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1 Absolute values and discrete valuations 

1.1 Introduction 

At its core, number theory is the study of the integer ring Z. By the fundamental theorem 
of arithmetic, every element of Z can be written uniquely as a product of primes (up to a 
unit ±1), so it is natural to focus on the prime elements of Z. If p is a prime, the ideal 
(p) := pZ it generates is a maximal ideal (Z is a ring of dimension one), and the residue 
field Z/pZ is the finite field Fp with p elements (which is unique up to isomorphism). The 
fraction field of Z is the field Q of rational numbers, and together Q and the finite fields 
Fp of prime order make up the prime fields; every field k contains exactly one of them, 
according to its characteristic: zero if k contains Q, and p if k contains Fp. 

The structure of the ring Z and the distribution of its prime elements is intimately 
related to the Riemann zeta function   

−s −s)−1ζ(s) = n = (1 − p . 
p 

This is a function of the complex variable s that is holomorphic and nonvanishing for 
Re(s) > 1, and as we shall see it has an analytic continuation to the entire complex plane. 
It has a simple pole at s = 1, which implies that there are infinitely many primes (otherwise 
the product over primes on the RHS would be finite and converge). The location of its 
zeros in the critical strip 0 < s < 1 is directly related to the distribution of primes (via the 
explicit formula, which we will see later in the course), and as you are probably aware it is 
conjectured that they all lie on the critical line Re(s) = 1 , this is the Riemann Hypothesis; 2 
this conjecture remains open. 

One can also consider finite extensions of Q, such as the field Q(i) := Q[x]/(x2+1). These 
are called number fields, and each can be constructed as the quotient of the polynomial ring 
Q[x] by one of its maximal ideal; the ring Q[x] is a principal ideal domain and its maximal 
ideals can all be written as (f) for some monic irreducible f ∈ Z[x]. Associated to each 
number field K is a zeta function ζK (s), and each of these has an associated conjecture 
regarding the location of its zeros (these conjectures all remain open). 

Number fields are one of two types of global fields that we will spend much of the first 
part of the course studying; the other type are known as global function fields. Let Fq denote 
the field with q elements, where q is any prime power. The polynomial ring Fq[t] has much 
in common with the integer ring Z. Like Z, it is a principal ideal domain of dimension one, 
and the residue fields Fq[t]/(f) one obtains by taking the quotient by a maximal ideal (f), 
where f ∈ Fq[t] is any irreducible polynomial, is a finite field F d , where d is the degree of f .q

In contrast to the situation with Z, the residue fields of Fq[t] all have the same characteristic 
as its fraction field Fq(t), which plays a role analogous to Q. Global function fields are finite 
extensions of Fq(t) (this includes Fq(t) itself, an extension of degree 1). 

Associated to each global field k is an infinite collection of local fields corresponding to 
the completions of k with respect to its absolute values; when k = Q, these completions are 
the field of real numbers R and the p-adic fields Qp (as you will prove on Problem Set 1). 

The ring Z is a principal ideal domain (PID), as is Fq[t]. These rings have dimension 
one, which means that every nonzero prime ideal is maximal; thus each nonzero prime ideal 
has an associated residue field, and for both Z and Fq[t] these residue fields are finite. In the 
case of Z we have residue fields Z/pZ c Fp for each prime p, and for Fq[t] we have residue 
fields F d associated to each irreducible polynomial of degree d.q
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We will spend the first part of this course fleshing out this picture, in which we are 
particularly interested in understanding the integral closure of the rings Z and Fq[t] in finite 
extensions of their fraction fields (such integral closures are known as rings of integers), 
and the prime ideals of these rings. Where possible we will treat number fields and function 
fields on an equal footing, but we will also note some key differences. Perhaps somewhat 
surprisingly, the function field setting often turns out to be simpler than the number field 
setting, and considering the analogies between the two can provide insight into both. 

While the topics above are typically classified under the heading of algebraic number 
theory, a key tool for understanding global fields are their associated zeta functions, which 
have a more analytic flavor (at least in the number field setting). The most famous of these 
is the Riemann zeta function 

−s −s)−1ζ(s) := n = (1 − p , 
n≥1 p 

which can be viewed both as a sum over integers and a product over primes (known as an 
Euler product). As you are no doubt aware, the Riemann hypothesis is concerned with the 
location of the complex zeros of the function ζ(s) and is one of the major open problems in 
number theory. It is worth noting that the analog of the Riemann hypothesis in the function 
field setting, the Riemann hypothesis for curves, is not an open problem. It was proved by 
André Weil in the 1940s [5]; a further generalization to varieties of arbitrary dimension was 
proved by Pierre Deligne in the 1970s [3]. 

Zeta functions provide the tool we need to understand the distribution of primes, both 
in general, and within particular residue classes; the proofs of the prime number theorem 
and Dirichlet’s theorem on primes in arithmetic progressions both use zeta functions in an 
essential way. Dirichlet’s theorem states that for each integer m > 1 and each integer a 
coprime to m, there are infinitely many primes p ≡ a mod m. In fact, more is true: the 
Chebotarev density theorem tells us that for each modulus m the primes are equidistributed 
among the residue classes of the integers a coprime to m. We will see this and several other 
applications of the Chebotarev density theorem in the later part of the course. 

Before we begin, let us note the following. 

Remark 1.1. Our rings always have a multiplicative identity that is preserved by ring 
homomorphisms (so the zero ring in which 1 = 0 is not an initial object in the category 
of rings, but it is the terminal object in this category). Except where noted otherwise, the 
rings we shall consider are all commutative. 

1.2 Absolute values 

We begin with the general notion of an absolute value on a field; a reference for much of 
this material is [4, Chapter 1]. 

Definition 1.2. An absolute value on a field k is a map | | : k → R≥0 such that for all 
x, y ∈ k the following hold: 

1. |x| = 0 if and only if x = 0; 
2. |xy| = |x||y|; 
3. |x + y| ≤ |x| + |y|. 

If the stronger condition 
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4. |x + y| ≤ max(|x|, |y|) 

also holds, then the absolute value is nonarchimedean; otherwise it is archimedean. 

Example 1.3. The map | | : k → R≥0 defined by  
1 if x = 0 ,

|x| =
0 if x = 0, 

is the trivial absolute value on k. It is nonarchimedean. 

Lemma 1.4. An absolute value | | on a field k is nonarchimedean if and only if 

| 1 + · · · + 1 | ≤ 1 
n 

for all n ≥ 1.  

Proof. See Problem Set 1.  

Corollary 1.5. In a field of positive characteristic every absolute value is nonarchimedean,  
and the only absolute value on a finite field is the trivial one.  

Definition 1.6. Two absolute values | | and | |' on the same field k are equivalent if there  
exists an α ∈ R>0 for which |x|' = |x|α for all x ∈ k. 

1.3 Absolute values on Q 

To avoid confusion we will denote the usual absolute value on Q (inherited from R) by | |∞; 
it is an archimedean absolute value. But there are are infinitely many others. Recall that  
any element of Q× may be written as ± qeq , where the product ranges over primes and q 
the exponents eq ∈ Z are uniquely determined (as is the sign).  

Definition 1.7. For a prime p the p-adic valuation vp : Q → Z is defined by    
vp ± q eq := ep, 

q 

and we define vp(0) := ∞. The p-adic absolute value on Q is defined by 

−vp(x)|x|p := p , 

where |0|p = p−∞ is understood to be 0. 

Theorem 1.8 (Ostrowski’s Theorem). Every nontrivial absolute value on Q is equiva­
lent to | |p for some p ≤ ∞.  

Proof. See Problem Set 1.  

Theorem 1.9 (Product Formula). For every x ∈ Q× we have  

|x|p = 1. 
p≤∞ 

Proof. See Problem Set 1. 
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1.4 Discrete valuations 

Definition 1.10. A valuation on a field k is a group homomorphism k× → R such that for 
all x, y ∈ k we have 

v(x + y) ≥ min(v(x), v(y)). 

We may extend v to a map k → R ∪ {∞} by defining v(0) := ∞. For any any 0 < c < 1, 
defining |x|v := cv(x) yields a nonarchimedean absolute value. The image of v in R is the 
value group of v. We say that v is a discrete valuation if its value group is equal to Z 
(every discrete subgroup of R is isomorphic to Z, so we can always rescale a valuation with 
a discrete value group so that this holds). Given a field k with valuation v, the set 

A := {x ∈ k : v(x) ≥ 0}, 

is the valuation ring of k (with respect to v). A discrete valuation ring (DVR) is an integral 
domain that is the valuation ring of its fraction field with respect to a discrete valuation. 

It is easy to verify that every valuation ring A is a in fact a ring, and even an integral 
domain (if x and y are nonzero then v(xy) = v(x) + v(y) = ∞, so xy = 0), with k as its 
fraction field. Notice that for any nonzero x ∈ k we have v(1/x) = v(1) − v(x) = −v(x), so 
at least one of x and 1/x has nonnegative valuation and lies in A. It follows that x ∈ A is 
invertible (in A) if and only if v(x) = 0, hence the unit group of A is the set 

A× = {x ∈ k : v(x) = 0}, 

which forms a multiplicative group (but not a ring). We can partition the nonzero elements 
of k according to the sign of their valuation. Elements with valuation zero are units in A, 
elements with positive valuation are non-units in A, and elements with negative valuation 
do not lie in A, but their multiplicative inverses are non-units in A. This leads to a more 
general notion of a valuation ring. 

Definition 1.11. A valuation ring is an integral domain A with fraction field k with the 
property that for every x ∈ k, either x ∈ A or x−1 ∈ A. 

Let us now assume that A is a discrete valuation ring. Any element π ∈ A for which 
v(π) = 1 is called a uniformizer. Such a uniformizer necessarily exists, since v maps A 
surjectively onto Z≥0. If we fix a uniformizer π, every x ∈ k× can be written uniquely as 

x = uπn 

where n = v(x) and u = x/πn ∈ A× and uniquely determined. Thus A is a unique 
factorization domain (UFD), and in fact a principal ideal domain (PID). Indeed, every 
nonzero ideal of A is equal to 

(πn) = {x ∈ A : v(x) ≥ n}, 

for some integer n ≥ 0. Moreover, the ideal (πn) depends only on n, not the choice of 
uniformizer π: if π ' is any other uniformizer its unique representation π ' = uπ1 differs 
from π only by a unit. It follows that the ideals of A are totally ordered (with the same 
order type as Z≥0), and the ideal 

m = (π) = {x ∈ A : v(x) > 0} 

is the unique maximal ideal of A (and also the only nonzero prime ideal of A). Rings with 
a unique maximal ideal are called local rings. 
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Definition 1.12. The residue field of a local ring A with maximal ideal m is the field A/m. 

We can now see how to determine the valuation v corresponding to a discrete valuation 
ring A. Given a discrete valuation ring A with unique maximal ideal m = (π), for any 
nonzero x ∈ A we must have v(x) = n, where n is the greatest integer for which x ∈ (πn) 
(note that (π0) = (1) = A, so such an n exists and is nonnegative); the integer n does 
not depend on the choice of the uniformizer π. Defining v(0) = ∞ and extending v to 
the fraction field of A via v(a/b) = v(a) − v(b) gives a discrete valuation v on k for which 
A = {x ∈ k : v(x) ≥ 0} is the corresponding valuation ring. 

Example 1.13. For the p-adic valuation vp : Q → Z ∪ {∞} we have the valuation ring  	  a
Z(p) := : a, b ∈ Z, p | b ,

b 

with maximal ideal m = (p); this is the localization of the ring Z at the prime ideal (p). 
The residue field is Z(p)/pZ(p) c Z/pZ c Fp. 

Example 1.14. For any field k, the valuation v : k((t)) → Z ∪ {∞} on the field of Laurent 
series over k defined by ⎛ ⎞ 

n v ⎝ ant ⎠ = n0, 
n≥n0 

where an0 = 0, has valuation ring k[[t]], the power series ring over k. For f ∈ k((t))×, the 
valuation v(f) ∈ Z is the order of vanishing of f at zero. For every α ∈ k one can similarly 
define a valuation vα on k as the order of vanishing of f at α by taking the Laurent series 
expansion of f about α. 

1.5 Discrete Valuation Rings 

Discrete valuation rings are in many respects the nicest rings that are not fields (a DVR 
cannot be a field because its maximal ideal m = (π) is not the zero ideal: v(π) = 1 = ∞). 
In addition to being an integral domain, every discrete valuation ring A enjoys the following 
properties: 

•	 noetherian: Every increasing sequence I1 ⊆ I2 ⊆ · · · of ideals eventually stabilizes; 
equivalently, every ideal is finitely generated. 

•	 principal ideal domain: Every ideal is principal (generated by a single element). 

•	 local : There is a unique maximal ideal m. 

•	 dimension one: The (Krull) dimension of a ring R is the supremum of the lengths n 
of all chains of prime ideals p0 � p1 � · · · � pn (which need not be finite, in general). 
For DVRs, (0) ⊆ m is the longest chain of prime ideals, with length 1. 

•	 regular : The dimension of the A/m-vector space m/m2 is equal to the dimension of A. 
Non-local rings are regular if this holds for every localization at a prime ideal. 

•	 integrally closed (or normal): Every element of the fraction field of A that is the root 
of a monic polynomial in A[x] lies in A. 

•	 maximal : There are no intermediate rings strictly between A and its fraction field. 
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There are several different combinations of these properties that uniquely characterize 
discrete valuation rings (and hence may be taken as alternative definitions). 

Theorem 1.15. For an integral domain A, the following are equivalent: 

• A is a DVR. 

• A is a noetherian valuation ring that is not a field. 

• A is a local PID that is not a field. 

• A is an integrally closed noetherian local ring of dimension one. 

• A is a regular noetherian local ring of dimension one. 

• A is a noetherian local ring whose maximal ideal is nonzero and principal. 

• A is a maximal noetherian ring of dimension one. 

Proof. See [1, §23] or [2, §9]. 

1.6 Integral extensions 

Integrality plays a key role in number theory, so it is worth discussing it in more detail. 

Definition 1.16. Given a ring extension A ⊆ B, an element b ∈ B is integral over A if is 
a root of a monic polynomial in A[x]. The ring B is integral over A if all its elements are. 

Proposition 1.17. Let α, β ∈ B be integral over A ⊆ B. Then α + β and αβ are integral 
over A. 

Proof. Let f ∈ A[x] and g ∈ A[y] be such that f(a) = g(b) = 0, where 

mf(x) = a0 + a1x + · · · + am−1x + x , 
n g(y) = b0 + b1y + · · · + bn−1y + y . 

It suffices to consider the case 

A[x, y]
A = Z[a0, . . . , am−1, b0, . . . , bn−1], and B = ,

(f(x), g(y))

with α and β equal to the images of x and y in B, respectively, since given any A ' ⊆ B ' 
we have homomorphisms A → A ' defined by ai → ai and bi → bi and B → B ' defined by 
x  → α and y  → β, and if x + y, xy ∈ B are integral in A then α + β, αβ ∈ B ' must be 
integral in A ' . 

Let k be the algebraic closure of the fraction field of B, and let α1, . . . , αm be the roots 
of f in k and let β1, . . . , βn be the roots of g in k. The polynomial 

h(z) = z − (αi + βj ) 
i,j 

has coefficients that may be expressed as polynomials in the symmetric functions of the αi 
and βj , equivalently, the coefficients ai and bj of f and g, respectively. Thus h ∈ A[z], and 
h(x+y) = 0, so x+y is integral over A. Applying the same argument to h(z) = (z−αiβj )i,j 
shows that xy is also integral over A. 
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˜Definition 1.18. Given a ring extension B/A, the ring A = {b ∈ B : b is integral over A}
˜is the integral closure of A in B. When A = A we say that A is integrally closed in B. For 

a domain A, its integral closure (or normalization) is its integral closure in its fraction field, 
and A is integrally closed (or normal) if it is integrally closed in its fraction field. 

Proposition 1.19. If C/B/A is a tower of ring extensions in which B is integral over A 
and C is integral over B then C is integral over A. 

Proof. See [1, Thm. 10.27] or [2, Cor. 5.4]. 

Corollary 1.20. If B/A is a ring extension, then the integral closure of A in B is integrally 
closed in B. 

Proposition 1.21. The ring Z is integrally closed. 

Proof. We apply the rational root test: suppose r/s ∈ Q is integral over Z, where r and s 
are coprime integers. Then      n n−1r r r 

+ an−1 + · · · a1 + a0 = 0 
s s s

for some a0, . . . , an−1 ∈ Z. Clearing denominators yields 

n−1 n−1 r n + an−1sr + · · · a1s r + a0s n = 0, 

thus rn = −s(an−1r
n−1 + · · · a1sn−2r + a0sn−1) is a multiple of s. But r and s are coprime, 

so s = ±1 and therefore r/s ∈ Z. 

Corollary 1.22. Every unique factorization domain is integrally closed. In particular, 
every PID is integrally closed. 

Proof. The proof of Proposition 1.21 works for any UFD. 
√ 

Example 1.23. The ring Z[ 5] is not a UFD (nor a PID) because it is not integrally √ √ 
closed: consider φ = (1 + 5)/2 ∈ Frac Z[ 5], which is integral over Z (and hence over √ √ √ 
Z[ 5]), since φ2 − φ − 1 = 0. But φ  ∈ Z[ 5], so Z[ 5] is not integrally closed. 

The corollary implies that every discrete valuation ring is integrally closed. In fact every 
valuation ring is integrally closed. 

Proposition 1.24. Every valuation ring is integrally closed. 

Proof. Let A be a valuation ring with fraction field k and let α ∈ k be integral over A. 
Then 

αn + an−1α
n−1 + an−2α

n−2 + · · · a1α + a0 = 0 

for some a0, a1, . . . , an−1 ∈ A. Suppose α  ∈ A. Then α−1 ∈ A, since A is a local ring. 
Multiplying the equation above by α−(n−1) ∈ A and moving all but the first term on the 
LHS to the RHS yields 

α = −an−1 − an−1α
−1 − · · · − a1α−n−2 − a0α−n−1 ∈ A, 

contradicting our assumption that α  ∈ A. It follows that A is integrally closed. 
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Definition 1.25. A number field K is a finite extension of Q. The ring of integers OK is 
the integral closure of Z in K. 

Remark 1.26. The notation ZK is also sometimes used to denote the ring of integers of K. 
The symbol O emphasizes the fact that OK is an order in K; in any Q-algebra K of finite 
dimension r, an order is a subring of K that is also a free Z-module of rank r, equivalently, 
a Z-lattice in K that is also a ring. In fact, OK is the maximal order of K: it contains 
every order in K. 

Proposition 1.27. Let A be an integrally closed domain with fraction field K. Let α be 
an element of a finite extension L/K, and let f ∈ K[x] be its minimal polynomial over K. 
Then α is integral over A if and only if f ∈ A[x]. 

Proof. The reverse implication is immediate: if f ∈ A[x] then certainly α is integral over A. 
For the forward implication, suppose α is integral over A and let g ∈ A[x] be a monic 
polynomial for which g(α) = 0. In K[x] we may factor f(x) as 

f(x) = (x − αi). 
i 

For each αi we have a field embedding K(α) → K that sends α to αi and fixes K. As 
elements of K we have g(αi) = 0, so each αi ∈ K is integral over A and lies in the integral 
closure Ā of A in K. Each coefficient of f ∈ K[x] can be expressed as a sum of products 

¯of the αi, and is therefore an element of the ring Ā that also lies in K. But A = A ∩ K, 
since A is integrally closed in its fraction field K. 

√ 
Example 1.28. We saw in Example 1.23 that (1 + 5)/2 is integral over Z. Now consider √ 
α = (1 + 7)/2. The minimal polynomial of α is α2 − α − 3/2, so α is not integral over Z. 
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