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2 Localization and Dedekind domains 

After a brief review of some commutative algebra background on localizations, in this lecture 
we begin our study of Dedekind domains, which are commutative rings that play a key role 
in algebraic number theory and arithmetic geometry (named after Richard Dedekind). 

2.1 Localization of rings 

Let A be a commutative ring (unital, as always), and let S be a multiplicative subset of A; 
this means that S is closed under finite products (including the empty product, so 1 ∈ S), 
and S does not contain zero. The localization of A with respect to S is a ring S−1A equipped 
with a ring homomorphism ι : A → S−1A that maps S to A× and satisfies the following 
universal property: if ϕ : A → B is a ring homomorphism with ϕ(S) ⊆ B× then there is a 
unique ring homomorphism S−1A → B that makes the following diagram commute: 

ϕ 
A  ← B  

ι ∃! 

S−1A 

One says that ϕ factors uniquely through S−1A (or more precisely, through ι). As usual with 
universal properties, this guarantees that S−1A is unique (hence well-defined) if it exists. 
To prove existence we construct S−1A as the quotient of A × S modulo the equivalence 
relation 

(a, s) ∼ (b, t) ⇔ ∃u ∈ S such that (at − bs)u = 0. (1) 

We then use a/s to denote the equivalence class of (a, s) and define ι(a) := a/1; one can 
easily verify that S−1A is a ring with additive identity 0/1 and multiplicative identity 1/1 
and that ι : A → S−1A is a ring homomorphism. If s is invertible in a we can view 

−1a/s either as the element as of A or the equivalence class of (a, s) in S−1A; we have 
(a, s) ∼ (a/s, 1), since (a · 1 − a/s · s) · 1 = 0, so there is no real risk of confusion. For s ∈ S 
we have ι(s)−1 = 1/s, since (s/1)(1/s) = s/s = 1/1 = 1, thus ι(S) ⊆ (S−1A)× as required. 

If ϕ : A → B is a ring homomorphism with ϕ(S) ⊆ B−1, then ϕ = π ◦ ι, where π is 
defined by π(a/s) := ϕ(a)ϕ(s)−1 . If π : S−1A → B is any ring homomorphism that satisfies 
ϕ = π ◦ ι, then ϕ(a)ϕ(s)−1 = π(ι(a))π(ι(s))−1 = π(ι(a)ι(s)−1) = π((a/1)(1/s)) = π(a/s), 
so π is unique. 

In the case of interest to us, A is actually an integral domain, in which case (a, s) ∼ (b, t) 
if and only if at − bs = 0 (we can always take u = 1 in the equivalence relation (1) above), 
and we can then identify S−1A with a subring of the fraction field of A (which we note is 
the localization A−1A of A with respect to itself), and if T is a multiplicative set of the 
integral domain A that contains S, then S−1A ⊆ T −1A. 

Moreover, when A is an integral domain, the map ι : S → S−1A is injective and we may 
identify A with its image ι(A) ⊆ S−1A (in general, ι is injective if and only if S contains 
no zero divisors). Thus when A is an integral domain we may (and will) view S−1A as an 
intermediate ring that lies between A and its fraction field. 

2.2 Ideals in localizations of rings 

If ϕ : A → B is a ring homomorphism and b is a B-ideal, then ϕ−1(b) is an A-ideal called 
the contraction of b (to A) and sometimes denoted bc; when A is a subring of B and ϕ is 
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the inclusion map we simply have bc = b ∩ A. If a is an A-ideal then ϕ(a) is in general 
not a B-ideal; but the B-ideal generated by ϕ(a) is called the extension of a (to B) and 

esometimes denoted a . 
In the case of interest to us, A is an integral domain, B = S−1A is the location of A 

with respect to some multiplicative set S, and ϕ = ι is injective, so we view A as a subring 
of B. We then have 

e a = aB := {ab : a ∈ a, b ∈ B}. (2) 
ecWe clearly have a ⊆ ϕ−1((ϕ(a))) = a and bce = (ϕ(ϕ−1(b))) ⊆ b; one might ask whether 

these inclusions are equalities. In general the first is not: if B = S−1A and a ∩ S = ∅ then 
e eca = aB = B and a = B ∩ A are both unit ideals, but we may still have a � A. However 

when B = S−1A the second inclusion is always an equality; see [1, Prop. 11.19] or [2, Prop. 
3.11] for a short proof. We also note the following theorem. 

Theorem 2.1. The map q  → q ∩ A defines a bijection from the set of prime ideals of S−1A 
and the set of prime ideals of A that do not intersect S. The inverse map is p  → pS−1A. 

Proof. See [1, Cor. 11.20] or [2, Prop. 3.11.iv]. 

Remark 2.2. An immediate consequence of (2) is that if a1, . . . , an ∈ A generate a as an 
eA-ideal, then they also generate a = aB as a B-ideal. As noted above, when B = S−1A 

bce ewe have b = , so every B-ideal is of the form a (take a = bc). It follows that if A is 
noetherian then so are all its localizations, and if A is a PID then so are all of its localizations. 

An important special case of localization occurs when p is a prime ideal in an integral 
domain A, and S = A − p (the complement of the set p in the set A). In this case it is 
customary to denote S−1A by 

Ap := {a/b : a ∈ A, b  ∈ p}/ ∼, (3) 

and call it the localization of A at p. The prime ideals of Ap are then in bijection with the 
prime ideals of A that lie in p. It follows that pAp is the unique maximal ideal of Ap and 
Ap is therefore a local ring (whence the term localization). 

Warning 2.3. The notation in (3) makes it tempting to assume that if a/b is an element 
of Frac A, then a/b ∈ Ap if and only if b  ∈ p. This is not necessarily true! As an element 
of Frac A, the notation “a/b” represents an equivalence class; if a/b = a'/b' with b'  ∈ Ap, 
then in fact a/b = a'/b' ∈ Ap. As a trivial example, take A = Z, p = (3), a/b = 9/3 and 
a'/b' = 3/1. You may object that we should write a/b in lowest terms, but when A is not 
a unique factorization domain it is not clear what this means. 

Example 2.4. For a field k, let A = k[x] and p = (x − 2). Then 

Ap = {f ∈ k(x) : f is defined at 2}. 

The ring A is a PID, so Ap is a PID with a unique nonzero maximal ideal (the ideal pAp), 
hence a DVR. Its maximal ideal is 

pAp = {f ∈ k(x) : f(2) = 0}. 

The valuation on the field k(x) = Frac A corresponding to the valuation ring Ap measures 
the order of vanishing of functions f ∈ k(x) at 2. The residue field is Ap/pAp c k, and the 
quotient map Ap - Ap/pAp sends f to f(2). 

Example 2.5. Let p ∈ Z be a prime. Then Z(p) = {a/b : a, b ∈ Z, p t b}. As in the previous 
example, Z is a PID and Z(p) is a DVR; the valuation on Q is the p-adic valuation. 
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2.3 Localization of modules 

The concept of localization generalizes immediately to modules. As above, let A be a 
commutative ring, let S a multiplicative subset of A, and let M be an A-module. The 
localization S−1M of M with respect to S is an S−1A-module equipped with an A-module 
homomorphism ι : M → S−1M with the universal property that if N is an S−1A-module 
and ϕ : M → N is an A-module homomorphism, then ϕ factors uniquely through S−1M 
(via ι). Note that in this definition we are viewing S−1A-modules as A-modules via the 
canonical homomorphism A → S−1A that is part of the definition of S−1A. Our definition 
of S−1M reduces to the definition of S−1A in the case M = A. 

The explicit construction of S−1M is exactly the same as S−1A, one takes the quotient 
of M × S module the same equivalence relation as in (1): 

(a, s) ∼ (b, t) ⇔ ∃u ∈ S such that (at − bs)u = 0, 

where a and b now denote elements of M , and ι(a) := a/1 as before. Alternatively, one can 
define S−1M := M ⊗A S

−1A (see [2, Prop. 3.5] for a proof that this is equivalent). In other 
words, S−1M is the base change of M from A to S−1A; we will discuss base change more 
generally in later lectures. 

×s
The map ι : M → S−1M is injective if and only if the map M −→ M is injective for 

every s ∈ S. This is a strong condition that does not hold in general, even when A is an 
integral domain (the annihilator of M may be non-trivial), but it applies to all the cases we 
care about. In particular, if A lies in a field K (in which case A must be an integral domain 
whose fraction field lies in K) and M is an A-module that is contained in a K-vector space. 
In this setting multiplication by any nonzero s ∈ A is injective and we can view M as an 
A-submodule of any of its localizations S−1M . 

We will mostly be interested in the case S = A − p, where p is a prime ideal of A, in 
which case we write Mp for S−1M , just as we write Ap for S−1A. 

Proposition 2.6. Let A be a subring of a field K, and let M be an A-module contained in 
a K-vector space V (equivalently, for which the map M → M ⊗A K is injective).1 Then   

M = Mm = Mp, 
m p 

where m ranges over the maximal ideals of A, p ranges over the prime ideals of A, and the 
intersections take place in V .   
Proof. The fact that M ⊆ Mm is immediate. Now suppose x ∈ Mm and consider m m 
the A-ideal a := {a ∈ A : ax ∈ M}. For each maximal ideal m we can write x = m/s for 
some m ∈ M and s ∈ A − m; we then have sx ∈ M and s ∈ a, but s  ∈ m to a  ⊆ m. It 
follows that a and must be the unit ideal, so 1 ∈ a and x = 1 · x ∈ M ; thus ∩mMm ⊆ M . 

We now note that each Mp contains some Mm (since each p is contained in some m), 
and every maximal ideal is prime, so ∩mMm = ∩pMp. 

An important special case of this proposition occurs when K = Frac A and V = K, in 
which case M is an A-submodule of K. Every I of A is an A-submodule of K, and each 
can be localized as above. The localization of I (as an A-module) at a prime ideal p of A is 

1The image is a tensor product of A-modules that is also a K-vector space. We need the natural map to 
be injective in order to embed M in it. Note that V necessarily contains a subspace isomorphic to M ⊗A K. 
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the same thing as the extension of I (as an A-ideal) to the localization of A at p. In other 
words, 

Ip = IAp. 

We also have the following corollary of Proposition 2.6. 

Corollary 2.7. Let A be an integral domain. Every ideal I of A (including I = A) is equal 
to the intersection of its localizations at the maximal ideals of A (and also to the intersection 
of its localizations at the prime ideals of A). 

Example 2.8. If A = Z then Z = Z(p) in Q. p 

Proposition 2.6 and Corollary 2.7 are powerful tools, because they allow us work in 
local rings (rings with just one maximal ideal), which often simplifies matters considerably. 
For example, to prove that an ideal I in an integral domain A satisfies a certain property, 
it is enough to show that this property holds for all its localizations Ip at prime ideals p 
and is preserved under intersections. We now want to show that if when A satisfies some 
further assumptions its localizations become even easier to work with. 

2.4 Dedekind domains 

Proposition 2.9. Let A be a noetherian domain. The following are equivalent: 

(i) For every nonzero prime ideal p ⊂ A the local ring Ap is a DVR. 

(ii) The ring A is integrally closed and dim A ≤ 1. 

Proof. If A is a field then (i) and (ii) both hold, so let us assume that A is not a field, and 
put K := Frac A. We first show that (i) implies (ii). Recall that dim A is the supremum 
of the length of all chains of prime ideals. It follows from Theorem 2.1 that every chain 
of prime ideals (0) p1 · · · pn extends to a corresponding chain in Apn of the same 
length; conversely, every chain in Ap contracts to a chain in A of the same length. Thus 

dim A = sup{dim Ap : p ∈ Spec A} = 1, 

since every Ap is either a DVR (p = (0)), in which case dim Ap = 1, or a field (p = (0)), 
in which case dim Ap = 0. Any a ∈ K that is integral over A is integral over every Ap 
(since they all contain A), and the Ap are integrally closed, since they are DVRs. So 
a ∈ = A, and therefore A is integrally closed, which shows (ii). p Ap 

To show that (ii) implies (i), we first show that the following properties are all inherited 
by localizations of a ring: (1) no zero divisors, (2) noetherian, (3) dimension at most one, 
(4) integrally closed. (1) is obvious, (2) was noted in Remark 2.2, and (3) follows from the 
fact that every chain of prime ideals in Ap extends to a chain of prime ideals in A of the 
same length, so dim Ap ≤ dim A. To show (4), suppose x ∈ K is integral over Ap. Then 

an−1 a1 a0n n−1 x + x + · · · + x + = 0 
sn−1 s1 s0 

for some a0, . . . , an 1 ∈ A and s0, . . . , s− n−1 ∈ A − p. Multiplying both sides by sn, where 
s = s0 · · · sn 1 ∈ S, shows that sx is integral over A, hence an element of A, since A is −
integrally closed. But then sx/s = x is an element of Ap, so Ap is integrally closed as 
claimed. 
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Thus (ii) implies that every Ap is an integrally closed noetherian local domain of di­

mension at most 1, and for p = (0) we must have dim Ap = 1. Thus for every nonzero 
prime ideal p, the ring Ap is an integrally closed noetherian local domain of dimension 1, 
and therefore a DVR, by Theorem 1.14. 

Definition 2.10. A noetherian domain satisfying either of the equivalent properties of 
Proposition 2.9 is called a Dedekind domain. 

Corollary 2.11. Every PID is a Dedekind domain. In particular, Z is a Dedekind domain, 
as is k[x] for any field k. 

Remark 2.12. Every PID is both a UFD and a Dedekind domain. Not every UFD is a 
Dedekind domain (consider k[x, y], for any field k), and not every Dedekind domain is a √ √ √ 
UFD (consider Z[ −13], in which (1 + −13)(1 − −13) = 2 · 7 = 14). However (as we 
shall see), every ring that is both a UFD and a Dedekind domain is a PID. 

One of our first goals in this course is to prove that the ring of integers of a number 
field is a Dedekind domain. More generally, we will prove that if A is a Dedekind domain 
and L is a finite separable extension of its fraction field, then the integral closure of A in 
L is a Dedekind domain. The two main cases of interest to us are when A = Z, in which 
case L is a number field, and A = Fq[t] for some finite field Fq, in which case L is a global 
function field. The finite extension of Q and Fq(t) (number fields and global function fields) 
are collectively known as global fields, for reasons that will become clear in later lectures. 

Remark 2.13. Unlike Q, not every finite extension of Fq(t) is separable. But every finite 
extension K of Fq(t) contains a subfield isomorphic to Fq(t) over which it is separable; 
one can always pick a separating element s ∈ K that is transcendental over Fq such that 
K/Fq(s) is separable. More generally, by a theorem of Schmidt, every finitely generated 
extension of a perfect field k is separably generated, meaning that it is a separable algebraic 
extension of a purely transcendental extension of k; see [3, Thm. 7.20] for a proof. 

2.5 Fractional ideals 

Throughout this subsection, A is a noetherian domain (not necessarily a Dedekind domain) 
and K is its fraction field. 

Definition 2.14. A fractional ideal of a noetherian domain A is a finitely generated A­
submodule of its fraction field. 

Fractional ideals generalize the notion of an ideal: when A is noetherian the ideals of 
A are precisely the finitely generated A-submodules of A, and when A is also a domain we 
can extend this notion to its fraction field. Every ideal of A is also a fractional ideal of A, 
but fractional ideals are typically not ideals because they need not be contained in A. Some 
authors use the term integral ideal to distinguish the fractional ideals that lie in A (and are 
thus ideals) but we will not use this terminology. 

Lemma 2.15. Let A be a noetherian domain with fraction field K, and let I ⊆ K be an 
A-module. Then I is finitely generated if and only if aI ⊆ A for some nonzero a ∈ A. 

Proof. For the forward implication, if r1/s1, . . . , rn/sn generate I as an A-module, then 
aI ⊆ A for a = s1 · · · sn. Conversely, if aI ⊆ A, then aI is an ideal, hence finitely generated 
(since A is noetherian), and if a1, . . . , an generate aI then a1/a, . . . , an/a generate I. 
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Remark 2.16. Lemma 2.15 gives an alternative definition of fractional ideals that can be 
extended to domains that are not necessarily noetherian; they are A-submodules I of K for 
which there exists a nonzero r ∈ A such that rI ⊆ A. When A is noetherian this coincides 
with our definition above. 

Corollary 2.17. Every fractional ideal of A can be written in the form 1 I, for some nonzero a 
a ∈ A and ideal I. 

1Example 2.18. The set I = Z = {n : n ∈ Z} is a fractional ideal of Z. As a Z-module it 2 2 
is generated by 1/2 ∈ Q, and we have 2I ⊆ Z. 

Definition 2.19. A fractional ideal of A is principal if it is generated by one element, that 
is, it has the form xA for some x ∈ K. We will also use the notation (x) := xA to denote 
the principal fractional ideal generated by x ∈ K. 

As with ideals, we can add and multiply fractional ideals: 

I + J := (i + j : i ∈ I, j ∈ J), IJ := (ij : i ∈ I, j ∈ J). 

Here the notation (S) means the A-module generated by S ⊆ K. As with ideals, we 
actually have I + J = {i + j : i ∈ I, j ∈ J}, but the ideal IJ is typically not the same as set 
{ij : i ∈ I, j ∈ J}, it consists of all finite sums of elements in this set. We also have a new 
operation, corresponding to division. For any fractional ideals I, J with J nonzero, the set 

(I : J) := {x ∈ K : xJ ⊆ I} 

is called a colon ideal. Some texts refer to (I : J) as the ideal quotient of I by J , but note 
that it is not a quotient of A-modules; for example, (Z : Z) = Z but Z/Z = {0}. 

We do not assume I ⊆ J (or J ⊆ I), the definition makes sense for any fractional ideals I 
and J (including J = {0}, in which case (I : K) = K). If I = (x) and J = (y) are principal 
fractional ideals then (I : J) = (x/y), so colon ideals can be viewed as a generalization of 
division in K× . 

The colon ideal (I : J) is an A-submodule of K, and it is finitely generated, hence a 
fractional ideal. This is easy to see when I, J ⊆ A: let j be any nonzero element of J ⊆ A 
and note that j(I : J) ⊆ I ⊆ A, so (I : J) is finitely generated, by Lemma 2.15. More 
generally, choose a and b so that aI ⊆ A and bJ ⊆ A. Then (I : J) = (abI : abJ) with 
abI, abJ ⊆ A and we may apply the same argument. 
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