraints in (93b) are present.14 Set the values of πi, η, µ in
(92) to be the values which obtain the minimum for (93a)-
(93d). Select a value of s1 ∈ Z+. Then

Z ′n(c) ≤ Z ′′n(c, π1, ..., πn, η, µ) (94)
= max
Ps(s)≥0,∀s

t

+
∑
i

πi

(
c

2
+

∞∑
s=1

PS(s)
s

2
ψ(s, λi)− t

)

− η

( ∞∑
s=1

PS(s)s− c

)
− µ

( ∞∑
s=1

PS(s)− 1

)
(95)

= max
Ps(s)≥0,∀s

∑
i

πi

( ∞∑
s=s1

PS(s)
s

2
ψ(s, λi)

)

− η

( ∞∑
s=s1

PS(s)s

)
− µ

( ∞∑
s=s1

PS(s)

)
+
c

2
+ ηc+ µ (96)

≤ max
s>s1

max
i

c

2
ψ(s, λi) +

c

2
+ ηc+ µ . (97)

Since ψ(s, λi)→ 0, the optimal c
2 +ηc+µ given by (93a)-

(93d) is an upper bound to Z ′n(c) and hence also to Z∗(c).
This computes a lower bound on R∞. In Fig. 10, we found
the lower bound using n = 10.

14We can show that for each c, only considering constraints (93b) for s ≤
16c is more than sufficient. All other infinite constraints can be removed
without affecting the optimal solution.



2) Upper bounds: To show a point in R∞ is achievable,
it is sufficient to find a set of masses PS that achieves that
point. Searching all possible masses PS is not computationally
efficient. It turns out we can get decently close to the lower
bound approximation by using the same masses which are
solutions to Z ′n(c) for each c when restricting PS to only
have finite support. While these results are close to the almost
tight converse bound, they are not necessarily the best known.
A few best known achievable points were found by simple
search. The results are plotted in Fig. 10 and shown in Table I.

F. Proof of Corollary 18

Proof. The Hamming block achieves the point ( 3
2 ,

2
3 ) in R3

∞.
The proof that this is a corner point amounts to computing the
region R3

∞.
To solve for R3

∞, we will first simplify the expression for
F3(PS). For any PS on s ∈ [3], the labeling of primary nodes
which gives the minimum value of F3(PS) is when PX(0) =
2
3 and PX(1) = 1

3 (or these flipped). With this insight, we
can simplify F3(PS) to solve for the optimal PS given any
parameter E[S] = c for some 1 ≤ c ≤ 3. Let PY |L(3)(j|`0, `1)
denote the proportion of redundant nodes of type ` = (`0, `1)
to label j.

F3(PS) = max
P

Y |L(3)

min
j∈{0,1}

1

PX(j)
E [Lj1{Y = j}] (98)

= max
P

Y |L(3)

min
j∈{0,1}

{
1

PX(j)

3∑
s=1

PS(s)

∑
`

`jPL(3)|S,PX
(`|s, PX)PY |L(3)(j|`)

}
(99)

= max
P

Y |L(3)

min

{
3

2

(
PS(1)

2

3
PY |L(3)(0|1, 0)

+ PS(2)

[
2

3
PY |L(3)(0|1, 1) + 2

1

3
PY |L(3)(0|2, 0)

]
+ PS(3)2PY |L(3)(0|2, 1)

)
,

3

1

(
PS(1)

1

3
PY |L(3)(1|0, 1)

+ PS(2)
2

3
PY |L(3)(1|1, 1)

+PS(3)PY |L(3)(1|2, 1)

)}
(100)

To get (100), we expanded the summation into each term
replacing `j and PL(3)|S,PX

(`|s, PX) with their numerical
values. Since PX(0) = 2

3 and PX(1) = 1
3 and k = 3, we

only need the PY |L(3) terms for which ` is a subset on 2 zeros
and 1 one.

We will first solve for the portion of R3
∞ where ε > 3

2 .
Set E[S] = 3. There is a unique point of the form ( 3

η ,
1
η ) for

some η > 0 which is a boundary point of the convex region
R3
∞. The only distribution PS which can achieve E[S] = 3 is

when PS(3) = 1 and PS(s) = 0 for all other s 6= 3. With this

PS , we get that F3(PS) = 3
2 . Since no other PS is possible,

the point (
E[S]

F3(PS)
,

1

F3(PS)

)
=

(
2,

2

3

)
(101)

must be the boundary point of the form ( 3
η ,

1
η ) in R3

∞. The
line of points between this value and the value given by the
Hamming block is achievable by convexity and by Claim 2 of
Proposition 2 they must be optimal.

For the remaining portion of the region, we want to fixed a
1 < c < 9

4 (the Hamming block has E[S] = 9
4 ), and solve for

P ∗S = argmaxPS :E[S]=c F3(PS) and determine F3(P ∗S).
Note that it is optimal to set PY |L(3)(0|`0, 0) = 1 and

PY |L(3)(1|0, `1) = 1. Then we can simplify notation by letting
PY |L(3)(0|1, 1) = x1,1 and PY |L(3)(0|2, 1) = x2,1. We can
simplify (100) by applying the constraints that

∑3
s=1 PS(s) =

1 and
∑3
s=1 P (s)s = c. At the maximum point, the two

quantities after the minimum must be equal. Simplifying the
equation with these constraints, we have

F3(P ∗S) = max
x1,1,x2,1∈[0,1]

c− 1− (3c− 3)x1,1
6x2,1 − 6x1,1 − 1

(3x2,1 − 2x1,1 − 1) + (c− 1)x1,1 + 1

(102)

under the constraints that the variables are in [0, 1].
The optimal labeling must have that either x1,1 = 0

and x2,1 ∈ [0, 1] or that x1,1 ∈ [0, 1] and x2,1 = 1 by
Proposition 16. We try the cases x1,1 = 0 and x2,1 = 1 and
take derivatives to solve for the best value of x2,1 or x1,1. For
any value of c we pick15, the point ( c

F3(P∗S ) ,
1

F3(P∗S ) ) lies on the
line between the point achievable by the repetition design and
the Hamming block. By convexity, it must be that all points
on the line between the values achievable by the repetition
design and the Hamming block are optimal.
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