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1 Introduction

In the last twenty five years the field of dispersive PDE has seen incredible advances, from the

well-posedness theory to the blow up analysis, from the study of soliton interactions to partial

results on the “soliton resolution conjecture”. The contribution of Carlos Kenig in this large

body of collective work is staggering. Let us just mention some of the most fundamental results

that he and collaborators produced: [3, 4, 21–23, 26–28, 37–41, 43, 44, 46–50].

In this survey paper we take a different approach, we focus on well-posedness type results

that are generic in nature, more than deterministically obtained. In fact, since the pioneering

work of Bourgain on almost sure (a.s.) global well-posedness of certain dispersive equations via

the invariance of the Gibbs measure [8, 9], a large body of work has been produced based on

the effectiveness of initial data randomization to obtain theorems on existence (and sometimes

uniqueness) of solutions for certain evolution equations on low regime of regularity, a situation

in which deterministic tools often may no longer be suitable. For the purpose of this survey

we can group these theorems in three distinct classes. The the first class collects results in

which a local well-posedness is extended to a global one by using the invariance, or sometime

almost invariance, of a Gibbs type measure. This includes for example [8], [9] and the example

that will be recalled below and studied in [54, 57], see Section 2 and 3. The second class,

see Section 4, contains problems in which local well-posedness or existence of weak solutions
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can be obtained at a very low level of regularity by studying the so called difference equation.

The solution w of the difference equation is such that w = u −W (t)uω0 , where u and W (t)

are respectively the solution of the original equation and its linear operator, and uω0 is the

random initial data. The fundamental fact used here is that the initial value problem satisfied

by w is more regular than the one originally given for u and hence deterministic techniques

can be used. In this class we can include, besides [8, 9] already recalled above, the works

[14, 15] where the problem is set on a compact manifolds, [12, 24] where the equation has

a discrete spectrum thanks to the presence of a potential, and [5, 6, 25, 52, 53] where the

ambient space is Rd and the randomization is obtained by reassembling the Fourier transform

of the initial data by randomly summing a partition of unity supported on unit cubes, in

other words, randomizing a Wiener decomposition of the initial data. In this class we will

survey in particular [58] for the quintic periodic 3D NLS, and [55] for the periodic 2D and 3D

Navier-Stokes equations. The third class is concerned with a procedure originally introduced

for certain fluid equations by Albeverio and Cruzeiro [1], see Section 5. In this procedure an

invariant measure is associated to the equation at hand and one shows that on the support of

the measure the expectation of the nonlinear part of the truncated equation is finite uniformly

with respect to the truncation parameter. Starting from here a Galerkin approximation scheme

is then set up and a probabilistic convergence argument is presented via the Prokorov’s Lemma

(for compactness) and the Skorokhod’s Lemma (for convergence of measures). Unfortunately in

this procedure uniqueness of solutions is often difficult to achieve, even in a more probabilistic

sense; see e.g. [1], [13], [59], [56]. Below, in Section 5 we survey our results in [56]. In the

same section we survey the work in [11], thus giving an example of regularization by noise (c.f.

[30]) in the context of the inviscid quasi-geostrophic equation where randomness is injected as

a perturbative term in the equation itself.

Before we pass to specific equations and problems we give a precise definition of what we

mean for randomizing initial data. Here we assume that the base space is Hs(Td) for s ∈ R,

but this procedure can be applied also for spaces of Lebesgue type such as the ones used in [54]

for example.

Definition 1.1 Let (gn(ω))n∈Zd be a sequence of complex i.i.d centered Gaussian random

variables on a probability space (Ω, A, P ). For φ ∈ Hs(T3), let (bn) be its Fourier coefficients,

that is

φ(x) =
∑
n∈Zd

bn e
in·x,

∑
n∈Zd

(1 + |n|)2s |bn|2 <∞. (1.1)

The map from (Ω, A) to Hs(Td) equipped with the Borel sigma algebra, defined by

ω −→ φω, φω(x) =
∑
n∈Zd

gn(ω)bn e
in·x (1.2)

is called a map randomization.

Remark 1.2 The map (1.2) is measurable and φω ∈ L2(Ω;Hs(Td)), is an Hs(Td)-valued

random variable. We remark again that such a randomization does not introduce any Hs

regularization (see Lemma B.1 in [14] for a proof of this fact), indeed ‖φω‖Hs ∼ ‖φ‖Hs . However

randomization gives improved Lp estimates almost surely.
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We also observe that for any set Ω̃ ⊂ Ω and any φ ∈ Hs, we can define sets Σ ⊂ Hs such

that

Σ := {φω / ω ∈ Ω̃}

and a measure µ such that

µ(Σ) := P (Ω̃).

2 Almost Sure global well-posedness and (almost) invariance of the Gibbs measure

The general strategy for problems in this class is to start with a Gibbs measure defined on a

set of (rough) initial data. Then one first proves, either deterministically [8] or probabilistically

[9, 14], that there is a local flow on this set of data, and then the flow is extended for all times

using the invariance of the measure. Of course this argument needs first to be implemented on

the truncated initial value problem, and then a limit process is activated.

In this section we consider the 1D periodic derivative non linear Schrödinger DNLS equation

equation studied in [54]. For this example the general argument outlined above does not work

as stated due to the fact that a gauge transformation needs to be implemented in order to be

able to show that a local flow is available.

We now give some details of how the argument needs to be refined in order to obtain almost

sure global well-posedness for the DNLS, and we refer the reader to the original paper [54] for

a full history of the problem and a complete bibliography.

The periodic initial value problem for DNLS takes the form:ut − i uxx = λ(|u|2u)x

u
∣∣
t=0

= u0,
(2.1)

where (x, t) ∈ T × (−T, T ) and λ is real. In this paper we will take λ = 1 for convenience.

DNLS is a Hamiltonian PDE whose flow conserves also mass and energy; i.e. the following are

conserved quantities of time1:

Mass: m(u)(t) =

∫
|u(x, t)|2 dx,

Energy: E(u)(t) =

∫
|ux|2 dx+

3

2
Im

∫
u2uux dx+

1

2

∫
|u|6 dx,

Hamiltonian: H(u)(t) = Im

∫
uux dx+

1

2

∫
|u|4 dx.

The original motivation for the work in [54] was to prove the invariance of the Gibbs measure

defined in [63] using the mass and the energy defined above. Informally this measure can be

written as

“dν =
1

Z̃
e−E(u)−m(u)du”,

where Z is a normalizing constant and E and M are defined above. But to make sense of this

measure one needs to use the Gaussian measure [7]

dρ :=
1

Z
e−

∫
T |ux|

2dx−m(u)du

1In fact, DNLS is completely integrable.
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supported in spaces that scale like Hs(T), s < 1
2 , and show that the remaining part of dµ,

namely

e−
3
2 Im

∫
u2uux dx− 1

2

∫
|u|6 dx,

that contains the nonlinear terms of E(u), is in L1 with respect to dρ.

Although in [63] the Gibbs measure was defined, the first step in order to prove invariance

is to show that the equation itself has a well defined global in time flow in the support of the

measure. Unfortunately the well-posedness question for the initial value problem (2.1) is made

complicated by a derivative loss coming from the nonlinearity (|u|2u)x = u2 ux + 2 |u|2 ux,

more precisely from the second term of this sum. To resolve this issue a gauge transformation,

that we recall below, is introduced to remove the bad term 2 |u|2 ux.

For f ∈ L2(T), let

G(f)(x) := exp(−iJ(f)) f(x)

where

J(f)(x) :=
1

2π

∫ 2π

0

∫ x

θ

|f(y)|2 − 1

2π
‖f‖2L2(T) dy dθ. (2.2)

NoteG(f) is 2π-periodic since its integrand has zero mean value. Then for u ∈ C([−T, T ];L2(T))

G(u)(t, x) := G(u(t))(x− 2 tm(u)).

Note the L2 norm of G(u)(t, x) is still conserved since the torus is invariant under translation.

We have that

G : C([−T, T ];Hσ(T))→ C([−T, T ];Hσ(T))

is a homeomorphism for any σ ≥ 0 and locally bi-Lipschitz on subsets of C([−T, T ];Hσ(T))

with prescribed ‖u(0)‖L2 .

Then if u is a solution to DNLS (2.1) and v := G(u), then v solves the gauged DNLS

equation GDNLS:

vt − ivxx = −v2vx +
i

2
|v|4v − iψ(v)v − im(v)|v|2v (2.3)

with initial data v(0) = G(u(0)), where

m(v)(t) :=
1

2π

∫
T
|v(x, t)|2dx and (2.4)

ψ(v)(t) := − 1

π

∫
T

Im(vvx) dx +
1

4π

∫
T
|v|4dx−m(v)2. (2.5)

Note that m(v) is conserved in time; more precisely m(v)(t) = 1
2π

∫
T |v(x, 0)|2dx = m(u), and

that both m(v) and ψ(v) are real. Now we show how the energy E(u) and H(u) transform

under the gauge. We have

H(u) = Im

∫
T
uux dx+

1

2

∫
T
|u|4 dx.

= Im

∫
T
vvx −

1

2

∫
T
|v|4 dx+ 2πm2 =: H (v) (2.6)

and

E(u) =

∫
vxvx dx−

1

2
Im

∫
v2vvx dx+ 2m Im

∫
vvx dx−

1

2
m

∫
|v|4 dx+ 2πm3.
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If we define

E (v) :=

∫
T
|vx|2 dx−

1

2
Im

∫
T
v2v vx dx+

1

4π

(∫
T
|v(t)|2 dx

)(∫
T
|v(t)|4 dx

)
, (2.7)

then E(u) can be rewritten as

E(u) = E (v) + 2mH (v)− 2πm3 =: E(v). (2.8)

Unfortunately while gauging the DNLS equation one looses track of the key features of

the Gibbs measure associated to the original equation since, the gauge transformation mixes

the Fourier coefficients in a way that is hard to control. Our approach in [54] then can be

summarized in the following steps.

Step 1: We consider directly the gauged problem (2.3) and we define a new Gibbs measure

dµ for this problem using its energy truncated(v) in (2.8). Informally

“dµ =
1

Z
e−E(v)−m(v)dv”,

and its support is in spaces that scale like Hs, s < 1
2 . To define this measure as usual we

truncate the initial value problem (2.3) on a frequency window of size N and we work with

the corresponding finite dimensional system. Local well-posedness, independent of N , of this

truncated problem in the support of the measure is not an issue, and in fact randomness is not

necessary2 to establish it. But there are two main difficulties that need to be resolved in order

to define dµ. The first is that the truncated initial value problem coming from (2.3) is no longer

in Hamiltonian form and hence one has to prove directly that its flow preserves volumes. This

is done in Lemma 4.1 in [54]. The second difficulty is that the energy E(vN ), where vN is the

solution to the truncated problem, is no longer invariant. Hence dµN , the truncated version of

dµ, is not invariant. This is contrary to what happens for example in [63], for the un-gauged

truncated initial DNLS problem.

Step 2: In this step we show that E(vN ) is almost conserved and hence dµN is almost

invariant. This is the content of Theorem 4.2 in [54].

Step 3: In this step we put all the ingredients together such as local well-posedness, almost

invariance of the measure and the argument of Bourgain to move from local to global solutions.

Finally we take the limit as N tends to infinity and we also show that although dµN was only

almost invariant, its limit dµ is invariant. This step is the content of the fundamental Lemma

6.1, Proposition 6.2 and Theorem 6.3 in [58].

Here we give a very schematic rendering of the main idea contained in Lemma 6.1 that

allows us to move from local to global well-posedness. Let us call ΦN the flow of the truncated

initial value problem (2.3). Let us assume that the initial data are in a set CN (K) of (truncated)

initial data, contained in the support of the measure, with norms bounded by K, where K is

large. If the initial data of the truncated problem are in CN (K) then one has local well-posed

on a time interval of length δ ∼ K−γ , where γ > 0 is independent of N . Furthermore, from the

definition of dµN from Step 1 one has the large deviation estimate

µN (CN (K)) ≤ e−K
2

.

2Here deterministic local well-posedness results of [33] in Fourier Lebesgue spaces FLs,r suffice
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We then fix a large time T and we define the subset of initial data Ω̃N by

Ω̃N :=

{
vN0 : ΦN (jδ)(vN0 ) ∈ CN (K) , j = 0, 1, · · ·

[
T

δ

]}
.

Note that Ω̃cN =
⋃[Tδ ]
k=0Dk , where

Dk =
{
vN0 ; k = min

{
j : ΦN (jδ)(vN0 ) ∈ CN (K)c

}}
,

=

k−1⋂
j=0

ΦN (−jδ)CN (K))

 ∩ ΦN (−kδ)(CN (K)c) . (2.9)

One verifies easily that the sets Dk satisfy

D0 = CN (K)c , Dk = CN (K) ∩ ΦN (−δ)(Dk−1) . (2.10)

From the almost conservation of the energy mentioned in Step 2, iterating in k ∈ {0, . . . [Tδ ]},
one obtains

µN (DK) ≤ ec(δ)N
−βK8

µN (DK−1) ≤ ek c(δ)N
−βK8

e−cK
2

and thus

µN (Ω̃cN ) ≤
[Tδ ]∑
k=0

ek c(δ)N
−βK8

e−cK
2

.
[T
δ

]
e−cK

2

∼ TKγe−cK
2

, (2.11)

for N ≥ N0(T,K). By choosing K ∼
(

log T
ε

) 1
2 , one has µN (Ω̃cN ) < ε which implies that for a

fixed T one can find a set of initial data Ω̃N of almost full measure which evolution spans the

whole interval of time [0, T ].

One my wonder though what is the connection between the measure dν in [63] for the DNLS

and the measure dµ above for the GDNLS. We answered this question in [57], by showing that

indeed the two measures are absolutely continuous with respect to each other. We discuss this

in the next section because the topic is relevant on its own terms.

3 Gaussian measures under gauge transformations

In [57] we prove the absolute continuity of Brownian bridges under certain type of gauge trans-

formations. More precisely we give a proof of the absolute continuity between Gaussian mea-

sures naturally associated with complex Brownian motions and their images under certain

gauge transformations, which could be of anticipative type and hence not under the scope of

Girsanov’s theorem [60]. The general nature of our theorem as well as the ubiquitous role of

gauge transformations in the study of dispersive and wave equations3 should make the type

of result in [57] applicable in other situations as well. The motivation arises from the work in

[54] described above on the periodic DNLS. In that work a weighted Wiener measure of the

form µ = Z−1 exp
(
−
∫
TN (v)

)
· ρ, where ρ is the Gaussian measure, is constructed and its

invariance established for the associated gauged equation. Here N (v) denotes the nonlinear

terms in the energy E of GDNLS. The question arises as to whether the ungauged measure

µ̃ = µ◦G, which is also invariant as we will see below, is also absolutely continuous with respect

3For many equations gauge transformations are essential to convert the nonlinearity into a better one where

resonant interactions are manageable.
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to ν, the weighted Wiener measure that was constructed by Thomann-Tzvetkov in [63] directly

from the (ungauged) periodic DNLS. In [57] we answered this question in the affirmative and

thus in particular showed the measure constructed in [63] is indeed invariant under the flow of

periodic DNLS.

There is a vast literature on Gaussian measures under nonlinear transformations both of

non-anticipative and anticipative type (see eg. [7, 10, 16, 17, 29, 36, 51, 62] and other references

therein). Their general framework however does not fit those gauge transformations we have

in mind. The work of Cambronero-McKean [16] on the periodic KdV and the Miura gauge

transformation- exploited by Quastel and Valkó [61]- is not directly applicable either. The

absolute continuity of Gaussian measures in the context of periodic PDE is an intricate problem

that requires tools from stochastic analysis and probability. It is intimately connected with how

Gaussian measures and their supports transform under gauge transformations as well as other

nonlinear transformation, in the periodic setting. This is a problem with interest in its own

right and the subject of current research.

To recap then, from the previous Section 2, the output from [54] gives the following:

Theorem 3.1 (Almost sure global well-posedness of GDNLS) There exists a set Ω, µ(Ωc) = 0

such that for every v0 ∈ Ω the IVP GDNLS with initial data v0 is globally well-posed.

Theorem 3.2 (Invariance of µ) The measure µ is invariant under the flow Φ(t) of GDNLS

The last step is going back to the ungauged DNLS equation. By pulling back the gauge,

it follows easily from Theorems 3.1 and 3.2 that we have invariance of the ungauged measure

µ̃ := µ ◦ G.
Recall, µ is a measure on Ω and G−1 : Ω → Ω measurable. The measure µ̃ is defined then

by

µ̃(A) := µ(G(A)) = µ({v : G−1(v) ∈ A}) .

for all measurable sets A or equivalently - for integrable F - by∫
Fdµ̃ =

∫
F ◦ ϕdµ

Theorem 3.3 (Almost sure global well-posedness of DNLS) There exists a subset Σ of the

Fourier-Lebesgue space4FL 2
3−,3(T) with µ̃(Σc) = 0 such that for every u0 ∈ Σ the IVP DNLS

with initial data u0 is globally well-posed.

Finally we show that the measure µ̃ is invariant under the flow map of DNLS.

Theorem 3.4 (Invariance of measure under DNLS flow) The measure µ̃ = µ ◦ G is invariant

under the DNLS flow.

We are now ready to ask: what is µ̃ = µ ◦ G really? Is it absolutely continuous with respect

to ν, the measure that can be naturally constructed for DNLS by using its energy E,

E(u) =

∫
T
|ux|2 dx+

3

2
Im

∫
T
u2uux dx+

1

2

∫
T
|u|6 dx

4For a definition of Fourier Lebesgue spaces see for example [54]. In particular, FL
2
3
−,3(T) scales like

H
1
2
−(T).
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=:

∫
T
|ux|2 dx+K(u)

as done by Thomann-Tzevtkov in [63]?

We know µ̃ is invariant and that the ungauged DNLS equation is globally well-posed almost

surely with respect to µ̃. Treating the weight is easy. The problem is un-gauging the Gaussian

measure ρ.

Hence the question becomes: what is ρ̃ := ρ◦G? Is its restriction to a sufficiently small ball

in L2 absolutely continuous with respect to ρ? If so, what is its Radon-Nikodym derivative?

We would like to compute ρ̃ explicitly. This turns out to be an intricate problem that requires

tools from stochastic analysis and probability.

3.1 Absolute continuity of Brownian bridges under gauge transformations

There is an analytic theory on Gaussian measures under nonlinear transformations both of

non-anticipative and anticipative type (see eg. [7] and references therein).

This theory is fairly well understood for transformations of the form x + F (x) with F a

transformation from a Banach space (associated to the support of the measure) into a Hilbert

space H, known as the Cameron-Martin space (associate to the construction of measure; H =

Ḣ1 in the case of DNLS above) and whose (Fréchet) derivative F ′ in the direction of H exists

and is ‘nice’, for example F ′|H is Hilbert-Schmidt. But this framework does not fit (directly) the

gauge transformations as the one above. Gauge transformations as the ones used above are L2

unitary transformations which do not have this I +F form. The work of Cambronero-McKean

on the periodic KdV and the Miura gauge transformation- exploited by Quastel and Valkó- is

not directly applicable either.

To further understand the ungauged measure one should stop thinking about the solution v

as a infinite dimension vector of Fourier modes and start thinking instead about v as a (periodic)

complex Brownian path in T (Brownian bridge) solving a certain stochastic process.

We recall that to ungauge we need to define

G−1(v)(x) := exp(iJ(v)) v(x)

where J(v) is defined as in (2.2).

It will be important later that J(v)(x) = J(|v|)(x). Then, if v satisfies

dv(x) = dB(x)︸ ︷︷ ︸
Brownian motion

+ b(x)dx︸ ︷︷ ︸
drift terms

by Ito’s calculus, and since exp(iJ(v)) is differentiable, we have:

dG−1v(x) = exp(iJ(v)) dv + iv exp(iJ(v))

(
|v(x)|2 − 1

2π
‖v‖2L2

)
dx+ . . .

Substituting above one has

dG−1v(x) = exp(iJ(v)) [dB(x) + a(v, x, ω)) dx] + . . .

where

a(v, x, ω) = iv

(
|v(x)|2 − 1

2π
‖v‖2L2

)
. (3.1)
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The fact that exp(iJ(v)) is a unitary operator is crucial. If one could now prove Novikov’s

condition:

E
[
exp

(
1

2

∫
a2(v, x, ω)dx

)]
<∞,

then one could apply Girsanov’s theorem5 to finish off. However, Girsanov’s theorem doesn’t

save the day quite yet. If one reads the theorem carefully one realizes that an important

condition is that a(v, x, ω) is non-anticipative; in the sense that it only depends on the Brownian

motion v(x) up to ‘time’ x and not further. This however is not true in our case. The drift term

a(v, x, ω) in (3.1) involves the L2 norm of v(x) and hence it is anticipative. A different strategy

is needed. We use in fact the conformal invariance of complex Brownian motions, together with

‘linearization’. We now give some details.

If W (t) = W1(t)+iW2(t) is a complex Brownian motion, and φ is an analytic function, then

Z = φ(W ) is, after a suitable time change, again a complex Brownian motion. In what follows,

let Z(t) play the role of our complex Brownian motion v(x), and let φ be the exponential

function. For Z(t) = exp(W (s)) the time change is given by

t = t(s) =

∫ s

0

|eW (r)|2dr, dt

ds
= |eW (s)|2,

or equivalently

s(t) =

∫ t

0

dr

|Z(r)|2
,

ds

dt
=

1

|Z(t)|2
.

We are interested in Z(t) in the interval 0 ≤ t ≤ 2π, and thus we introduce the stopping time

S = inf

{
s ;

∫ s

0

|eW (r)|2dr = 2π

}
.

It is important to note that the stopping time S depends only on the real part W1(s) of W (s),

(or equivalently only on |Z|).
If we write Z(t) in polar coordinate Z(t) = |Z(t)|eiΘ(t) we have

W (s) = W1(s) + iW2(s) = log |Z(t(s)|+ iΘ(t(s))

and W1 and W2 are real independent Brownian motions. If we define

W̃ (s) := W1(s) + i

[
W2(s) +

∫ t(s)

0

h(|Z|)(r)dr

]

= W1(s) + i

[
W2(s) +

∫ t(s)

0

h(eW1)(r)dr,

]
where essentially h(|Z|)(·) = |Z(·)|2 − ‖Z‖2L2 , we then have

eW̃ (s) = G−1(Z)(t(s)).

In terms of W , the gauge transformation is now easy to understand. It gives a complex process

such that:

5Roughly, Girsanov’s theorem states that if we change the drift coefficient of a given Ito process in an

appropriate way, then the law of the process will not change dramatically. In fact the new process law will

be absolutely continuous with respect to the law of the original process and we can compute explicitly the

Radon-Nikodym derivative.
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• The real part is left unchanged.

• The imaginary part is translated by the function J(Z)(t(s)) which depends only on the

real part (ie. on |Z|, which has been fixed) and in that sense is deterministic.

• It is now possible to use Cameron-Martin-Girsanov’s theorem only for the law of the

imaginary part and conclude:

We can now thus conclude. If η denotes the probability distribution of W and η̃ the

distribution of W̃ we have the absolute continuity of η̃ and η, whence the absolute continuity

between ρ̃ and ρ follows, with the same Radon-Nikodym derivative (re-expressed back in terms

of t).

All in all then we prove that our ungauged measure ν is in fact essentially (up to normalizing

constants) of the form

dµ̃(u) = χ‖u‖L2≤Be
−K(u)dρ = dν(u),

the weighted Wiener measure associated to DNLS (constructed by Thomann-Tzvetkov). In

particular we prove its invariance.

We need to remark at this point that the above argument needs to be done carefully for

complex Brownian bridges (periodic Brownian motions) by conditioning properly. Note that

W (s) is a Brownian motion conditioned to end up at the same place when the total variation

time t = t(s) reaches 2π. The time when this occurs is our S. For more details see [57].

4 The periodic quintic NLS equation in 3D and the periodic Navier-Stokes equa-

tion in 2D and 3D

In this section we show how, inspired by the original work of Bourgain in [8, 9], one can show

that randomization of the initial data can give the existence of a local flow for data that are

mass or energy supercritical, or in a sense equivalently, the existence of a set of global solutions

with data of infinite mass or energy.

4.1 The periodic quintic NLS equation in 3D

In this subsection we summarize the work in [58]. The quintic NLS in 3D is an energy critical

equation, that is the H1 norm of the solution is invariant with respect to the parabolic scaling

of this equation. In both R3 [18] and T3 [35] global well-posedness for initial data in Hs, s ≥ 1

has been proved. On the other hand if the data have infinite energy the problem becomes super-

critical and the question of global well-posedness is still open. In the work we are summarizing

below we demonstrate that for both the focusing and defocusing case, we can equip the energy

supercritical set of data H1−ε(T3) with a certain probability measure such for data in a subset

of almost full measure a local flow is well defined. This is Theorem (4.1) below6. This kind of

statement is similar to that proved in the first part of [9]. In the second part of that paper,

6On the other hand one can rephrase this theorem by saying that for a fixed large time T there is a subset Σ

of nonzero measure for which any data in Σ evolves into a solution that lives for the whole interval [0, T ]. This

shows the existence of large data global solutions with infinite energy.
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Bourgain was able to extend the result from local to global, ultimately showing that there is

a set of initial data of full measure evolving for an arbitrarily long interval of time. He proved

this using the invariance of the probability measure, which in his case was the Gibbs measure.

Unfortunately in our case the Gibbs measure lives in H−1/2−, a space that is way too rough to

conduct any type of well-posedness analysis, hence we cannot extend a local in time result to a

global one, at least not using the invariance of the measure7.

We consider then the Cauchy initial value problem, iut + ∆u = λu|u|4 x ∈ T3

u(0, x) = φ(x)
(4.1)

where λ = ±1. We also stress the fact that here T3 is a rational torus, in the sense that if

(T1, T2, T3) are the periods along the three directions, then there exists (n1, n2, n3) ∈ Z3 such

that (T1, T2, T3) · (n1, n2, n3) = 0. This is an important assumption since it implies that the

solution S(t)φ(x) to the linear problem associated to (4.1) is also periodic in time, a fact that

is used heavily. In fact without loss of generality we will assume that (T1, T2, T3) = (1, 1, 1).

Our setting to show almost sure local well posedness is similar to that of Bourgain in [9].

More precisely, we consider data φ ∈ H1−ε(T3) for any ε > 0 of the form

φ(x) =
∑
n∈Z3

1

(1 + |n|) 5
2

ein·x (4.2)

whose randomization according to (1.2) is

φω(x) =
∑
n∈Z3

gn(ω)

(1 + |n|) 5
2

ein·x. (4.3)

The main result in [58] is on almost sure local well-posedness and can then be stated as

follows,

Theorem 4.1 Let φ as in (4.2). Then there exist s > 1, 0 < δ0 � 1 and r = r(s, α) > 0 such

that for any δ < δ0, there exists Ωδ ∈ A with

P(Ωcδ) < e−
1
δr ,

and for each ω ∈ Ωδ there exists a unique solution u of (4.1) in the space

S(t)φω +Xs([0, δ))d,

where S(t)φω is the linear evolution of the initial data φω given by (4.3).

One can also reformulate this theorem to prove long time existence of large data with infinite

energy. Namely one can prove the following theorem.

Theorem 4.2 Assume s as above. For fixed T there exists a set ΩT ∈ A with

P(ΩT ) ≥ εT > 0,

and for each ω ∈ ΩT there exists a unique solution u of (4.1) in the space

S(t)φω +Xs([0, T ))d,

7In fact almost sure global well-posedness for energy supercritical solutions for the periodic quintic NLS

equation in 3D is still open.
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where S(t)φω is the linear evolution of the initial data φω given by (4.3).

Here the space Xs([0, δ))d is a metric space of Sobolev regularity s which definition can be

found in [58], the metric d comes from (4.8) below. We note that this space is not based on the

usual Xs,b defined below, but the proof of Theorem 4.1 and Theorem 4.2 can be performed,

even in a easier way, in Xs,1/2. In fact below we will show some estimates in this space in order

to give an idea of the type of arguments that are needed to prove the theorems above.

Definition 4.3 We define the space Xs,b(T× T3) via its norm:

‖f‖Xs,b :=

(∑
λ

∑
n∈Z3

|f̂(λ, n)|2(1 + |n|2)s(1 + |λ− |n|2|)2b

)1/2

.

To prove Theorem 4.1 we proceed in two steps. First we consider the initial value problem ivt + ∆v = N (v) x ∈ T3

v(0, x) = φω(x),
(4.4)

where

N (v) := λ

(
v|v|4 − 3v

(∫
T3

|v|4 dx
))

(4.5)

with λ = ±1 and φω(x) the initial datum as in (4.3). Introducing the nonlinearity N (v) is

similar to the Wick ordering used in [9] and it is needed in order to exploit the independence

of the random variables as we will see below. To make the notation simpler set

βv(t) = 3

∫
T3

|v|4 dx (4.6)

and define

u(t, x) := eiλ
∫ t
0
βv(s) dsv(t, x). (4.7)

We observe that u solves the initial value problem (4.1) with datum φω. Now suppose that one

obtains well-posedness for the initial value problem (4.4) in a certain Banach space (X, ‖ · ‖)
then one can transfer those results to the initial value problem (4.1) by using a metric space

Xd := (X, d) where

d(u, v) := ‖e−iλ
∫ t
0
βu(s) dsu(t, x)− e−iλ

∫ t
0
βv(s) dsv(t, x)‖. (4.8)

We now summarize the steps needed in order to show local well-posedness for the initial

value problem (4.4).

Step1: We define w := v − S(t)φω(x) and we consider the initial value problem8 satisfied

by w, that is  iwt + ∆w = N (w + S(t)φω(x)) x ∈ T3

w(0, x) = 0.
(4.9)

The goal is to show that (4.9) can be studied in Xs,1/2 for some s > 1 in spite of the fact that

S(t)φω(x) is in H1−ε for each fixed time.

8Since we are only interested on the local well-posedness we can just assume that λ = 1.
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Step 2: We set up the contraction method by defining the map

Φ(w) = χ[−δ,δ](t)

∫ t

0

S(t− t′)N (w + S(t′)φω(x))dt′,

where χ[−δ,δ](t) is a smooth characteristic function of [−δ, δ] for δ small. The goal is to show

that

‖Φ(w)‖Xs,1/2 . C + δα‖w‖5Xs,1/2 (4.10)

and

‖Φ(w1)− Φ(w2)‖Xs,1/2 . δα(‖w1 − w2‖Xs,1/2) (4.11)

We now show two extreme estimates that one has to perform in order to prove (4.10) and (4.11).

The first estimate concern the case when all terms in N (w+S(t)φω(x)) are deterministic, that

is we consider N (w). In this case we can use the arguments in [34] to conclude. In this argument

one uses duality and estimates an integral of six functions by splitting it into two trilinear L2

integrals. One obtains∥∥∥∥χ[−δ,δ](t)

∫ t

0

S(t− t′)N (w(t′))dt′
∥∥∥∥
Xs,1/2

. δα‖w‖5Xs,1/2 .

Note that in [34] the authors consider the full quintic nonlinearity, not just N (w(t)), and they

are in a more difficult set up, that is in their case s = 1, the energy critical case. Because of this

critical situation they have to use more subtle spaces than the Xs,1/2, but the basic arguments

are the same.

Next we consider the case when all terms in N (w + S(t)φω(x)) are random, that is we

consider N (S(t)φω(x)). Let us not worry about having to restrict the time interval to [−δ, δ],
this can be taken care of with standard argument later. Let us recall that [45]∥∥∥∥∫ t

0

S(t− t′)F (t′)dt′
∥∥∥∥
Xs,1/2

. ‖F‖Xs,−1/2 .

Then by duality we need to estimate∫
T

∫
T3

DsN (S(t)φω(x))k(t, x)dtdx, (4.12)

where Ds is the symbol for the s derivative and k(t, x) ∈ X0,1/2. Let us also assume that k(t, x)

is localized in frequency in a dyadic block of size N and all the other functions are localized in

dyadic blocks of size Ni respectively, and N1 ∼ N >> N2 ≥ N3 ≥ N4 ≥ N5. Also in this case

we pass from the L1 norm in (4.12) to two trilinear expressions in L2 where we match N,N4, N5

and N1, N2, N3. We also assume that |λ− |n|2| . Nα for α < 1/2 since otherwise one can use

Strichartz estimates and the fact that S(t)φω(x) are in better Lp spaces to conclude. Here we

only estimate the square of the second trilinear expression with the operator Ds acting on N1,

which can be written as

∑
λ

∑
n∈Z2

N2s

∣∣∣∣∣∣
∑
Sλ,n

gn1
(ω)

(1 + |n1|)5/2

ḡn2
(ω)

(1 + |n2|)5/2

gn3
(ω)

(1 + |n3|)5/2

∣∣∣∣∣∣
2

where

Sλ,n :=
{
n=n1−n2+n3; n1,n3,6=n2,

λ=|n1|2−|n2|2+|n3|2
}
.
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For the second trilinear estimate we can simply use again the argument in [34]. We now change

variables by setting λ− |n|2 = η and we integrate in η, where we recall |η| < Nα. We have

sup
η

∑
n∈Z2

N2s+α

∣∣∣∣∣∣
∑
Sη,n

gn1
(ω)

(1 + |n1|)5/2

ḡn2
(ω)

(1 + |n2|)5/2

gn3
(ω)

(1 + |n3|)5/2

∣∣∣∣∣∣
2

where

Sη,n :=
{
n=n1−n2+n3; n1,n3,6=n2,
η=|n1|2−|n2|2+|n3|2−|n|2

}
.

Now we use a large deviation estimate and the independence of the random variables to claim

that for ω ∈ Ω̃, with P(Ω̃c) ≤ e−1/δ we can continue with

. δ−m sup
η

∑
n∈Z2

N2s+α

∫
Ω

∣∣∣∣∣∣
∑
Sη,n

gn1(ω)

(1 + |n1|)5/2

ḡn2(ω)

(1 + |n2|)5/2

gn3(ω)

(1 + |n3|)5/2

∣∣∣∣∣∣
2

dω

. δ−mN2s+αN−5
1 N−5

2 N−5
3 |Sη|

where

Sη =
{

(n,n1,n2,n3) / n=n1−n2+n3; n1,n3 6=n2,

η=|n1|2−|n2|2+|n3|2−|n|2
}
.

Now we fix n2, n3, we replace n = n1 − n2 + n3 in the quadratic equation and we note that n1

belongs to a plane, hence there are N2
1 many frequencies. We then continue the estimate with

. δ−mN2s+αN2−5
1 N3−5

2 N3−5
3 . δ−mN2s−3+α

and hence we want s < 3−α
2 .

Remark 4.4 We note that the condition n1, n3 6= n2 is used both for the independence of the

random variable and to claim that for fixed n2, n3 the frequency n1 satisfies a linear relationship,

namely < n1, n2 − n3 >= C.

To obtain the full Theorem 4.1 one needs to consider many combinations of random and

nonrandom trilinear estimates but we will not do this here.

4.2 The periodic 2D and 3D Navier-Stokes equations: randomization of the initial data and

the Galerkin approximation scheme

In this section we explore the consequences of randomizing initial data when we consider the

Navier-Stokes equation. We recall that for this equation both in 2D and 3D existence of global

weak solutions is proved in L2, where the energy is conserved. In 2D uniqueness is also proved.

Here we show that by randomizing the initial data in H−α, for certain α > 0, one can still claim

existence of global weak solutions, and in 2D also uniqueness. Note that in both 2D and 3D

the space H−α is supercritical. Due to the regularization properties of the heat flow and the

fact that we are not using a fixed point theorem, but instead a Galerkin scheme, the estimates

here are softer than the ones in the previous sections, see also [58] and [9]. The estimates used

are in fact more similar to those in [14] for a certain wave equation. Below we recall the set up,

the main results and we give an idea of the proofs.
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Consider the initial value problem for the incompressible Navier-Stokes equations given by
∂t~u = ∆~u− P∇ · (~u⊗ ~u); x ∈ Td, t > 0

∇ · ~u = 0

~u(x, 0) = ~f(x),

(4.13)

where f is divergence free and P is the Leray projection into divergence free vector fields given

via

P~h = ~h−∇ 1

∆
(∇ · ~h). (4.14)

We now introduce the diagonal randomization of elements of (Hs(Td))d, which we will apply

to our initial data. This is a multidimensional version of Definition 1.1.

Definition 4.5 [Diagonal randomization of elements in (Hs(Td))d] Let (ln(ω))n∈Zd be a

sequence of real, independent, random variables on a probability space (Ω, A, P ). For ~f ∈
(Hs(Td))d, let (~ain), i = 1, 2, . . . , d, be its Fourier coefficients. We introduce the map from

(Ω, A) to (Hs(Td))d equipped with the Borel sigma algebra, defined by

ω −→ ~fω, ~fω(x) =

∑
n∈Zd

ln(ω)~a1
nen(x), . . . ,

∑
n∈Zd

ln(ω)~adnen(x)

 , (4.15)

where en(x) = ein·x and call such a map randomization.

The map (4.15) is measurable and ~fω ∈ L2(Ω; (Hs(Td))d), is an (Hs(Td))d-valued random

variable. Also we remark again that such a randomization does not introduce any Hs regular-

ization (see Lemma B.1 in [14] for a proof of this fact), indeed ‖~fω‖Hs ∼ ‖~f‖Hs , but it gives

improved Lp estimates almost surely (see Proposition 4.10 below).

Remark 4.6 Since the Leray projection (4.14) can be written via its coordinates

(P~h)j = hj +
∑

k=1,...,d

RjRkhk, (4.16)

where R̂j(φ)(n) =
i nj
|n| φ̂(n), n ∈ Zd, one can easily see that the diagonal randomization defined

in (4.15) commutes with the Leray projection P.

Having defined a diagonal randomization, we need few more definitions in order to state

the main results of this paper.

• Let B be a Banach space of functions. The space Cweak((0, T ),B) denotes the sub-

space of L∞((0, T ),B) consisting of functions which are weakly continuous, i.e. v ∈
Cweak((0, T ),B) if and only if φ(v(t)) is a continuous function of t for any φ ∈ B∗.

• If (X(Td))d denotes a space of vector fields on Td, we simply denote its norm by ‖ · ‖X .

• We introduce an analogous notation to that of Constantin and Foias in [20]. In particular

we write

H = the closure of {~f ∈ (C∞(Td))d | ∇ · ~f = 0} in (L2(Td))d,

V = the closure of {~f ∈ (C∞(Td))d | ∇ · ~f = 0} in (H1(Td))d,

V ′ = the dual of V.
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• We introduce some notation for the inner products in some of the spaces introduced above.

Given two vectors ~u and ~v in Rd we use the notation

〈~u,~v〉 = ~u · ~v. (4.17)

In (L2(Td))d we use the inner product notation

(~u,~v) =

∫
~u(x) · ~v(x) dx. (4.18)

In (Ḣ1(Td))d we use the inner product notation

((~u,~v)) =

d∑
i=1

(Di~u,Di~v). (4.19)

• Finally we introduce the trilinear expression

b(~u,~v, ~w) =

∫
~ujDj~vi ~wi dx =

∫
〈~u · ∇~v, ~w〉 dx. (4.20)

Also we note that when ~u is divergence free, we have

b(~u,~v, ~w) =

∫
〈∇(~v ⊗ ~u), ~w〉 dx. (4.21)

We introduce the following definition:

Definition 4.7 Let ~f ∈ (H−α(Td))d, α > 0, ∇ · ~f = 0, and of mean zero9. A weak solution

of the Navier-Stokes initial value problem (4.13) on [0, T ], is a function ~u ∈ L2
loc((0, T );V ) ∩

L∞loc((0, T );H) ∩ Cweak((0, T ); (H−α(Td))d) satisfying
d~u

dt
∈ L1

loc((0, T ), V ′) and

〈d~u
dt
,~v〉+ ((~u,~v)) + b(~u, ~u,~v) = 0 for a.e. t and for all ~v ∈ V, (4.22)

lim
t→0+

~u(t) = ~f weakly in the (H−α(Td))d topology. (4.23)

Theorem 4.8 (Existence and Uniqueness in 2D) Fix T > 0, 0 < α < 1
2 and let ~f ∈

(H−α(T2))2, ∇ · ~f = 0 and of mean zero. Then there exists a set Σ ⊂ Ω of probability 1

such that for any ω ∈ Σ the initial value problem (4.13) with datum ~fω has a unique global

weak solution ~u in the sense of Definition 4.7 of the form

~u = ~u~fω + ~w (4.24)

where ~u~fω = et∆ ~fω and ~w ∈ L∞([0, T ]; (L2(T2))2) ∩ L2([0, T ]; (Ḣ1(T2))2).

Theorem 4.9 (Existence in 3D) Fix T > 0, 0 < α < 1
4 and let ~f ∈ (H−α(T3))3, ∇ · ~f = 0,

and of mean zero. Then there exists a set Σ ⊂ Ω of probability 1 such that for any ω ∈ Σ

the initial value problem (4.13) with datum ~fω has a global weak solution ~u in the sense of

Definition 4.7 of the form

~u = ~u~fω + ~w, (4.25)

where ~u~fω = et∆ ~fω and ~w ∈ L∞([0, T ]; (L2(T3))3) ∩ L2([0, T ]; (Ḣ1(T3))3).

9This is assumed without loss of generality. Since the mean is conserved, if it is not zero, one can replace the

solution with the solution minus the mean. This new function will satisfy an equation with a first order linear

modification which does not effect the estimates.
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We now summarize the steps needed for the profs of the main Theorems 4.9 and 4.8.

Step 1: Set ~u~fω = et∆ ~fω. As we did in the previous section, instead of solving for ~u we

solve for ~w where

~w = ~u− ~u~fω ,

and hence ~w solves a difference equation of type
∂t ~w = ∆~w − P∇(~w ⊗ ~w) + c1[P∇(~w ⊗ ~g) + P∇(~g ⊗ ~w)] + c2P∇(~g ⊗ ~g)

∇ · ~w = 0,

~w(x, 0) = 0,

(4.26)

where ~g = ~u~fω .

Step 2: We show that in a set of almost full measure the function ~u~fω satisfies certain

estimates that are in fact not valid for the heat flow of a nonrandomized function in H−α. For

example we have these estimates:

Proposition 4.10 Let T > 0 and α ≥ 0. Let r ≥ p ≥ q ≥ 2, σ ≥ 0 and γ ∈ R be such that

(σ + α− 2γ)q < 2. Then there exists CT > 0 such that for every ~f ∈ (H−α(Td))d

‖tγ(−∆)
σ
2 et∆ ~fω‖Lr(Ω;Lq([0,T ];Lpx) ≤ CT ‖~f‖H−α , (4.27)

where CT may depend also on p, q, r, σ, γ and α.

Moreover, if we set

Eλ,T,~f,σ,p = {ω ∈ Ω : ‖tγ(−∆)
σ
2 et∆ ~fω‖Lq([0,T ];Lpx) ≥ λ}, (4.28)

then there exists c1, c2 > 0 such that for every λ > 0 and for every ~f ∈ (H−α(Td))d

P (Eλ,T,~f,σ,p) ≤ c1 exp

[
−c2

λ2

CT ‖~f‖2H−α

]
. (4.29)

Proof For t 6= 0, using the notation ~h(x) = 〈−∆〉−α2 ~f(x) and recalling the notation defined

in (4.15) we have

tγ(−∆)
σ
2 et∆ ~fω(x) = tγ(−∆)

σ
2 〈−∆〉α2 et∆〈−∆〉−α2 ~fω(x)

= tγ
∑
n∈Zd

|n|σ(1 + |n|2)
α
2 e−t|n|

2 ~̂hω(n)en(x)

. Jσ + Jσ+α, (4.30)

where for

β ∈ {σ, σ + α} (4.31)

we introduced Jβ as follows:

Jβ = tγ−
β
2

∑
n∈Zd

t
β
2 |n|βe−t|n|

2 ~̂hω(n)en(x).

In order to estimate Jβ , we observe that t
β
2 |n|βe−t|n|2 ≤ C, which together with two appli-

cations of Minkowski’s inequality, followed by a standard large deviation estimate, implies the
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first inequality in the following estimate:

‖Jβ‖Lr(Ω;Lq([0,T ];Lpx) ≤ Cr

∥∥∥∥∥∥
(∑

n

∣∣∣∣tγ− β2 ~̂h(n)en(x)

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lq([0,T ];Lpx)

= Cr

∥∥∥∥∥∑
n

t2γ−β
∣∣∣∣~̂h(n)en(x)

∣∣∣∣2
∥∥∥∥∥

1
2

L
q
2 ([0,T ];L

p
2
x )

≤ Cr,p‖~h‖L2

(∫ T

0

(
1

tβ−2γ

) q
2

) 1
q

= Cr,p,q‖~h‖L2T
1
q+ 2γ−β

2 , (4.32)

as long as

(β − 2γ)
q

2
< 1, (4.33)

which is for our range (4.31) of β satisfied under the assumption that (σ + α− 2γ)q < 2. Now

the estimate (4.27) follows from (4.30), (4.32) and (4.31).

To prove estimate (4.29) one uses the Bienaymé-Tchebishev’s inequality as in Proposition

4.4 in [14].

Step 3: We show that if ~g satisfies certain estimates, such as for example those in Step 2

for ~u~fω in an interval of time [0, T ], then the energy for the initial value problem (4.26)

E(~w)(t) := ‖~w(t)‖2L2 + c

∫ t

0

∫
Td
|∇ ⊗ ~w|2 dx ds

is bounded for all t ∈ [0, T ]. To prove this step we need to use the Duhamel principle on (4.26)

near t = 0, and the classical energy estimates for the Navier-Stokes equation when t is far from

zero, this is Theorem 5.1 in [55]. The tricky part in implementing these estimates at these two

regimes is that one has to first show that the solutions obtained via the Duhamel principle and

weak solutions are equivalent, at least under certain conditions for ~g. This is the content of

Lemma 4.2 in [55].

Step 4: Once one proves the boundedness for the energy of ~w, assuming certain conditions

on ~g, a Galerkin scheme is implemented and a weak solution is obtained on an arbitrary interval

of time. This is Theorem 6.1 in [55].

Step 5: One then defines the set

Ej := {ω ∈ Ω / ‖~u~fω‖∗ > 2j}

where ‖ · ‖∗ contains all the norms that need to be bounded for ~u~fω in order to implement the

steps above for the difference equation (4.26) with ~g = ~u~fω . Large deviation estimates such as

the one in Proposition 4.10 gives that

P (Ej) ≤ c1 exp

[
−c2

22j

CT ‖~f‖2H−α

]
,

hence if Σ = ∩Ecj it follows that P (Σ) = 1 and the conclusion10 of Theorems 4.8 and 4.8 hold.

10What we described is the procedure to obtain global weak solutions, for the uniqueness result in Theorem

4.8 see Theorem 7.1 in [55].



Randomness and nonlinear PDE 19

5 Global flows for random surface quasi-geostrophic equations

In this section we consider the surface quasi-geostrophic equation SQG where randomness is

injected into the system via the data or via a random diffusion term. We discuss the work

in [56] about the invariance of the associated Gaussian measure and global existence of weak

solutions in the first case, and the work in [11] exhibiting a ‘regularization by noise’ effect and

proving the existence of pathwise unique global solutions in the second.

5.1 Invariant measure and longtime weak solutions to the inviscid modified SQG equation

In this section we summarize the results in [56] where an inviscid modified surface quasi

geostrophic equation mSQG is considered and randomness is injected into the system via the

data. We prove invariance of the associated Gibbs measure and global existence of weak solu-

tions.

The mSQG equation is also an active scalar equation describing the transport of the scalar

valued function θ = θ(x, t) : T2× [0,∞)→ R under the velocity field u, which itself is related to

θ now via a regularized Biot-Savart law. More precisely, the mSQG equation that we consider

in this paper is given as follows:θt + (u · ∇)θ = 0, x ∈ T2 and t > 0

u = R⊥|D|−δθ,
(5.1)

where δ > 0, and R⊥ := ∇⊥(−∆)−1/2 = ∇⊥|D|−1 denotes the Riesz transform. Here ∇⊥ =

(−∂x2
, ∂x1

).

When δ = 1 the equation (5.1) coincides with the 2D Euler equation with θ representing the

vorticity ω. When δ = 0 the equation (5.1) coincides with the inviscid surface quasi geostrophic

SQG equation. For 0 < δ < 1 the relation between the velocity u and the function θ is less

singular than in the case of the SQG equation, but more singular than in the case of the 2D

Euler equation, see [56]. Note that the inviscid SQG equation is one derivative less regular than

the 2D Euler equation.

The paper [56] we use probabilistic tools to obtain a global flow in Hs(R2), s < −3 + δ, for

any 0 < δ ≤ 1, for the mSQG equation (5.1) in the support of a Gaussian measure ρ, which

is left invariant under the flow. In particular, the approach of [1] in the context of mSQG is

implemented as follows:

1. We work with the streamline formulation of the equation, whose (sufficiently) smooth

solutions still conserve ‘enstrophy’ (see below). Then we consider the infinite Gaussian

measure ρ constructed with respect to this enstrophy.

2. We rewrite the streamline formulation of the equation in terms of an orthonormal L2

basis as an infinite ODE system, for which we analyze the coefficient corresponding to

the nonlinear term, with the goal of obtaining an expectation estimate that will allow

subsequent probabilistic analysis. For this part we will give more details below.

3. We introduce an approximate system of ODE, which is still an infinite system, but which

has truncated nonlinear term. We show that each of these systems has a global flow and

leaves the Gaussian measure ρ invariant.
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4. Finally we perform a probabilistic convergence argument, which gives a global flow for

the streamline formulation of the equation in the support of the Gaussian measure ρ.

To state the result precisely we need to introduce some notation. First we introduce the

streamline function ϕ for our equation (5.1) so that u = ∇⊥ϕ. Such streamline function ϕ is

related to θ via ϕ = |D|−1−δθ. We find it convenient to rewrite the streamline formulation in

terms of the regularized stream function ψ introduced via

|D|δϕ = ψ. (5.2)

Then the regularized streamline formulation that we work with reads as follows:ψt + |D|−1(u · ∇)|D|ψ = 0

u = ∇⊥|D|−δψ.
(5.3)

Below we will abbreviate the nonlinearity in (5.3) by

B(ψ,ψ) := −|D|−1(∇⊥|D|−δψ · ∇)|D|ψ. (5.4)

We recall that for classical solutions to (5.1) the SQG enstrophy ‖θ‖L2 is conserved in time.

We also note that, thanks to (5.2), we have that ψ is mean zero. Consequently, the homogeneous

and inhomogeneous Sobolev spaces restricted to our space of solutions coincide. We therefore

take the Sobolev norm

‖f‖2Hs(T2) :=
∑

k∈Z2,k 6=0

|k|2s|f̂(k)|2,

and we introduce the spaces

Xσ :=
⋂
s<σ

Hs.

Similarly, we slightly abuse notation by defining the associated path space by

C([0, T ] : Xσ) :=
⋂
s<σ

C([0, T ] : Hs).

Since both of these spaces are defined as nested intersections, they inherit the natural subspace

topology.

Finally, it follows from the definitions of ψ and ϕ and the conservation of ‖θ‖L2 for solutions

θ of (5.1) that ‖ψ‖H1 is formally conserved in time. It is this conservation of ‖ψ‖H1 that gives

rise to the Gaussian measure ρ that we informally write as:

“ dρ(ψ) :=
1

Z

∏
k∈Z2,k 6=0

exp(−2|k|2|ψk|2)dψk ” (5.5)

where dψk := dxk dyk is the Lebesgue measure on C associated to the variable ψk = xk +

iyk ∈ C, and Z is the appropriate normalization factor needed to yield a probability measure.

Unfortunately this heuristic expression is not well-defined, but it can be made meaningful [7].

With the construction of the Gaussian measure ρ one can state the result that establishes global

flows for the regularized streamline formulation (5.3) of the mSQG equation. More precisely:
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Theorem 5.1 Let T > 0 be given. Then there exists a flow Ψ̃(ω, t) defined on a probability

space (Ω̃, F̃ , P̃ ) with values in C([0, T ] : X−2) such that for P̃ -almost every ω ∈ Ω̃,

Ψ̃(ω, t) = Ψ̃(0, ω) +

∫ t

0

B(Ψ̃(ω, τ)) dτ, (5.6)

where B is as in (5.4), as well as a Gaussian measure ρ supported on X−2 which is invariant

with respect to Ψ̃(t, ω), i.e., for all measurable F : X−2 → R and t ∈ [0, T ],∫
Ω̃

F (Ψ̃(ω, t)) dP̃ (ω) =

∫
X−2

F (ψ) dρ(ψ). (5.7)

In this survey we decided to give details only on the expansion of (5.3) explicitly into an

infinite system of ODEs in the Fourier frequencies, and on showing that the Hs-norm of the

nonlinearity of the equation is finite in L2
ρ provided that s < −2. Informally, this calculation

shows that X−2 is the smallest space with respect to which the system (5.3) is closed in ρ-

expectation. Moreover this estimate is a key ingredient of the compactness argument used to

construct the random flows and to obtain the main result. We will only outline the steps of the

proof of the main result in Theorem 5.1

5.1.1 An infinite system of ODE and the expectation of its nonlinear term

Write ψ =
∑
k∈Z2 ψkek, where {ek} is an orthonormal basis of L2(T2), and rewrite the modified

streamline formulation (5.3) in terms of coefficients with respect to this orthonormal basis as

follows:
dψk
dt

= Bk(ψ,ψ),

where Bk denotes the coefficients of the nonlinearity B

B(ψ,ψ) := −|D|−1(∇⊥|D|−δψ · ∇)|D|ψ (5.8)

in this basis.

We calculate the coefficients Bk for k 6= 0 to be

Bk =
∑

h+h′=k, h,h′ 6=0

−|k|−1|h|−δh⊥ · h′|h′|ψhψh′

=
1

2

( ∑
h+h′=k, h,h′ 6=0

|k|−1|h′|−δh⊥ · h′|h|ψhψh′ +
∑

h+h′=k, h,h′ 6=0

−|k|−1|h|−δh⊥ · h′|h′|ψhψh′
)

=
1

2

∑
h+h′=k, h,h′ 6=0

|k|−1(h⊥ · h′)(|h′|−δ|h| − |h|−δ|h′|)ψhψh′ ,

where in the above we symmetrized the sum using the divergence-free structure with an eye

towards minimizing the number of positive factors of |h| and |h′|. This gives

Bk = −1

2

∑
h6=0, k

(
h⊥ · k

|k|

)
(|k − h|−δ|h| − |h|−δ|k − h|)ψhψk−h =:

∑
h6=0, k

αk,hψhψk−h.

Notice that one can readily check that αk,h = αk,k−h for all k, h ∈ Z2.

The subsequent analysis depends strongly on controlling the expectation of the nonlinearity

in a rough Sobolev space. We then have the following crucial proposition:

Proposition 5.2 Let 0 < δ ≤ 1. Then B given by (5.8) satisfies

B ∈ L2
ρ(H

s, Hs), for all s < −2.
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Proof We need to show that expectation of the expression ‖B(ψ)‖2Hs is finite. Using the

expectations of the moments as well as the fact that αk,h = αk,k−h, we first have that

Eρ(‖B‖2Hs) =
∑
k 6=0

|k|2s
∑

h, h′ 6=0

αk,hαk,h′Eρ(ψhψk−hψ̄h′ ψ̄k−h′)

= 2
∑
k 6=0

|k|2s
∑
h,h′ 6=0

αk,hαk,h′

|h|2|h− k|2
(δh,h′ + δh,k−h′)

= 4
∑
k 6=0

|k|2s
∑
h,h′ 6=0

α2
k,h

|h|2|h− k|2
. (5.9)

We focus first on establishing that the inner sum in this last expression converges11. Substituting

our expression for αk,h in (5.9) we have∑
h 6=0,k

α2
k,h

|h|2|h− k|2
.
∑
h6=0,k

(|k − h|−δ|h| − |h|−δ|k − h|)2

|h− k|2
(5.10)

.
∑
h6=0,k

|h− k|−2δ(|h| − |k − h|)2

|h− k|2
+
∑
h 6=0,k

(|h|−δ − |h− k|−δ)2(|h| − |k − h|)2

|h− k|2

+
∑
h6=0,k

|h|2(|k − h|−δ − |h|−δ)2

|h− k|2

:= S1 + S2 + S3.

In estimates on S1 and S2 we utilize the immediate consequence of the triangle inequality:

| |h| − |k − h| | ≤ |k|. (5.11)

Then, for any δ > 0, the sum S1 can be bounded from above as follows:

S1 ≤
∑
h 6=0,k

|k|2

|k − h|2+2δ
. |k|2.

Next, utilizing (5.11) and decomposing S2 = Slo2 +Shi2 depending on whether |h| is less that or

greater than 2|k| respectively, and using Lemma 4.1 in [56] we have that

S2 .
∑

|h|≤2|k|, h 6=0,k

|k|2

|h|2δ|k − h|2
+

∑
|h|≤2|k|h6=0,k

|k|2

|k − h|2+2δ
+

∑
|h|≥2|k|,k 6=0

δ2|k|4|h|−2−2δ

|h− k|2

. |k|2 + |k|2−2δ.

Decomposing S3 similarly into ‘high-low’ and again applyingLemma 4.1 in [56], we have:

S3 .
∑

|h|≤2|k|, h 6=0,k

|h|2

|h|2δ|k − h|2
+

∑
|h|≤2|k|h 6=0,k

|h|2

|k − h|2+2δ
+

∑
|h|≥2|k|, k 6=0

|h|2δ2|k|2|h|−2−2δ

|h− k|2

. |k|2 + |k|2−2δ.

The maximum amount of smoothness imposed on k from evaluating these sums is comparable

to |k|2. Therefore, the expectation at the beginning of the calculation can be estimated by

Eρ(‖B‖2Hs) .
∑
k

|k|2s+2, (5.12)

11This is precisely the step that fails in the classical inviscid SQG model with δ = 0.
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which is finite provided we choose s < −2.

5.1.2 Outline of the proof of Theorem 5.1

As we did in the previous sections we indicate below the main steps of the proof.

Step 1: We introduce the Nth approximate flow ΨN (t, ψ) as the solution of the Cauchy

problem ∂tΨN (t) = BN (ΨN (t),ΨN (t))

ΨN (0, ψ) = ψ.
(5.13)

If we let V N satisfy the finite dimensional system∂tV N (t) = BN (V N , V N )

V N (0, ψ) = ΠNψ,
(5.14)

then the flow ΨN can be decomposed into

ΨN (t, ψ) = V N (t,ΠNψ) + Π⊥Nψ, (5.15)

that is, the dynamics of the approximate flows are only nontrivial on finite dimensional sub-

spaces. The N -th approximate ΨN still conserve H1 and are divergence free. If we denote the

ek-component of ΨN by ΨN
k , then Lemma 5.1 in [56] states that for fixed T > 0, there exists

a unique flow ΨN (t, ψ) solving (5.13) for all t ∈ [0, T ] with ΨN
k (t, ψ) ∈ C([0, T ],C) and which

leaves the measure ρ invariant.

Step 2: In order to construct random flows from the (essentially) finite-dimensional deter-

ministic flows, we regard the deterministic flows ΨN (t, ψ) as stochastic processes sampled from

X−2 with state space C([0, T ] : X−2), and introduce the measures νN supported on the infinite

dimensional path space C([0, T ] : X−2) as their laws:

νN (Γ) = ρ({ψ ∈ X−2 : ΨN (ψ, ·) ∈ Γ}), Γ ⊂ C([0, T ] : X−2). (5.16)

Our first goal is to show that the laws νN can be used to construct a measure ν supported

on C([0, T ] : X−2) that will serve as the law of our eventual candidate flows. This follows from

two fundamental tools, a compactness argument and Skorokhod Lemma, as follows.

Prokhorov Lemma states that tightness of (ν(N)) implies (ν(N)) is weakly sequentially com-

pact12. Tightness means that for each ε > 0, there is a compact subset Kε ⊂ C([0, T ] : X−2)

so that ν(N)(Kε) ≥ 1− ε uniformly in N .

In [56] we prove that for T > 0 and any s < −2 the family {ν(N)} of measures is tight in

C([0, T ] : Hs) which is obtained by showing that solutions lie in a Hölder-continuous subspace

of C([0, T ] : Hs) that is pre-compact by Sobolev embedding. The proof of tightness crucially

uses invariance, ψ0 ∈ X−2 and Eρ(‖B‖2Hs) is finite for s < −2. Then for any fixed s < −2,

Prokhorov implies the existence of a subsequence of measures which converges weakly to another

measure νs. A standard diagonalization argument allows one then to extract a weak limiting

measure ν on C([0, T ] : X−2).

Now, Skorokhod Lemma ensures that there is a probability space (Ω̃, F̃ , P̃ ) and random

processes Ψ̃(N)(ω), Ψ̃(ω) with values in C([0, T ] : X−2) so that:

12i.e. can extract a weakly convergent subsequence.
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1. Ψ̃(N)(ω)→ Ψ̃(ω) in C([0, T ] : X−2) P-a.s. in ω

2. ν is the law of Ψ̃, i.e.,

ν(Γ) = P ({ω ∈ Ω̃ : Ψ̃(ω, t) ∈ Γ}) Γ ⊂ C([0, T ] : X−2)

3. Each ν(N) is the law of Ψ̃(N).

This Ψ̃ is our candidate for the random flow. Note that by construction the laws of Ψ̃(N)

and that of Ψ(N) in the path space C([0, T ] : X−2) are the same.

To conclude the argument we verify that ρ is an invariant measure for the (random) flow Ψ̃

from Skorokhod. In particular we show that ∀ F : X−2 → R measurable and t ∈ [0, T ]:∫
Ω

F (Ψ̃(ω, t)) dP̃ (ω) =

∫
X−2

F (ψ) dρ(ψ).

This in turn implies that Ψ̃ takes values in X−2 a.s. in Ω̃. We also have the following almost

everywhere pointwise equation for Ψ̃N :

Ψ̃N (t, ω) = Ψ̃N (0, ω) +

∫ t

0

BN (Ψ̃N (τ, ω)) dτ, a.e. ω ∈ Ω̃.

Finally we take the limit N → ∞ in the truncated equations to show that Ψ̃ satisfies the

equation P -almost surely. By the construction using Skorokhod’s Lemma, we already have that

Ψ̃N (t, ω)→ Ψ̃(t, ω) and Ψ̃N (0, ω)→ Ψ̃(0, ω) for each t ∈ [0, T ], a.s. in Ω̃. Hence to show P -a.e.

convergence of the Duhamel term it suffices to show (possibly up to the extraction of another

subsequence) that as N →∞,∫
Ω̃

∣∣∣∣∫ t

0

BN (Ψ̃N (ω, τ) dτ −
∫ t

0

B(Ψ̃(ω, τ)) dτ

∣∣∣∣ dP̃ (ω) → 0.

We refer the reader to [56] for full details.

One may ask about uniqueness; this question is hard. Known deterministic arguments are

not applicable due to the low regularity of the flow. Furthermore, the criteria in the work of

Ambrosio-Figalli [2] is not applicable either since the nonlinearity does not map into H1, the

Cameron-Martin space.

5.2 Unique global smooth solutions for the inviscid SQG equation perturbed by random dif-

fusion

In this section we describe the results obtained in [11] where we consider the surface quasi-

geostrophic equation SQG where randomness is injected into the system via a random diffusion

term behaving like white noise in time. We discuss the effect of ‘regularization by noise’, that

is noise improving the behavior over a purely deterministic setting [30], and show the existence

of pathwise unique global smooth solutions.

Consider the SQG equation for θ : R×T2 → R with a random in time diffusion, written as

an Itô stochastic integral:

dθ +R⊥θ · ∇θdt = ν|∇|sθ dWt, θ(0) = θ0, (5.17)
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where R⊥ = (−R2, R1) and Wt is a standard Wiener process in time. The index 0 < s ≤ 1 and

the constant of diffusion ν > 0 are fixed.

Let A := |∇|2s and let φ(t) be suitably chosen to be of the form:

φ(t) = α+ βt with α > 0 and 0 < β <
ν2

2
, (5.18)

or shifts φ(t− T0) of it, where T0 is fixed.

We work with L2-weighted norms by Am eφ(t)A1/2

; that is on Gevrey-type spaces defined

precisely below. First, recall v ∈ C∞(T2) is in the Gevrey class η > 0 if there exists M >

0, τ > 0 such that

|∂βv(x)| ≤M (β!)η

τ |β|
for all β, x.

We work with an equivalent characterization given by Foias and Temam in [31] and which

we can state as follows. First, let γ > 0 and ϕ be a continuous real function. Then w :

[0, T ]× T2 → R,

‖w(t)‖Γγϕ : =
∥∥∥eϕ(t)A1/2

w(t)
∥∥∥
Ḣγs

= cd

∑
k∈Zd

|k|2γse2ϕ(t)|k|s |ŵ(k)|2
1/2

.

Define then the corresponding Gevrey space as

Γγϕ := {f ∈ Ḣγs : ‖f‖Γγϕ <∞}.

From this, one obtains the combined space-time spaces

C0
TΓγϕ := {f ∈ C0([0, T ],Γγϕ) : ‖f‖C0

TΓγϕ
<∞}.

In [11] we prove the following theorem.

Theorem 5.3 (Main Theorem) Let 1
s < σ < 2 and θ0 ∈ Ḣσs be given with θ̂0(0) = 0 and∥∥∥eαA1/2

θ0

∥∥∥
Ḣσs

=: E <
ν2

2
(5.19)

for some α > 0. Then there exists β = β(ν,E) < E such that for 0 < ε < α we obtain a

pathwise unique, global solution θ ∈ C0Ḣσs with probability

P (α, ε, ν, E) ≥ 1− e−2
(α−ε)β
ν2 .

In particular, for any p0 ∈ (0, 1) and E > 0 given, there exist ν > 0 and α > 0 such that

if the initial data θ0 satisfy (5.19) for these values we obtain a path-wise unique global solution

with likelihood at least p0.

A key idea to prove the theorem is to transform the equation into a pathwise deterministic

equation; that is an equation for which for each instance of the Brownian motion t → Wt(ω)

we have a deterministic equation with diffusion. Such transformation is motivated by the use

of the geometric Brownian motion in [32]. More precisely, if we set

Γ(t) := e−ν|∇|
sWt

then, by Itô calculus, we have that

dΓ = −ν |∇|s ΓdWt +
1

2
ν2 |∇|2s Γdt,
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so for u(t) := Γ(t)θ(t)

du = −Γ
(
R⊥Γ−1u · ∇Γ−1u

)
dt− 1

2
ν2 |∇|2s udt,

and hence  ∂tu+ Γ
(
R⊥Γ−1u · ∇Γ−1u

)
= − 1

2ν
2 |∇|2s u,

u(0) = u0 = θ0.
(5.20)

Remark 5.4 If we denote by

B(f, g) := Γ
(
R⊥Γ−1f · ∇Γ−1g

)
,

and we normalize by switching to the variable v := |∇|σs eφ(t)A1/2

u, so that

û(t, j) = e−φ(t)|j|s |j|−σs v̂(t, j),

and ‖v̂(t, j)‖`2j = ‖v(t)‖L2 =
∥∥∥eφ(t)A1/2

u(t)
∥∥∥
Ḣσs

, then the nonlinearity reads

B̂(u, u)(t, k) =
∑

j∈Z2\{0}

(k − j) · j⊥

|k − j|σs |j|1+σs
e−νWt[|k|

s−|k−j|s−|j|s]eφ(t)[−|k−j|
s−|j|s]v̂(k − j)v̂(j).

Our strategy entails establishing local well-posedness for the transformed initial value prob-

lem (5.20), and prove energy estimates in the Gevrey spaces introduced above. Armed with

these we then proceed to show global existence of solutions in this pathwise deterministic set-

ting by an iteration that carefully intertwines the local theory with the energy estimates and

relies on the following probability estimate for Brownian motion:

For α, β > 0, the probability that the process W (t)−βt > α in finite time is given by e−2αβ.

This implies that for our specific choice of φ(t) = α+βt above –for suitable β ∼ ν2 (diffusion

constant)–, the condition φ(t)− νWt ≥ 0 holds globally on an exponentially large set. Finally,

at the very end, we come back to the original equation, to obtain our main theorem.

Let us start with our local well-posedness result for (5.20).

Proposition 5.5 Let T0 > 0 and I ⊂ R be an open interval with T0 ∈ I. Assume φ(t)−νWt ≥
0 for t ∈ I, and φ(T0) = α.

Fix σ > 0 with 1
s < σ < 2. Then for initial data u0 with eφ(T0)A1/2

u0 ∈ Ḣσs (and

û0(0) = 013) there exist T > 0, depending only on the norm of the initial data, and a unique

solution u ∈ C0(I ∩ [T0, T0 + T ],Γσφ) of (5.20).

Remark 5.6 The condition that s ≤ 1 is crucial in our proof of Proposition 5.5 to absorb the

propagators e−νWt|∇|s using the exponential weights of our Gevrey spaces. We also use that

φ(t)− φ(τ) = β(t− τ) and β < ν2

2 .

On the other hand, given φ(t) − νWt ≥ 0 for all t ∈ [T0, T ], the following bilinear bounds

on [T0, T ] easily follow:∣∣∣〈eφ(t)A1/2

B(w,w), eφ(t)A1/2

Aw〉L2

∣∣∣ . ∥∥∥eφ(t)A1/2

w
∥∥∥
Ḣσs

∥∥∥eφ(t)A1/2

w
∥∥∥2

Ḣ(σ+1)s
. (5.21)

Relying on (5.21) we can then establish the necessary energy estimates:

13Note that
∫
udx = constant so WLOG can assume mean zero.
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Proposition 5.7 Assume σ ∈ ( 1
s , 2) and let u be a local solution on [T0, T ] of (5.20) that is

bounded in C0([T0, T ],Γσ+1
φ ). Assuming that φ(t)− νWt ≥ 0 and that∥∥∥eφ(T0)A1/2

u(T0)
∥∥∥
Ḣσs
≤ ν2

2
− β,

for t ∈ [T0, T ] we have ∥∥∥eφ(t)A1/2

u(t)
∥∥∥
Ḣσs
≤
∥∥∥eφ(T0)A1/2

u(T0)
∥∥∥
Ḣσs

.

Armed with propositions 5.5 and 5.7 we can then show the existence of pathwise unique

global solutions to equation (5.20). Namely in [11] we show that for σ ∈ ( 1
s , 2), and initial data

u0 satisfying

‖u0‖Γσα+ε
=
∥∥∥e(α+ε)A1/2

u0

∥∥∥
Ḣσs
≤ ν2

2
− β (5.22)

for some α > 0, ε > 0 and 0 < β < ν2

2 , if we let φ(t) := α + βt, then with probability at

least 1 − e−2αβ
ν2 there exists a pathwise14 unique global solution u ∈ C0([0,∞),Γσφ) to (5.20).

Moreover, the mapping

t 7→ ‖u(t)‖Γσφ =
∥∥∥eφ(t)A1/2

u(t)
∥∥∥
Ḣσs

(5.23)

is pathwise monotonically decreasing.

In short, we show that for any size E of initial data and any probability p ∈ [0, 1), for a

sufficiently large parameter ν and sufficiently smooth initial data (i.e. α sufficiently large) we

obtain global solutions with probability at least p.

The energy estimates above require finiteness of a higher norm than the one for which they

give monotonicity, which means we have to control two levels of regularity; ie. in order to show

that the Γσφ norm is monotonically decreasing on a given time interval, we have to guarantee

that the Γσ+1
φ norm remains finite on that same interval. But this cannot be done using just

Proposition 5.5 since a priori the higher energy norm will only be controlled for a shorter

amount of time. The key point here is that – thanks to our Gevrey setting – we can achieve

what we need by just an ε loss in regularity: ‖v‖Γργ ≤ ‖v‖Γργ+δ , and ‖v‖Γρ+1
γ
≤ δ−1 ‖v‖Γργ+δ for

any δ, γ, ρ > 0. Then iteratively (losing a fraction of the original ε at every step) we are able to

demonstrate the argument.
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[5] Bényi, A., Oh, T. and Pocovnicu, O. On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger

equation on Rd, d ≥ 3, Trans. Amer. Math. Soc. Ser. B 2, 1–50, [2015].

14i.e. for each fixed path t 7→Wt(ω) we have a unique solution.



28 Nahmod A.R and Staffilani G.
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