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ABSTRACT

This thesis focuses on the study of design processes in which the
constituent steps and technologies are stable over time — with the aim of
formulating methods to improve performance in terms of product quality,
product development lead time, and development effort. Close examination
of such processes in industry shows that the flow of information and the
pattern of execution in these processes is largely sequential with information
being generated by upstream development functions (such as styling) and
transferred to downstream functions (such as engineering design or
prototyping) for further processing. This thesis examines how the sequential
execution affects development performance, and how it may be altered to
improve performance.

It is seen that resequencing the design process can help improve product
quality. The effect of the design decision sequence on the product quality is
investigated. Also, the design activities can be profitably overlapped — thereby
accelerating the product development process. A conceptual framework is
presented which would help the designer/manager decide when and how to
overlap the activities. The framework and the associated models are found to
be useful to overlap activities and reduce product development lead time
while ensuring that the adverse effects on product quality and development
effort are minimized. Field application of the framework and models to the
performance improvement of product development processes in the
automotive and the electronics industry are also described.
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Preface

If there's a book you really want to read but it hasn't been written yet,
then you must write it! — Toni Morrison

Traditionally, design has been viewed as a unique, craft activity. Many
products in industry, however, are redesigned - to new specifications. In this
thesis, I view design as a process — a collection of steps whose completion
results in an end product - with the aim of identifying methods to model and
improve product development performance. In Chapter 1 of the thesis, 1
present a summary of the methods and ideas contained in this thesis. In
subsequent chapters, these ideas are developed in more detail.

The research described in this thesis was conducted under the auspices of
the MIT Leaders for Manufacturing (LFM) program — a timely partnership
between MIT's engineering and business schools and thirteen U. S.
Manufacturing firms. The LFM program has generously supported my
repeated visits to two of the partner companies, Chrysler Corporation, and
Motorola Inc., for field study and data collection. These field visits have been
an enlightening experience; I gained first-hand exposure to the technical and
organizational challenges companies face in developing products.

Several people at Chrysler helped me gather and interpret data. I am
most indebted to Alan Carlson who, despite his exacting task of managing the
process of development of an entire automobile, met with me frequently
(often beyond his office hours!), offered me office space, and gave me access to
a wealth of data, and much valuable guidance and encouragement. Special
thanks also go to: Andy Kuzdak, Dave Anderson, Mike St. Pierre, Steve
Mitchell, Tom Kollar, Cliff Pacurari, and Andy Cleek.

Liz Altman coordinated my interactions with Motorola, and made the
data collection effort possible through her energy, and cheerful promptness. I
am grateful to her for following my research with interest, and for offering
valuable feedback that helped me refine the underlying ideas.

By far the greatest influence on this thesis has been the guidance and
critique of my advisors, Steven Eppinger and Daniel Whitney. I appreciate



their confidence in my ability, and encouragement at every stage of this
thesis. Steve helped me make my stay at MIT memorable with his pleasant
and friendly disposition. { am indebted to him for continually calling my
attention to the applicability of the models I developed, and to the details of
my presentation. Steve's commitment to students and teaching is admirabis.
I will try to emulate him in my interaction with students.

Early in my doctoral student days, I discovered the vaiue of cbtaining
Dan Whitney's feedback to my ideas. Subsequently, I maintained a high
bandwidth communication line with him, and benefited immensely from his
experience and perceptive comments. Dan constantly challenged me to set
my sights higher, and make my arguments sharper; Thesis chapter 1
underwent a major revision after he applied his scalpel (red pen) to it!

My numerous meetings with my doctoral committee have also helped
shape the intellectual development of this work. Srikanth Kannapan offered
detailed comments, and suggested generalizations of the models in Chapter 5
from an earlier draft of the thesis - which have been done. Despite their tight
schedule, Gabriel Bitran and Warren Seering offered much valuable feedback.

(Captain) Mark Morelli, and my long time friends Sthanu and Bala
enriched my life with diversions. Jim Rinderle, Prashant Rane, and Steve
Hoover were very influential during my Carnegie Mellon days. I am gratefu!
to Mr. E. N. Rao for providing me Indian classical music instruction -
complementing my graduate study, and offering me great joy.

My cousins, aunts, and uncles have rooted for me since times
immemorial; Ananthanarayanan has been a special inspiration. My brother
Murali made me eagerly look forward to his letters from home filled with
puns. Lakshmi, my wonderful sister, has shared with me the joys and
sorrows of graduate student life. I thank her for lending me her ears and
support, and wish her the best in her efforts at getting a graduate degree from
MIT. Our parents, Sugantha and Viswanathan, faced many odds, and
dedicated themselves to the well being of their children. I hope I have done a
doctoral dissertation that would make them proud!

V. Krishnan July 15, 1993
"Tis the good reader that makes the good book." — Ralph Waldo Emerson
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1. Design Process Improvement
Like modern physicists, Buddhists see all objects as processes...
- — Fritjof Capra in "The Tao of Physics”

In this chapter, I introduce the notion of design process improvement.
After presenting the motivation for viewing design as a process, I explain
what it means to view design as a process, and contrast it with the
conventional project view of design. I also overview two specific techniques
for design process improvement called sequencing and overlapping with
applications to design problems from the industry and literature.

1.1 The Process Viewpoint

The dictionary defines a process as "a series of actions or operations
conducting to an end" [1]. In this thesis, the design of electro-mechanical
products is studied as a process with the mission of establishing and
improving the approach towards the desired end.

The process notion is well established in manufacturing, and is
becoming increasingly popular in software development. At the beginning of
this century, manufacturing went from the craft or job shop mode to a more
organized mode by a systematic division of larger tasks into smaller
operations, division of labor, and automation [4]. In software development,
the need to improve performance has resulted in the systematic study and
classification of the development process, and has led to the transformation
of an initial process with no orderly progress into one in which
comprehensive measurements were available and continucus
improvements possible [2]. Although it is not clear if the same path should
be followed, it is indeed true that the same end point — a more organized and
better performing process - is desired in electromechanical product design.

Design of complex products requires resolution of a multitude of
conflicting considerations, thousands of decisions, and reasoning and search

10ther researchers have used similar definitions; see [2], and (3].



in multiple domains; the very scope and complexity necessitates that
knowledge and data be distributed, and design be divided into a set of
interacting tasks or information exchanging activities2. To view design as a
process is to focus on this interaction and flow of information among
activities (ih this set) with the aim of integrating the output of the collection
of activities.

1.2 Performance Orientation

Better design processes organize the timing and information
relationships among the constituent activities more effectively. Measures of
effectiveness include "design quality", calendar time to complete the design,
total person-hours, and cost of design efforts (such as prototype material and
machining cost). With manufacturing performance differences among
product development firms shrinking, the pressure is greater today to gain
competitive advantage through product design and development.

Several researchers have emphasized the importance of improving
performance. A major fraction of a product's manufacturing costs — anywhere
between 60-80% — are determined at the product design stage and it has been
suggested that the decisions made at this stage be of higher quality [6]. Clark
et. al [7] estimate that each day saved in introducing a small car to market
represents a million dollars in profits. A late entrant to the market loses
revenue not only due to lost sales, but also due to lost margins that early
entrants receive by charging higher prices. Millson et al. [8] note that higher
performance companies can reap huge cost benefits by more creative and
efficient utilization of resources, smaller work-in-process and reduced
development time.

Although there exists a large body of work on why performance should
be improved, there is not sufficient research on how performance may be
improved. In this thesis, the notion of design process.is advanced as a means
to improve development performance. In the following section, I briefly
overview conventional perspectives on design (details are offered in the next

2After recognizing the fine distinction between the terms task and activity made by some

authors such as McGrath et. al [5], I use these terms interchangeably in this thesis.



chapter). Next, I discuss how the design process perspective departs from the
conventional view. Finally, I present some specific ways of representing and
classifying the design process, and introduce two methodologies for design
process improvement called sequencing and overlapping ~ illustrated with
application-to design problems from the literature and industry.

1.3 The Conventional "Project" Viewpoint and Its Weaknesses

Conventional ways of conceptualizing design lack both a context and a
mission orientation [9]. Traditionally, design is viewed as a completely new,
craft activity or a project performed by a single designer with the aid of a
computer and/or other tools. Simplistic assumptions are made about the
time and information relationships: a) that activities occur in a pre-
determined sequence, b) that activities are points in time when viewed as
information sources, c) that design information is "released” or exchanged in
a finalized form- if the exchange is modeled at all (with the single designer
view the exchange does not arise), and d) that activities are done exactly once.

In practice however, the following (contrasting) situation prevails:

o Designers, being a part of the product development enterprise, interact
frequently with other development functions such as marketing,
manufacturing, suppliers, and purchasing.

e The product developed may be unique in the different projects, but the
process of designing is a sequence of individual activities that may not
vary much across projects (described in more detail in Chapter 2 with
reference to studies reported in [5, 10]).

e Activities need not occur in a predetermined sequence, and may be
profitably resequenced or even overlapped.

e Activities are not always points in time, and indeed may produce or absorb
information at distributed times or even continuously.

o Activities may be iterated — sometimes due to the circular information
dependencies inherent in the product physics, and other times due to the
need to start with preliminary information, and to incorporate changes.



1.4 Focusing on Information Exchange

To model this alternative scenario, it becomes necessary to consider the
context — the existence of other design activities and product development
functions, and the interactions among them. The interactions, manifested in
information exchanges, impact how the product development process is
conducted (sequentially or concurrently), and indirectly determine the
development performance. The interactions are, however, often complex -
the right information requirements, and their utility, availability and
influence, are not easily understood in many product development
organizations. In order to study design as a process it is necessary, therefore, to
focus on the existing and desired interactions among the constituent activities
~ the information that development activities require from each other, the
utility, availability and impact of such required information, and the timing
and content of information exchanged in an existing process.

A major reason for studying design as a process is to clarify the existing
interactions and modify them into desired interactions, thus improving
product development performance. To see how performance may be
improved, consider two different cases where the current process impedes
performance. In the first case, certain design decisions made early in the
design process (such as styling decisions) impact the downstream design
activities (such as manufacturing) adversely, and the quality of the designed
product suffers from the downstream perspective. Proper understanding of
the design interactions helps ensure that the decision is made in accordance
with the downstream activity, thereby improving quality of the product
developed. In the second case, a downstream activity waits for a long time for
some design information which is not essential to begin the activity. Again,
recognition of the necessity for and influence of design information can
ensure that the activity starts with a preliminary version of the information,
leading to a process with improved time performance.

In light of the above, we see that process viewpoint leads to a totally
different outlook, and brings up several new process management issues:

¢ What information is "time-critical” to a design activity — without which
the activity will be inevitably delayed?

10



¢ What information is "content-critical" to a particular design activity -
changes in whose content can cause substantial rework? [11]

e How can the design process be shortened and quality be improved?
e What is the best sequence in which the activities may be performed?
¢ How may activities be overlapped, and what risks are involved?

As will be seen in this thesis, some interesting design process
management options emerge: (i) Alter the time availability of content-critical
information causing some loss of flexibility for information generating
upstream activities, but saving precious time and effort for the downstream
activities; (ii) Alter the content of time critical information by disaggregating
the exchanged information, "releasing” preliminary versions to the
downstream activities earlier, and updating it later with the finalized version.
This may require added downstream iterations and development effort, but
may reduce downstream wait time and development calendar (lead) time.

Representations where Activities are Explicit

To explore these options, it is necessary to represent properties of
exchanged information, such as its availability and its influence on design
activities. Traditionally, activities have been the basic units of the design
process and design information is implicitly defined as what activities
exchange. Due to this implicitness, the above mentioned properties of the
information exchanged go unrepresented. Examples of activity-based
representations include (see Figure 1.1): (a) Activity on Node (AON) project
management description in which the edges are labeled with precedence
(time) constraints among activities, (b) Gantt Charts which show relative
position of activities on a time scale and (c) Binary Design Structure Matrix
(DSM) in which the rows and columns of the matrix are activities and the
matrix entries denote presence or absence of information exchange among
activities. Note that the common feature of the above examnples is that they
make the activities explicit, and denote the information exchanged, such as
drawings or mockup, implicitly using marks or arrows. (It is noted though,
that the above mentioned examples differ amongst themselves in the type
and quantity of information they represent.)

11
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Figure 1.1: Activity-Based Representations of the Design Process

Examination of product development practices in industry indicates that
(i) activity-based representations are intuitive, easily understood, and widely
used (ii) the definition of activities is nonunique (different groups define
activities at different leveis of detail based on their understanding of the
development process), and (iii) the level of detail impacts whether the
interactions are hidden or visible. To manage the development process, it is
desirable that the interactions be visible which often, but not always, requires
larger level of detail of activities. But the greater the level of detail, larger the
effort required to represent and understand the process.

Making Information Exchange Explicit

Alternatively, the information exchanged among the development
activities can be made explicit. Figure 1.2 provides an example of this
situation where the mark in the matrix could represent properties of
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information exchanged such as coupling, availability of information,
certainty, time constraints etc. This representation is equivalent to viewing
the activities as information processors and the development itself as a
process of generation and transformation of information [12]. Information
exchanged is less subjective than activities because it is a snapshot in time,
and can therefore be defined as the event that occurred at a particular point in
time. It should be noted, however, that granularity still plays a role; if for
example, in an organization the styling and engineering design functions are
lumped together as a "design” function, then the informatior. exchanged
between styling and engineering design will not appear in the representation
of the development process.

1 %
X 1] e
x 2 X °
Example:
x _= corner radius

1

X 2= maximum stress

x = time taken to run the finite element program that
computes maximum stress from corner radius

Figure 1.2: Information-based Representation

The activity-based representations tell us which activity interfaces need
to be focused. Once this is identified, it becomes necessary to make the
information exchange between these activities explicit in order to identify
improvements in the design process. This thesis focuses on modeling the
properties of the information exchanged between time-critical activities.

1.5 Patterns of Execution and Process Performance

Using both activities and information transfers, it is possible to classify
the pattern of execution of design processes into sequential, parallel and
overlapped processes. As seen in Figure 1.3A for a process with two activities,
sequential processes involve downstream activities following their upstream
counterparts in a phased fashion. In parallel processes the coupling between

13
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activities is removed, and the activities can occur simultaneously in time. In
overlapped processes, the coupling is preserved, but the activities are carried
out simultaneously by frequent information exchange.

Epsu'eam Upstream Upstream
Ewnsiream | [Dowustream Dovnstream

Figure 1.3A Figure 1.3 Figure 1.3C
Sequentia! Process Parailel Process Ovetlapped Process

The downstream activity begins The coupling between upstream  The coupling is preserved
only after receiving finalized  and downsiream activities is and the activities are
information upon completion of  semoved resulting in a overlapped by improved

the upstream activity. paraiiel process. information exchange.

It is noteworthy that the patterns of the execution are cheices that firms
make to conduct the process while satisfying the couplings among activities.
The couplings may obviate some choices and may require tradeoffs among
the performance parameters. Although executing a process in a parallel or
overlapped fashion would help in reducing development time, decoupling
activities to paral elize them may involve a fundamental redefinition of the
product architecture resulting in a less integrated product. Overlapping
activities may sometimes cause considerable rework in the downstream
activity or worsen product quality. In the interest of managerial decision
making about the pattern of e:ccution, it is necessary to understand the
connection between the pattery: of execution and development performance.

1.5.1 Objectives of This Thesis

In this thesis, I investigate the reiationship between the patterns of
execution and the process performance - (owarii: developing methods to
alter the pattern of execution and improving ¢ :vzicpment performance. The
focus of my attention in this thesis is on product acvelopinent processes
which are nominally sequential (in which the flow of information is

14



predominantly sequential, as in Figure 1.3A; for a detailed description see
Chapter 2). Previous study of industrial product development processes by
several researchers including Eppinger et. al [13], Osborne [14], and Black et al
[15], suggests that many processes in practice are nominally sequential -
justifying and warranting this focus. The question this thesis addresses may
be posed as: How can such nominally sequential processes be analyzed and
their performance improved by either resequencing the activities or
overlapping them? As we will see in the next section, there may be several
ways in which design processes may be sequenced and the different sequences
result in products of different quality . By resequencing, quality of the product
developed may be improved. To accelerate such processes, the sequential
activities need to be overlapped - which may require ways to relax the
precedence constraints among the nominally sequential activities. I present a
framework and a methodology to overlap design activities in the subsequent
sections of this chapter.

In the remainder of this chapter, I overview the sequencing and
overlapping problem — which are dealt with in detail in the subsequent
chapters.

1.6 The Sequencing Problem

If a process consists entirely of decoupled activities, then the constituent
activities car be done in parallel. However, technical and organizational
considerations impose couplings among activities. Although such couplings
often translate into (directional) precedence constraints among the activities,
there are many problems in which the couplings may not be directional. As
an example, consider a cross-functional design decision-making problem
where an artifact's size parameters (say x1, x2, ..., xm) need to be decidec while
considering several product characteristics, such as functional performance,
space and cost. Let the size decision-making based on each of these
considerations be referred to as tasks, and let there be n cross-functional
decision making tasks (T7, T2, T3, ..., Tn). In this case, tasks T1, T2, T3, ..., Tn are
coupled - they affect each other in that if the design decision is made based on
functional performance, it impacts the amount of space the product occupies
— but the tasks do not necessarily have to precede each other.

15



Although there exist no precedence constraints among the activities,
sequential decision making (such that predecessors in a sequence decide all
decisions that are of interest to them and which are yet undecided) is a way of
ensuring that the constraints imposed by the couplings are satisfied — which
simultaneous decision making by all tasks cannot satisfy without iterations.
In this case, the sequential order ensures that each of the design parameters
takes on 2 unique value. It is possible to perform the design tasks in several
possible sequences. There exist efficient methods to resequence tasks in design
problems where the tasks are related by strict precedence relations (see [16, 17])
but, to the best of my knowledge, there are no methods to sequence activities
in design problems, as described above, where the tasks are coupled but not
strictly constrained by precedence relations.

In each of these sequences, downstream tasks lose certain degrees of
freedom to their predecessors resulting in a "loss in quality” for the design
solution from the downstream perspective. The primary differerce among
the different sequences is in the design degrees of freedom decided in the
upstream stages of the decision process. Decision sequences that result in a
good quality product typically have the upstream decisions not causing too
much of a quality loss for the subsequent decision makers.

In bad decision sequences, the decision-making capability of the
downstream stages is severely impaired due to the choices imposed by the
prior decision makers. For example, in a camera design project, an early
decision to save cost by integrating several parts of a complex assembly may
lead to increased complexity, lead time, and cost later in molding the
integrated component. I have developed (i) a metric to quantify the quality
loss suffered by downstream decision makers due to the decisions made in
the upstream stages and (ii) a procedure to determine the optimal sequence
that involves the minimum quality loss.

I define quality loss as the loss in the design solution due to the sequence
constraints imposed by the design process. In the absence of sequence
constraints, let a task T; result in the "independent” output metric J;*. Ina
sequence ¢, executing task T; results in the sequential output metric ];¢.
Quality Loss of the task T; in the sequence ¢ is then defined as,

16



QLi® = 18-

The optimal sequence is defined as the one with the lowest total quality
loss among all sequences (the total is weighted if some tasks are more
important than the others). As an example, consider the following adapted
parametric design problem taken from [18], which involves the design of a dc
motor.

1.6.1 DC Motor Example

The example involves determining the parameters of a dc motor while
maximizing the torque generated by the dc motor (performance), minimizing
the area occupied by the stator (size) and minimizing the cost of materials
(sum of the area occupied by the steel portion of the rotor and area of copper).
The variables to be decided and their bounds are given in Table 1. The
parametric design relations based on the physics of the dc motor are shown in
Table 2 (formulated using constraints from [18]. As can be seen, each lifecycle
issue (such as function, space, materials) has its associated design objective.

Decision Variable Symbol | Bounds

Armature diameter ad 10 <ad £ 12 (inches)
Motor inner diameter id 0.1 €id £3.0 (inches)
Motor outer diameter od 20 <od £ 24 (inches)
Diameter of windings dw 0.01 <dw < 0.2 (inches)
Current density cd 0.1 <¢d £50.0 (amp / in2)
No. of armature windings |nw 1 £ nw < 1500 (turns)
Thickness of magnet used |tm 0.05 <tm <1.0 (inches)

Table 1. Design Variables for a dc motor

Task| Task Description Analytical Forms (Minimizations)

T; |Maximize Torque J1=-157 cd dw?

T; [Minimize Space ], = 0.785 (0d%- ad?) - 0.26 nw dw?

T3 |Minimize Material Costs| J3 = 0.785 (ad? - id?) - 2.1 ad tm + 0.785 dw?

Table 2. Objectives as Functions of Design Variables

17



Table 3 shows the results if the design decisions were made based on
each lifecycle criterion independently; the outputs under these circumstances
are called the independent outputs and the decisions, independent decisions.
Note that the independent decisions do not have a unique value; for
example, while the designers executing tasks T; and T, independently drive
the variable dw to the value of 0.2, the designer entrusted with T3 drives dw
to the value, 0.01. The product designed can have only one value for dw .

Task |Independent Decisions and Outputs

T dwi*=0.2; cdy® =50; ;"= -3.14

T, ady" = 12; od," = 20; dw," = 0.2; nw," = 1500; J," = 185.3

ads* = 10; id;* = 3; dws" = 0.01; tm3" = 1.0; J3" = 50.4

Table 3. Independent Decisions and Outputs

Making the decisions in a sequence is one way of satis{ying the
couplings. However, when the decisions are made in a sequence, only one of
the designers gets to decide the value of dw ; subsequent decision makers are
constrained by this value of the variable dw. An example of one sequence is
given below (where the weights for the total quality loss are taken to be the
inverse of the magnitude of their independent solutions, i. e. wj =1/ Ji".

The sequence (T4, T2, T3 } produces the following results:

Stage 1 Minimize J; = - 1.57 cd dw?

Decision: ¢d =50;dw =0.2; J[1 =-3.14; w1 QL1 = 0.0

Stage 2 Minimize J; = 0.785 (0d2-ad?) —0.26 nw dw?
subject to dw =0.2;

Decision: ad = 12; od = 20; nw = 1500; [, = 185.3; w,QL,= 0.0

Stage 3 Minimize J3= 0.785 (ad2-id2) - 2.1 ad tm + 1.57 dw?
subject to ad = 12; dw = 0.2;

Decision: id =3;tm=1; J3=80.75; w3QL3=0.603

Total Quality Loss = w; QL1 + w; QLy + w3QL3 = 0.603
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It would be useful to resequence the existing process and reduce its
quality loss as much as possible (preferably tc the level of optimal sequence).
To illustrate the utility of quality loss for design process improvement, I
consider design problems where each individual design task can be modeled
as a nonlinear program (with continuous objectives and design constraints). 1
introduce the notion of sequence and task invariance which correspond to
the cases of the design decision variable value being independent of the
sequence and the task position in a sequence, respectively. I develop sufficient
conditions to identify sequence and task invariant variables, which help
simplify the optimal sequence determination problem. Further simplification
is achieved by partitioning the design variables into exclusive groups, which
are groups of design variables decided by the same combination of tasks.
When all the variables in a design problem are sequence or task invariant, I
show that the optimal sequence corresponds to the shortest path in a network
of quality losses. The details are in Chapter 3, where I also offer a step-by-step
approach to identify the optimal sequence without the likelihood of
exhaustive enumeration of all sequences.

1.7 The Overlapping Problem

In the previous section, I considered the problem of resequencing and
improving performance (specifically, product quality) when activities are
coupled but not constrained by precedence relations. Often, due to technical
and organizational considerations, there exist precedence or information
exchange requirements among activities. Because of these requirements,
activities have been executed in a nominally-sequential fashion, as in Figure
1.3A. To accelerate such processes, we are interested in determining how to
overlap the activities, as in Figure 1.3C, amidst precedence/information flow
constraints.

To overlap activities, upstream capabilities and downstream
information needs must be well understood; it is likely that upstream
information may have to be frozen early if the information happens to be
content critical to the downstream activity. In other cases, the downstream
resources may be committed based on preliminary upstream information.
However, if downstream iterations are started prematurely, and if the impact
of subsequent changes in the exchanged information on the downstream
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activity is substantial, then overlapping runs the risk of increasing the
number of downstream iterations and even the development lead time. If, on
the other hand, the exchanged information is not used until it is finalized,
then the process is only as fast as a sequential process. The problem of
increasing the overlap in an existing process while shortening its duration is
called the overlapping problem.

To aid in overlapping the nominally-sequential activities, I develop a
framework in which the exchanged information is classified in two key
dimensions: upstream evolution and downstream sensitivity. Below, I first
briefly discuss these dimensions and then present the framework that helps
determine how to overlap the activities.

1.7.1 Upstream Information Evolution

It would be risky to start downstream activities with preliminary
upstream information or to freeze the upstream information early without
knowing how close the upstream information is to its final form. The rate of
evolution (or evolution, in short) of the upstream design information is
indicative of how easy it is to finalize the design information at various
points in time during the upstream activity's progress. The evolution of the
upstream generated information is said to be rapid or fast if the information
gets close to its final form rapidly, and is capable of being frozen and passed
downstream early in the upstream process without much quality penalty for
the upstream activity. The evolution is said to be slow, however, if finalizing
upstream information early in the upstream process is either impossible or
entails a huge quality penalty for the upstream activity. We will limit
ourselves to conceptual definitions of evolution in this chapter; more
detailed, operational definitions of evolution are offered in Chapter 4.

It is noteworthy that evolution refers to the time availability of the
upstream information - information that evolves faster is available at a
given level of completeness earlier to the downstream activity than
information that evolves to the same level slowly. The amount of change
the exchanged information undergoes is also a function of its evolution;
faster the evolution, smaller is the amount of change the exchanged
information undergoes at the end of the upstream activity. Overlapping
downstream activities is easier when the evolution of the upstream design
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information is fast than when it is slow. The upstream information evolves
slowly for example, when (i) the information pertains to a component which
houses or interfaces with several other components each of which is likely to
change, (ii) it is impossible to obtain some related information provided by an
extraneous factor until late in the upstream process, or (iii) generating the
upstream information involves solving a complex and coupled problem. It is
clear that when the evolution is slow, overlapping activities entails
considerable risk.

1.7.2 Downstream Sensitivity

Evolution of the upstream information describes whether the exchanged
parameter undergoes small or large changes during the upstream activity.
The consequence of the upstream changes to the downstream activity is
captured by downstream sensitivity, which measures the duration of
downstream work required to accommodate changes in the upstream
information. Downstream sensitivity is said to be high (low) if the
downstream work required to incorporate small (large) changes in the
upstream information is large (small). The lower the downstream sensitivity,
the easier it is to incorporate upstream design changes. The reader may
observe that downstream sensitivity is indirectly a measure of the "content-
criticality” of information referred to in [11].

It is noteworthy that evolution and sensitivity, which are properties of
the upstream and downstream activities respectively, can to some extent be
altered by better communication and computer tools. As I discuss later with
reference to the development of a pager at Motorola, communication
between the upstream and downstream activities in the studied process
helped reduce the downstream sensitivity (effect of design changes on the
downstream activity). Also, computer tools can ensure that the upstream
design information evolves faster and the effects of changes on the
downstream activity are reduced.

Earlier, I observed that while offering the potential of reduced
development time, overlapping runs the risk of increased downstream
iteration if downstream acts on the received information prematurely. When
should downstream act on upstream information? How should the activities
be overlapped when the downstream activity cannot work on preliminary
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information? When is it better to freeze the upstream information rather
than transfer it in a preliminary form to the downstream activity? The
combination of the upstream evolution and downstream sensitivity values
offers the answers to these questions as explained below.

1.7.3 The Evolution-Sensitivity Framework

In Figure 1.4, I show the rfour extreme situations likely to arise - when
the upstream evolution is rapid or slow and when the downstream
sensitivity is high or low. The activities are to be overlapped differently for
each combination of evolution and sensitivity.

Degree of De f
sﬁ' 3 ree 0

ution Evolution

(Downstream Duration)
Low Sensitivity B :
Iterative Distributive
A (Design) Overlapping Overlapping

(Downstream Duration) ] |—JT—-|
e B:IBil B
Divisive OverlapPing Precipitative
or No Overlapping Overlapping

1 [terations
— Finalized Information Exchange
& Preliminary Information Exchange

Figure 1.4: Type of Overlapping based on Evolution and Sensitivity

Legend:

* When the sensitivity is low, it is possible to commit downstream resources
based on advance upstream information. Because even if the changes are big,
their effects on the downstream activity are not. If the upstream information



evolves slowly - it cannot be finalized until late into the upstream process —
then the overlapping is said to be iterative, under which the downstream
activity is started early with preliminary information and design changes are
incorporated in future downstream iterations. 'n this case, the upstream
design information is not firalized until the nominal completion of the
upstream activity, because doing so may result in a large quality penalty for
the upstream activity due to the slow evolution. Because of the low
sensitivity of the downstream activity, the future iterations are not likely te
be rework intensive. The models presented in Chapter 5 would help find
when preliminary information can be committed for downstream iterations,
how many iterations would result and with what lead time.

 The opposite case is when the downstream sensitivity is high, but the
upstream information evolves rapidly (information is capable of being
finalized early in the upstream activity). In such a case the exchanged
information is to be precipitated to its final value/form at an earlier point in
time. In other words, the upstream problem solving is accelerated and
information frozen ahead of the normal time of freeze. This is called
precipitative overlapping and would help reduce development time by
starting the downstream activity earlier- but with finalized upstream
information. Note that there are no subsequent downstream iterations. It
may result in some quality loss to the upstream activity because it loses the
opportunity to make changes until its original completion time.

» Consider the case when the downstream sensitivity is high and the
upstream evolution is slow. Here, it is neither desirable to start downstream
activity with preliminary information nor feasible to precipitate the
exchanged information to its final form at an earlier point in time. In such a
case, the exchanged information is disaggregated into components to see if
any of the components evolve fast or if transferring any of the components in
their advance form to the downstream activity is practical. Often the
evolution and sensitivity of the components may be different from the whole
information. Because the disaggregation is also based on physical or
functional division of the upstream and downstream activity, this approach
is called divisive overlapping. If neither of the parts evolve fast, nor can they
be used by the downstream activity in an advance form, then no overlapping
is recommended with the current evolution and sensitivities.
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* The last scenario occurs when both the upstream information evolves
rapidly and the downstream sensitivity is low. In such a case, it is possible to
both start downstream activity with advance information and precipitate the
exchanged upstream information to its final form. Because the impact of
overlapping is distributed between the upstream and downstream activities
(unlike in other cases), this situation is called distributive overlapping.

It is noteworthy that the different types of overlapping result in different
trade-offs among the performance parameters. In iterative overlapping for
instance, downstream effort is traded-off against lead time, while in
precipitative overlapping, upstream quality is traded-off agzinst lead time.
The trade-offs, discussed in more detail in Chapters 4 and 5, help unify the
different types of overlapping. Also, the reader might observe that the project
management paradigm, which assumes the one-shot transfer of finalized
information, corresponds to only one of the four possible cases; that of slow
evolution and high sensitivity requiring finalized information release. The
framework presented above expands the domain of project management by
considering three other combinations of evolution and sensitivity.

In the next section, I illustrate applications of the framework to three
examples from the industry - involving the development of automotive
doors and instrument panels at Chrysler, and pagers at Motorola. The door
and instrument panel applications illustrate how a process may be improved
by overlapping, while the pager example is an interpretation of an already
overlapped process with the above framework.

1.7.4 Overlapping the Door Development Process

Door development at Chrysler is a complex process lasting over a year
and involving several functions (styling, engineering, and manufacturing, to
name a few). The details of door development are given in Appendix A2.
Analysis of the existing process indicates that two long, adjacent phases in the
critical door development path involve door panel draw design (lasting 18
weeks) and the plaster model development of dies (8 weeks) (see Figure 1.5).

As shown in Figure 1.5 (a), the process engineers wait for about 18 weeks
to receive the panel draw information (shown in detail in Figure 1.6) which
contains details of all surface formations both on the outer periphery and the
interior of the door panels. Interviews with product designers indicates that
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the panel draw information, especially in the panel interior, is preliminary
until the panel draw design (upstream activity) is complete, so the evolution
of the exchanged information can be called slow. Also, process engineers
observe that changes in the panel draw information, especially at the
periphery, can have a huge impact on the plaster model development
activity. (As explained in Appendix A2, changes in the panel periphery may
require that the die design be repeated and the plaster model rebuilt). So the
sensitivity of the downstream activity (plaster model development) to the
draw information is high. The draw informatior: exchanged falls under slow
evolution and high sensitivity category (lower left quadrant in Figure 1.4).
According to the framework I disaggregate the information exchanged into
components with different evolutions and sensitivities.

18 weeks - 18 weeksab

Eﬂn&‘m@ i’afnel Drtfiw Peri- Prelim. | Finalized
Wai . nformation | ntericr Y Interior
l aitperiod | Die Design an pher Die Design and
| Plaster Model ! Plaster Model
| Development | Development
g8 weeks g B eeks  pp’
| < 26 weeks > 'q_l&ue.e.ks..]_d.ay.p}
(a) Process without Overlap (b) Process with Overlap

Figure 1.5: Interaction between Door Panel Design and Die Development

As I hinted above, the sensitivity of the downstream activity to the panel
periphery draw design information is different from its sensitivity to the
interior draw design information (as the appendix A2 describes, changes in
the interior such as changes in formations can be incorporated by mere touch-
ups). Due to this difference in sensitivities, I examine the nature of evolution
of the panel periphery and interior to see if they are different. It turns out that
there is indeed a difference: while the panel periphery evolves quite fast, the
panel interior evolves rather slowly; the door inner panel interior involves
the packaging of the various components such as speakers, wiring, door lock
etc. while the outer panel interior involves the door handle design - a slow
process owing to the need to differentiate the visible door handle from other
competitive products, and also due to the complex problem solving (described
in Chapter 5).
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Figure 1.6: Docr Pane! (Draw) Design Information

The panel periphery, on the other hand, evolves relatively fast as it does
not interface with many change-prone components. So the panel draw
information can be disaggregated into the panel periphery draw information
(whose evolution is fast and sensitivity is high) and the panel interior draw
information (whose evolution is slow and sensitivity is low). Such a
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disaggregation also suggests the division of the upstream and downstream
activity: panel periphery draw design and plaster die model development
and, panel interior draw design and model development.

Using the framework, it is seen that the panel periphery draw design and
model development activities, coupled by the fast evolving, highly sensitive
periphery draw information, should be precipitatively overlapped: the
problem solving should be accelerated and the panel periphery should be
frozen early. On the other hand, the panel interior draw design and die model
development activities, coupled by the slow evolving, low sensitivity interior
draw information, should be iteratively overlapped: model development
should start with preliminary information about the panel interior and
incorporate changes in subsequent iterations. In Chapter 5, I model this
situation to determine when the panel interior information is trustworthy
enough for downstream action and how many iterations would result. The
application of the framework and models suggests a reduction in lead time of
eight weeks (from 26 to 18 weeks).

1.7.5 Pager Development Process at Motorola

In this section, I will describe how the pager development process at
Motorola can be analyzed using the above framework. Due to confidentiality
reasons, I cannot disclose the exact geometric form of the pager studied until
the end of 1993; for our purposes the product studied can be thought of as a
rectangular block with length I, width w, thickness ¢, and corner radius, r.
Figure 1.7 shows a representative pager and a pager cross section. The process
of development of a pager is described in greater detail in Chapter 4. Here I
focus on overlapping the two adjacent phases in pager development.
industrial design (the upstream activity) and engineerirg design (the
downstrearn activity).

Engineering design of the pager involves the design of the mechanical
and electrical components (receiver and decoder boards, walls, ribs etc.) and
requires pager external dimensions and shape details determined by the
industrial designers. From experience with designing pagers, it is known that
the pager dimensions evolve fast, constrained by the competition, target
market and technology and determined by volume studies and human factor
studies done by industrial designers. On the other hand, the shape detaiis of
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the pager, such as the corner radii, are known to evolve slowly; if any feature
of the product changes, the shape details need to be changed to create an
"integrated design". This is confirmed by data from a recently completed
process which shows that the radius had changed as much as 30% near the
end of the design process.

It is noteworthy that the engineering activity is very sensitive to changes
in dimension. Not only is the layout of the components affected but also the
choices of components, as smaller components (manufactured with more
recent or not yet available technology) are needed to meet the shrinkage in
size. Changes in the shape are of a different kind. With poor communication,
changes in radii may affect the layout of components (as the wall would
interfere with some components) but in the studied process communication
was good. The engineers anticipated changes in the radii and placed all the
tall components in the middle. Since changes in the corner radii do rot affect
the center, the effect of changes on the component layout was reduced and the
shape details had low sensitivity.

Industrial Design

Frozen Dimension

Preliminary Shape Final Shape

Engineering Design

Figure 1.8: Overlapping Industrial Design and Engineering Design

Thus engineering requires two types of information from industrial
design: pager dimensions whose evolution is fast and sensitivity is high, and
shape details whose evolution is slow and sensitivity is low (owing to good
communication). To overlap the engineering and industrial design functions
in the studied process, engineering started with preliminary values of corner
radius, and (close to) frozen values of pager dimensions (see Figure 1.8).
Overlapping engineering and industrial design by early freeze of the highly
sensitive, fast evolving pager dimension falls under precipiiative
overlapping in which the pager dimensions were precipitated to their final
value to prevent enormous engineering rework. Changes in the shape
details, on the other hand, were incorporated in future iterations due to their
lower impact. This exemplifies iterative overlapping.
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1.7.6 Instrument Panel Application

Instrument panel development is another example of a process which
can be overlapped by classifying the information into parts with different
evolution and sensitivity. Details of the development process are given in
Appendix A3.

Figure 1.9: An Automobile Base Panel

Figure 1.9 shows the base panel which is the most complex component
in the instrument panel system because most other components, such as the
steering column, instrument cluster, air bags, trim panel, and the glove box,
mount onto the base panel. Changes in any of these components causes
changes in the base panel. Unlike the door panels which are made of sheet
metal, the base panel is an injection molded part. Study of the development
process of a base panel reveals that there are two lengthy phases in the critical
path of the process, called the "design phase" and the "mockup construction
phase”. During the design phase, which lasts 10 weeks, the spaces, clearances
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and the attachment schemes for each of the instrument panel components
are defined. Mockup construction, which takes 15 weeks, involves the
development and assembly of fiber glass parts from a wooden mold of the
base panel. Being sequential, these two stages take 25 weeks. In the interest of
overlapping the two stages, I examine the evolution and sensitivity of the
information required by the downstream activity (mockup construction)
from the upstream activity (design).

Interviews with the base panel designers suggests that the base panel
information changes until the very end of the design phase, so the base panel
design evolves slowly. The craftsmen who construct the mockups indicate
that changes made in the base panel will have an enormous effect, often
requiring that the wooden prototype be started ail over again. Thus the
exchanged information is of the siow evolution/high sensitivity category.
The lower left quadrant of the framework suggests that the information be
disaggregated. We examine if parts of the base panel differ in evolution or
sensitivity.

[Base Panel Design] [Base Panel Design
€5 veeks > |Base Panel Drawings Right Center and
15weeks s, sectio lbeft sections
Mockup Construction] | 7 weeks Mockup Construction ]

(a) Sequential Process (b) Overlapped Process
Figure 1.10: Overlapping Adjacent Phases in Instrument Panel Development

Indeed, the passenger section (right side) of the base panel evolves faster
than the driver (left) and center sections. The steering and instrument
clusters, which are change-prone during the design process, drive the changes
in the driver section to which they mount. The changes in the location of the
ducting for heat, ventilation and a/c causes changes in the center section. In
comparison to the other two sections, the passenger section of the base panel
is relatively free of change, and can afford to be frozen early. The sensitivity of
mockup construction to the design information about all three sections (left,
center and right) is high.

With disaggregation, we find that the design and mockup stages
exchange the fast evolving base panel passenger section, and the slow



evolving center and driver sections (all of which are of high sensitivity). The
framework suggests that the right section be frozen early and the design and
mockup stages be precipitatively overlapped (see Figure 1.10b). As I will show
in Chapter 5, this can potentially lead to three weeks savings in'development
time. Further disaggregation of the left and center sections may be fried to see
if parts of these sections evolve faster or are of low sensitivity .

In subsequent chapters, I develop the above concepts in more detail.

1.8 A Step-by-Step Methodology for Overlapping

Based on the framework presented above, I present a step-by-step
methodology to overlap nominally-sequential activities.

Step 1: Map the "As-is process". Any of the tools, such as networks, flow
charts, matrices etc. can be used.

Step 2:  Reduce the aggregation of activities to see if any of the exchanged
information is available earlier and, if available, see if it is useful to
downstream activities. Aggregate those activities whose completion
does not make any information available to later activities earlier.

Step 3: Model the interactions among activities as time constraints. Identify
the critical path activities (time critical information exchanges).

Step 4:  Classify each of time critical information exchanges based on their
evolution and sensitivity (into slow/fast evolution ard low/high
sensitivity)

Step 5:  Use the framework to determine the appropriate overlapping
strategy

Step 6: Apply detailed models to determine how to overlap the activities.

Step 7:  Update process and repeat steps 3 to 6.

This methodology will be illustrated in detail in Chapters 4 and 5. The
reader will note that the first three steps are similar in spirit to the
conventional project management based analysis. The next four steps differ
from the convention in that instead of requiring that more resources be
allocated to the critical path, the critizal path activities are overlapped based
on information needs.
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1.9 Summary

In this chapter, 1 argued that the process viewpoint leads to an altogether

different approach to managing product development compared to the
conventional project viewpoint. A research agenda that emerges from the
process viewpoint can be summarized as follows:

Model design processes with emphasis on interactions - such that the
constituent activities and information transfers are explicit.

Develop a methodology to determine the key information exchanges that
keep activities waiting, and/or are likely to cause iterations in activities.

Identify ways to express the availability and impact of information
exchanged

Examine the relationship between patterns of execution and process
performance parameters.

In the forthcoming chapters, I will develop these steps in detail. In

Chapter 3, the focus is on the Sequencing problem. Chapters 4 and 5 involve
the detailed development of the overlapping problem. First, | position this
work with respect to the rest of the literature in Chapter 2.
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2. Previous Research in Product Development
...What we shall find is an exemplification, an encouragement, and a refine-
ment of old wisdom.

- J. R. Oppenheimer in "Science and the Common Understanding”

In this chapter, existing research on design and product development are
surveyed. (Work related specifically to the sequencing and overlapping
problems is reviewed in Chapters 3 and 4.) The survey in this chapter is based
on the taxonomy of existing research in product development presented in
Figure 2.1. Before I delve into the individual branches in later sections, I
present an overview of the taxonomy.

Research in Product Development

Serial, Functiona

. Concurrent, Crossfunctional
Product Development >

Organizatioal Infrastructure
Perspective Perspective

Multi-designer g

Representation of Alyﬁcal
structural relationships
relationships only  included

Figure 2.1: Taxonomy of Existing Research on Product Development
(The components dealt with in this thesis are indicated by arrows)

2.1 The Taxonomy

Based on its scope, research in product development can be classified
into serial, functional research in which the focus is on individual functional
disciplines (with subsequent serial assembly of the functional outputs), and
concurrent, crossfunctional product development research in which the
emphasis is on accomplishing the "integration” of the functional issues.
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Research in crossfunctional product development could be further classified
into (i) organization focused where the organizational factors that will be
conducive to crossfunctional product development are considered, (ii)
infrastructure focused where the goal is to build computer tools that will
facilitate crossfunctional product development {“give-the-designers-the
facilities-and-they-will-know-how-to-use-it"), and (iii) process interaction
focused where the objective is to understand and manage the interactions
among different functions and thereby improve development performance.
The process perspective, which this thesis adopts, can further be classified into
single-project, and multi-project research, based on whether interactions due
to resource sharing among multiple projects are considered or not. Single-
project research can be further classified into research that assumes a single
designer (or a centralized source of design knowledge without information
sharing), and multidesigner research which assumes design knowledge is
distributed, and focuses on modeling the information exchanges among the
multiple designers in the product development organizations. The arrows in
Figure 2.1 indicates the branch which this thesis follows (single-project,
multi-designer view).

Function Viewpoint Limitations
Marketing The major challenge to effective |Ignores the technical
product development is getting complexity of product

the fit between the product and the| development.
customer needs right.

Styling Competitive advantage is created |Ignores issues related to
by the product appearance, and so | function and fabrication
styling is the greatest challenge. of the product.

Engineering |The technical complexity of the Underestimates the
product (miniaturization, importance of making
improving performance) makes | the product salable.
engineering it a big challenge.

Figure 2.2: Exclusive Viewpoints of Different Functions
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2.2 Serial and Concurrent Product Development

The process of development of a product is as much a business activity as
it is a technical activity. As observed in Chapter 1, several different functions
are involved including, Marketing, Styling (Industrial Design), Engineering
Design, and Manufacturing. Traditionally, product development has been
studied by researchers from each of these functional disciplines to the
exclusion of others presumably with the aim of assembling the functional
outputs in a serial fashion while creating the product. The emphasis of the
various functional perspectives is summarized in Figure 2.2 along with some
of the limitations. Lately, there have been tapics which have merged two of
the disciplines such as House of Quality (which has linked Marketing and
Engineering concerns), and Design for Manufacturing.

"Concurrent Design", which advocates the more or less simultaneous
design of the product and process, is a more recent approach [19]. I use the
word "concurrent product development” to mean that all the product
lifecycle issues such as customer needs, design details, manufacturing
processes, and service factors are included in making decisions at every stage
of the design process (not all lifecycle issues may be decided simultaneously
due to technical constraints requiring that some decisions be made before
others). The primary benefits of concurrent product development are, (i) a
faster development process due to the simultaneous action, and (ii) better
products because the decisions made by involving all the disciplines are more
likely to be closer to the system-wide optimal solution.

The challenges facing concurrent product development are several-fold.
First is the institutional challenge of implementing new practices in large-
sized companies, and changing established habits and mindsets. Second, the
existing infrastructure needs to be upgraded to facilitate concurrent product
development. Third is the problem of integration in which the actions of
multiple disciplines need to be coordinated by proper management of the
interdependencies among the different development functions. Research
approaches to these three problems are called the organizational perspective,
infrastructural perspective, and the process perspective.
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2.3 Organizational Perspective

Researchers subscribing to this view focus on the relationship between
the patterns of organizational structure and behavior, and the effectiveness of
product development.

Imai, Takeuchi and Nonaka [20] have argued that well-knit teams be
formed that pursue product development like a rugby game (and not like a
relay race). Although it is a powerful analogy, it implies that all product
development activities can be carried out simultaneously, and ignores the
interactions among development activities. In considering multiple lifecycle
issues concurrently, one cannot pretend that interdependencies and
precedence constraints among functions don't exist. The designers/design
managers have to come to grips with the interactions by developing ways to
relax, negotiate or even violate the coupling constraints among development
activities.

Clark and Fujimoto [12], in their pioneering six year study of twenty
automobile manufacturers in Japan, Europe and North America, examined
the impact of strategy, organization and management on automotive product
development. They used the "information perspective” in which product
development is viewed as a process of transformation of data on market
opportunities into a manufacturable design. As parameters of development
performance, they quantified the engineering man hours, lead time, and
product quality (a total product quality index constructed from various
published quality data) of the different companies and observe significant
differences among these companies. Indeed, their comparative study should
serve as a benchmark and a powerful motivation for companies to initiate
changes in their product development practice. However, their study does not
consider the interdependencies among the development activities. I elaborate
on this aspect using the following detailed observation.

One of the practices advocated in the above work to improve
performance is integrated problem solving (which includes stage overlapping
and intensive communication). Clark and Fujimoto argue that in order to
improve integration, organizations should pay attention to five key
dimensions:
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e Timing of upsiream and downstream activities (should be overlapped, not
phased)

¢ Richness of information exchanged (should be face-to-face)

e Frequency of information transmission (should be more frequent)

¢ Direction of communication (should be bilateral)

* Timing of information release (should involve early release of
preliminary information and not late release of complete information)

Although these dimensions may be useful to effect attitude changes in
an organization, the generic reference made to information flow (without
recognition of the differences among the different pieces of information
exchanged) makes them insufficient to aid in the overlapping of adjacent
phases. My own study of industrial preduct development shows that not all
information exchanges are equal. Some product information exchanged can
be more readily used in its preliminary form than others because of its lower
impact on the downstream activities. Also, some product information can be
frozen early, some need to be frozen early and some others cannot be or
should not be frozen early. Overlapping of adjacent phases requires a careful
understanding of the properties of the information exchanged apart from
good, intensive and timely communication. I develop these properties in
greater detail in Chapter 4.

Other researchers, notably McGrath et. al [5], Blackburn [21] and
Reinertsen and Smith [22] have underscored the importance of development
performance. McGrath et. al [5] offer a methodology, called PACE (Product and
Cycle-time Excellence), to structure product development and improve
performance. PACE contains seven interrelated elements: (i) Phase Review
(ii) Core Teams (iii) Structured Development (iv) Product Strategy (v)
Technology Management (vi) Design Techniques (such as DFM and QFD),
and (vii) Automated tools. Their work is noteworthy for presenting several
anecdotes in which an inefficient, and misdirected project was restructured.
They also make a strong argument for studying product development as a
process. However, most of this work is anecdotal; they do not treat the subject
rigorously or give detailed examples on how to manage product development
as a process.
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2.4 Infrastructure Perspective

Research on infrastructure support for concurrent design emphasizes
networks, databases and (blackboard) computer architecture. This work is
motivated by the view that concurrent design is simultaneous search with
many agents searching in multiple spaces at the same time [23, 24]). Using
such a blackboard architecture, approaches bave been proposed for dialogue
between “intelligent agents" to resolve conflicts on the lifecycle issues.
Alternatively, Kannapan et. al [25] have proposed a "concurrent engineering
schema" in which the multiple lifecycle issues are modeled as intelligent
design agents who negotiate to resolve conflicts on the design parameters
using negotiation strategies derived from negotiation theory. Although these
methods will be useful in design problems with a codified mathematical
description, many problems in practice defy such a description and do not
appear to be left to the control or decision making authority of "computer
agents” in the near future.

2.5 Process Concepts in Product Development

The notion of process in electromechanical product development is
relatively new [26]. Traditionally, product development has been studied as
either a craft activity which has little or no resemblance to previous
development efforts (in engineering departments) or as a strategic activity (in
business schools). However, from their study of industrial development
processes, McGrath et. al [5] note that about 72% of the work in a development
project is repeated from the previous version of the project ("only 28% of the
work is truly new"). 85% of GE's product development work is supposed to be
purchase order reengineering or redesign [9]. Albano and Keska [10] did a
"postmortem analysis" of three recently completed lightwave projects,
reviewing available documentation, interviewing development personnel,
documenting the intermediate steps and generating network diagrams. From
their study, they conclude that while the product developed is unique in the
different projects, "the process of designing is a sequence of individual design
steps that does not vary across the projects”. These and other studies serve as
useful motivations for studying product development as a process. Apart
from performance improvement that would result from such a viewpoint, it
is also possible to leverage improvements in the methodology that arise in a
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particular version of the process to other products, and to other generations of
the same product.

Research on the (electromechanical) product development process can be
classified into work focusing on single projects and that considering issues
related to multiple projects. Multiproject related studies focus on processes
that are not restricted to fully dedicated, platform teams. Hence, resource
sharing is a major concern. Single project studies ignore the resource sharing
effects and focus on modeling a single project in all its complexity.

2.6 Multi-Project Management

Adler et. al [27] apply the concepts of queueing theory to product development
by modeling the development organization as a stochastic processing network
in which engineering resources are "workstations" and projects are "jobs"
that flow among workstations. They use these models to support decision
making regarding resource allocation, and to predict project completion
times. Watkins and Clark [28] develop a framework for resource allocation
among multiple projects using three dimensions, (i) project sequencing (the
number and content of projects, and the timing of different phases in
different projects), (ii) resource dedication (the extent to which resources are
dedicated) and (iii) resource specialization. Using this framework, they
develop strategies for managing a portfolio of projects. Nobeoka and
Cusumano [29] collect data from 223 new car projects to examine the
influence of interproject linkage and development performance. Lately
however, firms have been decoupling the effect of multiple projects by
adopting dedicated platform teams.

2.7 Single-Project Description

Single-project research can be further classified into work considering
multiple designers at work, and others focusing on the individual designer.

Single-designer work

This body of work assumes that the design knowledge is centralized
(concentrated in a single designer) with no need for information sharing, and
the goal of this work is to identify new tools and methodologies to alleviate
the plight of the individual designer. It is based on the view that design is an
intellectual activity performed by a single designer sitting with a note pad or
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before a computer screen. This view is captured by the following definition
from a renowned design thecrist. Yoshikawa defines, design as a "typical
intellectual activity which the human performs” [30]. Most of design theory is
concerned with modeling the problem solving process of the individual
designer. Tomiyama and Yoshikawa [31) have studied the design problem
solving by individual designers in great detail and have described it as a
sequential "evolution of metamodels" (without iterative refinement). Bell et.
al [32] adopt a different tack by using dynamic systems as a metaphor to
develop formalisms of problem solving by individual designers (which they
call design process modeling). They offer a framework in which the "design
process" is viewed at the structural, behavioral, and functional levels. (By
structural description, they mean the connections between the methods and
models used in the design process. By behavior they mean the interactions
between models and methods. By function, they refer to the attainment of the
design process goals measured in terms of quality, time etc.) Their work is
noteworthy for its sophisticated conceptualization of design problem solving
by the individual designer which they suggest will be useful in the
development of future process tools and more effective usage of existing
tools. Although it might help improve the productivity of the single
designer, it still views design as individual problem solving and assumes that
the interactions/information exchanges among multiple entities in product
development should be easy to manage once the individual problem solving
is well understood. In practice however, the interactions among multiple
designers seem to be a maior source of complexity.

2.8 Design as a Multi-Designer Activity

In this view, the design activity involves more than one individual;
product architecture, physics and the organization structure require that the
individuals involved in the design process interact. The emphasis is on
modeling the interactions among the individual tasks, because it is argued
that the complexity is not due to the individual tasks themselves, but in the
way they interact each other [9]. The interactions manifest themselves in the
exchange of product-related information among the individuals.

A strong motivation for this view (as well as this dissertation) is the
study of industrial and academic approaches to electromechanical product
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development in Japan and Europe by Whitney {11, 33]. Whitney coricludes
this study noting that "the main challenge industry people face is not in the
quality of the individual designer's output", but in the organization and
management of the design process — inding out its true structure, and
information content. Most design research, however, focuses on improving
the quality and productivity of the individual designer's output. He further
observes that companies are trying to figure oui ways to implement
concurrent engineering (CE), and there are four stages of maturity in
implementing CE:

Stage 1: A crossfunctional team is formed and the various conflicting product
lifecycle issues are brought together. Confusion and disorder often resulits.
Stage 2: The tearn reaiizes its inability of the to solve the CE problem and feels
the need for structuring the design process.

Gtage 3: The entire team (along with facilit=iors) participates in mapping the
design process, its decision sequence, and information flows. A detailed,
collective, and comprehensive description of the design process emerges. Key
design drivers that cause rework and delays are also identified.

Stage 4: The time-critical and content-critical design drivers identified in the
previous step are addressed using computer tools or design methodologies.

Whitney notes that research community seems to be unaware of these
stages; firms go through these stages with hardly any tools, and with no
formal, scientific understarding of the steps/calculations needed to identify
the key design drivers that are the sources of delays and iterations. I believe
that the notion of evolution and sensitivity developed in this thesis will help
mazke a beginning in formalizing the process of identification af the key
design drivers. Evolution refers to the time availability of the upstream
design information in its preliminary form, and sensitivity is equivalent to
what Whitney calls content-criticality of information. Evolution data can
help in reducing the wait time for the design information by transferring
information or firalized form (by freezing design information in advance). In
Chapter 6, I will discuss how the notion of evelution and sensitivity can help
detect the key design drivers that a firm needs to address.

Whitney also outlines the steps that firms use in improving their design
process. In one of the steps he says, "find precedence chains that can be broken
so that the tasks can be resequenced (this requires classifying constraints,
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much as Nippondenso does, into "must have", "would like"...)". The reader
will note that this is similar to the role of the evolution-sensitivity
framework in this thesis (relax precedence constraints by categorizing
information based on its evolution and sensitivity).

2.9 Analytical and Structural Descriptions

To identify improvements in a process, two characteristics of the process
interactions need to be represented: (i) structural description which
corresponds to the topological connectivity of the interactions, and (ii)
analytical description which includes other properties of the interaction such
as strength, frequency etc. These two aspects are considered in greater detail in
the next section.

2.9.1 Structural Description of Interactions

The structural description of the interactions captures the topological
connectivity (presence or absence) of the interactions: who is connected to
who else (who depends on whom, who exchanges information with whom
etc). Conventionally, the structure of interactions has been represented using
graphs and binary matrices by researchers in systems engineering, including
Warfield [34] and Steward {17]. Some examples are Interpretative Structural
Modeling (ISM), and the Design Structure System (DSS). I discuss these tools
briefly:

Interpretative Structural Modeling (ISM)

D
g: Bt 7&? —_ - c
A
(a) Input (b) Output

Figure 2.3: A Directed Graph converted into a Hierarchical Form in ISM

ISM uses a directed graph representation of the connectivity of the
interactions [35]. It manipulates or restructures the input directed graph in a
sequence of steps; each step involves the identification of terminal nodes, and
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placing them at the top level of a newly formed hierarchical representation.
As an output, it produces a hierarchical representation of the input problem
in which the higher levels of the hierarchy depend on the lower levels. For
example, the directed graph representation showing the task couplings in
Figure 2.3 (a) is transformed to the hierarchical structure shown in Figure 2.3
(b). The design parameters at a particular level are decoupled from other
parameters at the same level. The design problem is solved bottom up (lower
levels first followed by higher levels).

Design Structure System (DSS)

For large sized design problems, the DSS may be more convenient
because it uses an adjacency matrix representation of the directed graph to
map the structure of interactions [36]. As an example, the directed graph of
Figure 2.3 (a) showing the task couplings is represented using the L 55 in
Figure 2.4. The coupling between tasks A and task B is indicated with a mark
in the corresponding row and column of the matrix. It is seen that unlike
ISM, the DSS uses a flat structure. The rows and columns of the matrix can be
rearranged (or partitioned) such that the information generating tasks are at
the top and information receiving tasks at the bottom3. The rearranged matrix
is called the Design Structure Matrix (DSM). Note that the DSM(B, C} entry
does not have a mark because tasks B and C are decoupled.

3BCD
(X
x®
X

X X (X)

Figure 2.4: A Design Structure Matrix of the Graph in Figure 2.3 (a)
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3In 1962, Steward developed the techniques of partitioning and tearing to solve a set of
simultaneous equations [37, 38]. It is noteworthy that partitioning is equivalent to a graph
theoretical technique called reverse topological sort. At the end of the 60's Steward advanced
his matrix as a tool to represent interactions in a process. He termed the partitioned precedence
matrix, Design Structure Matrix. Several schemes for partitioning are also reviewed by Gebala

and Eppinger [16].



A process which can be partitioned to an entirely below-diagonal matrix
(as in Figure 2.4) is said to be completely sequential. Partitioning of an
adjacency matrix however, does not always lead to a DSM with only below
diagonal elements. In Figure 2.5 for example, the activities A, C, D are
mutually coupled perhaps due to the underlying product physics. These tasks
are said to constitute a block. To solve such a block, iteration is required to
ensure that the mutual couplings are satisfied. If the tasks involve making
decisions about design variables, making a guess about one variable decouples
or tears the problem. It would be desirable that the minimum number of
guesses or "tears” are made. Steward has developed a procedure called shunt
diagram (now available in a software program called TERABL) to determine
the minimum number of tears [17].

B ACD
BX) _ _ |
Al X
c| X X X
DXy XX
Figure 2.5: A DSM with Above Diagonal Entries

The DSM has been used quite extensively to study the patterns of
information flow in product development processes [13, 15, 39-41]4. In their
work, Eppinger et. al [13] use the DSM as a tocl to document the technical

4There are some subtle differences in the matrix representation proposed and used by Steward
and the version used by Eppinger and colleagues. In Steward's representation, the marks in the
matrix represent precedence relations among activities (Page 28 of Steward's book [17] states
that the Design Structure Matrix results from doing partitioning and tearing of a precedence
matrix), while Eppinger et. al [13] use the mark to denote information exchange among tasks.
The most important difference among these versions arises from transitivity: while precedence
is a transitive relation, information exchange is not. Thus in Steward's DSM, if task A precedes
B and B precedes C, then A precedes C, and a transitive closure will contain a mark in the entry
corresponding to DSM(A, C). In the representation used by Eppinger et. al, if B receives
information from A, and C receives information from B, it is not necessary that C recieve
information from A. Further Steward uses the DSM to primarily describe the interactions

among parameters.
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structure of a design project. They augment the DSM with numerical entries
that may denote degree of dependence, task completion times etc. Further,
they propose several different strategies to improve the design process
including Parallelization, Artificial Decoupling, and Increased Coupling. Of
these, the last deserves a special mention, because it relates to one of the
approaches prescribed for design process improvement in this thesis, called
overlapping, in which the process is improved by increasing the volume of
information transferred.

Black et. al [15] mapped the interactions in an automotive brake system
design problem as a Design Structure Matrix. It is noteworthy that a major
portion of the brake system DSM is sequential although there exists a portion
which is not (one hundred and three design parameters were identified out of
which thirty four parameters form a block; see Figure 2.6). Such processes,
which may not be completely sequential but are predominantly so, are said to
be nominally sequential.
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Figure 2.6: The Brake System Design Structure Matrix

Sequeira [40] used the DSM to suggest improvements in the automobile
development process. She modeled the entire automobile development
process (with greater detail on the upstream design phases) by interviewing
the development personnel. Her work is noteworthy for pointing out the
confusion over the "as is" and "to be" process in practice. She also classifies
the dependency among tasks into self, primary, secondary and tertiary. "Self"



is just the diagonal element, but the other three types are related to this thesis,
so I will consider them in greater detail.

In her work, the dependency between tasks A and B is termed:

s primary, if B cannot start until information from A arrives.
¢ secondary, if B requires information from A for completion
e tertiary, if information provided by A is helpful, but not crucial.

Although this classification is somewhat artificial, it implies that there is
some information to which the downstream activity is more sensitive than
others, and the downstream activities may start with preliminary values of
some other information. These ideas, although not made in the context of
overlapping activities, are useful in overlapping activities as we wiil observe
in the following chapters.

Cus Sale Pricli Sches Deve Macr Finar Prog: Initia Tech: Custc High Targs Test | Prods

Customer target
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Schedule

Development Methodology
Macro targets/constraints
Financial analysis (profitability
Program Map

Initial QFD Matrix

Technical Requirements
Customer Specification

High levcl modeling

Target specification

Test plan

Product Validation plan

Figure 2.7: Portion of the Intel DSM from [14]

Osborne [14] used the DSS to map the product development process at
Intel, and characterize cycle time. He has obtained some interesting results:
for instance, he estimates from collected empirical data that iterations
represent as much as two-thirds of a project effort . A portion of the binary
DSM from one project studied by Osborne is shown in Figure 2.7. This DSM
shows that this process (like the brake system) is also not completely
sequential, but there are many blocks arranged in a sequential fashion. (In
other words, this process is also nominally sequential.) This diagram is,
however, more coupled than the brake system problem but the blocks are still

®x X X
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local. T will come back to this DSM in Chapter 6, where I will advocate that
future work on overlapping should consider that the upstream and
downstream design activities are blocks (individually), and focus on
increasing the overlap between such blocks which are arranged sequentially.
Such an effort may be one way of integrating previous work on iteration with
this work on overlapping.

Design interactions have also attracted attention from several
researchers associated with NASA. Rogers [42] has developed an expert
system to partition and tear a DSM with the aim of analyzing and improving
the design process. For solving large scale systems optimization problems,
Sobieszczanski-Sobieski [43] uses a matrix representation similar to the DSM,
(called the N2 diagram). By reshuffling the rows and columns of the N2
diagram, he attempts to decompose a large system into a hierarchic pyramid
of modules.

2.9.2 Analytical Information about Interactions

The metheds presented in the previous section use only the topological
connectivity of the interactions. Several researchers [13, 44] have observed
that analytical information about the interactions, such as the algebraic
relationship among parameters, certainty of planning estimates, volume of
information exchange, and the strength of dependency should also be used
along with the connectivity information. In this thesis, I find that the
sensitivity of downstream activities to upstream information, and the rate of
evolution of the upstream information are two other useful properties in
overlapping an existing process.

Rogan [44] argues that the directed graph based representations impose a
precedence relationship in some problems where one may not already exist.
He further shows that representations that exclude analytical information
(contain only structural information) may not always lead to a feasible design.
To obtain the analytical information however, he assumes that the design
problem is formulated as a mathematical optimization problem. This
compares with my approach in Chapter 3, but only some problems in practice
may possess such a description, so it is necessary to obtain the analytical
information about the interactions in other cases using models or estimates.
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Smith and Eppinger [45, 46] replace the binary form of task dependency
in a conventional DSM with numerical entries which are a quantitative
measure of the strength of dependency between tasks. They provide two
extensions to the DSM which helps estimate the time it takes to execute a
coupled block - a probabilistic model (also called the sequential iteration
model), where the number of iterations and the amount of rework per
iteration is a random variable, and a deterministic model (also called the
work transformation model) where the amount of rework caused by each
iteration is a linear function of the amount of work done in the previous
iteration. These models are explained in greater detail below.

The sequential iteration model [45] assumes that the tasks in a coupled
block are done one at a time (sequentially), and there is a finite probability
that coupled tasks will have to be iterated. Figure 2.8 shows a "Sequential
Iteration DSM". The diagonal elements of this DSM indicate the length of
time that the task would require if it were done in isolation, with all input
information available. Each off-diagonal value element ajj indicates the
probability that another iteration of task i will be necessary given that task i
was performed without the knowledge of the latest results from task j. The
authors show in their work that the sequential iteration DSM describes a
decision Markov chain each state of which corresponds to completing one
task at one time, and the transition probabilities correspond to the
probabilities of repeating a previous task, or of attempting a new task. They
use this model to compute the expected time of each ordering, and to identify
an initial ordering of the design tasks that minimizes the expected time it
takes to execute the set of coupled design tasks.

o

Figure 2.8: Sequential Iteration Design Structure Matrix (from [45])

(In Figure 2.8 above, task A takes 4 units of time and task B takes 7 units if
done in isolation. Tasks A and B are coupled such that if A is done before B,
then there is a probability of 0.2 that A will have to be repeated because the
results of B are incompatible with the previous results of A. If B is initially
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done before A, then there is a 0.4 probability that B will have to be repeated
later. )

The sequential iteration model is restrictive because it makes several
assumptions. The duration of the tasks is assumed to be the same from one
iteration to another. It is also not clear how the off-diagonal elements, which
are assumed to be constant and known, may be estimated in practice. Further,
the fact that each of the tasks are done in a sequence in each iteration seems to
represent an extreme case.

The work transformation model [46] relaxes the assumption that the
duration of the tasks is the same from one iteration to another and assumes
instead that the duration of the iterations decreases with time in a linear
fashion. Further, the off-diagonal elements are not probabilities in this model
but deterministic strengths of dependencies. All tasks are executed in each
stage, and the duration of a task in the first iteration is given in the diagonal
element of the work transformation matrix (WTM).
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Figure 2.9: Work Transformation Matrix {from [41])
(In Figure 2.9 above, task A takes 4 units of time and task B takes 7 units in
the first iteration. In subsequent iterations, the duration of task A is one-fifth
the duration of task B in the previous iteration; similarly the duration of a
subsequent iteration of task B is two-fifth the duration of task A in the
previous iteration)

The work transformation model is interesting because, (i) it helps predict
which portions of the design problem consume the largest amount of time,
and (ii) the eigen structure of the work transformation matrix helps obtain
the nature and rate of convergence of the design process. However, the
linearity assumption - that the duration of a task in a particular iteration is a
linear sum of the duration of each of the coupled tasks in the previous
iteration - is central to this model (it makes all the results from linear algebra
accessible), and it needs to be investigated if this assumption holds in real
design processes.
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Project Management

Project Management methods fall between structural and analytical
representations in that, apart from representing the connectivity information,
they also represent the timing constraints among activities. These methods
represent the structural and timing information as a precedence network, and
can further be classified into (i) Activity on Arrow (AOA) representation used
by PERT and CPM in which arrows in the network are activities and nodes
represent start and finish events, (ii) Activity on Node (AON) representation,
followed by the Precedence Diagramming Method (PDM), in which arrows
represent precedence constraints [47]. The latter is more flexible as it offers
ways to model the interrelationships, such as start-to-start and finish-to-finish
apart from the traditional finish-to-start constraints used by PERT and CPM.
However, both approaches are activity-based and assume that durations of
activities are predetermined constants. This assumption prevents ithem from
allowing for dual and cyclic relations among activities which are common in
product development. In Figure 2.10, I give an example of a dual relationship
between two activities A and B: a start-to-start constraint, and a start-to-finish
(overlap) constraint. If the activity durations are assumed constants, then the
relationship in Figure 2.10 introduces a cycle in the network which will break
down the network analysis technique (network cannot be ordered and further
calculations cannot be performed). Such a relationship is physically feasible
(for instance, one can think of A being design, and B being prototyping in
which case one could conceive of a situation where prototyping cannot start
until a few days after design starts, and design not finish until prototyping has
been underway for a few days - to correct any infeasibilities). There is no
reason, however, to require that the activity durations be predetermined
constants. If this assumption is relaxed, the dual relationship can be allowed
and the project management techniques can be extended.

A

B

Figure 2.10: Dual Relationship in a Project Which Cause Cycles
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In practice, project management techniques tend to be widely in use (as I
observed in my field visits), and it would be worthwhile if these techniques
can be augmented for usage in product development. So in Table 2.1, I list
some of the limitations in project management that need to be addressed to
make them useful for product development.

Project Management Model

How It Needs to be Modified

Information exchange is implicit

Activity durations are constants and
dual constraints as in Figure 2.10
cannot be represented.

Activities are continuous (with no
wait times), and happen only once.

Information is available for exchange
only once and at the finish of the
generating activity.

Only time-criticality is considered.
Ignores effect of information content.

Process is improved only by crashing
(expending resources faster).

Exchange should be made explicit

Activity durations should be let to
float. Activities must finish when
process interactions are satisfied.

Should be allowed to iterate, and to
wait to process information.

Should allow for information
exchange more than once and at
intermediate points of activities.

Should include the content of the
information.

Should include overlapping
activities in the critical path.

Table 2.1: How Project Management Methods need to be Modified

2.10 Where This Thesis Fits

This thesis can be interpreted in several ways: (i) as seeking to solve
some of the open questions in improving the design process posed by
Whitney in [11, 33] (quoted in Sections 2.8 and 4.3), (ii) as addressing the issues
not modeled by project management (see Table 2.1), (iii) as an extension of
previous work on documenting the structure of the design process by

Eppinger et. al reported in [13], and (iv) as complementing the previous work
done by Smith on design iterations [41].

52



As indicated in Figure 2.1, this thesis limits itself to multi-designer,
single project processes (which do not share resources with other projects).
Within this domain, I focus on processes in which the activities are
nominally sequential. Both structural representations (such as ISM, DSS etc.)
and project management methods would have been helpful to organize the
process into such a nominally sequential pattern of execution, as was
exemplified in Figures 2.6 and 2.7. I am now interested in beneficially altering
the sequence (Chapter 3) or determining operational ways to relax the
constraints requiring nominally sequential execution (Chapters 4 and 5).

In Chapter 3, I consider design problems which can be described as a
mathematical optimization problem (similar to the ones considered by Rogan
[44] and Sobieszczanski-Sobieski [43]). These authors offer methods to
decompose centralized design problems into smaller modules using structure
and sensitivity. In Chapter 3, I consider the situation where knowledge
about the design problem is already decentralized or distributed. I develop a
procedure to order the solution of the distributed modules, without iteration,
that leads as close as possible to the system-wide optimal solution.

In Chapter 4, the focus is on processes that do not necessarily possess a
mathematical descripticn, and in which the activities are coupled by
information exchanges. I introduce two analytical properties of the
information exchange, called evolution and sensitivity, that help relax the
precedence constraints among the activities (modeled in project
management) and thereby overlap the activities. Such overlapping may be
accomplished by freezing upstream information ahead of time or by doing
more downstream iterations. The combination of evolution and sensitivity
values determine how to overlap activities and with what performance trade-
offs - as explained in Chapters 4 and 5.
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3. Sequencing Coupled Design Activities

Strategic product design is a total approach to doing business. It can mean
changes in the pace of design, the identity of the participants, and the
sequence of decisions. - Daniel Whitney in [6]

3.1 The Sequencing Problem

Technical and organizational considerations impose couplings among
product development activities. If the couplings involve (directional)
precedence constraints among the activities, they can be represented using
any of the tools presented in Chapter 2 such as ISM or the DSS. Further, the
process can be organized by restructuring the directed graph or partitioning
the precedence matrix.

However, there are some design problems in which the couplings may
not be directional. In Chapter 1, I described the dc motor design decision
problem in which the motor parameters (such as diameter) were to be decided
while considering product lifecycle characteristics (function, space and
material cost). The problem exemplified the situation where all the design
tasks are coupled, but not related by any precedence constraints. In such
problems, there are multiple ways in which the design tasks can be ordered or
sequenced (tasks are done once without any iteration), and it is not possible to
distinguish among these different orders using information about the
structure of interactions alone. The primary difference among the different
orders is in the loss in quality of the design solution for the subsequent
decision makers due to the decisions made by their predecessors. In this
chapter, a methodology will be presented to identify the optimal ordering of
tasks (with the lowest loss of quality for the set of all lifecycle issues) in design
problems where each design task can be posed as a nonlinear program. I will
use the dc motor example to illustrate the various concepts introduced in the
optimal ordering identification.

It would be difficult to understand the characteristics of cross-functional
decision making in the absence of any specific interpretations for design tasks.
To focus on the problem, an individual team member’s task is interpreted as
the optimization of a particular design criterion. This provides a unified basis
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to model the behavior of the multiple decision makers in cross-functional
product design. Although in routine life, people may be satisficers rather
than optimizers [48], in many commercially competitive activities product
developers are required to obtain optimal results. In the design of complex
and novel technologies such as hypersonic aircraft, using the optimal results
may make the difference between “flying and staying on the ground” {43]. In
this chapter, I further assume every functional design task has the form of a
nonlinear program, as is the case with some parametric design activities.
First, I will discuss the relationship of this chapter to other work in literature.

3.2 Ordering and Decomposition

It is important to compare and contrast this work from other work on
decomposition and design process planning [43, 44]. The similarity is that both
of these works focus on parametric design problems which involve the
decision about product variables for a given concept. In decomposition and
design process planning however, the researchers seek to decompose
centralized knowledge about a design problem into loosely coupled
subproblems. Because the problem is not already decomposed, there is the
flexibility to decide what the objectives, decision variables, and constraints of
each of the modules should be in order to get as close as possible to the
multiobjective optimal solution.

My work in this chapter, on the other hand, considers problems where
the knowledge about the designed artifact is decentralized - distributed
among multiple designers or design groups (as in crossfunctional teams). The
objectives and constraints of each of the modules is predetermined by the
functional disciplines. If the decisions made by the individual groups were to
be assembled in a serial fashion, as in a conventional sequential process,
without considering the interactions among the decisions, then the product is
likely to be sub-optimal because upstream decisions are likely to affect the
downstream activities adversely. If the decisions were made simultaneously,
on the other hand, they are likely to be in conflicts, and several iterations may
be needed to arrive at a solution that satisfies all considerations. So I consider
the interactions among tasks and determine an ordering of the tasks that
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resuits in the least quality penalty for the sum total of all tasksS. Because no
task is done more than once, sequencing is a faster and less complex way to
ensure that the couplings are satisfied than iterating or negotiating - although
less likely to be globally optimal because of the lack of subsequent iterations.

Further, a reader familiar with decomposition literature will note that
many more combinations of parameters can be passed between modules in
decomposition than in crdering problem (where the decomposition is treated
as a given item); the added flexibility in decomposition complicates the
computation of the quality penalty for parameter passing. In this chapter the
quality penalty is calculated simply by taking the difference between the
sequential solution and the solution without sequence constraints — as
described in the rext section after introducing some terminology.

3.3 Terminology

For this analysis, I use the following definitions.

oP is a cross-functional product development process with n decision makers,
entrusted with executing n cross-functional decision making tasks T, T2, T3, ..
., Tpand thereby choosing the values of m parametric design variables x, x»,
X3,...,Xm. Let X be a set comprised of all the design variables x1, x2, x3,..., Xm.

¢ Each task or function T;, upon execution produces a functional output J; .
Let Z; be the set (and z;a vector) consisting of all the design variables that
could possibly be decided by Tj. (Z; c X ). The variables belonging to Z;,
{zi1, zi2, -+~ , 2ir), are said to occur in task T;.

* The decision process in which the task T; is not subject to any order
constraints is called the independent decision process. Let J;" represent the
functional output of task T;in the independent decision process; the value set
by T;for the design variables in the independent decision process will be
called independent decisions.

SBecause the term "sequence” brings back bad memories of a conventional sequential process
(which does not consider :interactions) to some readers, I will often use the term "ordering” to
remind the reader that interactions and multiple orders are being considered in this work.
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* A decision order ¢is a sequence of the n tasks, T1, T2, T, ..., Ty, such that:
1) The tasks in the design process are executed in the order in which they
occur in @.
2) Each task T; upon execution decides on a value for all undecided variables

belonging to Z;. The output of task T;in the order ¢ will be denoted by ,l,-'p .

Let Z; denote the complement of Z;. Consider the order ¢={Ty, Ty,
T3, ..., Ty). In this order, T; decides the values of all variables in

Zin {21 vZhu---uUZil } It faces order constraints of the form,
zig—-zy¥=0forzipe Z;n {Z1 v Zig } In other words, T;loses
freedom in Z; N {21 U UZig }

o A design variable x's value in the ordered design process is decided by the
first task in the order in which it occurs.

e A task T;is said to lose the design freedom xiin the order ¢, if xx € Z; and the
value of xxin the order ¢is decided by a preceding task.

Defn: Quality Loss incurred by task T;in a decision order ¢, QL,-"-', is defined to
be the nonnegative offset of the output of task T;in ¢, ],-q’ , from J;*:

QL? =P -1
Defn: Quality Loss of an order ?, QL?, is defined to be the weighted sum of
quality losses incurred by each task T;in ?.

L? =Y w; QL?
i=1

Defn: A dedisior order ¢' is defined to be the optimal decision order if its
quality loss QLqr < QL? for all possible ¢.

In the next few subsections I relate the optimal order (for execution of
the cross-functional decision tasks) to the underlying structure of the design
interactions, illustrated through the example of the design of a dc (direct
current) motor introduced in Chapter 1, and repeated here for convenience.



3.4 DC Motor Design Problem

To decide on the order in which decisions should be made by a cross-
functional team, whose members are concerned respectively with
maximizing the torque generated by the dc motor (performance), minimizing
the area occupied by the stator (size) and minimizing the cost of materials
(sum of the area occupied by the steel portion of the rotor and area of copper).
The variables to be decided are given in Table 3.1 and the tasks are given in
Table 3.2. The independent decisions and outputs are summarized in Table
3.3.

Decision Variable Symbol | Bounds

Armature diameter ad 10 <ad <12 (inches)
Motor inner diameter id 0.1 <id <3.0 (inches)
Motor outer diameter od 20 <od < 24 (inches)
Diameter of windings dw 0.01 £dw < 0.2 (inches)
Current density cd 0.1 <cd <50.0 (amp / in2)
No. of armature windings {nw 1 < nw < 1500 (turns)
Thickness of magnet used |tm 0.05 <tm <1.0 (inches)

Table 3.1. Design Variables for a dc motor

Task j Task Description Analytical Forms (Minimizations)

T; |Maximize Torque J1 =-1.57 cd duw?

T, |Minimize Space J2 = 0.785 (0d?- ad?) - 0.26 nw dw?

T; Minimize Material Costs| J; = 0.785 (ad?- id?) — 2.1 ad tm + 0.785 du?

Table 3.2 Objectives as Functions of Variables

Task |Independent Decisions and Outputs

T dwi*=0.2; cd{* =50; J; = -3.14

T, ady® = 12; ody" = 20; dw," = 0.2; nw," = 1500; J," = 185.3

Ts ads® = 10; ids” = 3; dws" = 0.01; tm3" = 1.0; J5" = 50.4

Table 3.3 Independent Decisions and Outputs
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It is seen (as was observed in Chapter 1) that the designers executing the
different tasks independently drive the variables to different values; ordering
the tasks is one way of ensuring that the design variables assume a unique
value (because subsequent decision makers lose their degrees of freedom and
are constrained by the value of the variables set by predecessors). An example
of a decision order was given in Chapter 1.

The straightforward method to determine the optimal order, by explicitly
considering all orders and evaluating their quality losses, is shown in Table 3.
4. Evaluating the quality loss of each decision order requires the execution of
every task because their results depend on their position in the decision
order. So in this case a total of 3! x 3 = 18 nonlinear programs need to be
solved to identify that {Ty, T3, T2} is the optimal decision order with the
lowest quality loss. In large designs, determining the optimal order becomes
tedious requiring Order(n! n) optimizations. Evidently, even if the tasks may
not be nonlinear programs, exhaustive enumeration is expensive.

Order Design Decisions made during the order QL

(Ty, T2, T3} {ad=12; id=3; od = 20; dw=0.2; cd= 50; nw= 1500; tm =1.0 | 0.603

{Ty, T3, T2} |ad=10; id=3; od = 20; dw=0.2; cd=50; nw= 1500, tm =1.0 |0.189

(T2, T1, T3} |ad=12; id=3; od = 20; dw=0.2; cd=50; nw= 1500; tm =1.0 | 0.603

(T, T3, T1) |ad=12; id=3; od = 20; dw=0.2; cd=50; nw= 1500, tm =1.0 |0.603

(T3, T1, T2} |ad=10; id=3; od = 20; dw=0.01; cd=50; nw= 1500; tm =1.0 | 1.268

(T3, T2, T1} |ad=10; id=3; od = 20;dw=0.01; cd=50; nw= 1500; tm =1.0 | 1.268

Table 3.4: Results of All Decision Orders

Inspection of Table 3.4 shows that the values of several design decisions
(for exarple, cd) are invariant over all the orders while some design variable
values are invariant over a subset of all orders (for example the value of ad is
the same in three of the orders). These invariances can be systematically
utilized to relate the quality loss of a decision order to the structure and
strength of the design interactions as shown below.
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Quality loss of the individual tasks varies with the decision order
because different degrees of freedom are lost in different decision orders.
However there exists a subset of decision orders over which a particuiar task
lcses a particular design freedom. For instance, in four of the six orders T3
loses the design freedom, dw. In all these orders the design variable assumes
the same value, dw = 0.2, and T3 faces the same order constraint, perhaps
resulting in the same quality loss. How could we exploit invariant design
variable values which translate into invariant order constraints? If we can
decompose the quality loss incurred by a task into components due to loss of
individual design degrees of freedom, then we can compute the order variant
quality loss from order invariant terms. Then the following questions arise:
What is the general structure in such problems that leads to order
invariance? Can the quality loss of every order be decomposed into a certain
small number of order invariant quantities, calculated a priori?

3.5 Exclusive Groups

T

Figure 3.1: Exclusive Groups in the DC Motor example

It is interesting to observe that in ordering cross-functional decision
making, if two design variables x and y occur in the same combination of
design tasks, then the decision about the values of both x and y will always be
made by the same team person. Any subsequent member who loses the
design freedom x will also lose design freedom y to the same member that
decided x. Whenever we compute the quality loss due to loss of design degree
of freedom (d. o. f.) x, we will also compute the quality loss due to loss of (d. o.
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f) y. So all variables that occur in the same combination of tasks can be
grouped together as shown in Figure 3.1. The quality loss incurred by a task
needs only to be decomposed into components over losses of such groups of
design freedom. Any cross-functional tearn member possesses or loses design
freedom in"groups. In the three task dc motor problem, design variables get
partitioned into seven groups. Because the combinations are exclusive to
each other, the groups are called exclusive groups.

An exclusive group consists of variables that appear in the same
combination of tasks. For a n task design process there are M = 2"-1 groups,

which correspond to the boolean combination of the complements given
belows.

Y; ‘ [ (z, nZ3nZ5 .- NZ,

Ys (ZinZanZ5 A NZ,

Yi

Ym J \ (Zy "nZnZ3 Ao NZy)

The tasks in which the variables belonging to any exclusive group Y;
occur will be referred to as tasks forming Y; For example, the tasks forming Y7
are Ty, T, and T3. The tasks themselves are said to be spanned by the various
exclusive groups.

In Figure 3.1, T3 is sparned by Y3, Y5, Ysand Y;. Lety; be the vector of
variables belonging to Y; and ¢; be the set of tasks forming Y;. For the dc
motor problem, we have:

4 ad ‘qd
oy ) ol

6In a typical product design problem, n is about 5, while m is about 1000; n << m, making the

grouping of variables useful.
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t1= {Ta); t2= (T2); t3= (Ta); t4={ ;fz‘ };ts=( T2 };i6=‘ Ty };t7= {"lT‘;}

The decision made by a task T; for the values of the variables in a
particular exclusive group Y; is referred to as the exclusive group Y;decision
by task T. The loss of design freedom in deciding the values of all variables
belonging to an exclusive group is referred to as loss of exclusive group
freedom. Notice that in the dc motor case, the values of all the design
variables in certain exclusive groups, such as Y3, do not vary from one order
to another (Table 3.4). Such groups are called order-invariant exclusive
groups.

Defn: An exclusive group Y;j is said to be order invariant if the value of each
design variable belonging to Y; is the same under every order.

Why are some exclusive groups not order invariant? There are two
reasons why a certain exclusive group decision may vary from one order to
another. First, different designers may decide the values of design variables in

an exclusive group in different orders. For example, in the order (T3, T1, T2},
the team member responsible for the first task (T,;) makes the exclusive

group Y, decision and sets the value of variable dw to 0.01, while in the

order {Ty, T3,T,), the designer responsible for T; makes the exclusive group Y;
decision (sets dw to 0.2). Secondly, even when the same task makes an
exclusive group decision, the value decided may vary from one order to
another, because the task may face different constraints in different orders
(because of different predecessors). If however, the order constraints do not
affect the exclusive group Y; decision made by Tj, then the exclusive group Y;
decision by task T; is the same as its independent decision. What this means

is that the exclusive group Y; is invariant over a subset of all orders, the
subset in which it is decided by the forming task T,

Defn: An exclusive group Y; is said to be forming task T; invariant if the
value decided by T; for the design variables belonging to Y; is the same in
every order in which T; makes Y; decision.
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Notice that if an exclusive group is order invariant, its value does not
vary under any order, and so it is also forming task invariant. However, an
exclusive group that is forming task invariant is not necessarily order
invariant. The motive behind pursuing these two invariances is to use them
to facilitate the identification of the optimal order. For instance, if all the
exclusive groups spanning a certain design task are forming task invariant,
then the designer entrusted with the task need not repeat the decision
making process (after having identified the independent decisions).
Identifying order invariance impacts (by reducing the size of) every task in the
design process. The question arises as to how one may identify these two
invariances.There are several situations under which exclusive groups may
be order invariant or forming task invariant. Towards characterizing these
properties, we focus in our research on identifying increasingly stronger
sufficient conditions. As a first step, I state the following propositions (proved
in appendix A1) for design problems where all design objectives are
continuously differentiable and explicitly expressible as functions of design
variables (through serial constraint sets) and all inequality constraints are
range constraints.

Proposition 1 An exclusive group Y; is order invariant if C1 (C1.1 or C1.2) is
satisfied.

a
C11 9 =0V yy (j # k) spanning every T, €t;.

dyk dy;
(i. e. the exclusive group is insensitive to other exclusive groups spanning
every forming task)

and the independent decisions of all forming tasks equal the same value y;".

C1.2 In the range of the design problem in question, each design variable in Y;
is monotonic in every forming task (partial of the forming task with respect
to the design variable is sign invariant in the range of the design problem);
further, the monotonicity of a variable is of the same type (increasing or
decreasing) in all tasks:

. 9] o]
V X;eY), either # >0VT, et or 5)?’:-<0VTpet,-
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Proposition 2 Exclusive group Y; is forming task T; invariant if it satisfies
C21orC22

C21 ii 0V yi {j # k) spanning T, and not satisfying C1.

Yk 3y

(i. e. yj decision by T; is sensitive only to other provenly order invariant
exclusive groups)

)
C2.2 V Xi €Y}, either 5)—’(’-’— >0 or :%< 0 (i. e. every Variable in y; is
i i

monotonic in T; in the range of the giv:n design problem).

a’3 -21ad < 0.
-1.57 id ’
s ={1.57 dw} > 0,
7
s _
157 ad - 2.1 tm —( ,Ys5)
35 = { )= ™ 3, Ys

Table 3.5: Satisfaction of C2 by all groups spanning T;

Table 3. lists the variables in the spanning exclusive groups of T; and
the partial of J; with respect to the exclusive group freedoms. Due to the
positivity of design variables we can calculate the ranges of partial derivatives
in the given domain and we find that T; is monotonic with respect to the
variables in Y3 and Y7 and these variables are always driven to their limits by
T;. Hence, the exclusive group Y3 and Y, decisions satisfy C2.2. We can also
show that Y3 is an order invariant exclusive group. The variables in Y3 occur
only in T; and so are driven to the same limit in every order because only T;
can decide them. (Y3 satisfies condition C1.2). Y7 is not order invariant because
the variable in Y; occurs in all tasks and with different monotonicities; in
different orders it can be driven to different values by different tasks. We can
also see that the exclusive group Y5 decision is sensitive only to the order
invariant exclusive group Y3 (apart from itself) and thus Y is also forming
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task T, invariant (C2.1). All exclusive groups spanning T; are forming task
T, invariant and thus there is no need to reexecute T; because, its decisions
under any order will be the same as its independent decisions. Such tasks, all
whose spanning exclusive groups are forming task invariant, will be referred
to as tasks with invariant spanning groups.

Notice that identifying invariant exclusive groups using C1 or C2 is
simple because it just requires mapping design variables into exclusive
groups and checking the sign invariance of the range of first partial
derivatives (using tools such as interval analysis) or evaluating the mixed
partials with respect to the exclusive groups. It is also interesting to observe
that if a particular exclusive group is sparse (or the number of forming tasks is
minimal) then it is likely to be order invariant, because the number of
deciding tasks is less. Such is the case with the order invariant dc motor
exclusive group Y. If the exclusive group is monotonic in a task, then it is
(forming) task invariant. If an exclusive group is beth monotonic and sparse
then it is a strong candidate for order invariance. Thus the topological notion
of sparseness and the analytical sensitivity based idea of monotonicity come
together in a synergistic fashion to enhance the two invariances. These ideas
are useful in ordering decision making in cross-functional teams in the
following incremental fashion:

e If a certain exclusive group is order invariant, then the size (and thereby
the complexity) of all tasks are reduced. If it is forming task invariant, then
the size of the particular forming task is reduced.

e All tasks with invariant spanning groups need not be required to make
decisions after having been asked to make independent decisions.

o If every task is spanned by invariant groups, as in the case of dc motor, then
the quality loss calculation and optimal order identification can be simplified
as shown below.

Let us consider the invariance of spanning exclusive groups in more
detail.
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3.6 Composing Partial Quality Losses

The next step in the reasoning involves attributing the quality loss
incurred by a task to losses of specific exclusive group freedoms. We iniroduce
an intermediate construct called Partial Quality Loss. Partial Quality Loss
(PQL) incurred by a task due to loss of a particular exclusive group freedom is
the degradation in the task results due to the loss of only that particular
exclusive group freedom. For instance, the partial quality loss incurred by T3
due to loss of exclusive group Y7 freedom is the loss in quality of the output of
T3 when design freedom in only the variables belonging to Y7 is lost. I show
in appendix Al.4 that, if all exclusive groups spanning a task satisfy C1 or
C2.1, as is the case with T3, then the total quality loss incurred by the task is
the sum of partial quality losses due to loss of each individual exclusive
group freedom’. This enables the decomposition of the quality loss of an
order into partial quality losses over exclusive groups. However, the value of
this partial quality loss depends on which task to which T3 lost its exclusive
group Y7 freedom. Y7 freedom could be lost to either T; or T,. This implies
that we have to calculate both terms, partial quality loss for loss of Y7 freedom
to T1 and to T, and use the quantity that is appropriate to the order. In other
words partial quality loss incurred is a function of three entities: 1) the
deciding task 2) the freedom losing task and 3) the exclusive group under
consideration.

Quality Loss Infliction and Stage Independence

Consider the case where instead of T3 losing its exclusive group Y7
freedom to other tasks, other tasks lost the exclusive group Y7 freedom to T3.
In such cases T3 “inflicts” a quality loss on other tasks by constraining them
with its decision of Y7. The partial quality loss inflicted by a task such as T3 is
defined to be the weighted sum of the partial quality losses incurred by all
other tasks due to loss of exclusive group freedoms to T3. (When all
exclusive groups spanning a task satisfy C1 or C2.1, the partial quality loss
incurred due to loss of a particular exclusive group freedom can be readily

7 An interesting mnemonic for this result is the Dalton’s law of Partial Pressure: Just as the total
pressure in a mixture of is the sum of their partial pressures, the total quality loss is the sum of

partial quality losses.



calculated with just the independent decisions, as shown in appendix Al.4.)
Because, the tasks forming an exclusive group are known from the
topological structure, the partial quality loss inflicted is only a function of the
deciding task and the exclusive group! How can we use this to our
advantage? In designs where every task is spanned by exclusive groups
satisfying C1 or C2.1, the quality loss of an order, which equals the sum of
partial losses incurred, is shown in Appendix A1 to be equal to the sum of the
quality losses inflicted by each task in the order. We can represent these
quality losses as a network, as illustrated in Figure 3.2 for the dc motor.

123 &
(STARDI
|

Figure 3.2: Network representing the Cross-Functional Decision Orders

The nodes of the network (in bold letters) represent the tasks remaining
to be executed at a particular stage of the cross-functional decision process. For
example the start node 123 indicates that tasks T7, T> and T; are left to be
executed and the node 23 indicates that tasks T and Tj are left to be executed.
End node signifies that no more tasks are left to be executed. The edge which
connects node 123 and node 23 corresponds to the execution of task Tjin the
first stage and the weight of this arc, QLI;23, is the quality loss inflicted by T;
on T; and T3 when it is the first task to make decisions. Notice that one task is
executed at every stage and each directed path from the start node to the end
node corresponds to one specific order and the length of the path equals the
sum of quality losses inflicted by each of the tasks. All orders are represented
in the network, the number of paths from start to end equals the number of
orders. If every task is spanned by exclusive groups satisfying C1 or C2.1, the
quality loss of the order is equal to the sum of quality losses inflicted, which is
equal to the length of the path from the start to the end node. Hence the
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optimal order (with the smallest quality loss) corresponds to the shortest path
of the network given in Figure 3.2.

3.7 Identifying the optimal order

Following is the procedure used to identify the optimal order.

1. Each design task is executed separately for its "independent" output and
decisions.

2. The design variables are partitioned into M = 2" - 1 exclusive groups.

3. Itis verified if a specific exclusive group is forming task invariant or order
invariant. Any task all whose spanning exclusive groups are invariant need
not be executed again, after having executed it once in Step 1. Its decisions at a
stage of the order are the same as its independent decisions. Also the quality
loss of such a task is a simple algebraic summation of the partial quality
losses.

T T, T3

Y, 0| x X
Y, X 0 X
Y, X X 0
Y, 010 X
Ys x | 0.602] 0.188
Y 01 x 0
Y7 0.001] 0.001) 1.081

Table 3.6: Quality Loss (Inflicted) Matrix

4. When every task is spanned by exclusive groups satisfying C1 or C2.1,the
quality losses inflicted by each task (by deciding the variables in each spanning
exclusive group) are stored in a matrix (Table 3.6), called the Quality Loss
Matrix (QLM). QLM(i,j) denotes the quality loss inflicted by T; by deciding the
variables in Y;. Notice that a task cannot decide the values of design variables
in exclusive groups which it does not form. For example T; cannot decide
the value of variables in Y; and therefore cannot inflict a quality loss. QLM(,j)
is set to x if T; cannot inflict a quality loss in Y;. Notice that if a particular
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exclusive group is order invariant, then the corresponding row in the QLM
will be zero (except for the x’s denoting the non-forming tasks). This is
because the exclusive group does not contribute to any quality loss. Such an
exclusive group may be removed from the design problem, reducing the size
and compléxity. In Table 3.6, this is the case with exclusive groups Y1, Y2, Y3,
Ysand Y. (It is noteworthy that Y7, Y, and Y3, are also the sparse exclusive
groups, formed by a single design task).

5. The next step involves determination of the optimal order using the
quality loss terms stored in QLM. We construct a network of quality losses,
similar to Figure 3.2, and using the terms in QLM(see Figure 3.3). The arc
connecting node 123 and node 23 corresponds to the execution of task T7 in
the first stage and the weight of this arc is the quality loss inflicted by T; when
it is the first task to make decisions (= QLM{7,1) + QLM(4,1) + QLM(1,1)).
Similarly, the arc connecting nodes 23 and node 3 corresponds to the
execution of task T3 in the second stage and its weight is the quality loss
inflicted by T, when it is the second task to make decisions (= QLM(5, 2)). The
weights of the other arcs can be filled in the same fashion. It is noteworthy
that weights of several arcs (italicized) equal zero due to order invariant
exclusive groups. Since the optimal order is the one with the lowest sum of
the quality loss inflicted at all stages it is obtained by finding the shortest path
from the stari node to the end node (using an algorithm like dynamic
programming [49]).

Bl el 5 T

123 @
(START)

Figure 3.3: Netwcrk with Quality Losses inflicted computed from QLM (Bold
lines show the shortest path which is also the optimal order)
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3.8 Discussion

The analysis of decision ordering in cross-functional teams has served the
following purposes:

1. Partitioning of design variables into exclusive groups has enabled the
decomposition of quality loss incurred by a task into components due to loss
of exclusive groups. In real design decision making processes, where the
number of tasks or lifecycle considerations, n, is much less than the number
of design variables, m, such a decomposition would result in substantial
computational payoffs. It is noteworthy that we are interested in seeking
special soluticns to a nonlinear program, solutions that correspond to
ordered decision making in a cross-functional group. Clearly, such solutions
(to a more constrained problem) will be less optimal than the globally optimal
solution to the nonlinear program.

2. In a three step approach, exclusive group structure has been exploited
repeatedly to arrive at a series of sufficient conditions. First, ccnditions are
identified under which the exclusive group is order invariant and forming
task invariant. Such groups reduce the complexity of one or more design
tasks. When all exclusive groups spanning a task satisfy C1 or C2.1, quality
loss incurred by the task can be written zs the summation of quality loss
components due to loss of individual exclusive groups. In the third step,
quality loss is interpreted as loss inflicted to induce stage independence in
calculating the optimal order so that the shortest path of a directed network,
equals the optimal decision order.

3. This analysis has interwoven connectivity and sensitivity issues together
in 1dentifying the optimal order. Partitioning into exclusive groups is done
on the basis of topological connectivity. However, the concept of invariance
(order invariance and forming task invariance) uses both connectivity and
sensitivity. As observed earlier, both sparseness (topological notion) and
monotonicity (sensitivity based idea) enhance invariance. The reasoning
process reveals the utility of both these aspects and unearths the strong links
between design structure and optimal decision strategies.

4. The results are incremental in their utility. If a certain exclusive group is
forming task invariant, then the size of the particular forming task is reduced.
If it is order invariant, then the sizes (and thereby the complexity) of all tasks
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are reduced. If all exclusive groups spanning a task are invariant, then the
task is not required to make decisions after having been made independent
decisions. If all exclusive groups spanning every task are invariant, as in the
case of dc motor, then the optimal order is obtained simply by identifying the
shortest pa_th in a network of quality losses.

5. Although the conditions stated to identify invariance apply only to
specialized situations, the notion of quality loss, exclusive groups and
invariance are broader and can be applied in more general cases, in particular,
to future study of iterative decision strategies.

Given below is a (nonexhaustive) list of limitations of the approach:

1. The results hold for design processes with specially structured design tasks.
Tasks are nonlinear programs with a continuously differentiable objective.
Constraints could only be either range inequalities or equalities that could be
explicitly eliminated by symbolic propagation (as in serial constraint
networks). The possibility of including other type of constraints in the
objective, other definitions for Quality Loss and methods for weight
determination have to be investigated in future.

2. Definition of a task assumes that a task is able to decide design variables by
itself, without assistance from other tasks. This model may be invalid in
some design situations.

3. The conditions developed to recognize invariances are not strong in
nonsparse, nonmonotonic situations.

In the next two chapters, I consider the complementary problem - to
improve the performance of a design process in which activities are coupled
by directed precedence constraints. I develop methods to relax the precedence
constraints and thereby overlap the activities.



4. The Overlapping Problem

If a man will begin with certainties, he shall end in doubts; but if he will be
content to begin with doubts, he shall end in certainties. - Francis Bacon

4.1 Introduction

As exemplified by the brake system DSM in Chapter 2, the flow of
information in many processes in practice is largely sequential with
information being generated by upstream activities, and transferred to
downstream activities for further processing. In this chapter, I seek to
accelerate such processes by overlapping the nominally sequential activities.
Overlapping the activities, such that the downstream development activities
start before their information-releasing upstiream counterparts end, requires
that the product information be made available early in a final or preliminary
form. As chown in Figure 4.1, overlapping may involve both advance
finalization of parts of the product information {denoted by x1), and the
preliminary exchange of other parts, x, that cannot be finalized early (future
changes in such information should be incorporated in subsequent
downstream iterations). It needs to be determined (i) which parts of the
exchanged information can be frozen early and how early, (ii) which parts
may be exchanged in preliminary form and with what consequences.

Overlapped processes represent the full spectrum between the two
extreme cases: the purely sequential process (in which the downstream
activity is phased with the upstream) and the idea! concurrent process (in
which the downstream is completely overlapped with the upstream). This
chapter offers an operational method to increase the overlap between
activities and thereby move towards the ideal concurrent process. In the next
section, I introduce the overlapping problem with a glimpse of the risk
associated with overlapping. Following this, I review some related literature.
In subsequent sections, I develop the notions of evolution and sensitivity,
and then describe why together they determine how activities must be
overlapped.
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Figure 4.1 Transforming a Sequential Process into an Overlapped Process

4.2 The Overlapping Probiem

The primary advantage that overlapping offers is the potential reduction
in development time while preserving the coupling among the activities
(and keeping the product integrated). The reduction in lead time (over the
sequential process) may not, however, be equal to the duration during which
the activities are overlapped (the overlap period). This is because the
duration of the downstream activity may be different in the overlapped
process than that in ~ sequential process: If upstream information is absorbed
by the downstream activity too early, then future changes have to be
incorporated in time consuming subsequent iterations - contributing to an
increase in the downstream duration and development effort.

When parts of the upstream generated information are frozen early, the
upstream activity loses the flexibility to make changes in these parts until its
completion. This loss of flexibility to make changes and thereby to tailor the
product to customer needs is interpreted as a quality loss (QL) for the
upstream activity. Any attempts at overlapping the activities ~ by exchanging
preliminary information or by freezing upstream information early - should
ensure that the increase in downstream development effort and the upstream
quality loss are not enormous. The problem of improving the lead time
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performance, while minimizing the adverse effects on product quality and
development effort, is called the overlapping problem.

Using the effect of overlapping on development performance as the basis
for disaggregating the exchanged information (x into parts such as x1 and x2)
can help solve the overlapping problem. Because freezing upstream
information early may cause a quality loss, only those parts whose early freeze
would produce very little quality loss should be frozen early. Similarly, the
part of the upstream information, such as x2, exchanged in a preliminary
form should be such that it does not cause a substantial increase in the
downstream effort. Such disaggregation can ensure that development time is
reduced without a large adverse impact on product quality or development
effort. If the disaggregation is not done with care - the effect of overlapping
on development performance is not considered - then excessive quality
penalty may accrue to the upstream activity, and substantial downstream
iterations may lead to an increase in the development effort, and even the
development lead time. This potential for performance to worsen due to
(careless) overlapping is referred to as the risk associated with overlapping.

To profit from overlapping activities, it needs to be determined freezing
which parts early would not involve much quality loss, and which parts may
be used in the preliminary form without much increase in the development
effort. I develop a conceptual framework that would help managers decide
when and how the develepment activities should be overlapped. The
framework classifies exchanged product information on two key dimensions:
(upstream information) evolution and (downstream) sensitivity. The
conceptual framework and associated ideas are illustrated with application to
pager development at Motorola and door development at Chrysler
Corpceration. Before presenting the ideas and applications, I discuss how this
work relates to other research in the literature.

4.3 Related Work in Overlapping

The effect of overlapping on product innovation and noncomrmercial
product development has been investigated by several researchers including
Mansfield [50], and Eastman [51]. From their field studies, these researchers
observed that overlapping stages led to an increase in development costs.
Their work should help motivate the need for careful overlapping.
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In the context of commercial product development, Imai, Takeuchi and
Nonaka [20, 52] observed that faster development processes use a more
holistic or overlapped approach. They likened the sequential process to a relay
race with one group of functional specialists passing the baton to the next
group and the overlapped approach to a rugby game in which a hand-picked,
multi-disciplinary team travels the distance as a unit. Although the analogies
are interesting, these authors (i) irnply that all activities in the development
process can be carried out concurrently and, (ii) do not indicate how a
sequential or phased process may be overlapped. As noted earlier, careful
consideration is required to minimize the risk associated with overlapping.
Further, the technical complexity of the products developed imposes certain
precedence relations among development activities due to which not all
activities can be done concurrently. For instance, major resource
commitments for the development of tooling and fixtures (for mass
production) of an automobile cannot be made until the vehicle concept is
available. The structure and strength of interactions needs to be well
understood for activities to be overlapped successfully.

In their comparative research of product development practices around
the world, Clark and Fujimoto [53] developed a measure called overlap ratio
to show that faster development processes are more overlapped. They also
recognized the organizational barriers to overlapping activities, such as
hostile environment, poor communication, and the lack of consistency and
balance in managing the critical linkages [54]. To facilitate overlapping, they
recommended frequent, face-to-face, bilateral communication of preliminary
information instead of late release of complete information [12].

These recommendations would be useful to initiate organizational
changes, but the generic reference made to information exchange needs to be
augmented with more specific understanding of the characteristics of the
information exchanged to operationalize overlapping. Close examination of
industrial product development suggests that not all information exchanges
are equal. Some types of product information can be more readily used in
their preliminary form than others because of their lower impact on the
downstream activities. Also, some product information can be frozen early,
some need to be frozen early and some others cannot be or should not be
frozen early. This thesis builds on previous research by Clark and Fujimoto
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in the following ways: It a) develops a methodology to overlap activities based
on the specific characteristics of the information exchanged between them; b)
examines the effect of overlapping on development performance with the
aim of addressing the risk associated with overiapping; and c) offers specific
methods to disaggregate (or "batch") exchanged product information.

Other researchers, notably Blackburn [21] and Smith and Reinertsen [22],
have recognized the merits of overlapping, but not provided detailed
information on how overlapping may be implemented ir a coupled,
nominally sequential process. Further, the effects of design interactions and
the risks involved in overlapping strongly coupled activities have not been
considered. Smith and Reinertsen [22] recommended that downstream
designers to search for ways to start early with partial information but did not
warn of considerable iterations that may result from hasty starts. Again,
industrial reality suggests that overlapping involves not only the
downstream activities starting early with preliminary information but also (i)
the determination of the design parameters that are of high importance to the
downstream activity and (ii) upstream freezing these parameters ahead of
normal course of action.

Nihtila studied product development in five industries and notes the
risk associated with overlapping - "... excessive overlapping of too many
interdependent phases seemed tc result in quite heavy iteration in
determining the engineering parameters and constraints..." [55] - but offered
no specific solutions. I believe this corresponds to the rework in downstream
activities to incorporate changes in upstream information caused by the
overlapping of activities. Proper understanding of the properties of the
exchanged information would help prevent such rework-intensive iterations.

In his study of Japanese product development processes, Whitney (33]
notes that the "main strategy” used by the Japanese to expedite product
development is overlapping; He further adds:

"Using incomplete information ... is risky... and requires carefully
supervised release of partial design information... Companies want ways to
categorize this information according to how important it is, when it is
needed, and how the impact varies depending on how much the delayed
information, once it arrives, deviates from what was assumed. Among the
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possible difficulties are wasting time in extra design iterations or creating
grounds for product liability if incorrect assumptions are not eliminated
before the design is released".

This matches closely to my approach to the overlapping problem. I offer ways
to categorize the information based on its availability and impact on the
downstream activity. Further, I develop models of how much the delayed
information deviates from what was assuined (when it arrives).

In the overlapping problem, iterations are used to incorporate upstream
changes. This is only one of the many ways in which iterations can happen
in product development. Smith and Eppinger [46] develop models of
iterations for coupled sets of tasks, where the distinction between upstream
and downstream tasks vanishes; the coupling is bi-directional and doing any
task creates a certain amount of rework for all coupled tasks. Overlapping on
the other hand is a method to relax the precedence constraints relating an
upstream and downstream task- constraints that arise from the interactions
between tasks, which are discussed in greater detail below.

4.4 The Information Processing View and Parametric Information

In developing the ideas in this chapter, I adopt the "information
processing" view of product development used by several other researchers
(see [53] for a summary). In this view, product development is thought of as a
process of transformation of input information about customer needs and
market opportunities into output information which corresponds to
manufacturable designs, and functional tooling for mass production.
Individual product development activities are themselves viewed as
information processors — which receive input information from the
preceding activities, and during the duration of the activity transform the
input information into a form that would be suitable for subsequent
activities. To enhance our understanding of information processing, I model
the exchanged information and its transformation in greater detail below.

In practice, the information exchanged between activities takes various
forms: customer needs, benchmark data, engineering specifications, part
dimensions and tolerances, prototypes etc. Here, I focus on exchanged
information that can be described as a collection of parameters. A parameter



is defined as a scalar piece of information that can be represented within a
compact (closed and bounded) set. Examples of parametric information
include part dimensions, tolerances, and customer specifications8.
Examination of product development processes in practice suggests that most
exchanged information in the engineering stages of product development can
be represented as a collection of parameters. Examples of product
information that cannot be represented as a collection of parameters inciude
new product concepts whose domain is neither closed nor bounded
(designers may come up with concepts whose bounds cannot be specified a
priori). I denote an individual (scalar) parameter by x and a collection (vector)
of parameters by X.

Combining the information processing view and the assumption of
parametric information, we obtain the following model. The information
processing upstream activity A begins at tAs, and transforms the exchanged
information until tAf — when the exchanged information can be nominally
finalized. This transformation in the exchanged information between tAg
and tAf, denoted by Ax(tAs, tAf), ensures that the product developed is of
appropriate quality (by meeting customer needs). At intermediate points in
time, ti, during the upstream activity, the transformation in the exchanged
information is only partially complete and is denoted by Ax(tAs, ti). In
general, the transformation or the change in the exchanged information
between two points in time tj and tj, tAs S i Stj< tAf, is denoted by Ax(t;, tj).
(The nature of this transformation varies from one problem to another: for
example, in some problems the transformation may involve narrowing of an
interval corresponding to the exchanged parameter; in others, it may involve
reducing the variance of the parameter and so on. Operational interpretations
of the transformation of information are developed in a future section.)

In the nominally sequential process, downstream activity B begins with
the finalized value of the exchanged information at time tAf. When the
activities are overlapped, however, the downstream activity B begins earlier
at time tj (< tAf) — either with preliminary upstream information when the

8The value assumed by the parameter in this set need not necessarily be a point value; it could

be a value within a range, but still in a closed and bounded set (eg. toleranced part dimensions).
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upstream information is still undergoing changes or with frozen upstream
information (finalized early). In this thesis, I argue that both the magnitude
of the change in the exchanged information x and the quality loss incurred by
the upstream activity (due to early freeze) depend on the evolution of the
exchanged information x - the rate at which the transformation of the
exchanged information occurs due to the upstream activity. The consequence
of this change in x to the downstream activity depends on the downstream
sensitivity to changes in x —~ which itself is a function of the downstream
capability (how easily the downstream activity can absorb changes in x), and
the tools and methodologies used in the downstream activity. Detailed
understanding of upstream and downstream activities can help determine
the evolution of the upstream generated parameter and the sensitivity of the
downstream activity to changes in the parameter. The combination of
evolution and sensitivity values determine how the pattern of information
exchange needs to be modified and the activities must be overlapped®. In the
forthcoming sections, I develop the notions of evolution and sensitivity in
detail.

4.5 Evolution of the Upstream Genrerated Parameter

Freezing the upstream generated parameter x early results in a quality
loss for the upstream activity because upstream designers forfeit the ability to
modify the parameter x until tAf (and thereby ensure that the product is of

appropriate quality). When the parameter x is frozen at a particular point in
time tF, before tAf (tF < tAf), the upstream designers are unable to make the

%In Chapters 1 and 2, we saw how design interactionscan be represented using PERT charts,
Gantt Charts, or the Design Structure Matrix (DSM). Figure 1.1 shows a sample example for a
process with four activities. Although this diagram indicates that activity C requires
information from B, the information required by C may be available before B is finished. Even
if such information is not available earlier in a finalized form, it may be available in a
preliminary form. Further, it might be information to which B is more or less sensitive. These
diagrams represent the availability of information at the completion of activities but need to
be augmented to represent information in its preliminary form and the sensitivity of
downstream activities to such information. It is in this regard that the notions of evolution and

sensitivity are useful.
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transformation or change that the parameter will undergo between tf and
tAf, Ax(tF, tAf). Let the quality loss for freezing parameter x at tF be denoted
by QL(tF). I model that:

- QL(tr) = ¢ (Ax(tF, tAf)

where ¢ is called the quality loss function. The quality loss function translates
the change forfeited by the upstream activity into a quality loss value. It is
evident that ¢ depends on a host of factors such as the market, the importance
of the parameter x to the product etc. It appears reasonable to expect,
however, that the larger the amount of change forfeited by the upstream
activity, greater is likely to be the quality loss incurred by the upstream
activity. In other words, the quality loss function is likely to be a
monotonically increasing function of the amount of change forfeited by
freezing the parameter x at tF, Ax (tF, tAf). If this is the case, then to
minimize the quality loss to the upstream activity due to early freeze of
parameter x, the change in x forfeited by the upstream activity needs to be
reduced as much as possible.

The change in parameter x between tF and tAf, Ax (tF, tAf), itself
depends on how much of the transformation is complete by tf. The term
degree of evolution is introduced to measure how close the unfinalized
parameter is to its final value. The degree of evolution, €j, at a given instance
ti (during the upstream activity's progress) is defined as the fraction of the
overall transformation in the exchanged parameter x expected tc occur by
time tj. Mathematically,

g = AX(tAs 1)

= @D
Ax(tas, tAf)

The above definition normalizes € such that € = 0 at the beginning of the
upstream activity, and € = 1 at the end of the upstream activity. Note that e is
a dimensionless quantity. As the upstream activity unfolds, the
transformation is increasingly complete, and € approaches the value of 1. A
plot of € (the degree of evolution of the parameter x) as a function of time
(upstream progress), obtained from a detailed understanding of the upstream
activity, is called the evolution of the parameter x.
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Using definition (4.1), the total change in the exchanged product
information between two points in time ti and tj for > ti, Ax(t, tj), is given

by:

- Ax(ti: t]) = Ax(tASr t)) - Ax(tASI tl)
= Ax(tAs, tAf) (g — &)

In other words, the change in the exchanged parameter between any two
points in time is proportional to the difference in degrees of evolution at
these points in time. Larger this difference, greater is the change in the design
narameter. If we choose one of these points as tF, and the other as tAf, then
the change in the parameter represents the change Ax(tF, tAf) forfeited by the
upstream activity. From the above result, Ax(tF, tAf) = Ax(tAs, tAf) (1 -€F) -
since eAf = 1. This change is dependent on the value of €F at time tf. The
larger €F is at time tF, smaller is the change forfeited by freezing the parameter
at tF and therefore the quality loss. The value of €F is at time tF is however
dependent on the evolution of x.

A

Degree of
Evolution

B-Jime

Begiing of End of
Upstream Activity Upstream Activity

Figure 4.2: Evolution of Two Different Versions of the Upstream Activity

Figure 4.2 shows the evolution of x for two different versions of the
upstream activity. It is seen that the at any point in time the degree of
evolution of the parameter x in (a) is always higher than in (b). In this sense,
the parameter x is said to evolve faster in (a) than in (b). It is evident that the
quality loss incurred, due to freezing the parameter x at an earlier point in
time, will be lower in version (a) than in version (b). The faster the
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evolution of the exchanged parameter, the smaller would be the quality
penalty for freezing it early. However, the evolution of the parameter does
not by itself determine the magnitude of the quality loss to the upstream

activity. Two other quantities, the quality loss function, ¢, and the overall
change (Ax(tAs, tAf)) impact the quality loss value as well:

QL(tF) = ¢ ( Ax(tAs, tAf) (1-€F))

The evolution of the parameter x is said to be rapid when the quality loss
due to freezing the parameter early in the upstream process is low. The
evolution of x is said to be slow when the quality loss for freezing the
parameter even later in the upstream process is high. The evaluation of
whether the quality loss is low or high depends on the product development
process in question.

Examination of industrial product development processes indicates that
the nature of the design information and the upstream process often
determines if the evolution of the design information is slow or rapid.
Consider for example, the pager design process at Motorola. The designers
can predict, from prior experience in designing the product, that the
evolution of the dimensional information (length, width and depth of the
pager) is rapid; these dimensions are largely determined by competitive
products, target market, volume studies and human factor studies, and can be
frozen early without much quality loss for the product concept. On the other
hand, the shape details of the pager, such as the corner radii evolve slowly; if
any feature of the product changes, many of the shape details need to be
modified to create an "integrated design".

The notion of evolution is useful not only to characterize the upstream
quality loss, but also to quantify the amount of change in the parameter x that
the downstream activity may expect to process in future iterations if it were to
start early with preliminary upstream information. Whether this change in
the parameter x will inordinately increase the downstream effort or not
depends on the downstream sensitivity discussed below.

4.6 Downstream Sensitivity

The notion of downstream sensitivity is introduced to capture the
consequence of the changes in parameter x to the downstream activity. By
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downstream sensitivity, I mean the duration of downstream work required
to incorporate changes in parameter x made by the upstream activity.
Downstream sensitivity is said to be high if the duration of the downstream
work required to incorporate changes in the parameter x is high. Lower
downstream seunsitivity describes the case when substantial changes in
parameter x can be accommodated quickly by the downstream activity (see
Figure 4.3). The function relating the increase in the downstream duration to
the change in the upstream design parameter is called the influence function.
The influence function is mathematically depicted as ¥ while capturing the
relation between the change and downstream iterations as, dj = F(Ax(ti-1, ti))
where dj is the duration of the downstream work required at time tj to
incorporate the change in the design information from time tj-1 to time tj.

A
Increase in
Downstream

AN

Duration
High sensitivity case

Low sensitivity case

-

Change in x
Figure 4.3: Low and High Sensitivity

Modeling downstream sensitivity may get complex. The same amount
of change in the parameter x could have different effects on the downstream
activity based on the design state. In such cases, the influence function is said
to be state dependent. For example, consider the pager development example
once again. A 2 mm reduction in the width of the pager made by industrial
design (x) could have different effect on product engineering if the initial
width was 200 mm instead of 400 mm. In a state-independent influence
function, the increase in downstream duration is only a function of the
change in the design parameter. In this thesis, for the sake of simplicity, we
will confine ourselves to state-independent influence functions.
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4.7 The Performance Tradeoffs due to Overiapping
In Chapter 1, I presented the framework that helps determine how to
overlap activities based on the evolution and sensitivity of the information
exchanged. The framework is summarized here (see Figure 4.4).
Degree of Degree of

Evoluticn Evolution

Increase in Downstream | It€rative C-)verlapping; Distributive Overlapping
No Quality Loss Some Quality Loss
Increase in Effort Increase in Effort
Smaller Lead Time | Much smaller Lead Time

Increase in Downsream | D1ViSive Overlapping{ Precipitative Overlapping
No tradeoff or one of | Some Quality Loss

the other three types. | No increase in Effort
Smaller Lead Time

Figure 4.4: Type of Overlapping and Likely Performance Tradeoffs

* When the upstream information evolution is slow, and the downstream
sensitivity is low, the overlapping is iterative; downstream activity begins
with preliminary upstream information and incorporates future changes
in subsequent iterations.

® When the upstream information evolution is rapid, and the downstream
sensitivity is high, the overlapping is precipitative; upstream information
is precipitated to its final form, and finalized before the completion of the
upstream activity enabling downstream activity to start early with
finalized upstream information.

¢ When the upstream information evolution is rapid, and the downstream
sensitivity is low, the overlapping is distributive; both upstream
information is frozen early, and downstream activity starts with
preliminary upstream information.
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e When the upstream information evolution is slow, and the downstream
sensitivity is high, the overlapping is divisive; the exchanged information
is decomposed into components to see if any of the components falls
under the previous three categories.

In this secticn, I discuss the performance trade-offs that result for the
different types of overlapping.

Under iterative overlapping, the upstream information is not finalized
early, and so there is no loss of quality (flexibility) for the upstream activity.
(In fact, there may even be an improvement in quality because the upstream
activity can now obtain some feedback from the downstream activity which
begins early with preliminary information.) On the other hand, the
downstream effort is expected to be higher under iterative overlapping.
Because the downstream wait time is reduced, savings in lead time is
expected. Using the mathematical model developed in the next chapter, the
beginning of downstream iterations can be chosen so as to reduce the amount
of development effort, and to ensure minimum lead time.

Under precipitative overlapping, the downstream activity starts with
finalized upstream information, and so there are no subsequent iterations
(leading to an increase in downstream time or effort). From the upstream
point of view, however, there may be a quality penalty for foregoing the
ability to make design changes until later in time; there may not be an
increase in effort to precipitate the information because the effort is only
advanced. The lead time performance is expected to be better because the
downstream activity starts early.

In distributive overlapping, the upstream activity may incur a quality
loss for the finalizing the exchanged information early; an increase in
downstream effort is expected because downstream begins with preliminary
information. However, being the most aggressive of all the four types of
overlapping, it can lead to a substantial reduction in lead time.

With divisive overlapping, there may be no effect on the performance
parameters if all components of the exchanged information possess the same
evolution and sensitivity patterns. However, if some components fall under
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any of the previous three categories they would experience similar
performance trade-offs.

4.8 Determinants of Evolution and Sensitivity

In this section, I use the pager development process at Motorola
introduced in Chapter 1 as an example to iilustrate what factors determine
evolution and sensitivity, and how they can be altered. (Refer to Figure 1.7 for
a representative pager and a pager cross section.) I describe the process in
more detail before discussing evolution and sensitivity.

Product
Specification
Target Market,
[Features
Industrial Design
Dimensions, Shape details
User Interface
Engineering Design
Componen
Designs
iooling Design |

Figure 4.5: Pager Development Process Phases

As shown in Figure 4.5, the process of development of a pager involves
four stages: product specification, industrial design (or styling), engineering
design, and development of tooling and fixtures. During the product
specification stage, the target market, pager geometric form (rectangular,
hexagonal etc.), and carrying method (pocket, belt etc.) are defined. During the
industrial design stage, the external dimensions, shape details and the user
interface (location and size of display and buttons) are defired. The
engineering design stage involves the design of the mechanical parts (walls,
ribs etc.) and the electrical components (receiver and decoder design). It is
noteworthy that the downsiream phases are dependent on the upstream
stages: industrial design of the pager requires knowledge about the target
market, geometric form, and carrying method; engineering design requires
additionally the external dimensions and shape details to layout the chips,
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select components and design pager housing. Develcping tooling and fixtures
requires information about wall thicknesses and other surface formations.

In Chapter 1, I discussed the overlapping of the engineering design and
industrial design phases. Specifically, I noted that the phases were overlapped
by (i) early freeze of the pager dimensions (under precipitative overlapping),
and (ii) preliminary exchange of the unfinalized shape details (iterative
overlapping). Figure 4.6 depicts the overlapped pager development process.

Product
Specification

Target Market,
eatures
Industrial Design

Frozen Dimensions

Preliminary Shape vFinal Shape

Engineering Design

Componen
Designs

Tooling Design |

Figure 4.6: Overlapping of Engineering Design and Industrial Design

It is instructive to take a closer look at the evolution and sensitivity of
the pager dimensions and the shape details. The dimensions evolve rather
quickly during the industrial design phase, being determined largely by the
competition, target market and technology. For instance, if the pager designed
was to fit into a shirt pocket, its length (and to some extent width) are
immediately constrained by standard pocket sizes. Further, aesthetics and
competitive products necessitate that the width and thickness be in
proportion to length. The evolution of the shape details is, however, slow as
industrial designers change the corner radii to ensure consistency of shape
with the rest of the features. This is confirmed by data from a recently
completed process which shows that the radius had changed as much as 30%
near the end of the industrial design phase, while the corresponding change
in the pager dimensions was small enough to not require a subsequent
engineering iteration (the pager dimensions grew slightly, but the increase in
dimensions does not affect engineering adversely).
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The sensitivity of engineering design activity to any decrease in
dimensions is high as an altogether new layout and smaller components
(manufactured with more recent or not yet available technology) may be
needed to accommodate the shrinkage in the size of the case. As noted earlier,
the sensitivity of engineering design to changes in the corner radii was kept
low by placing the taller components in the middle. Thus communication
between the functions and anticipation by the downstream function helped
reduce the sensitivity of the downstream activity.

Figure 4.7 shows the evolution and sensitivity of the dimensions and
shape details (enclosed in capsules) and how they may be altered (using
arrows). First, better communication ensured that sensitivity of shape details
were changed from high to low. With use of CAD tools the evolution of the
shape details can further be accelerated. A major obstacle to the
determination of the shape is the creation of the (corner) blends in the
surfaces. Currently, industrial designers sketch the surface on paper, and
engineers labor for weeks to input the sketched surface into the computer - in
ensuring that it reflects the industrial designer’s intent. New tools such as
ALIAS can be used by the industrial designer to directly inpgut the surface into
the computer. This will help accelerate the evolution of shape details.
Further changes can be easily made and prototypes directly fabricated, so the
sensitivity further decreases.

The sensitivity of dimensions can be altered by better design practice and
technology. If the engineering designers laid out the components with a
clearance (the dimensions are assumed to a certain magnitude smaller than
what industrial designers offer), the sensitivity of the shape details can be
reduced to a certain extent. Also, designing below the current manufacturing
capabilities (using chips with larger size than what is currently producible)
can ensure that any surprise changes by industrial design can be taken care of.
However, if market considerations dictate that the chips selected be at the
frontier of available manufacturing technology (as they currently do), this
suggestion cannot help reduce sensitivity. Improved communication about
the likelihoou of changes in dimensions can also be of use to some extent as it
helps warn advanced development group of the need for new technology,
and senior management of the need to identify suppliers with better
manufacturing capabilities.
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Figure 4.7: Evolution - Sensitivity Map

Figure 4.7, the Evolution-Sensitivity map, also shows the desirable
direction of niovement for a design process; from the point of view of
overlapping, it is desirable that the evolution of the design information
become faster, and sensitivity lower. I believe such a map will be useful in
practice to both evaluate existing process capabilities and transform defective
processes into effective processes.

4.9 Models of Transformation of Upstream Information

So far, I have referred generally to the transformation of upstream
information. In this section, I offer an operational interpretation. In this
interpretation, the exchanged parameter x is represented as a point value in
its frozen form(e.g. x =7.€). "1 its preliminary form the parameter x is
modeled to be knowr: within an interval {a, b}, but its exact value within the
interval is not known10. At the beginning of the upstream activity, x is
known to lie within the interval {aip, bin}, also called the initial interval.
During the course of the upstream activity, as more calculations are
performed and external inputs are received, the parameter x is graduaily

105uch a model of preliminary product information has also been used by several other

researchers; for example, see Ward [56] for instance.
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narrowed to its final value - a point within the initial interval. In other
words, we are modeling the transformation as the convergence of parameter
x from an initial interval (ajn, bin} at the beginning of the upstream activity
to a point value at the completion of upstream activity (see Figure 4.8). The
rate at which the interval narrows is modeled to be characteristic of the
upstream activity, and should be obtained as an input from studying the
upstream activity. As the upstream activity proceeds the interval within
which the parameter lies changes until when the parameter attains its final
value at the completion of the upstream activity.

bm
initial Final
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tas Progress)

Figure 4.8: Upstream Activity Narrowing the Parameter to its Final Value

With this interval model of preliminary information, the interval width
is a measure of how close the parameter is to its final value: smailer the
interval width, closer is the parameter to its final value. The degree of
evolution (g) is now defined to be a linear function of the width of the design
interval, with a negative slope. It can be verified that the following
expression relates the degree of evolution €j, at time tj, to the width of the
design interval at tj, {aj, bj):
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Once again, €is a dimensionless quantity and is normalized such that € =
0 at the beginning of the upstream activity, and € = 1 at the end of the
upstream activity. As before, the plot of € as a function of time (upstream
progress) gives the evolution of the parameter x. It is shown below that the
magnitude of change in the upstream information between time fj and t;j (tAf
22t 2 tas ), Ax(tj, tj), equals: Ax(tj, t;) = B (gj - €i) where B is a parameter of the
design process and ¢j and ¢; are the degrees of evolution at times t; and tj.

Let at time tj, when the evolution is €;, the design interval be {aj, bj} and
at time tj, when the evolution is ;, the design interval be {aj, bj}. Using this
model, it can be shown for monotonic evolution!! (such that for tj> tj, the
interval {ai, bi} is a subset of {aj, bj} i. e. bj< bj; aj2 aj) that the maximum
expected change in the design information between the two points in time t;
and tj (tj > t;), is proportional to the difference in degree of evolution, (gj - €i)-

aj + b;

The expected value of the design information at tj is and at tj is
aj + b]
——— (since using intervals implicitly assumes an uniform distribution). To

maximize the change, I solve the optimization problem in Figure 4.9:
ai +bi 4. +b:
Maximize! ) 5 )3 ;bll

subject to:
bi <b;j
aj 2 aj

1 - €
: - ne
(bl_aj)—l—ei (bl—ai)

aj*‘bj_ai+bi

There are two solutions based on the sign of

2
a; +b; . . . _ a.
(1) When |- ’-al';bl 20,b1-=bi;aj=bi-bm_2ﬁll(1_ej)
a; + bj . .
] ] a'+bl e e — A bln—a' )
(2) When - ‘2 SO,a,-a,;b,-a.+—2—'—‘l(1—e,)

Figure 4.9: Maximizing the Expected Change

11A similar result is derived for nonmonotonic evolution in the appendix A4 which shows that

the change in the design information between t; and tj (tj > tj), is proportional to (gj + &).
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In both cases of Figure 4.9, the maximum change = Ax(t;, tj) = bin—;ajn (gj - &)

This result suggests that if the upstream activity was to attempt to freeze
the design information at tf, then it foregoes the abi