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11 Totally ramified extensions and Krasner’s lemma

In the previous lecture we showed that in the AKLB setup, if A is a complete DVR with
maximal ideal p then B is a complete DVR with maximal ideal q and [L : K] = n = eqfq.
Assuming the residue field extension is separable (true if K is a local field), after replacing K
with its maximal unramified extension in L we obtain a totally ramified extension, with
ramification index eq = n and residue field degree fq = 1. We now consider this case.

11.1 Totally ramified extensions of a complete DVR

Definition 11.1. Let A be a DVR with maximal ideal p. A monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ A[x]

is Eisenstein (or an Eisenstein polynomial) if ai ∈ p for 0 ≤ i < n and a 2
0 6∈ p ; equivalently,

if vp(ai) ≥ 1 for 0 ≤ i < n and vp(a0) = 1. Note that a0 is then a uniformizer for A.

Lemma 11.2 (Eisenstein irreducibility). Let A be a DVR with fraction field K and maximal
ideal p, and let f ∈ A[x] be Eisenstein. Then f is irreducible in both A[x] and K[x].

Proof. Supp∑ ose not. Then∑ f = gh has
Put f = f xii i , g = i gix

i, h =
∑degree n ≥ 2 for some non-constant monic g, h ∈ A[x].

i hix
i. We have f0 = g0h0 ∈ p− p2, so exactly one of

g0, h0 lies in p; assume without loss of generality that g0 6∈ p and h0 ∈ p. Let i > 0 be the
least i for which hi 6∈ p; such an i < n exists because h is monic and deg h < n. We have

fi = g0hi + g1hi−1 + · · ·+ gi h−1 1 + gih0,

with fi ∈ p, since f is Eisenstein and i < n, and hjgi j ∈ p for 0 minimalit− ≤ j < i, by the y
of i, which implies g0hi ∈ p, contradicting g0, hi 6∈ p. Thus f is irreducible in A[x], and
since A is a DVR, and therefore a UFD, f is irreducible in K[x], by Gauss’s Lemma [1].

Remark 11.3. We can apply Lemma 11.2 to any polynomial f(x) over a Dedekind do-
main A that is Eisenstein over a localization Ap; the rings Ap and A have the same fraction
field K and f is then irreducible in K[x], hence in A[x]; this yields the well known Eisenstein
criterion for irreducibility.

Lemma 11.4. Let A be a DVR and let f ∈ A[x] be an Eisenstein polynomial. Then
B = A[π] := A[x]/(f) is a DVR with uniformizer π, where π is the image of x in A[x]/(f).

Proof. Let p be the maximal ideal of A. We have f ≡ xn mod p, so b∑y Corollary 10.13 the
ideal q = (p, x) = (p, π) is the only maximal ideal of B. Let f = fix

i; then p = (f0)
and q = (f , π), and f = −f π − f π2 − · · · − πn0 0 1 2 ∈ (π), so q = (π). The unique maximal
ideal (π) of B is nonzero and principal, so B is a DVR with uniformizer π.

Theorem 11.5. Assume AKLB with A a complete DVR and π a uniformizer for B. The
extension L/K is totally ramified if and only if B = A[π] and the minimal polynomial of π
is Eisenstein.

Proof. Let n = [L : K], let p be the maximal ideal of A, let q be the maximal ideal of B
(which we recall is a complete DVR, by Theorem 10.6), and let π be a uniformizer for B
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with minimal polynomial f . If B = A[π] and f is Eisenstein, then as in Lemma 11.4 we
have p = qn, so vq extends vp with index eq = n and L/K is totally ramified.

We now suppose L/K is totally ramified. Then vq extends vp with index n, which
implies vq(K) = nZ. The set {π0, π1, π2, . . . , πn−1} is linearly independent over K, since

0 n−1 n 1the valuations of π , . . . π are distinct modulo vq(K) = nZ (if i=0
− xiπ

i = 0 we must
have vq(xiπ

i∑) = vq(xjπ
j) for some nonzero xi 6= xj , which is impossible). Thus L = K(π).

nLet f = i=0 aix
i ∈ A[x] be the minimal polynomial of π. We

∑
have vq(f(π)) =∞ and

v i
q(aiπ ) ≡ i mod n for 0 ≤ i ≤ n. This is possible only if

vq(a0) = vq(a0π
0) = vq(a

n n
nπ ) = vq(π ) = n,

and vq(ai) ≥ n for 0 ≤ i < n. This implies that vp(a0) = 1, since vq extends vp with index n,
and vp(ai) ≥ 1 for 0 ≤ i < n. Thus f is Eisenstein and Lemma 11.4 implies that A[π] ⊆ B
is a DVR, hence maximal, so B = A[π].

Example 11.6. Let K = Q3. As shown in an earlier problem set, there are just three
distinct quadratic extensions of Q3: Q3(

√
2), Q3(

√
3), and Q3(

√
6). The extension Q3(

√
2)

is the unique unramified quadratic extension of Q3, and we note that it can be written as
a cyclotomic extension Q3(ζ8). The other two are both ramified, and can be defined by the
Eisenstein polynomials x2 − 3 and x2 − 6.

Definition 11.7. Assume AKLB with A a complete DVR and separable residue field
extension of characteristic p ≥ 0. The extension L/K is tamely ramified if p 6 | eL/K (always
true if p = 0 or if eL/K = 1, so an unramified extension is also tamely ramified). Otherwise
L/K is wildly ramified if p|eL/K ; this can occur only when p > 0. If L/K is totally ramified,
then it is totally tamely ramified if p 6 | eL/K and totally wildly ramified otherwise.

Theorem 11.8. Assume AKLB with A a complete DVR and separable residue field exten-
sion of characteristic p ≥ 0 not dividing n := [L : K]. The extension L/K is totally tamely

1/
ramified if and only if L = K(π

n

A ) for some uniformizer πA of A.

1/
Proof. If L = K(π

n 1/n n
A ) then π = πA has minimal polynomial x − πA, which is Eisenstein,

so A[π] is a DVR by Lemma 11.4. This implies B = A[π], since DVRs are maximal, and
Theorem 11.5 implies that L/K is totally tamely ramified, since p - n.

Now assume L/K is totally tamely ramified, in which case p - n, and let p and q be the
maximal ideals of A and B with uniformizers πA and πB respectively. Then vq extends vq
with index eq = n and v n n

q(πB) = n = vq(πA). This implies that πB = uπA for some unit
u ∈ B×. We have fq = 1, so B and A have the same residue field, and if we lift the image
of u in B/q ' A/p to a unit uA in A and replace πA with u−1A πA, we can assume that
u ≡ 1 mod q. Now define g(x) := xn − u ∈ B[x] with reduction ḡ = xn − 1 in (B/q)[x]. We
have ḡ′(1) = n 6= 0 (since p 6 | n), so by Hensel’s Lemma 9.15 we can lift the root 1 of ḡ(x)
in B/q to a root r of g(x) in B. Now let π := πB/r. Then π is a uniformizer for B and

1/
B = A[π] by Theorem 11.5, so L = K(π), and πn = πnB/r

n = πn
n

B/u = πA, so L = K(πA )
as desired.

11.2 Krasner’s lemma

Let K be the fraction field of a complete DVR with absolute value | |. By Theorem 10.6
we can uniquely extend | | to any finite extension L/K by defining |x| := |NL/K(x)|1/n,

where n = [L : K]; as noted in Remark 10.7, this induces a unique absolute value on K
that restricts to the absolute value of K.
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Lemma 11.9. Let K be the fraction field of a complete DVR with algebraic closure K and
absolute value | | extended to K. For all α ∈ K and σ ∈ AutK(K) we have |σ(α)| = |α|.

Proof. The elements α and σ(α) must have the same minimal polynomial f ∈ K[x], since
f(σ(α)) = σ(f(α)) = 0, so NK(α)/K(α) = f(0) = NK(σ(α))/K(σ(α)), by Proposition 4.51.

It follows that |σ(α)| = |N 1/n 1/n
K(σ(α))/K(α)| = |NK(α)/K(α)| = |α|, where n = deg f .

Definition 11.10. Let K be the fraction field of a complete DVR with absolute value | |
extended to an algebraic closure K. For α, β ∈ K, we say β belongs to α if |β−α| < |β−σ(α)|
for all σ ∈ AutK(K) with σ(α) 6= α, that is, β is strictly closer to α than it is to any of
its conjugates. This is equivalent to requiring that |β − α| < |α − σ(α)| for all σ(α) 6= α,
since every nonarchimedean triangle is isosceles (if one side is shorter than another, it is
the shortest of all three sides).

Lemma 11.11 (Krasner’s lemma). Let K be the fraction field of a complete DVR and
let α, β ∈ K, with α separable over K. If β belongs to α then K(α) ⊆ K(β).

Proof. Suppose not. Then β belongs to α but α 6∈ K(β). The extension K(α, β)/K(β) is
separable and non-trivial, so there is an automorphism σ ∈ AutK(β)(K/K(β)) for which
σ(α) 6= α (let σ send α to a different root of the minimal polynomial of α over K(β)).
Applying Lemma 11.9 to β − α ∈ K, for any σ ∈ AutK(β)(K/K(β)) we have

|β − α| = |σ(β − α)| = |σ(β)− σ(α)| = |β − σ(α)|,

since σ fixes β. But this contradicts the hypothesis that β belongs to α, since σ(α) 6= α.

Remark 11.12. Krasner’s lemma is another “Hensel’s lemma” in the sense that it char-
acterizes Henselian fields (fraction fields of Henselian rings); although the lemma is named
after Krasner [2], it was proved earlier by Ostrowski in [3].

Definition 11.13. For a field K with absolute value | | the L1-norm of f ∈ K[x] is defined
by.

‖f‖1 :=
∑
i

|fi|,

where f =
∑

i fix
i ∈ K[x]; it is easily verified that ‖ ‖1 satisfies all the properties of

Definition 10.3 and is thus a norm on the K-vector space K[x].

Lemma 11.14. Let K be a field with absolute value | | nand let f :=
∏
i=1(x−αi) ∈ K[x] be

a monic polynomial with roots α1, . . . , αn ∈ L, where L/K is a field with an absolute value
that extends | |. Then |α| < ‖f‖1 for every root α of f .

Proof. The lemma is clear for n ≤ 1, so assume n ≥ 2. If
n

‖f‖1 = 1 then we must have
f = x and α = 0, in which case |α| = 0 < 1 = ‖f‖1 and the lemma holds. Otherwise
‖f‖1 > 1, and if |α| ≤ 1 the lemma holds, so let α is a root of f with |α| > 1. We have

n−1 n−1 n−1

0 = |f(α)| =

∣∣∣∣∣αn +
∑

fiα
i

∣∣
≥ |α|n −

∑
|f i
i ≥ j α

i=0 i=0

||α| |α|n − |α|n−1
∑

f ( f 1 1),
j=0

| | ≥ | | − ‖ ‖ −

where we have used |a| =

∣∣∣
|a + b − b| ≤ |a + b| + | − b| = |a + b| + |b| to get the general

inequality |a + b| ≥ |a| − |b| which we applied repeatedly to get the first inequality above,
we used |α| > 1 to get the second (replacing |α|i with |α|n−1 in each term) and the third
(dividing by |α|n−1 ≥ 1). Thus ‖f‖1 − 1 ≥ |α|, and therefore ‖f‖1 ≥ |α|+ 1 > |α|.
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Theorem 11.15 (Continuity of roots). Let K be the fraction field of a complete DVR
and f ∈ K[x] a monic irreducible separable polynomial. There exists δ = δ(f) ∈ R>0 such
that for every monic polynomial g ∈ K[x] with ‖f − g‖1 < δ the following holds:

Every root β of g belongs to a root α of f for which K(β) = K(α).

In particular, every such g is separable, irreducible, and has the same splitting field as f .

Proof. We first note that we can always pick δ < 1, in which case any monic g ∈ K[x] with
‖f − g‖1 < δ must have the same degree as f , so we can assume deg g = deg f . Let us fix
an algebraic closure K of K with absolute value | | extending the absolute value on K. Let
α1, . . . , αn be the roots of f in K, and write

∏ ∑n
f(x) = (x

i

− αi) = fix
i.

i=0

Let ε be the lesser of 1 and the minimum distance |αi − αj | between any two distinct roots
of f . We now define

δ := δ(f) :=

(
ε n

2(‖f‖1 + 1)

)
> 0,

and note that δ < 1, since ‖f‖1 ≥ 1 and ε ≤ 1. Let g(x) = i gix
i be a monic polynomial

of degree n with ‖f − g‖1 < δ. We then have

∑
‖g‖1 ≤ ‖f‖1 + ‖g − f‖1 = ‖f‖1 + ‖f − g‖1 < ‖f‖1 + δ,

and for any root β ∈ K be of g we have

n n

|f(β)| = |f(β)− g(β)| = |(f − g)(β)| =

∣∣∣∑∣ (f i
i )

i

− gi β

∣∣∣∣ ≤ gi
=0

∑
i=0

|fi − ||β|i.

We have |β| < ‖g‖1 by Lemma 11.14, and ‖g‖ i
1 ≥

∣
1, so |β| < ‖

∣
g‖i1 ≤ ‖g‖n1 . Thus

|f(β)| < ‖f − g‖1 · ‖g‖n1 < δ(‖f‖ n n n
1 + δ) < δ(‖f‖1 + 1) ≤ (ε/2) ,

and therefore ∏n
i=1

|β − αi| = |f(β)| < (ε/2)n.

It follows that |β − αi| < ε/2 for at least one αi, and the triangle inequality implies that
this αi must be unique since |αi − αj | ≥ ε for i 6= j. Therefore β belongs to α := αi.

By Krasner’s lemma, K(α) ⊆ K(β), and we have n = [K(α) : K] ≤ [K(β) : K] ≤ n, so
K(α) = K(β). It follows that g is the minimal polynomial of β, since deg(g) = [K(β) : K].
Thus g is irreducible, and it is also separable, since β ∈ K(β) = K(α) lies in a separable
extension of K. We now observe that if a root β of g belongs to a root α of f , then for any
τ ∈ AutK(K) and all σ ∈ AutK(K) such that σ(α) 6= α we have

|τ(β)− τ(α)| = |τ(β − α)| = |β − α| < |α− σ(α)| = |τ(α− σ(α)| = |τ(α)− τ(σ(α)|.

Noting that σ(α) 6= α ⇐⇒ τ(σ(α)) 6= τ(α), this implies that τ(β) belongs to τ(α). Now
AutK(K) acts transitively on the roots of f and g, so every root β of g belongs to a distinct
root α of f for which K(β) = K(α). Therefore g has the same splitting field as f .
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11.3 Local extensions come from global extensions

ˆ ˆLet L be a local field. From our classification of local fields (Theorem 9.9), we know that L
ˆis (isomorphic to) a finite extension of K = Qp (some p ≤ ∞ ˆ) or K = Fq((t)) (some q).

We also know that the completion of a global field at any of its nontrivial absolute values
ˆis a local field (Corollary 9.7). It thus reasonable to ask whether L is the completion of a

corresponding global field L that is a finite extension of K = Q or K = Fq(t).
ˆMore generally, for any fixed global field K and local field K that is the completion of K

with respect to one of its nontrivial absolute values | |, we may ask whether every finite
ˆ ˆextension of local fields L/K necessarily corresponds to an extension of global fields L/K,

ˆwhere L is the completion of L with respect to one of its absolute values (whose restriction
to K must be equivalent to | |). The answer is yes. In order to simplify matters we restrict

ˆ ˆour attention to the case where L/K is separable, but this is true in general.

ˆTheorem 11.16. Let K be a global field with a nontrivial absolute value | |, and let K
ˆbe the completion of K with respect to | | ˆ. Every finite separable extension L of K is the

completion of a finite separable extension L of K with respect to an absolute value that
ˆ ˆ ˆ ˆrestricts to | |. One can choose L so that [L :K] = [L :K], in which case L = K · L.

ˆ ˆProof. Let L/K be a separable extension of degree n. If | | is archimedean then K is a
ˆnumber field and K is either R or C ˆ√ ; the only nontrivial case is K ' R and n = 2, and

ˆ ˆwe may then assume that L = K( d) ' C where d ∈ Z<0 is any nonsquare in K (such
a d exists because K/Q is finite). We may assume without loss of generality that | | is the

ˆEuclidean absolute value on K ' R√ (it must be equivalent to it), and uniquely extend | |
to L := K( d) by requiring |

√
d| =

√

ˆ
− ˆd. Then L is the completion of L with respect to

| | ˆ ˆ ˆ, and clearly [L :K] = [L :K] = 2, and L is the compositum of K and L.
ˆWe now suppose that | | is nonarchimedean, in which case the valuation ring of K is a

complete DVR and | | is induced by its discrete valuation. By the primitive element theorem
ˆ ˆ ˆ(Theorem 4.12), we may assume L = K[x]/(f) where f ∈ K[x] is monic, irreducible, and

ˆ ∈ ⊆ ˆseparable. The field K is dense in its completion K, so we can find a monic g K[x] K[x]
ˆ ˆsuch that ‖g−f‖1 < δ for any δ > 0. It then follows from Theorem 11.15 that L = K[x]/(g)

ˆ(and that g is separable). The field L is a finite separable extension of the fraction field of
a complete DVR, so by Theorem 10.6 it is itself the fraction field of a complete DVR and

ˆhas a unique absolute value that extends the absolute value | | on K.
ˆNow let L := K[x]/(g). The polynomial g is irreducible in K[x], hence in K[x], so

ˆ ˆ ˆ ˆ[L : K] = deg g = [L : K]. The field L contains both K and L, and it is clearly the smallest
ˆ ˆ ˆfield that does (since g is irreducible in K[x]), so L is the compositum of K and L. The

ˆabsolute value on L restricts to an absolute value on L extending the absolute value
ˆ ˆ

| |
on K, and L is complete, so L contains the completion of L with respect to | |. On the

ˆ ˆother hand, the completion of L with respect | | contains L and K, so it must be L.

ˆ ˆIn the preceding theorem, when the local extension L/K is Galois one might ask whether
ˆ ˆthe corresponding global extension L/K is also Galois, and whether Gal(L/K) ' Gal(L/K).

As shown by the following example, this need not be the case.

Example 11.17. Let K = Q ˆ, K = Q ˆ ˆ
7 and L = K[x]/(x3

ˆ
− ˆ ˆ2). The extension L/K is

Galois because K = Q7 contains ζ3 (we can lift the root 2 of x2 + x + 1 ∈ F7[x] to a root
of x2 + x + 1 ∈ Q7[x] via Hensel’s lemma), and this implies that x3 − 2 splits completely

ˆin L. But L = K[x]/(x3 − 2) is not a Galois extension of K because it contains only
one root of x3 − ˆ2. However, we can replace K with Q(ζ3) without changing K (take the
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ˆcompletion of K with respect to the absolute value induced by a prime above 7) or L, but
now L = K[x]/(x3 − 2) is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing
ˆ ˆ ˆ ˆthe local fields extension L/K in a way that ensures that L/K and L/K have the same

automorphism group. Indeed, this is always possible.

ˆ ˆCorollary 11.18. For every finite Galois extension L/K of local fields there is a finite
ˆGalois extension of global fields L/K and an absolute value on L such that L is the

ˆ
| |

completion of L with respect to | |, K is the completion of K with respect to the restriction
ˆ ˆof | | to K, and Gal(L/K) ' Gal(L/K).

Proof. The archimedean case is already covered by Theorem 11.16 (take K = Q), so we
ˆassume L is nonarchimedean and note that we may take | | to be the absolute value on

ˆ ˆ ˆboth K and on L, by Theorem 10.6. The field K is an extension of either Qp or Fq((t)),
ˆand by applying Theorem 11.16 to this extension we may assume K is the completion of

a global field K with respect to the restriction of | |. As in the proof of the theorem, let
g ∈ ˆ ˆ ˆK[x] be a monic separable polynomial irreducible in K[x] such that L = K[x]/(g) and

ˆ ˆdefine L := K[x]/(g) so that L is the compositum of K and L.
Now let M be the splitting field of g over K, the minimal extension of K that contains

ˆall the roots of g (which are distinct because g is separable). The field L also contains these
ˆ ˆ ˆ ˆroots (since L/K is Galois) and L contains K, so L contains a subextension of K isomorphic

to M (by the universal property of a splitting field), which we now identify with M ; note
ˆthat L is also the completion of M with respect to the restriction of | | to M .

ˆ ˆWe have a group homomorphism ϕ : Gal(L/K) → Gal(M/K) induced by restriction,
ˆ ˆand ϕ is injective (each σ ∈ Gal(L/K) is determined by its action on any root of g in M). If

we now replace K by the fixed field of the image of ϕ and replace L with M , the completion
ˆ ˆof K with respect to the restriction of | | is still equal to K, and similarly for L and L, and

now Gal(L/K) ' ˆ ˆGal(L/K) as desired.

11.4 Completing a separable extension of Dedekind domains

We now return to our general AKLB setup: A is a Dedekind domain with fraction field
K with a finite separable extension L/K, and B is the integral closure of A in L, which is
also a Dedekind domain. Recall from Theorem 8.20 that if p is a prime of K (a nonzero
prime ideal of A), each prime q|p induces a valuation vq of L that extends the valuation
vp of K with index eq, meaning that vq|K = eqvp (and every valuation of L that extends
vp arises in this way). We now want to look at what happens when we complete K with
respect to the absolute value | |p induced by vp to obtain a complete field Kp, and similarly
complete L with respect to | |q for some q|p to obtain Lq. This includes the case where
L/K is an extension of global fields, in which case we get a corresponding extension Lq/Kp

of local fields for each q|p; as proved below, the embedding K ↪→ L induces an embedding
Kp ↪→ Lq of topological fields in which the absolute value | |p on Kp is equivalent to the
restriction of | |q to Kp (if we define | |q as in Theorem 10.6 then | |p will be the restriction
of | |q).

In general the extension Lq/Kp may have smaller degree than L/K. If L ' K[x]/(f),
the irreducible polynomial f ∈ K[x] need not be irreducible over Kp. Indeed, this will
necessarily be the case if there is more than one prime q lying above p; the Dedekind-
Kummer theorem gives a one-to-one correspondence between irreducible factors of f inKp[x]
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and primes q|p (via Hensel’s Lemma). The following theorem gives a complete description
of the situation.

Theorem 11.19. Assume AKLB, let p be a prime of K, and let pB = q|p q
eq be the

factorization of pB in B. Let Kp be the completion of K with respect to | |p, and let p̂ be
the maximal ideal of its valuation ring. For each q|p, let Lq denote the completion

∏
of L with

respect to | |q, and q̂ the maximal ideal of its valuation ring. The following hold:

(1) Each Lq is a finite separable extension of Kp with [Lq :Kp] ≤ [L : K].

(2) Each q̂ is the unique prime of Lq lying over p̂.

(3) Each q̂ has ramification index eq̂ = eq and residue field degree fq̂ = fq.

(4) [Lq : Kp] = eqfq;

(5) The map L ⊗K Kp →
∏

q p Lq defined by ` ⊗ x 7→ (`x, . . . , `x) is an isomorphism of|
finite étale Kp-algebras.

(6) If L/K is Galois then each Lq/Kp is Galois and we have isomorphisms of decompo-
sition groups Dq ' Dq̂ = Gal(Lq/Kp) and inertia groups Iq ' Iq̂.

Proof. We first note that the Kp and the Lq are all fraction fields of complete DVRs; this
follows from Proposition 8.11 (note that we are not assuming they are local fields).

(1) For each q|p the embedding K ↪→ L induces an embedding Kp ↪→ Lq via the map
[(xn)] 7→ [(xn)] on equivalence classes of Cauchy sequences; a sequence (xn) that is Cauchy
in K with respect to | |p, is also Cauchy in L with respect to | |q because vq extends vp. We
may thus view Kp as a topological subfield of Lq, and it is clear that [Lq :Kp] ≤ [L :K], since
any K-basis b1, . . . , bm for L ⊆ Lq spans Lq as a Kp-vector space: given a Cauchy sequence
y := (yn) of elements in L, if we write each yn as x1,nb1+· · ·+xm,nbm with xi,n ∈ K we obtain
Cauchy sequences x1 := (x1,n), · · · , xm := (xm,n) of elements in K (linear maps of finite
dimensional normed spaces are uniformly continuous and thus preserves Cauchy sequences),
and we can write [y] = [x1]b1 + · · · [xm]bm as a Kp-linear combination of b1, . . . , bm.

The field L is a finite étale K-algebra, since L/K is a separable, so its base change
L⊗KKp to Kp is a finite étale K-algebra, by Proposition 4.36. Let us now consider the Kp-
algebra homomorphism φq : L⊗K Kp → Lq defined by `⊗ x 7→ `x. We have φq(bi ⊗ 1) = bi
for each of our K-basis elements bi ∈ L, and as noted above, b1, . . . bm span Lq as Kp-vector
space, thus φq is surjective. As a finite étale Kp-algebra, L⊗KKp is by definition isomorphic
to a finite product of finite separable extensions of Kp; by Proposition 4.32, Lq is isomorphic
to a subproduct and thus also a finite étale Kp-algebra; in particular, Lq/Kp is separable.

(2) As noted above, the valuation rings of Kp and the Lq are complete DVRs, so this
follows immediately from Theorem 10.1.

(3) The valuation vq̂ extends vq with index 1, which in turn extends vp with index eq.
The valuation vp̂ extends vp with index 1, and it follows that vq̂ extends vp̂ with index eq
and therefore eq̂ = eq. The residue field of p̂ is the same as that of p: for any Cauchy
sequence (an) over K the an will eventually all have the same image in the residue field at p
(since vp(an − am) > 0 for all sufficiently large m and n). Similar comments apply to each
q̂ and q, and it follows that fq̂ = fq.

(4) It follows from (2) that [Lq : Kp] = eq̂fq̂, since q̂ is the only prime above p̂, and (3)
then implies [Lq∏: Kp] = eqfq, by Theorem 5.32.

(5) Let φ := q|p φq, where φq : L ⊗K Kp → Lq is the surjective Kp-algebra homomor-
phisms defined in the proof of (1). Then φ : L⊗K Kp →

∏
q p L is| q a Kp-algebra homomor-

phism. Applying (4) and the fact that taking the base change of a finite étale algebra does
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not change its dimension (see Proposition 4.36), we have

dimKp (L⊗K Kp) = dimK L = [L : K] =
∑

eqfq = [Lq : Kp] = dimKp Lq.

q|p

∑
q|p

∏
q|p

Pick a Kp-basis {βi} for q p Lq, fix ε > 0, and for each basis element β| i = (βi,q)q|p use
the weak approximation theorem

∏
proved in Problem Set 4 to construct αi ∈ L such that

|αi − βi,q|q < ε for all q|p. In the metric space q 1)|p Lq (with the sup norm), each φ(αi ⊗
is close to βi. The Kp-matrix whose jth column

∏
expresses φ(αj ⊗ 1) in terms of the basis

{βi} is then close to the identity matrix (with respect to | |p), and the determinant D of
this matrix is close to 1 (the determinant is continuous). For sufficiently small ε we must
have D 6= 0, and then {φ(αi ⊗ 1)} is a basis for q p Lq. It follows that φ is surjective and|
therefore an isomorphism, since its domain and codomain have the same dimension.

(6) We now assume L/K is Galois. Each σ

∏
∈ Dq acts on L and respects the valuation vq,

since it fixes q (if x ∈ qn then σ(x) ∈ σ(qn) = σ(q)n = qn). It follows that if (xn) is a Cauchy
sequence in L, then so is (σ(xn)), thus σ is an automorphism of Lq, and it fixes Kp. We
thus have a group homomorphism ϕ : Dq → AutKp(Lq).

If σ ∈ Dq acts trivially on Lq then it acts trivially on L ⊆ Lq, so kerϕ is trivial. Also,

eqfq = |Dq| ≤ #AutKp(Lq) ≤ [Lq : Kp] = eqfq,

by Theorem 11.19, so #AutKp(Lq) = [Lq : Kp] and Lq/Kp is Galois, and this also shows
that ϕ is surjective and therefore an isomorphism. There is only one prime q̂ of Lq, and it
is necessarily fixed by every σ ∈ Gal(Lq/Kp), so Gal(Lq/Kp) ' Dq̂. The inertia groups Iq
and Iq̂ both have order eq = eq̂, and ϕ restricts to a homomorphism Iq → Iq̂, so the inertia
groups are also isomorphic.

Corollary 11.20. Assume AKLB and let p be a prime of A. For every α ∈ L we have

NL/K(α) =
∏

NLq/Kp
(α) and TL/K(α) = TLq/Kq

(α).

q|p

∑
q|p

where we view α as an element of Lq via the canonical embedding L ↪→ Lq.

Proof. The norm and trace are defined as the determinant and trace of K-linear maps

L −×→α L that are unchanged upon tensoring with Kp; the corollary then follows from the
isomorphism in part (5) of Theorem 11.19, which commutes with the norm and trace.

Remark 11.21. Theorem 11.19 can be stated more generally in terms of equivalence classes
of absolute values, or places. Rather than working with a prime p of K and primes q|p of L,
one works with an absolute value | |v of K (for example, | |p) and inequivalent absolute
values | |w of L that extend | |v. Places will be discussed further in the next lecture.

Corollary 11.22. Assume AKLB and let p be a prime of A. Let pB = qeq be the
ˆfactorization of pB in B. Let Ap denote the completion of A with respect to | |p, and for

ˆeach q| ˆ ˆp, let Bq denote the completion of B with respect to | |q. Then B A

∏
⊗A p '

∏
q|pBq,

ˆas Ap-algebras

Proof. After replacing A with Ap and B with Bp (localizing B as an A-module), we may
assume that A is a DVR and B/A is a free A module of rank n := [L : K] =

∑
q e|p qfq.
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ˆThen ⊗ ˆ ˆ ˆB A Ap is a free Ap-module of rank n. Viewing Ap and the Bq as valuation rings
of Kp∑ ˆ ˆand Lq, it follows from part (4) of Theorem 11.19 that Bq is a free Ap-module of

ˆrank q [L : K ] = e f = n. These isomorphic A -modules lie in isomorphic finite|p q p
∑

q|p q q p

étale Kp-algebras L ⊗K Kp '
∏
Lq, by part (5) of Theorem

∏
11.19, and this Kp-algebra

ˆisomorphism restricts to an Ap-algebra isomorphism.

Remark 11.23. Let A be a Dedekind domain with fraction field K. If we localize A at
a prime p we obtain a DVR Ap with the same fraction field K. We can then complete Ap

ˆwith respect to | |p to obtain a complete DVR Ap whose fraction field Kp is the completion
of K with respect to | | ˆ

p, and Ap is then the valuation ring of Kp. Alternatively, we could
first complete A with respect to the absolute value | |p induced by p and then localize. But
as explained in Lecture 8, completing A with respect to | |p is the same thing as taking the

ˆvaluation ring of Kp, so the completion of A is already the complete DVR Ap we obtained
by localizing and completing; there is no need to localize and nothing would change if we
did. Completion not only commutes with localization, it makes localization unnecessary.

Henceforth if A is a Dedekind domain and p is a prime of A (a nonzero prime ideal), by
ˆthe completion of A at p we mean the ring Ap.
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