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12 The different and the discriminant

12.1 The different

We continue in our usual AKLB setup: A is a Dedekind domain, K is its fraction field, L/K
is a finite separable extension, and B is the integral closure of A in L (a Dedekind domain
with fraction field L). We would like to understand the primes that ramify in L/K. Recall
that a prime q|p of L is unramified if and only if eq = 1 and that B/q a separable extension
of A/p, equivalently, if and only if B/qeq is a finite étale A/p algebra (by Theorem 4.40).1

A prime p of K is unramified if and only if all the primes q|p lying above it are unramified,
equivalently, if and only if the ring B/pB is a finite étale A/p algebra.2

Our main tools for studying ramification are the different DB/A and discriminant DB/A.
The different is a B-ideal that is divisible by precisely the ramified primes q of L, and the
discriminant is an A-ideal divisible by precisely the ramified primes p of K. Moreover, the
valuation vq(DB/A) will give us information about the ramification index eq (its exact value
when q is tamely ramified).

Recall from Lecture 5 the trace pairing L×L→ K defined by (x, y) 7→ TL/K(xy); under
our assumption that L/K is separable, it is a perfect pairing. An A-lattice M in L is a
finitely generated A-module that spans L as a K-vector space (see Definition 5.9). Every
A-lattice M in L has a dual lattice (see Definition 5.11)

M∗ := {x ∈ L : TL/K(xm) ∈ A ∀m ∈M},

which is an A-lattice in L isomorphic to the dual A-module M∨ := HomA(M,A) (see
Theorem 5.12). In our AKLB setting we have M∗∗ = M , by Proposition 5.16.

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely
generated as an A module (since B is finite over A). If I is nonzero, it necessarily spans L,
since B does. It follows that every element of the group IB of nonzero fractional ideals of B
is an A-lattice in L. We now show that IB is closed under the operation of taking duals.

Lemma 12.1. Assume AKLB. If I ∈ IB then I∗ ∈ IB.

Proof. The dual lattice I∗ is a finitely generated A-module, thus to show that it is a finitely
generated B-module it is enough to show it is closed under multiplication by elements of B.
So consider any b ∈ B and x ∈ I∗. For all m ∈ I we have TL/K((bx)m) = TL/K(x(bm)) ∈ A,
since x ∈ I∗ and bm ∈ I, so bx ∈ I∗ as desired.

Definition 12.2. Assume AKLB. The different ideal is the inverse of B∗ in IB. That is,

B∗ := {x ∈ L : TL/K(xb) ∈ A for all b ∈ B},
DB/A := (B∗)−1 = (B : B∗) = {x ∈ L : xB∗ ⊆ B}.

Note that B ⊆ B∗, since TL/K(ab) ∈ A for a, b ∈ B (by Corollary 4.53), and this implies
(B∗)−1 ⊆ B−1 = B. Thus DB/A is actually an ideal, not just a fractional ideal.

The different respects localization and completion.

1Note that B/qeq is reduced if and only if eq = 1; consider the image of a uniformizer in B/qeq .
2As usual, by a prime of A or K we mean a nonzero prime ideal of A, and similarly for B and L. The

notation q|p means that q is a prime of B lying above p (so p = q ∩A and q divides pB).
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Proposition 12.3. Assume AKLB and let S be a multiplicative subset of A. Then

S−1DB/A = DS−1B/S−1A.

Proof. This follows from the fact that inverses and duals are both compatible with local-
ization, by Lemmas 3.8 and 5.15.

Proposition 12.4. Assume AKLB and let q|p be a prime of B. Then

D ˆ
ˆ ˆ = BBq/Ap

DB/A q,

ˆ ˆwhere Ap and Bq are the completions of A and B at p and q, respectively.

Proof. Let Lp := L⊗Kp be the base∏ change of the finite étale K-algebra L to Kp. By (5)
of Theorem 11.19, we have Lp ' q p Lq. Note that even though L| p need not be a field, in
general, is is a free Kp-module of

(
∑finite rank, and is thus equipped with a trace map that

necessarily satisfies Tˆ x) = q p Tˆ (x) that defines a trace pairing on LL/Kp | p.Lq/Kp

ˆNow let B := B ⊗ ˆ ˆAp; it is an Ap-lattice in the Kp-vector space L. By Corollary 11.22,
ˆ ˆ ˆ ˆ ˆB '

∏
q pBq '

⊕
q pBq, and therefore B∗ '

⊕
q pBq

∗, by Corollary 5.13. It follows that| | |
B̂∗ ' B∗⊗ ˆ ˆ

AAp. In particular, B∗ generates each fractional ideal Bq
∗ ∈ I ˆ . Taking inverses,Bq

DB/A = (B∗)−1 ˆ ˆgenerates the B 1
q-ideal (Bq

∗)− = D ˆ ˆ .Bq/Ap

12.2 The discriminant

Definition 12.5. Let S/R be a ring extension in which S is a free R-module of rank n.
For any x1, . . . , xn ∈ S we define the discriminant

disc(x1, . . . , xn) := det[TS/R(xixj)]i,j ∈ R.

Note that we do not require x1, . . . , xn to be an R-basis for S, but if they satisfy a non-trivial
R-linear relation then the discriminant will be zero (by linearity of the trace).

In our AKLB setup, we have in mind the case where e1, . . . , en ∈ B is a basis for L as
a K-vector space, in which case disc(e1, . . . , en) = det[TL/K(eiej)]ij ∈ A. Note that we do
not need to assume that B is a free A-module; L is certainly a free K-module. The fact that
the discriminant lies in A when e1, . . . , en ∈ B follows immediately from Corollary 4.53.

Proposition 12.6. Let L/K be a finite separable extension of degree n, and let Ω/K be a
field extension for which there are distinct σ1, . . . , σn ∈ HomK(L,Ω). For any e1, . . . , en ∈ L
we have

disc(e1, . . . , en) = det[σi(ej)]
2
ij ,

and for any x ∈ L we have

disc(1, x, x2, . . . , xn−1) =
∏

(σi(x)
i<j

− 2σj(x)) .

Such a field extension Ω/K always exists, since L/K is separable (Ω = Ksep works).
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nProof. For 1 ≤ i, j ≤ n we have TL/K(eiej) =
∑

k=1 σk(eiej), by Theorem 4.50. Therefore

disc(e1, . . . , en) = det[TL/K(eiej)]ij

= det ([σk(ei)]ik[σk(ej)]kj)

= det
(
[σ t
k(ei)]ik[σk(ej)]jk

= det[σi(ej)]
2
ij

)

since the determinant is multiplicative and detM = detM t for any matrix M .
Now let x ∈ L and put ei := xi−1 for 1 ≤ i ≤ n. Then

disc(1, x, x2, . . . , xn−1) = det[σ (xj 1
i

− )]2ij = det[σi(x)j−1)]2ij =
∏

2(σi(x)− σj(x)) ,
i<j

since [σi(x)j−1)]ij is a Vandermonde matrix (see [1, p. 258], for example).

Definition 12.7. For a polynomial f(x) =
∏
i(x− αi), the discriminant of f is

disc(f) :=
∏

(αi
i<j

− αj)2.

Equivalently, if A is a Dedekind domain, f ∈ A[x] is a monic separable polynomial, and α
is the image of x in A[x]/(f(x)), then

disc(f) = disc(1, α, α2, . . . , αn−1) ∈ A.

Example 12.8. disc(x2 + bx+ c) = b2 − 4c and disc(x3 + ax+ b) = −4a3 − 27b2.

Now assume AKLB and let M be an A-lattice in L. Then M is a finitely generated
A-module that contains a K-basis for L. We want to define the discriminant of M in a way
that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If e1, . . . , en ∈ M ⊆ L and
e′1, . . . , e

′
n ∈M ⊆ L are two A-bases for M , then

disc(e′1, . . . , e
′
n) = u2 disc(e1, . . . , en)

for some unit u ∈ A×; this follows from the fact that the change of basis matrix P ∈ An×n is
invertible and its determinant is therefore a unit u. This unit gets squared because we need
to apply the change of basis matrix twice in order to change T(eiej) to T(e′ie

′
j). Explicitly,

writing bases as row-vectors, let e = (e1, . . . , en) and e′ = (e′1, . . . , e
′
n) satisfy e′ = eP . Then

disc(e′) = det[TL/K(e′ie
′
j)]ij

= det[TL/K((eP )i(eP )j)]ij

= det[P tTL/K(eiej)P ]ij

= (detP t) disc(e)(detP )

= (detP )2 disc(e),

where we have used the linearity of TL/K to go from the second equality to the third.
This actually gives us a basis independent definition when A = Z. In this case B is

always a free Z-lattice, and the only units in Z are u = ±1, so u2 = 1.
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Definition 12.9. Assume AKLB, let M be an A-lattice in L, and let n := [L :K]. The
discriminant D(M) of M is the A-module generated by {disc(x1, . . . , xn) : x1, . . . , xn ∈M}.

Given any n-tuple e′ = (e′1, . . . , e
′
n) of elements in M , if we view e and e′ as row vectors

we can write e′ = eP for some (not necessarily invertible) matrix P ∈ An×n, and we always
have disc(e′) = (detP )2 disc(e) ∈ (disc(e)).

Lemma 12.10. Assume AKLB and let M ′ ⊆M be free A-lattices in L. The discriminants
D(M ′) ⊆ D(M) are nonzero principal fractional ideals. If D(M ′) = D(M) then M ′ = M .

Proof. Let e := (e1, . . . , en) be an A-basis for M . Then disc(e) ∈ D(M), and for any row
vector x := (x1, . . . , x

n n
n) with entries in M there is a matrix P ∈ A × for which x = eP ,

and we then have disc(x) = (detP )2 disc(e) as above. It follows that

D(M) = (disc(e))

is principal, and it is nonzero because e is a basis for L and the trace pairing is nondegener-
ate. If we now let e′ := (e′1, . . . , e

′
n) be an A-basis for M ′ then D(M ′) = (disc(e′)) is also a

nonzero and principal. Our assumption that M ′ ⊆M implies that e′ = eP for some matrix
P ∈ An×n, and we have disc(e′) = (detP )2 disc(e). If D(M ′) = D(M) then detP must be
a unit, in which case P is invertible and e = e′P−1. This implies M ⊆M ′.

Proposition 12.11. Assume AKLB and let M be an A-lattice in L. Then D(M) ∈ IA.

Proof. The A-module D(M) ⊆ K is nonzero because M contains a K-basis e = (e1, . . . , en)
for L and disc(e) 6= 0 because the trace pairing is nondegenerate. To show that D(M) is
a finitely generated as an A-module (and thus a fractional ideal), we use the usual trick:
make it a submodule of a noetherian module. So let N be the free A-lattice in L generated
by e and then pick a nonzero a ∈ A such that M ⊆ a−1N (write each generator for M
in terms of the K-basis e and let a be the product of all the denominators that appear;
note that M is finitely generated). We then have D(M) ⊆ D(a−1N), and D(a−1N) is a
principal fractional ideal of A, hence a noetherian A-module (since A is noetherian), so its
submodule D(M) must be finitely generated.

Definition 12.12. Assume AKLB. The discriminant of L/K (and of B/A) is the dis-
criminant of B as an A-module:

DL/K := DB/A := D(B) ∈ IA,

which is an A-ideal, since disc(x1, . . . , xn) = det[TB/A(xixj)]i,j ∈ A for all x1, . . . , xn ∈ B.

Example 12.13. Consider the case A = Z, K = Q, L = Q(i), B = Z[i]. Then B is a free
A-lattice with basis (1, i) and we can compute DL/K in three ways:

• disc(1, i) = det

[
TL/K(1 · 1) TL/K(1 · i)

] [
2 0

= det

]
= 4.

TL/K(i · 1) TL/K(i · i) 0 −2
−

• The non-trivial automorphism( [ of])L/K fixes 1 and sends i to −i, so we could instead
2

1 1
compute disc(1, i) = det = (−2i)2 =

i −i −4.

• We have B = Z[i] = Z[x]/(x2 + 1) and can compute disc(x2 + 1) = −4.
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In every case the discriminant DL/K is the ideal (−4) = (4).

Remark 12.14. If A = Z then B is the ring of integers of the number field L, and B is a
free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In
this situation it is customary to define the absolute discriminant DL of the number field L
to be the integer disc(e1, . . . , en) ∈ Z, for any basis (e1, . . . , en) of B, rather than the ideal it
generates. As noted above, this integer is independent of the choice of basis because u2 = 1
for all u ∈ Z×; in particular, the sign of DL is well defined (as we shall see, the sign of DL

carries information about L). In the example above, the absolute discriminant is DL = −4.

Like the different, the discriminant respects localization.

Proposition 12.15. Assume AKLB and let S be a multiplicative subset of A. Then
S−1DB/A = DS−1B/S−1A.

Proof. Let x = s−1 disc(e1, . . . , e
1

n) ∈ S− DB/A for some s ∈ S and e1, . . . , en ∈ B. Then
x = s2n−1 disc(s−1e1, . . . , s

−1en) lies in DS inclusion.−1B/S .−1A This proves the forward
Conversely, for any e1, . . . , en ∈ S−1B we can choose a single s ∈ S ⊆ A so that each sei

lies in B. We then have disc(e1, . . . , en) = s−2n disc(se 1
1, . . . , sen) ∈ S− DB/A, which proves

the reverse inclusion.

We have now defined two different ideals associated to a finite separable extension of
Dedekind domains B/A in the AKLB setup. We have the different DB/A, which is a
fractional ideal of B, and the discriminant DB/A, which is a fractional ideal of A. We now
relate these two ideals in terms of the ideal norm NB/A : IB → IA, which for I ∈ IB is
defined as NB/A(I) := [B : I]A, where [B : I]A is the module index (see Definitions 6.1
and 6.5).

Theorem 12.16. Assume AKLB. Then DB/A = NB/A(DB/A).

Proof. The different and discriminant are both compatible with localization, by Proposi-
tions 12.3 and 12.15, and the A-modules DB/A and NB/A(DB/A) of A are both determined
by the intersections of their localizations at maximal ideals (Proposition 2.6), so it suffices
to prove that the theorem holds when we replace A by its localization A at a prime of A.
Then A is a DVR and B is a free A-lattice in L; let us fix an A-basis (e1, . . . , en) for B.

The dual A-lattice

B∗ = {x ∈ L : TL/K(xb) ∈ A ∀b ∈ B} ∈ IB

is also a free A-lattice in L, with basis (e∗1, . . . , e
∗
n) uniquely determined by TL/K(e∗i ej) = δij ,

where δij is the Kronecker delta function; see Corollary 5.14. If we write ei = aije
∗
j in

terms of the K-basis (e∗1, . . . , en
∗ ) for L then

∑

TL/K(eiej) = TL/K

(∑
aike

∗
kej

)
=
∑

aikTL/K(e∗kej) = ij

k

∑
aikδkj = a ,

k k

so P := [TL/K(eiej)]ij is the change-of-basis matrix from e∗ := (e∗1, . . . , e
∗
n) to e := (e1, . . . , en)

(as row vectors we have e = e∗P ). If we let φ denote the K-linear transformation with ma-
trix P , then φ is an isomorphism of free A-modules and

DB/A =
(
det[TL/K(eiej)]ij

)
= (detφ) = [B∗ :B]A,

where [B∗ :B]A is the module index (see Definition 6.1). Applying Corollary 6.8 yields

DB/A = [B∗ :B]A = NB/A((B∗)−1B) = N 1
B/A((B∗)− ) = NB/A(DB/A).

18.785 Fall 2017, Lecture #12, Page 5

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2017/lecture-notes/MIT18_785F17_lec6.pdf#theorem.2.1
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2017/lecture-notes/MIT18_785F17_lec6.pdf#theorem.2.5
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2017/lecture-notes/MIT18_785F17_lec2.pdf#theorem.2.6
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2017/lecture-notes/MIT18_785F17_lec5.pdf#theorem.2.14
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2017/lecture-notes/MIT18_785F17_lec6.pdf#theorem.2.1
https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2017/lecture-notes/MIT18_785F17_lec6.pdf#theorem.2.8


12.3 Ramification

Having defined the different and discriminant ideals we now want to understand how they
relate to ramification. Recall that in our AKLB setup, if p is a prime of A then we can
factor the B-ideal pB as

pB = eq 1
1 · · · q

er
r .

The Chinese remainder theorem implies

B/pB ' B/ eq 1
1 × · · · ×B/q

er
r .

This is a commutative A/p-algebra of dimension
∑
eifi, where fi = [B/qi : A/p] is the

residue degree (see Theorem 5.34). It is a product of fields if and only if we have ei = 1 for
all i, and it is a finite étale-algebra if and only if it is a product of fields that are separable
extensions of A/p. The following lemma relates the discriminant to the property of being a
finite ètale algebra.

Lemma 12.17. Let k be a field and let R be a commutative k-algebra with k-basis r1, . . . , rn.
Then R is a finite étale k-algebra if and only if disc(r1, . . . , rn) 6= 0.

Proof. By Theorem 5.20, R is a finite étale k-algebra if and only if the trace pairing on R
is a perfect pairing, which is equivalent to being nondegenerate, since k is a field.

Suppose the trace pairing is degenerate.∑ Then for some nonzero x ∈ R we have
TR/k(xy) = 0 for all y ∈ R. If we write x = i xiri with xi ∈ k then i xiTR/k(rirj) = 0
for all rj (take y = rj), and this implies that the columns of the matrix [TR/k(rirj)]ij are
linearly dependent and therefore disc(r1, . . . , rn) = det[TR/k(rirj)]ij =

∑
0.

Conversely, if disc(r1, . . . , rn) = 0 then the columns of det[T∑R/k(rirj)]ij are linearly de-
pendent and∑ for some xi ∈ k not∑identically zero we must have ∑i xiTR∑/k(rirj) = 0 for all j.
For x := i xiri and any y = j yjrj ∈ R we have TR/k(xy) = j yj i xiTR/k(rirj) = 0,
which shows that the trace pairing is degenerate.

Theorem 12.18. Assume AKLB, let q be a prime of B lying above a prime p of A. The
extension L/K is unramified at q if and only if q does not divide DB/A, and it is unramified
at p if and only if p does not divide DB/A.

Proof. We first consider the different DB/A. By Proposition 12.4, the different is compatible
with completion, so it suffices to consider the case that A and B are complete DVRs
(complete K at p and L at q and apply Theorem 11.19). We then have [L : K] = eqfq,
where eq is the ramification index and fq is the residue field degree, and pB = qeq .

Since B is a DVR with maximal ideal q, we must have DB/A = qm for some m ≥ 0. By
Theorem 12.16 we have

DB/A = NB/A(D m fqm
B/A) = NB/A(q ) = p .

Thus q|DB/A if and only if p|DB/A. Since A is a PID, B is a free A-module and we may
choose an A-module basis e1, . . . , en for B that is also a K-vector space for L. Let k := A/p,
and let ei be the reduction of ei to the k-algebra R := B/pB. Then (e1, . . . , en) is a k-basis
for R: it clearly spans, and we have [R : k] = [B/qeq : A/p] = eqfq = [L : K] = n.

Since B has an A-module basis, we may compute its discriminant as

DB/A = (disc(e1, . . . , en)).
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Thus p|DB/A if and only if disc(e1, . . . , en) ∈ p, equivalently, disc(e1, . . . , en) = 0 (note
that disc(e1, . . . , en) is a polynomial in the TL/K(eiej) and TR/k(eiej) is the trace of the
multiplication-by-eiej map, which is the same as the reduction to k = A/p of the trace of
the multiplication-by-eiej map TL/K(eiej) ∈ A). By Lemma 12.17, disc(e1, . . . , en) = 0 if
and only if the k-algebra B/pB is not finite étale, equivalently, if and only if p is ramified.
Thus p|DB/A if and only if p is ramified. There is only one prime q above p, so we also have
q|DB/A if and only if q is ramified.

We now note an important corollary of Theorem 12.18.

Corollary 12.19. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. A and B are Dedekind domains, so the ideals DB/A and DB/A both have unique
factorizations into prime ideals in which only finitely many primes appear.

12.4 The discriminant of an order

Recall from Lecture 6 that an order O is a noetherian domain of dimension one whose
conductor is nonzero (see Definitions 6.16 and 6.19), and the integral closure of an order
is always a Dedekind domain. In our AKLB setup, the orders with integral closure B are
precisely the A-lattices in L that are rings (see Proposition 6.22); if L = K(α) with α ∈ B,
then A[α] is an example. The discriminant DO/A of such an order O is its discriminant
D(O) as an A-module. The fact that O ⊆ B implies that D(O) ⊆ DB/A is an A-ideal.

If O is an order of the form A[α], where α ∈ B generates L = K(α) with minimal
polynomial f ∈ A[x], then O is a free A-lattice with basis 1, α, . . . , αn−1, where n = deg f ,
and we may compute its discriminant as

D = (disc(1, α, . . . , αn−1)) = (disc(f)),O/A

which is a principal A-ideal contained in DB/A. If B is also a free A-lattice, then as in the
proof of Lemma 12.10 we have

DO/A = (detP )2DB/A = [B :O]2ADB/A,

where P is the matrix of the A-linear map φ : B → O that sends an A-basis for B to an
A-basis for O and [B :O]A is the module index (a principal A-ideal).

In the important special case where A = Z and L is a number field, the integer (detP )2

is uniquely determined and it necessarily divides disc(f), the generator of the principal ideal
D(O) = D(A[α]). It follows that if disc(f) is squarefree then we must have B = O = A[α].
More generally, any prime p for which vp(disc(f)) is odd must be ramified, and any prime
that does not divide disc(f) must be unramified. Another useful observation that applies
when A = Z: the module index [B :O]Z = ([B :O]) is the principal ideal generated by the
index of O in B (as Z-lattices), and we have the relation

D = [B :O O]2DB

between the absolute discriminant of the order O and its integral closure B.

Example 12.20. Consider A = Z, K = Q with L = Q(α), where α3 − α− 1 = 0. We can
compute the absolute discriminant of Z[α] as

disc(1, α, α2) = disc(x3 − x− 1) = −4(−1)3 − 27(−1)2 = −23.
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The fact that −23 is squarefree immediately implies that 23 is the only prime of A that
ramifies, and we have DZ[α] = −23 = [O 2

L : Z[α]] DL, which forces [OL : Z[α]] = 1, so
DL = −23 and OL = Z[α].

More generally, we have the following theorem.

Theorem 12.21. Assume AKLB and let O be an order with integral closure B and con-
ductor c. Then DO/A = NB/A(c)DB/A.

Proof. See Problem Set 6.

12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant
and different in many cases.

Proposition 12.22. Assume AKLB. If B = A[α] for some α ∈ L and f ∈ A[x] is the
minimal polynomial of α, then

DB/A = (f ′(α))

is the B-ideal generated by f ′(α).

Proof. See Problem Set 6.

The assumption B = A[α] in Proposition 12.22 does not always hold, but if we want to
compute the power of q that divides DB/A we can complete L at q and K at p = q∩A so that
A and B become complete DVRs, in which case B = A[α] does hold (by Lemma 10.14), so
long as the residue field extension is separable (always true if K and L are global fields, since
the residue fields are then finite, hence perfect). The following definition and proposition
give an alternative approach.

Definition 12.23. Assume AKLB and let α ∈ B have minimal polynomial f ∈ A[x]. The
different of α is defined by {

f ′(α) if L = K(α),
δB/A(α) =

0 otherwise.

Proposition 12.24. Assume AKLB. Then DB/A = δB/A(α) : α ∈ B .

Proof. See [2, Thm. III.2.5].

( )

We can now more precisely characterize the ramification information given by the dif-
ferent ideal.

Theorem 12.25. Assume AKLB and let q be a prime of L lying above p = q∩A for which
the residue field extension (B/q)/(A/p) is separable. Show that

e− 1 ≤ vq(DB/A) ≤ e− 1 + vq(e),

and that the lower bound is an equality if and only if vq(e) = 0.

Proof. See Problem Set 6.
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We also note the following proposition, which shows how the discriminant and different
behave in a tower of extensions.

Proposition 12.26. Assume AKLB and let M/L be a finite separable extension and let C
be the integral closure of A in M . Then

DC/A = DC/B · DB/A

(where the product on the right is taken in C), and

DC/A = (DB/A)[M :L]NB/A(DC/B).

Proof. See [3, Prop. III.8].

If M/L/K is a tower of finite separable extensions, we note that the primes p of K that
ramify are precisely those that divide either DL/K or NL/K(DM/L).
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