18.785 Number theory I Fall 2017
Lecture #12 10/18/2017

12 The different and the discriminant

12.1 The different

We continue in our usual AK LB setup: A is a Dedekind domain, K is its fraction field, L/ K
is a finite separable extension, and B is the integral closure of A in L (a Dedekind domain
with fraction field L). We would like to understand the primes that ramify in L/K. Recall
that a prime q|p of L is unramified if and only if e; = 1 and that B/q a separable extension
of A/p, equivalently, if and only if B/q% is a finite étale A/p algebra (by Theorem 4.40).L1
A prime p of K is unramified if and only if all the primes q|p lying above it are unramified,
equivalently, if and only if the ring B/pB is a finite étale A/p algebra.2

Our main tools for studying ramification are the different Dp,4 and discriminant D 4.
The different is a B-ideal that is divisible by precisely the ramified primes q of L, and the
discriminant is an A-ideal divisible by precisely the ramified primes p of K. Moreover, the
valuation vq(Dpg,4) will give us information about the ramification index eq (its exact value
when ¢ is tamely ramified).

Recall from Lecture 5 the trace pairing L x L — K defined by (z,y) — T,k (zy); under
our assumption that L/K is separable, it is a perfect pairing. An A-lattice M in L is a
finitely generated A-module that spans L as a K-vector space (see Definition 5.9). Every
A-lattice M in L has a dual lattice (see Definition 5.11)

M*:={x e L:Tpg(xm)ec AVme M},

which is an A-lattice in L isomorphic to the dual A-module M"Y := Homa (M, A) (see
Theorem 5.12). In our AK LB setting we have M** = M, by Proposition 5.16.

Every fractional ideal I of B is finitely generated as a B-module, and therefore finitely
generated as an A module (since B is finite over A). If I is nonzero, it necessarily spans L,
since B does. It follows that every element of the group Zp of nonzero fractional ideals of B
is an A-lattice in L. We now show that Zpg is closed under the operation of taking duals.

Lemma 12.1. Assume AKLB. IfI € Ig then I* € Ip.

Proof. The dual lattice I* is a finitely generated A-module, thus to show that it is a finitely
generated B-module it is enough to show it is closed under multiplication by elements of B.
So consider any b € B and = € I*. For allm € I we have T,k ((bx)m) = T/ (z(bm)) € A,
since x € I* and bm € I, so bx € I* as desired. ]

Definition 12.2. Assume AKLB. The different ideal is the inverse of B* in Zg. That is,

B*:={x € L: Ty k(xb) € Aforall b B},
Dpja = (B*)'=(B:B")={xreL:zB*CB}.

Note that B C B*, since Ty g (ab) € A for a,b € B (by Corollary 4.53), and this implies
(B*)~' € B~! = B. Thus Dp4 is actually an ideal, not just a fractional ideal.

The different respects localization and completion.

!Note that B/q°e is reduced if and only if e; = 1; consider the image of a uniformizer in B/q%7.
2As usual, by a prime of A or K we mean a nonzero prime ideal of A, and similarly for B and L. The
notation q|p means that q is a prime of B lying above p (so p = qN A and q divides pB).
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Proposition 12.3. Assume AKLB and let S be a multiplicative subset of A. Then

S™'Dpja =Dg-1p5/5-14-

Proof. This follows from the fact that inverses and duals are both compatible with local-
ization, by Lemmas 3.8 and 5.15. O

Proposition 12.4. Assume AKLB and let q|p be a prime of B. Then

D = Dp/aby,

Bqe/Ap
where Ap and Eq are the completions of A and B at p and q, respectively.

Proof. Let Ly := L ® K, be the base change of the finite étale K-algebra L to K. By (5)
of Theorem 11.19, we have L, ~ Hc”p L. Note that even though L, need not be a field, in
general, is is a free Ky-module of finite rank, and is thus equipped with a trace map that
necessarily satisfies Ti/k, (@) =2 qp T /x, (x) that defines a trace pairing on Lj.

Now let B:= B® flp; it is an Ap-lattice in the Kp-vector space L. By Corollary 11.22,
Bi ~ [Tq Ba = @, Ba, and therefore B* ~ P, By, by Corol}ary 5.13. It follows that
B* ~ B*®@4 Ay. In particular, B* generates each fractional ideal By € 7 By Taking inverses,
Dp/a = (B*)! generates the By-ideal (éak)_l =Dg 4, O
12.2 The discriminant

Definition 12.5. Let S/R be a ring extension in which S is a free R-module of rank n.
For any z1,...,x, € S we define the discriminant

disc(z1, ..., on) = det[Tg p(wix;)]i; € R.

Note that we do not require x1, ..., x, to be an R-basis for S, but if they satisfy a non-trivial
R-linear relation then the discriminant will be zero (by linearity of the trace).

In our AK LB setup, we have in mind the case where eq,...,e, € B is a basis for L as
a K-vector space, in which case disc(ei, ...,e,) = det[Ty,x(eie;)]i; € A. Note that we do
not need to assume that B is a free A-module; L is certainly a free K-module. The fact that
the discriminant lies in A when ey, ..., e, € B follows immediately from Corollary 4.53.

Proposition 12.6. Let L/K be a finite separable extension of degree n, and let /K be a
field extension for which there are distinct oy, . ..,0, € Homg(L,Q). For anyey,... e, € L
we have

disc(eq, ..., en) = det[ai(ej)]fj,

and for any x € L we have

disc(1,z,2%,...,2" ") = [[ (os(2) — oj(2))*.
1<J

Such a field extension /K always exists, since L/K is separable (2 = K*® works).
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Proof. For 1 <i,j <n we have T/ (eie;) = > p_; or(eie;), by Theorem 4.50. Therefore

disc(er, ..., en) = det[Tr/x(eies)]is
= det ([ox(ei)]irlon(ef)]ks)
= det ([Uk(ei)]ik [Uk(ej)];‘k)
= det[a,;(ej)]?j

since the determinant is multiplicative and det M = det M* for any matrix M.
Now let = € L and put e; := 2'~! for 1 <i <n. Then
disc(L,z,%,...,a"") = detfos(+) )3 = detfos() )] = [[ (0s(a) — 03(2))?
1<j

since [o;(2)771)];; is a Vandermonde matrix (see [1, p.258], for example). O

Definition 12.7. For a polynomial f(x) = [[,(x — «;), the discriminant of f is

disc(f) = [ [ (e — a;)*.

1<j

Equivalently, if A is a Dedekind domain, f € Alx] is a monic separable polynomial, and «
is the image of = in A[z]/(f(x)), then

disc(f) = disc(1, o, 02, ..., 0" ) € A.
Example 12.8. disc(z? + bz + ¢) = b*> — 4c and disc(23 + az + b) = —4a® — 27b%.

Now assume AKLB and let M be an A-lattice in L. Then M is a finitely generated
A-module that contains a K-basis for L. We want to define the discriminant of M in a way
that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If ey,...,e, € M C L and
el,...,e,, € M C L are two A-bases for M, then

disc(e],...,eh) = u?disc(er, . .., ep)

for some unit u € A*; this follows from the fact that the change of basis matrix P € A™*" is
invertible and its determinant is therefore a unit w. This unit gets squared because we need
to apply the change of basis matrix twice in order to change T(e;e;) to T(eje’). Explicitly,

writing bases as row-vectors, let e = (eq,...,e,) and € = (€],..., e} satisfy ¢’ = eP. Then

disc(e') = det[Ty/x (e}e})]ij
= det[Tr /k((eP)i(eP);)]s
= det[PtTL/K(eiej)P]ij
= (det P") disc(e)(det P)
= (det P)? disc(e),
where we have used the linearity of T,k to go from the second equality to the third.

This actually gives us a basis independent definition when A = Z. In this case B is
always a free Z-lattice, and the only units in Z are v = +1, so u? = 1.
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Definition 12.9. Assume AKLB, let M be an A-lattice in L, and let n := [L: K]. The
discriminant D(M) of M is the A-module generated by {disc(z1,...,x,) : 1,...,2, € M }.

/

Given any n-tuple ¢/ = (¢}, ..., €},) of elements in M, if we view e and ¢’ as row vectors

we can write ¢/ = eP for some (not necessarily invertible) matrix P € A™*" and we always

have disc(e’) = (det P)? disc(e) € (disc(e)).

Lemma 12.10. Assume AKLB and let M’ C M be free A-lattices in L. The discriminants
D(M') C D(M) are nonzero principal fractional ideals. If D(M') = D(M) then M’ = M.

Proof. Let e == (e1,...,eyn) be an A-basis for M. Then disc(e) € D(M), and for any row
vector x = (x1,...,x,) with entries in M there is a matrix P € A™*™ for which x = eP,
and we then have disc(z) = (det P)? disc(e) as above. It follows that

D(M) = (disc(e))

is principal, and it is nonzero because e is a basis for L and the trace pairing is nondegener-
ate. If we now let ¢/ := (€,...,e}) be an A-basis for M’ then D(M’) = (disc(e’)) is also a
nonzero and principal. Our assumption that M’ C M implies that ¢/ = eP for some matrix
P € A" and we have disc(e’) = (det P)?disc(e). If D(M') = D(M) then det P must be
a unit, in which case P is invertible and e = ¢/ P~!. This implies M C M’. O

Proposition 12.11. Assume AKLB and let M be an A-lattice in L. Then D(M) € Zy4.

Proof. The A-module D(M) C K is nonzero because M contains a K-basis e = (e1,...,€ep)
for L and disc(e) # 0 because the trace pairing is nondegenerate. To show that D(M) is
a finitely generated as an A-module (and thus a fractional ideal), we use the usual trick:
make it a submodule of a noetherian module. So let N be the free A-lattice in L generated
by e and then pick a nonzero a € A such that M C a !N (write each generator for M
in terms of the K-basis e and let a be the product of all the denominators that appear;
note that M is finitely generated). We then have D(M) C D(a"'N), and D(a"!N) is a
principal fractional ideal of A, hence a noetherian A-module (since A is noetherian), so its
submodule D(M) must be finitely generated. O

Definition 12.12. Assume AKLB. The discriminant of L/K (and of B/A) is the dis-
criminant of B as an A-module:

DL/K = DB/A = D(B) €Ly,
which is an A-ideal, since disc(z1,...,2,) = det[Tp/a(wix;)]i; € A for all zy,..., 2, € B.

Example 12.13. Consider the case A =7Z, K = Q, L = Q(i), B = Z[i]. Then B is a free
A-lattice with basis (1,i) and we can compute Dy, in three ways:

. L Trg(1-1) Tr/x(l-49)| _ 2 0] _
e disc(1,i) = det [TL/K(Z"U Ty (i - 1) = det N 4.

e The non-trivial automorphism of L/K fixes 1 and sends i to —i, so we could instead

2
compute disc(1,i) = (det [1 1]) = (—2i)? = —4.

T —1

e We have B = Z[i| = Z[x]/(z* + 1) and can compute disc(z? + 1) = —4.
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In every case the discriminant Dy x is the ideal (—4) = (4).

Remark 12.14. If A =7 then B is the ring of integers of the number field L, and B is a
free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In
this situation it is customary to define the absolute discriminant Dy, of the number field L
to be the integer disc(ey, ..., e,) € Z, for any basis (e1,...,e,) of B, rather than the ideal it
generates. As noted above, this integer is independent of the choice of basis because u? = 1
for all w € Z*; in particular, the sign of Dy, is well defined (as we shall see, the sign of Dy,
carries information about L). In the example above, the absolute discriminant is Dy, = —4.

Like the different, the discriminant respects localization.

Proposition 12.15. Assume AKLB and let S be a multiplicative subset of A. Then

S_IDB/A = DS*lB/SflA-

Proof. Let x = s~ !disc(eq,...,e,) € S_IDB/A for some s € S and ey,...,e, € B. Then

r = s>""ldisc(s7tey,..., s te,) lies in Dg-1p/5-14. This proves the forward inclusion.
Conversely, for any e, ..., e, € ST'B we can choose a single s € S C A so that each se;

lies in B. We then have disc(eq, ..., e,) = s 2" disc(sey, . .., se,) € S_lDB/A, which proves

the reverse inclusion. O

We have now defined two different ideals associated to a finite separable extension of
Dedekind domains B/A in the AKLB setup. We have the different Dp,/4, which is a
fractional ideal of B, and the discriminant Dp/, which is a fractional ideal of A. We now
relate these two ideals in terms of the ideal norm Np /arIp — Ia, which for I € Tp is
defined as Np/4(I) := [B : I]a, where [B : I]4 is the module index (see Definitions 6.1

and 6.5).

Theorem 12.16. Assume AKLB. Then Dg/a = N a(Dp/a)-

Proof. The different and discriminant are both compatible with localization, by Proposi-

tions 12.3 and 12.15, and the A-modules Dp/4 and Np,4(Dp/a) of A are both determined

by the intersections of their localizations at maximal ideals (Proposition 2.6), so it suffices

to prove that the theorem holds when we replace A by its localization A at a prime of A.

Then A is a DVR and B is a free A-lattice in L; let us fix an A-basis (ey,...,e,) for B.
The dual A-lattice

B*={zxeL:Tyg(xb)c AVbe B} €Ip

is also a free A-lattice in L, with basis (e, ..., e;,) uniquely determined by T,k (efe;) = 51]7

rn
where 0;; is the Kronecker delta function; see Corollary 5.14. If we write e; = ) a;jel : in

terms of the K-basis (e],...,e)) for L then

Trk(eiej) = Tk (Z aik67§6j> Z aitTr) K (ere;) Z a0k = aij,
k

so P := [Tk (eie;)]ij is the change-of-basis matrix from e* := (ef, ..., e;) toe = (e1,...,en)
(as row vectors we have e = e¢*P). If we let ¢ denote the K-linear transformation with ma-
trix P, then ¢ is an isomorphism of free A-modules and

Dp/a = (det[Tr,k (eiej)ij) = (det ¢) = [B*: B]a,
where [B*: B] 4 is the module index (see Definition 6.1). Applying Corollary 6.8 yields
Dpja = [B*:Bla = Np/s((B*)"'B) = Ng,4((B*)™") = Np/a(Dg/a)- O
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12.3 Ramification

Having defined the different and discriminant ideals we now want to understand how they
relate to ramification. Recall that in our AK LB setup, if p is a prime of A then we can
factor the B-ideal pB as

pPB=qy g

The Chinese remainder theorem implies
B/pB ~ B/qi' x --- x B/q;".

This is a commutative A/p-algebra of dimension > e;f;, where f; = [B/q; : A/p] is the
residue degree (see Theorem 5.34). It is a product of fields if and only if we have e; = 1 for
all 7, and it is a finite étale-algebra if and only if it is a product of fields that are separable
extensions of A/p. The following lemma relates the discriminant to the property of being a
finite etale algebra.

Lemma 12.17. Let k be a field and let R be a commutative k-algebra with k-basisri,...,Ty.
Then R is a finite étale k-algebra if and only if disc(r1,...,m,) # 0.

Proof. By Theorem 5.20, R is a finite étale k-algebra if and only if the trace pairing on R
is a perfect pairing, which is equivalent to being nondegenerate, since k is a field.

Suppose the trace pairing is degenerate. Then for some nonzero x € R we have
Tr/k(zy) = 0 for all y € R. If we write x = ), x;r; with z; € k then ), x;Tg/p(rir;) = 0
for all r; (take y = r;), and this implies that the columns of the matrix [Tg/(ri7;)]i; are
linearly dependent and therefore disc(r1,...,r,) = det[Tg/x(rir;)]i; = 0.

Conversely, if disc(r1,...,7,) = 0 then the columns of det[T g4 (ri7;)]i; are linearly de-
pendent and for some z; € k not identically zero we must have ), 2; T/ (r;r;) = 0 for all j.
For x := 3, wir; and any y = 3, y;r; € R we have T (zy) = 32, y; > i TRy (rirj) =0,
which shows that the trace pairing is degenerate. O

Theorem 12.18. Assume AKLB, let q be a prime of B lying above a prime p of A. The
extension L/ K is unramified at q if and only if q does not divide Dg4, and it is unramified
at p if and only if p does not divide Dpyy.

Proof. We first consider the different Dp,4. By Proposition 12.4, the different is compatible
with completion, so it suffices to consider the case that A and B are complete DVRs
(complete K at p and L at q and apply Theorem 11.19). We then have [L : K| = eqfq,
where e is the ramification index and f; is the residue field degree, and pB = q%.

Since B is a DVR with maximal ideal ¢, we must have Dg,4 = q™ for some m > 0. By
Theorem 12.16 we have

Dpa = Ng/a(Dpa) = Ng/a(q™) = p/om.

Thus q|Dp,4 if and only if p[Dp 4. Since A is a PID, B is a free A-module and we may
choose an A-module basis e, ..., e, for B that is also a K-vector space for L. Let k := A/p,
and let €; be the reduction of e; to the k-algebra R := B/pB. Then (€1,...,€,) is a k-basis
for R: it clearly spans, and we have [R: k] = [B/q% : A/p] = eqfq = [L : K] = n.

Since B has an A-module basis, we may compute its discriminant as

Dpya = (disc(er, ..., en)).
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Thus p|Dp/4 if and only if disc(es,...,e,) € p, equivalently, disc(ey,...,e,) = 0 (note
that disc(es,...,en) is a polynomial in the Ty, (eie;) and Tg/i(€;€;) is the trace of the
multiplication-by-€;€; map, which is the same as the reduction to k = A/p of the trace of
the multiplication-by-e;e; map Tr /i (eie;) € A). By Lemma 12.17, disc(€y,...,€,) = 0 if
and only if the k-algebra B/pB is not finite étale, equivalently, if and only if p is ramified.
Thus p|Dp/ 4 if and only if p is ramified. There is only one prime q above p, so we also have
q|Dp/a if and only if q is ramified. O

We now note an important corollary of Theorem 12.18.
Corollary 12.19. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. A and B are Dedekind domains, so the ideals Dp/4 and Dp,4 both have unique
factorizations into prime ideals in which only finitely many primes appear. ]

12.4 The discriminant of an order

Recall from Lecture 6 that an order O is a noetherian domain of dimension one whose
conductor is nonzero (see Definitions 6.16 and 6.19), and the integral closure of an order
is always a Dedekind domain. In our AK LB setup, the orders with integral closure B are
precisely the A-lattices in L that are rings (see Proposition 6.22); if L = K(«) with o € B,
then A[a] is an example. The discriminant Dy, of such an order O is its discriminant
D(O) as an A-module. The fact that O C B implies that D(O) C Dp/4 is an A-ideal.

If O is an order of the form Afa], where a@ € B generates L = K(a) with minimal
polynomial f € A[z], then O is a free A-lattice with basis 1,«,...,a" !, where n = deg f,
and we may compute its discriminant as

Dpja = (disc(1, a, . ... Lo h)) = (disc(f)),

which is a principal A-ideal contained in Dp,4. If B is also a free A-lattice, then as in the
proof of Lemma 12.10 we have

Doy = (det P)’Dpg/q = [B: O3 D4,

where P is the matrix of the A-linear map ¢: B — O that sends an A-basis for B to an
A-basis for O and [B:0]4 is the module index (a principal A-ideal).

In the important special case where A = Z and L is a number field, the integer (det P)?
is uniquely determined and it necessarily divides disc(f), the generator of the principal ideal
D(O) = D(A|a]). It follows that if disc(f) is squarefree then we must have B = O = Ala].
More generally, any prime p for which vy,(disc(f)) is odd must be ramified, and any prime
that does not divide disc(f) must be unramified. Another useful observation that applies
when A = Z: the module index [B:0]z = ([B:0)]) is the principal ideal generated by the
index of O in B (as Z-lattices), and we have the relation

Do = [B:0)’Dp
between the absolute discriminant of the order O and its integral closure B.

Example 12.20. Consider A = Z, K = Q with L = Q(a), where o® — a — 1 = 0. We can
compute the absolute discriminant of Z[«] as

disc(1, o, 0?) = disc(z® —z — 1) = —4(—1)% — 27(-1)% = —23.
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The fact that —23 is squarefree immediately implies that 23 is the only prime of A that
ramifies, and we have Dy, = —23 = [Of : Z[o]]*Dy, which forces [Of : Z[a]] = 1, so
Dy, = —23 and Of, = Z[a].

More generally, we have the following theorem.

Theorem 12.21. Assume AKLB and let O be an order with integral closure B and con-
ductor ¢. Then Dp/a = Np/a(c)Dp/a-

Proof. See Problem Set 6. O

12.5 Computing the discriminant and different

We conclude with a number of results that allow one to explicitly compute the discriminant
and different in many cases.

Proposition 12.22. Assume AKLB. If B = Ala] for some a € L and f € Alz] is the
minimal polynomial of o, then

Dpja = (f'(a))
is the B-ideal generated by f'(c).

Proof. See Problem Set 6. O

The assumption B = A[a] in Proposition 12.22 does not always hold, but if we want to
compute the power of q that divides D 4 we can complete L at g and K at p = qNA so that
A and B become complete DVRs, in which case B = A[a] does hold (by Lemma 10.14), so
long as the residue field extension is separable (always true if K and L are global fields, since
the residue fields are then finite, hence perfect). The following definition and proposition
give an alternative approach.

Definition 12.23. Assume AKLB and let o € B have minimal polynomial f € A[z]. The
different of a is defined by

flo) i1 =K(a),
o) =
5/4(0) {0 otherwise.
Proposition 12.24. Assume AKLB. Then Dy = (5B/A(a) ta € B).
Proof. See [2, Thm. I11.2.5]. O

We can now more precisely characterize the ramification information given by the dif-
ferent ideal.

Theorem 12.25. Assume AKLB and let q be a prime of L lying above p = qN A for which
the residue field extension (B/q)/(A/p) is separable. Show that

e—1 < v(Dpja) < e—1+vy(e),

and that the lower bound is an equality if and only if vq(e) = 0.
Proof. See Problem Set 6. O
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We also note the following proposition, which shows how the discriminant and different
behave in a tower of extensions.

Proposition 12.26. Assume AKLB and let M /L be a finite separable extension and let C
be the integral closure of A in M. Then

Dcya =Dcyp - Dpja
(where the product on the right is taken in C), and
Deja = (Dpya) M Ng a(Deyp).
Proof. See [3, Prop. 111.8]. O
If M/L/K is a tower of finite separable extensions, we note that the primes p of K that

ramify are precisely those that divide either Dy, /i or N g (Dar/r)-
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