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Topological phases of matter are defined by their nontrivial patterns of ground-state quantum entanglement,
which is irremovable so long as the excitation gap and the protecting symmetries, if any, are maintained.
Recent studies on noninteracting electrons in crystals have unveiled a peculiar variety of topological phases,
which harbor nontrivial entanglement that can be dissolved simply by the the addition of entanglement-free, but
charged, degrees of freedom. Such topological phases have a weaker sense of robustness than their conventional
counterparts, and are therefore dubbed “fragile topological phases.” In this work, we show that fragile topology is
a general concept prevailing beyond systems of noninteracting electrons. Fragile topological phases can generally
occur when a system has a U(1) charge conservation symmetry, such that only particles with one sign of the
charge are physically allowed (e.g., electrons but not positrons). We demonstrate that fragile topological phases
exist in interacting systems of both fermions and of bosons.
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I. INTRODUCTION

A fundamental problem in condensed matter physics is to
identify and classify nontrivial topological phases of matter
[1–31], including in the presence of symmetries. But what,
precisely, do we mean by “nontrivial”? In this paper, we
will revisit this question, and discuss phases of matter whose
characterization as “trivial” or “nontrivial” depends rather
sensitively on the precise definitions used.

Traditionally, we say that a system with a gapped local
Hamiltonian Ĥ is in a nontrivial topological phase if there is
no smooth deformation of local Hamiltonians, preserving the
gap and all relevant symmetries, that relates Ĥ to a different
Hamiltonian Ĥ ′ for which the ground state is simply a product
state. But, we still have to specify the space of Hamiltonians
which this deformation is allowed to pass through. Specifi-
cally, we have to specify whether the Hamiltonians must act
only on the degrees of freedom of the original Hamiltonian
Ĥ , or whether, along the path, we are allowed to introduce
additional degrees of freedom, initially in a product state with
each other and with the original degrees of freedom. We will
refer to such additional degrees of freedom as “ancillas.” In
the context of tight-binding models of fermions, introducing
ancillas is equivalent to introducing additional ions and/or
additional orbitals into the tight-binding description.

Can the nontriviality of a phase depend on whether or
not ancillas are permitted? For phases with purely internal
symmetries, there is an argument that it cannot because
even if ancillas are not explicitly permitted, one can build
effective ancillas from the unused degrees of freedom after
coarse graining [8]. This argument fails, however, for systems
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with crystalline symmetries, which cannot be coarse grained
while preserving the symmetries. This raises the possibility
of phases of “intermediate” stability that are nontrivial in the
absence of ancillas, but become trivial in their presence.

In this paper, we will focus on systems composed of
particles carrying a conserved U(1) charge, such that the
charges of all the particles are all of the same sign. A canonical
example of this setting is an electronic problem with charge
conservation. We will also always assume lattice translation
symmetries, such that the filling ν, defined as the average
charge per unit cell, is a well-defined conserved quantity.

We will discuss two kinds of phases of intermediate stabil-
ity in this setting. The first we refer to as a fragile topological
phase [32–35]. A fragile topological phase remains nontrivial
even in the presence of ancillas as long as the filling ν is
kept unchanged. However, if we introduce charged ancillas
which increase the total filling, then the resulting state can be
trivialized. In the language of electronic tight-binding models,
the state is trivialized if we add occupied orbitals, i.e., we add
valence electrons, where the electrons added are initially in
a trivial insulating state. The second, which is more trivial by
comparison, we refer to as an obstructed trivial phase [30,36].
Similar to topological phases, obstructed trivial phases show-
case symmetry-protected quantum entanglement. However,
such entanglement is protected only when one stays strictly
with the original degrees of freedom, and so the state can
be trivialized as soon as we incorporate uncharged ancillas.
In the language of tight-binding models, these uncharged
ancillas can come from unoccupied orbitals, which are always
present when one recalls the fact that the electrons live in the
continuum.

Fragile topological phases [32–35] and obstructed trivial
phases [30,36] have previously been discussed in the context
of free-fermion systems. In this paper, we will show that these
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TABLE I. Summary of phases of intermediate stability.

Class Trivial Obstructed trivial Fragile topological Stably topological

Nontriviality Trivial −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Topological
Trivialized by Uncharged ancillas Charged ancillas
(interpretation) (adding new ions or orbitals) (adding valence electrons)
Examples Product states Secs. IV–VI Secs. IV–VI Chern, Z2 TI

notions are more general and also apply in the presence of
strong interactions. For example, we will show that some
fragile topological phases identified in free-electron systems
are robust to interactions. An important step in our argument
is the introduction of charge carriers with the opposite sign,
which we dub “positrons” by analogy. Introducing positrons
violates the “single-sign” assumption we imposed on the
charge carriers, and we will show that a fragile topological
phase can generically be trivialized upon the lifting of this
assumption. Moreover, we will sketch a construction of an
intrinsically interacting fragile topological phase in a bosonic
system. Our arguments are based on recent results on the
classification of topological phases with spatial symmetries
[25,27,31,37], which in the cases discussed here reduce to
“lattice homotopy” [1,30,38].

This paper is organized as follows. In Sec. II, we present
the precise definition of fragile topological phases and ob-
structed trivial phases. We then present in Sec. IV a general ar-
gument on the stability of certain fermionic fragile topological
phases and obstructed trivial phases against the introduction of
interactions, through a detailed example of spinless electrons
defined on an inversion-symmetric square lattice. The discus-
sion is extended to spinful electrons (Sec. V) and hard-core
bosons (Sec. VI) on the honeycomb lattice. We discuss the
particle-hole duality between the obstructed trivial phase and
the fragile topological phase in Sec. VII and then conclude in
Sec. VIII.

II. DEFINITIONS OF PHASES OF INTERMEDIATE
STABILITY

As we have alluded to, in the presence of spatial symme-
tries, the apparent dichotomy between trivial and topological
phases is more subtle than it may appear, due to the existence
of “phases of intermediate stability” whose stability is depen-
dent on the admittance of ancillas. To understand the proper-
ties of fragile topological phases, it will be beneficial to first
provide precise definitions for the various phases involved,
which we summarize in Table I. We will always assume that
the full symmetry group G includes U(1) symmetry and the
d-dimensional lattice translation symmetry.

A. Setups and rules

As a preparation, let us first clarify the setup.

1. Local Hilbert space

Suppose that the model of our interest is defined on a
lattice � ⊂ Rd symmetric under G. For each x ∈ �, let
Gx be the subgroup of G that leaves x unmoved. States
in the local Hilbert space Hx can be classified accordingly

by the irreducible representations of Gx. In particular, Gx

includes the U(1) symmetry eiθQ̂x that defines the local U(1)
charge. The entire Hilbert space H� is given by the tensor
product ⊗x∈�Hx.

We demand that the charge operator Q̂x satisfies the
positive-semidefinite condition Q̂x � 0 on Hx. Namely, any
eigenstate of Q̂x in the local Hilbert space has a non-negative
eigenvalue of Q̂x. In electronic systems, this condition is vio-
lated when positronic states are allowed. (Here, and through-
out this paper, we define electrons to have positive charge and
positrons to have negative charge.)

We also assume that the local Fock vacuum |0〉x is the only
charge-0 state in the local Hilbert space Hx and that |0〉x has
the trivial representation Ux(g) = 1 for all elements g ∈ Gx.

2. Ancillas

In our definition of equivalence of topological phases, we
will allow ourselves to add ancillas. To define this operation
properly, let y0 ∈ Rd be a point that may not belong to �. The
orbit {g(y0) | g ∈ G} defines a G-symmetric lattice �′ ⊂ Rd .
We introduce a new local Hilbert space Hy to each y ∈ �′.
We assume the same conditions on Hy as mentioned for Hx in
the previous section.

Let us choose |φ〉y0 ∈ Hy0 that obeys a one-dimensional
representation of Gy0 (as is necessary if we want to avoid
introducing ground-state degeneracy when introducing the
ancilla). We assume that the symmetry image ĝ(|φ〉y0 ) belongs
to Hg(y0 ). Then, one can construct a G-symmetric product state
|φ〉�′ by

|φ〉�′ = ⊗g∈G/Gy0
ĝ(|φ〉y0 ), (1)

which belongs to H�′ ≡ ⊗y∈�′Hy.
What we mean by introducing ancillas is the following.

Let |�〉� ∈ H� be the ground state with a finite excitation
gap. Then, after introducing ancillas, the total Hilbert space is
enlarged to H� ⊗ H�′ and the ground state becomes |�〉� ⊗
|φ〉�′ ∈ H� ⊗ H�′ .

In this paper, we will consider different kinds of ancillas,
which will lead to different notions of phases. First, we can
distinguish between electronic ancillas and general ancillas.
An electronic ancilla is one in which the Hilbert space Hy0 sat-
isfies the same conditions (i.e., all states are charge posisitive
semidefinite, and the vacuum state is unique and carries trivial
representation of the onsite symmetry) as we imposed on the
Hilbert space Hx of the original lattice degrees of freedom
in the previous section. A nonelectronic ancilla, meanwhile,
violates these conditions. Nonelectronic ancillas seemingly
have little physical relevance for condensed matter systems,
but we will employ them as a theoretical device.
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Second, we distinguish between charged and uncharged
ancillas, depending on the properties of the state |φ〉y0

in
which the ancilla is in when it is added. We say the ancilla
is uncharged if |φ〉y0

carries trivial representation of the onsite
symmetry group Uy0 (g) |φ〉y0

= 1. In particular, this implies
that the U(1) charge must be zero. For electronic ancillas,
the latter is also a sufficient condition for the ancilla to
be uncharged since it implies that |φ〉y0

must be the Fock
vacuum |0〉y0

.
Now, to define fragile topological phases, we allow only

ancillas that are electronic and uncharged; in particular,
such ancillas do not change the filling ν. Although such
ancillas are always initially in the Fock vacuum state,
they can still help in trivializing the ground state since
once the ancillas are introduced, the ground state is al-
lowed to explore the enlarged Hilbert space H� ⊗ H�′ and
states other than |0〉y0 in Hy0 may be utilized upon smooth
deformation.

One might ask what is the physical reason for considering
such ancillas. Let us focus on the case of tight-binding models
of electrons. The point is that tight-binding models are based
on choosing a finite number of orbitals centered at each lattice
site (thus giving a finite-dimensional site Hilbert space). Thus,
one can think of the formal device of an “ancilla” simply as
a way to bring in additional orbitals that were originally left
out of the tight-binding approximation. This makes it clear
why we want the ancillas to be uncharged: the process of
bringing in an ancilla, though it seems abrupt in terms of the
finite-dimensional site Hilbert space, is really a change in our
description of the system rather than the underlying system
itself; this could never be true for a process that introduces
extra charges.

However, there is still a physical interpretation for the
process of adding a charged electronic ancilla. Usually in
solid state physics, we divide electrons into core electrons
which are tightly bound to their respective nuclei, and the
valence electrons which determine the low-energy properties
of the solid. However, in the course of a deformation, it
is possible that wave functions of the core electrons could
become less localized, to the point where we have to start
treating them as valence electrons. These core electrons, and
the orbitals they occupy, then effectively “enter the scene” for
our description of the material. This corresponds to adding a
charged ancilla. To the extent that we classify phases with the
restriction of uncharged ancillas, we are restricting ourselves
to the regime where the core electrons, if they exist, always
remain tightly bound.

B. Definitions of phases

Now, we are ready to state the definitions of phases in
Table I one by one.

1. Trivial phases

The ground state |�〉� is trivial when it is smoothly de-
formable to a product state in H�, i.e., without introducing
any ancillas.

2. Obstructed trivial phases

The gapped ground state |�〉� is in an obstructed trivial
phase if it is not trivial without ancillas, but becomes trivial
when uncharged electronic ancillas are introduced. Examples
are discussed in Secs. IV–VI. As we will later see, their
existence is closely related to the observation that point-group
symmetries can lead to mutual distinction between trivial
phases [1,22,26,29,30].

3. Fragile topological phases

The ground state |�〉� is in a fragile topological phase if
(i) it cannot be trivialized by introducing any uncharged elec-
tronic ancillas, but (ii) can be trivialized by adding charged
electronic ancillas. This definition generalizes noninteracting
“fragile topological insulators” (FTIs) [32–35]. Examples are
discussed in Secs. IV–VI.

4. Stably topological phases

The ground state |�〉� is in a stably topological phase if it
cannot be trivialized by adding any electronic ancillas, even if
they are charged. (Note that one can easily convince oneself
that allowing also nonelectronic ancillas would not make any
difference to this definition.)

5. Comparison with previous definitions

It is useful to compare the above definitions with previous
works on the classification of interacting topological phases
with spatial symmetries [25,27,31,37]. In such works, phases
are classified with respect to deformations that can include
ancillas that need not be electronic, but must be uncharged.
(In general, there can be more than one “trivial” phase under
such an equivalence relation.). Such an equivalence relation is
not very physically relevant, as we have argued. Nevertheless,
these results will still form the starting point for our analysis
of the more physically motivated definitions given above.

Lastly, we comment that, in the context of free-fermion
problems, the notion of fragile topological phases is related to
the idea of stable equivalence in the theory of vector bundles
(most notably, in K theory) [3,13,32,39,40]. Consider a set
of energy bands which are isolated from above and below by
a continuous energy gap everywhere in the Brillouin zone.
We say this set of band is trivial if one can find a full set
of symmetric, localized Wannier functions. The classification
of phases in this context then boils down to the study of
equivalence of vector bundles under smooth deformation,
which we will denote by the symbol “∼” in this section. For
instance, consider two systems with respective valence-band
vector bundles V1 and V2. We say they are in the same phase
if V1 ∼ V2.

However, in a K-theory-based classification a weaker sense
of equivalence, termed “stable equivalence,” is required: even
if V1 
∼ V2, we say the two systems are stably equivalent so
long as one can find a trivial bundle A such that V1 ⊕ A ∼
V2 ⊕ A. By our definitions, if a set of filled bands T is topo-
logical, one cannot find any trivial A for which T ∼ A. Yet,
in the spirit of stable equivalence, one should further examine
the stability of the topological obstruction upon the addition of
additional filled bands. We say T is fragile topological if one
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FIG. 1. How to establish that a given ground state is in a fragile
topological phase.

can find a pair of trivial bands B and C such that T ⊕ B ∼ C;
if no such pair can be found, we say T is stably topological.

We emphasize therefore, that, for example, the Hopf
insulator [41] is not an example of a fragile topological
phase. The filled bands for this model correspond to a com-
pletely trivial vector bundle, and therefore it can be triv-
ialized simply by adding unfilled bands. We believe that
spatial symmetries are essential to obtain fragile topological
phases.

III. GENERAL APPROACH FOR ESTABLISHING
FRAGILE TOPOLOGY

In this section, we briefly describe the general idea for how
to establish that a ground state is in an interacting fragile
topological phase. The specifics will be gone over in great
detail for a specific example in Sec. IV. The components of
the argument can be summarized in Fig. 1.

The idea is that we want to exploit the known classifi-
cations of crystalline SPT phases from Refs. [25,27,31,37].
As mentioned above, these classifications are based on an
unphysical equivalence relation where nonelectronic ancillas
are allowed. By contrast, what we want to prove to establish a
nontrivial fragile topological phase is that a state can never
be deformed to an atomic insulator with purely electronic
ancillas. But, any such atomic insulator will obviously be
a purely electronic one, so if we can prove that our initial
ground state cannot be deformed into an electronic atomic
insulator, even with the addition of nonelectronic ancillas as
an intermediate step, then this an even stronger result, and the
one we want follows.

To prove this result, the first step is to identify what
crystalline SPT phase the ground state is in with respect
to the classification of Refs. [25,27,31,37]. The states we
consider are always “trivial” with respect to this classification,
which is to say that they can be deformed to an “atomic
insulator” (possibly containing positrons). Since there can still
be distinct trivial phases in the classification, we then use
the ideas from Refs. [25,27,31,37] to determine whether the
resulting atomic insulator can ever be deformed to a purely
electronic atomic insulator.

FIG. 2. (a) The tight-binding model on the decorated square
lattice. The gray square is the unit cell that contains three sites i =
1, 2, 3. (b) The band dispersion E = εn,�k of Ĥ (1)

�k , where n = 0, ±1
is the band index. (c) The real space plot of the Wannier orbital of
the n = 0 band. The size of each circle represents |wi(�R)|. (d) The
exponential decay of the probability density |wi(�R)|2 as a function of
the distance r from the Wannier center �x = ( 1

2 , 1
2 ).

IV. DECORATED SQUARE LATTICE MODEL

In this section, we will first analyze in detail a fermionic
model defined on a decorated square lattice, and from this
present a general argument concerning the stability of certain
fragile topological phases against interactions.

A. Tight-binding model

We begin by considering a model for a fractional topolog-
ical phase in a free-fermion system, i.e., a fragile topolog-
ical insulator (FTI). We start from the tight-binding model
illustrated in Fig. 2(a). The model has three s orbitals per
unit cell, labeled by i = 1, 2, 3 in Fig. 2(a), and is inversion
symmetric. This lattice can actually be viewed as the kagome
lattice. The kagome lattice model has been studied in detail
in Refs. [40,42] and we will use the results. However, the
minimum symmetry setting for our discussion requires only
the inversion and the lattice translation, and here we regard the
lattice as a decorated square lattice. We set the lattice constant
to be 1.

The tight-binding Hamiltonian in the Fourier space reads
as

Ĥ (1)
�k = t (1 + eikx )ĉ†

2,�k ĉ1,�k + t (1 + eiky−ikx )ĉ†
3,�k ĉ2,�k

+ t (1 + e−iky )ĉ†
1,�k ĉ3,�k + H.c. (2)

Here, ĉ†
i,�R is the creation operator of a spinless electron on the

site i belonging to the unit cell �R ∈ Z2 and ĉ†
i,�k is its Fourier

transformation. The inversion symmetry Î is implemented
as Î ĉ†

i,�k Î† = ρi,�k ĉ†
i,−�k with ρ1,�k = 1, ρ2,�k = e−ikx , and ρ3,�k =
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e−iky so that Î Ĥ (1)
�k = Ĥ (1)

−�k Î . We diagonalize Ĥ (1)
�k and write

Ĥ (1)
�k =

∑
n=0,±1

εn,�k γ̂
†
n,�k γ̂n,�k (3)

using the the creation operator γ̂
†
n,�k = ∑3

i=1(�un,�k )iĉ
†
i,�k of the

Bloch state. The dispersion relation E = εn,�k for t = i
4 is

plotted in Fig. 2(b). The hopping parameter is chosen in such
a way that |εn,�k| < 1 and that the magnitude of the band gap
is ∼0.5. The band index n = 0,±1 coincides with the Chern
number of each band, i.e., Cn = ∫

d2k
2π i ∂ky�un,�k · ∂kx�un,�k + c.c. =

n [42].
The flat band (n = 0) has a zero Chern number and thus

admits a full set of symmetric, exponentially localized Wan-
nier orbital by itself [40]. Using the explicit form of the Bloch
function

�u0,�k =
(

1 + eikx−iky

1 + eikx
,

1 + e−iky

1 + e−ikx
, 1

)T

N0,�k, (4)

N0,�k = e−ikx/2

√
1 + cos kx

3 + cos kx + cos ky + cos(kx − ky)
, (5)

we can readily construct the Wannier function by the
Fourier transformation wi(�R) = ∫

d2k
(2π )2 ei�k· �R(�u0,�k )i. As shown

in Fig. 2(c), the Wannier center coincides with the plaquette
center �x = ( 1

2 , 1
2 ) and |wi(�R)|2 decays exponentially with

the distance r from the Wannier center as demonstrated in
Fig. 2(d). This band gives rise to an obstructed phase as we
discuss in Sec. IV E.

B. Fragile topological insulator

Next, in order to realize a FTI, we shift the energy levels
by adding

Ĥ (2)
�k = −

3∑
i=1

ĉ†
i,�k ĉi,�k + 2γ̂

†
0,�k γ̂0,�k (6)

to Ĥ (1)
�k , so that the n = ±1 bands sit below E = 0 and the n =

0 band is above E = 0 [see Fig. 3(a)]. The first term of Ĥ (2)
�k

is just the onsite potential, and the second term can also be
realized by exponentially decaying hopping since the Bloch
function �u0,�k in Eq. (4) is analytic in �k. If desired, one can

truncate the hopping at some finite range so that Ĥ (2)
�k becomes

strictly local.
Let |�〉 be the state obtained by occupying the two bands

below the chemical potential μ = 0. This is the unique gapped
ground state of

∫
d2k

(2π )2 (Ĥ (1)
�k + Ĥ (2)

�k ) and it has the filling
ν = 2. The net Chern number is canceled out and a priori it
could be smoothly deformable to a product state. However,
the combination of inversion parities forms the obstruction
to such a deformation within the single-particle problem of
electrons. In Fig. 3(a), we show the inversion parity of each
band at the four time-reversal-invariant momenta (TRIMs).
The two occupied bands have in total two odd parities at
�k = (π, π ) and two even parities at the other three TRIMs.
This combination of the inversion eigenvalue cannot be re-
alized as a stacking of atomic insulators and thus cannot be

FIG. 3. (a) The band structure of Ĥ (1)
�k + Ĥ (2)

�k along lines con-
necting TRIMs � = (0, 0), X = (π, 0), Y = (0, π ), M = (π, π ).
(b) Illustration of an atomic insulator with an s-orbital sitting at the
plaquette center. (c) Intuitive illustration of the FTI |�〉. (d) A pro-
cess of trivializing |�〉 by stacking an atomic insulator of electrons.

topologically trivial. In fact, this parity combination implies a
nontrivial flow of the Wilson loop eigenvalues [43] and |�〉
was identified as a noninteracting FTI in Ref. [40].

In contrast, if an additional site is added at the plaquette
center (which we call i = 4 from now) for every unit cell,
the n = 0 band can be smoothly deformed into the product
state illustrated in Fig. 3(b), as we explicitly demonstrate in
Sec. IV E. This, in turn, implies that the insulator |�〉 can be
intuitively depicted as Fig. 3(c), in which the unfilled atomic
limit in Fig. 3(b) is formally subtracted from the product
state of electrons occupying all three sites i = 1, 2, 3. In other
words, the insulator |�〉 can be trivialized by adding to it a
product state (ancillas with ν = 1) in Fig. 3(d). This type of
“fragile” topology was first proposed in Ref. [32]. However,
this requires changing the filling from ν = 2 to 3. Adding
an unfilled band of electrons does not change the filling but
cannot trivialize the fragile topology since, by definition, it
does not change the representation of occupied bands.

C. Trivializing FTI by positrons

So far, as in past works, the “subtraction” shown in
Fig. 3(c) has been treated as a purely formal one. However,
we now take a step towards interpreting it more concretely:
“minus an electron” is heuristically the same as a positron, i.e.,
a particle carrying charge −e. In this section, we propose to
take this picture seriously, and use it to understand properties
of the FTI. In particular, we will explicitly demonstrate that,
by adding extra degrees of freedom such that the Hilbert space
also contains positronic states (in the language of Sec. II A 2,
adding a nonelectronic ancilla), the FTI |�〉 in Fig. 4(a) can
be smoothly deformed into a product state of electrons and
positrons as illustrated in Fig. 4(e), where red and blue circles,
respectively, represent electrons and positrons in an s orbital.
This deformation can take place purely in the space of free-
fermion Hamiltonians.
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FIG. 4. (a) Illustration of |�〉, the ground state of
∫

d2k
(2π )2 Ĥ�k (τ ) at

τ = 0. (b) The band structure of Ĥ�k (τ ) at τ = 0. (c) Illustration of the

ground state of
∫

d2k
(2π )2 Ĥ�k (τ ) at τ = 1, in which the n = 0 electronic

band and the positron band are occupied. The red and blue circles,
respectively, represent electrons and positrons in an s orbital. (d) The
band structure of Ĥ�k (τ ) at τ = 1. (e) The product state limit of (c). (f)
The band structure of Ĥ�k (τ ) at τ = 1 after switching off the hopping
in Ĥ (1)

�k .

Let us make an immediate remark. By adding positronic
degrees of freedom, we are violating the condition on the
deformations that we imposed in defining fragile topology
summarized in Sec. II. So, the existence of the deformation
we are constructing does not contradict with our earlier state-
ments on fragile topology. Thinking about it in a different way,
since we will initially be adding an empty band of positrons
(which does not change the filling), this example also serves to
illustrate the necessity of forbidding the presence of opposite-
signed charge states in the Hilbert space when defining fragile
topology, which might not have been immediately obvious.

To this end, let p̂�R be the creation operator of a positron
at the plaquette center (the site i = 4) of the unit cell �R. We
introduce an empty band of positrons by adding a positive
onsite potential term +∑

�R p̂†
�R p̂�R. In terms of the the hole

operator of positron ĥ�R ≡ p̂†
�R, this corresponds to the term

Ĥ (3)
�k = −ĥ†

�k ĥ�k (7)

in the momentum space, giving rise to a flat band at E = −1
[the red dashed line in Fig. 4(b)]. The U(1) charge operator Q̂
is now given by Q̂ = ∑

�R (
∑3

i=1 ĉ†
i,�Rĉi,�R + ĥ†

�Rĥ�R − 1) and the

inversion Î acts on ĥ�k as Î ĥ†
�k Î† = e−i(kx+ky )ĥ†

−�k . We also include
the mixing term of the n = 0 band and the positron hole band:

Ĥ (4)
�k (τ ) = (1 − cos τπ )(ĥ†

�k ĥ�k − γ̂
†
0,�k γ̂0,�k )

+ sin τπ (γ̂ †
0,�kĥ�k + ĥ†

�k γ̂0,�k ), (8)

and the total Hamiltonian reads as

Ĥ�k (τ ) =
3∑

�=1

Ĥ (�)
�k + Ĥ (4)

�k (τ ). (9)

FIG. 5. (a)–(e) Illustration of product states of electrons and
positrons, where s (p) orbitals are shown by circles (two fins). Small
black dots are the center of an inversion. (f), (g) The identification
rules among the product states, assuming interactions. (h) The sym-
metric deformation process of fermionic product states. Orbitals at
nonsymmetric sites are illustrated by stars. (i) Three copies of (a) can
be smoothly deformed into a product state of electrons only.

When τ = 0, the mixing term Ĥ (4)
�k (0) vanishes and the

positron hole band locates at E = −1 (i.e., the positron states
are not occupied) while the unoccupied n = 0 electron band
is at E = +1 [Figs. 4(a) and 4(b)]. The two flat bands inter-
change as τ increases without closing the band gap. Namely,
the wave function of the two flat bands mixes and the weight
changes but the energy levels stay unchanged. When τ reaches
1, the n = 0 electron band has E = −1 and the positron hole
band has E = +1, meaning that the added positron state as
well as the n = 0 electron band are fully occupied [Figs. 4(c)
and 4(d)]. The Hamiltonian at τ = 1 has the simple form

Ĥ�k (τ = 1) = Ĥ (1)
�k + ĥ†

�k ĥ�k −
3∑

i=1

ĉ†
i,�k ĉi,�k . (10)

This is simply the original tight-binding model with onsite
potentials. Finally, one can smoothly switch off the hopping
in Ĥ (1)

�k and make all bands completely trivial as in Figs. 4(e)
and 4(f). This completes the adiabatic process of deforming
the FTI in Fig. 4(a) into the product state illustrated in
Fig. 4(e).

D. Lattice homotopy of atomic insulators

Here, we show that the product state of positrons and
electrons in Fig. 5(a) cannot be smoothly deformed into any
product state of only electrons with the same filling, such as
the ones in Figs. 5(b) and 5(c). This statement will be true
even with ancillas. In this section, we allow nonelectronic
ancillas; after all, we already introduced them in constructing
the deformations in the previous section. We do, however, still
demand that the ancillas be uncharged (recall the definitions
of “uncharged” and “electronic” from Sec. II A 2). Thus,
we are now considering the equivalence relation implicit in
Refs. [25,27,31,37].

The first step is to show that the deformation cannot
take place though a continuous path in the space of atomic
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insulators, an “atomic-insulator homotopy.” In this section,
by “atomic insulator” we just mean a product state; each site
could by occupied by electrons or positrons, or both.

At each inversion-symmetric point, filled orbitals can be
classified into s or p types, depending on their inversion
parity ±1. In Fig. 5, filled s orbitals are shown by circles
and p orbitals are illustrated by two fins. One should un-
derstand these figures under the identification rules listed in
Figs. 5(f) and 5(g), which are derived assuming the presence
of interactions. For example, Fig. 5(f) says the state with
two filled s orbitals cannot be distinguished from the state
with two filled p orbitals. Under these rules, the product
states at a single inversion-symmetric point are classified as
Z × Z2, respectively corresponding to the U(1) charge and
the inversion parity. These identification rules come from
allowing strong interactions; for noninteracting systems, two
filled p orbitals are different from two filled s orbitals, but
with interactions we can do a continuous deformation acting
that transforms one into the other. Specifically, we have the
continuous path of inversion-symmetric onsite states |φθ 〉 =
cos θ |s, s〉 + sin θ |p, p〉 , θ ∈ [0, π/2].

When the translation symmetry is included, there are four
inversion-symmetric sites (i = 1, . . . , 4) in a unit cell. A
process of symmetric deformation of product states is sum-
marized in Fig. 5(h): a pair of inversion-related charges can
be smoothly moved to the inversion center and then they split
into an s and a p orbital. Now, recall that the classification
about a single inversion center is given by Z × Z2, where
the Z factor indicates the charge localized at the point, and
Z2 = {−1,+1} encodes the parity of the state. Under the
deformation described above, the state is modified by the
filling of an additional pair of orbitals of the s and p char-
acters, respectively. This increases the charge by 2, and at the
same time flips the parity of the state. In more mathematical
terms, by identifying configurations which are identical under
atomic-insulator homotopy, the classification is reduced to
Z × Z2/〈(2,−1)〉 � Z4.

While this discussion is applicable to any of the four
inversion centers in the unit cell, the total charge in a unit
cell is also conserved in the presence of translation symmetry.
Furthermore, one can define a “total parity” that is also
invariant under atomic-insulator homotopy: suppose we first
deform the ground state to a strictly localized limit ⊗c|c〉,
where c runs over all the inversion centers in the system. Let
P̂c be the parity operator about c, and we define the local parity
ξc as the eigenvalue P̂c|c〉 = ξc|c〉. While the sign of a single
ξc is ambiguous, the product

ξ ≡
∏

c in a unit cell

ξc

is an unambiguous invariant, as the symmetric deformation
requires the sending of pairs of charges from one inversion
center c0 to an inequivalent one c1 in the unit cell, thereby
keeping the product ξc0ξc1 unchanged.

If we fix the total charge and total parity in the unit cell,
then knowing the Z4 invariant associated with three of the
inversion-symmetric points is enough to know it at the fourth
point. Therefore, we obtain a Z × Z2 × (Z4)3 classification
of atomic insulators, where the Z factor represents the filling
ν, the Z2 factor corresponds to the mentioned total parity, and

the remaining Z4 factors correspond to the three independent
Z4 invariants associated with the inversion-symmetric points.
More explicitly, the three Z4 factors can be generated by the
neutral configuration with one electron at the origin (i = 1)
and one positron at one of the other three symmetric sites
i 
= 1.1

The product state in Fig. 5(a) can be adiabatically deformed
into, for example, the one in Fig. 5(d) through the process of
dragging a pair of negative charges in Fig. 5(e). However, it
cannot be deformed into a product state of only electrons.
To see the obstruction, note that the total U(1) charge in
each inversion center must be preserved modulo two in any
symmetric deformation process. At filling ν = 2, a product
state of electrons must contain at least two vacant inversion
centers [i.e., even U(1) charge] as shown in Figs. 5(b) and 5(c).
Therefore, the product state in Fig. 5(a), where every inversion
center has an odd U(1) charge, cannot be smoothly deformed
into such states.

Now, we must ask whether two states can be related
by a local unitary even if they are not related by a lattice
homotopy. An argument that they cannot relies on the “block-
state” picture of crystalline topological phases introduced
in Refs. [25,31]. This framework can also be derived [37]
from the general approach of Ref. [27]. In the framework of
Refs. [25,31,37], an atomic insulator is called a block state
of block dimension 0. Moreover, the space of local relating
two block states is captured by homotopies of block states of
dimension 0, 1, . . . , d − 1, where d is the space dimension.
We have already considered homotopies of block states of
dimension 0 (atomic insulator homotopies). Moreover, in
the present context d = 2, and there are no block states
of dimension 1 because for any nontrivial one-dimensional
submanifold of space, the effective symmetry group (the sub-
group of the full symmetry group that leaves the submanifold
invariant) is U(1), and there are no nontrivial one-dimensional
fermionic symmetry-protected topological (SPT) phases with
symmetry U(1).

These considerations, however, are rather abstract and de-
pend on the validity of the classification of Ref. [27], which
has not been proven rigorously. In fact, in the present context
we can give a more straightforward and rigorous argument.
The important point is that we did not really need to use
translation symmetry in the above argument. To show that the
state shown in Fig. 5(a) is distinct from any atomic insulator
of electrons, it is sufficient to show if two atomic insulators
are related by a local unitary that is symmetric with respect to
U(1) and inversion symmetry about one particular point, then
they are related by a lattice homotopy with respect to those
same symmetries. This can be shown using coarse graining, as
shown in Appendix A. To see why this is sufficient, note the
argument that Fig. 5(a) cannot be deformed to an electronic
atomic insulator only relied on the fact that the charge at
the inversion center is invariant modulo 2 (which follows just
from inversion symmetry) and the invariance of the filling.

1Although our discussion here is for the inversion symmetry sat-
isfying Î2 = +1, the classification results are unchanged even for
Î2 = (−1)Q̂ (the fermion parity), which is naturally realized by the
twofold rotation for spinful electrons.
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FIG. 6. (a), (b) The band structure of −Ĥ�k (τ ) at τ = 0 and 1. The
red line corresponds to the atomic insulator, illustrated in (d), with
an s orbital sitting at the plaquette center. (c) With interactions, three
copies of the original tight-binding orbitals can be moved in such
way that trivializes the obstructed trivial insulator through a similar
process as in Fig. 5(h).

Having completed the program laid out in Sec. III, we
conclude that the decorated square lattice model is indeed in
a fragile topological phase that is stable to interactions.

E. Obstructed topological phase

We have shown that the band insulator that fills the n = ±1
bands is in a fragile topological phase. Here, we discuss
that its particle-hole conjugate that occupies only the n = 0
band is obstructed. To this end, let us consider the inverted
single-particle Hamiltonian −Ĥ (1)

�k − Ĥ (2)
�k . Let |�〉 be the

filling ν = 1 band insulator that fully occupies the n = 0 band.
|�〉 is obstructed because the n = 0 band has a symmetric
localized Wannier orbital centered at �x = ( 1

2 , 1
2 ) as shown in

Sec. IV A, but there is no atomic site at the Wannier center
in this model. Moreover, it is obstructed within the electronic
problem because one cannot move any sites in the original
tight-binding model unless positrons are allowed.

Now, we demonstrate that, once a new electronic site at the
plaquette center is introduced, |�〉 is smoothly deformed to
a product state. In fact, we can reuse the same interpolating
Hamiltonian as above with only an additional minus sign:

−Ĥ�k (τ ) = −
3∑

�=1

Ĥ (�)
�k − Ĥ (4)

�k (τ ). (11)

This time, one should interpret ĥ�k in Ĥ (3)
�k and Ĥ (4)

�k (τ ) as the
annihilation operator of an electron (not a hole of positron)
associated with the site i = 4. Hence, the U(1) charge operator
is given by Q̂ = ∑

�R (
∑3

i=1 ĉ†
i,�Rĉi,�R + ĥ†

�Rĥ�R).
At τ = 0, the n = 0 band has E = −1, while the flat band

of the added product state has E = +1 and is unoccupied
[Fig. 6(a)]. As τ increases, they mix and interchange without
closing the band gap, as shown in Fig. 6(b). At τ = 1, the
occupied band below E = 0 is precisely the product state of
localized s orbital at the i = 4 site, illustrated in Fig. 3(b).

One can readily prove the stability of the obstructed atomic
insulator using this product state limit. There are only three

possible product states at filling ν = 1, obtained by localizing
the charge in s orbital to one of the sites i = 1, 2, 3, in
the original tight-binding model −Ĥ (1)

�k − Ĥ (2)
�k . Clearly, the

product state in Fig. 3(b) cannot be adiabatically deformed
to any one of these candidate product states since such a
deformation would violate the conservation of U(1) charge
modulo 2 at the plaquette center.

F. Breakdown of noninteracting fragile/obstructed phases

It has been shown in Ref. [43] that the band insulator
composed of N copies (N = 2, 3, 4, . . .) of the above FTI,
which has 2N odd parities at �k = (π, π ) and 2N even parities
at other TRIMs, is still topological within the single-particle
problem. Here, we discuss the stability of such states against
many-body interactions.

Once positrons are introduced, the N copies of the FTI can
be smoothly deformed to the N copies of the product state of
positrons and electrons in Fig. 5(a). For example, the leftmost
panel in Fig. 5(i) is the case of N = 3. When N = 2, it can
be readily seen that positrons in the product state cannot be
eliminated in any deformation process.2

However, three copies of the FTI can be adiabatically
deformed into a product state of electrons only, as illustrated
in Fig. 5(i), through the symmetric deformation path discussed
in Sec. IV D. This suggests that some fragile noninteracting
topological phases may become trivial in the presence of
interactions. Note that the deformation process in Fig. 5(i)
cannot be taken as a proof of this claim since one must find a
path to an electron product state without introducing positrons
in any intermediate step.

Similarly, the obstruction in the three copies of the ob-
structed atomic insulator can be resolved by smooth deforma-
tion of the tight-binding orbitals as illustrated in Fig. 6(c). This
process does not involve any positrons but assumes strong
interactions among electrons. Thus, the three copies of the
obstructed atomic insulator can be smoothly trivialized.

V. MODEL WITH SPINFUL ELECTRONS AND TIME
REVERSAL

Having established the interaction stability of the fragile
topology for the model of spinless fermions in Sec. IV, it is
of physical interest to ask if the same stability is found for
models of spinful electrons with time-reversal T symmetries,
as this symmetry setting is naturally realized in crystalline
materials with strong spin-orbit coupling and no magnetic
ordering.

In fact, the fragile model first described in Ref. [32]
concerns exactly with T -invariant spinful electrons. In this
section, we will show that this noninteracting FTI is also
stable against the introduction of interaction. To establish this,

2The state can be deformed to a product state with only non-
negative charges, but which still carries nontrivial eigenvalue of
inversion at the plaquette center even though q = 0 there. This,
however, is not a purely electronic atomic insulator because the only
purely electronic state with q = 0 is the Fock vacuum, which carries
trivial inversion eigenvalue.
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FIG. 7. (a) Intuitive illustration of the honeycomb FTI. (b) The
product state limit of (a), which requires both electrons and positrons.
(c) The product state of only electrons at the same filling as (b).

we first note that we will only need to use the charge quantum
number in our argument; while the other point-group symme-
tries could in general lead to additional quantum numbers in
the interacting setting [44], these additional quantum numbers
can be ignored for the following analysis.3 Furthermore, due
to Kramers degeneracy, the total charge localized to any site
is quantized to qn with n ∈ Z and q ≡ 2e is twice the charge
of the spinful electron.

Let us study the stability of the model in Ref. [32]. The
model there is defined on the honeycomb lattice, and the
spatial symmetries are described by the wallpaper group 17
(p6mm) [45], generated by the two lattice translations along
�a1,2, a sixfold rotation C6 about the point-group origin (a
plaquette center of the honeycomb lattice) in the 2D plane, and
a mirror along (say) �a1. Now, observe that the honeycomb FTI
state is constructed by filling two bands, whose complement
corresponds to an atomic insulator with a Kramers pair of
electron localized to the plaquette center [Fig. 7(a)], which
is in an obstructed atomic limit [30] unless new sites at the
plaquette center are introduced. Using the same construction
as in Sec. IV, by admitting positrons into the system one can
deform the FTI into the product state shown in Fig. 7(b),
where charge −q is pinned to the origin, and charge q is
pinned to each of the honeycomb sites.4 Importantly, as the
honeycomb site is invariant under a C3 rotation, the local
charge there must be conserved modulo 3q under homotopy.
Similarly, the local charge at the origin is conserved modulo
6q. We thus conclude the point charges in Fig. 7 are all immo-
bile, implying the impossibility to eliminate the positrons and
obtaining a purely electronic product state. This establishes
the interaction stability of the FTI in Ref. [32].

VI. BOSONIC MODEL

The basic philosophy of how to establish fragile protec-
tion of interacting topological phases, discussed above for
fermions, works equally well for bosons. (To avoid confusion,
in this section we will use the terminology “sign-restricted
ancilla” to refer to what we previously called an “electronic
ancilla”, though the definition of the latter in Sec. II A 2
did not actually depend on the particles being fermionic.)
Consider a bosonic system with U(1) symmetry. Then, for
example, any ground state built from only positive charges,

3We remark that, in the special case of atomic insulators smoothly
deformable into a noninteracting limit, the only nontrivial quantum
number is the charge.

4If desired, one can also compute the atomic-insulator homotopy
classification by a a similar computation as the one in Sec. IV D.

but which, by adding non-sign-restricted ancillas, can be
smoothly deformed to the state shown in Fig. 7(b) without
breaking charge conservation or the symmetries of the hon-
eycomb lattice, must be fragile protected [in the presence of
U(1) and the lattice symmetries], by similar arguments to
those discussed above.

The only outstanding question is whether such a bosonic
state exists. Here, we will show that this is equivalent to a
different question which has already been considered in the
literature: the existence of a featureless Mott insulator on
the honeycomb lattice with hard-core bosons hopping on the
vertices, and site filling 1

2 (that is, average charge 1 per two-
vertex unit cell). Here, “featureless” means that no symmetries
are spontaneously broken and there is no fractionalization.
Numerical evidence for existence of such a state has been
presented in Refs. [46,47]. We refer to the state constructed
in Refs. [46,47] as the honeycomb Mott state |�HM〉.

First of all, we note that the state |�HM〉 as constructed in
Ref. [46] is explicitly time-reversal invariant, but we consider
phases not requiring time reversal for protection; that is, we
allow the time-reversal symmetry to be explicitly lifted. We
will also assume that the honeycomb Mott state is not pro-
tected by U(1) alone; this should be clear because nontrivial
U(1) SPTs are characterized by their Hall conductance, and
the state |�HM〉 was explicitly constructed to be time-reversal
invariant. (The fact that we then allowed time reversal to be
lifted does not matter because even a time-reversal breaking
perturbation cannot change the Hall conductance without a
phase transition.)

Now, we can apply the general framework of
Refs. [25,31,37] (see the discussion of this framework in
Sec. IV D), which shows that the state |�HM〉 should be
symmetrically deformable (in the presence of uncharged,
non-sign-restricted ancillas) to a “block state,” as defined
there. Given the assumptions above, this block state
cannot carry nontrivial SPTs on surfaces [on which the
effective internal group is just U(1)], nor on mirror lines
[because the effective internal group is Z2 × U(1), and
H2(Z2 × U(1), U(1)) = 0]. That is, the block state must
be built of zero-dimensional blocks (points). Each such
zero-dimensional block carries some integer charge under
U(1). There are only two such charge distributions consistent
with overall 1

2 site filling: they are shown in Figs. 7(b)
and 7(c). Note that the states shown in Figs. 7(b) and 7(c)
are in different phases with respect to the symmetries of the
honeycomb lattice because if we only keep the C6 rotation
symmetry about a given plaquette center, then Fig. 7(b)
is deformable to a state with only U(1) charge −1 at the
plaquette center, and the arguments of Appendix A show that
such a state cannot be deformed to a state with only charge
+1 at the inversion center because −1 
= 1 mod 6.

We might guess that the one into which |�HM〉 is de-
formable is the one shown in Fig. 7(c) because this roughly
corresponds to the intuition used in the construction of
Ref. [46]: inserting a boson in a superposition over the vertices
of each plaquette. To see this is indeed the case, note that
the invariant that distinguishes 7(b) and 7(c), the U(1) charge
at the plaquette center, mod 6, can be detected as the total
charge of a finite (but large) system with boundary that is
symmetric with respect to C6 rotation about a plaquette center.
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The construction of Ref. [46] can be applied in such a system
with boundary, and produces a state with charge 1 mod 6;
hence, we conclude that the state |�HM〉 is deformable into
the configuration shown in Fig. 7(c) once proper ancillas are
introduced at the plaquette center. Hence, the honeycomb
Mott state |�HM〉 by itself is in an obstructed topological
phase.

Now, let us consider the particle-hole conjugate of |�HM〉,
which we call |�HM〉. This is constructed from |�HM〉 by
applying the charge-conjugation operator |0〉 〈1| + |1〉 〈0| at
each vertex (where |0〉 and |1〉 denote the unoccupied and
singly occupied states, respectively). Note that this state is
still U(1) symmetric, and has the same filling. By similar ar-
guments to the above, we conclude that it must be deformable
into either Fig. 7(b) or Fig. 7(c). Moreover, by considering
the charge on a system with C6-symmetric boundary, we see
that it must be Fig. 7(b). Therefore, we conclude that the state
|�HM〉 is a fragile topological phase.

VII. DUALITY BETWEEN FRAGILE TOPOLOGICAL
PHASES AND OBSTRUCTED PHASES

The examples discussed in the previous sections have
revealed an intriguing connection between fragile topological
phases and obstructed trivial phases: they frequently seem to
be related by particle-hole conjugation. In this section, we will
show that indeed there is a general connection. First, however,
we will need to isolate exactly what kinds of obstructed trivial
phases this duality should hold for. For example, the particle-
hole conjugate of the Su-Shriefer-Heeger (SSH) chain [48]
discussed in Appendix C is another SSH chain and does not
have fragile topology. In this section, we introduce a distinc-
tion between mildly and strongly obstructed trivial phases, and
show that the particle-hole conjugate of a strongly obstructed
trivial phase is always fragile topological. We will phrase the
argument for interacting systems, but similar arguments can
be applied to noninteracting fermions, so this duality also
applies at the level of the noninteracting classification.

For the purpose of this section, we define a deformation
between states to be acting with symmetric local unitaries
and adding uncharged ancillas (we do not require electronic
ancillas). We write |�〉 ∼ |�〉 to show that the states |�〉 and
|�〉 can be deformed into each other. A state |�〉 is fragile*
topological if there exists no deformation to an electronic
atomic insulator (that is, an atomic insulator where the Hilbert
space of each site contains only electronic states, as defined in
Sec. II A 1). We will use a subscript + to refer to electronic
atomic insulators, e.g., |φ+〉. Note that fragile* topological
implies fragile topological in the sense defined earlier, but the
converse is not clear; for example, as discussed in Sec. IV F,
three copies of the inversion-protected FTI on the square
lattice is not fragile* topological, but we do not know if it
is fragile topological.

Now, we introduce our notions of obstructed. First of all,
we note that the notion of “obstructed” depends on specifying
a set of “allowed” orbitals at “allowed” locations in space. Let
|I〉 be the state that completely fills all the allowed orbitals
(which is a particular case of an electronic atomic insulator).
A state |�〉 is (mildly) obstructed trivial if it can be deformed
to an electronic atomic insulator, but cannot be deformed to

an electronic atomic insulator |φ+〉 which does not occupy
orbitals that are not in the set of allowed orbitals. However,
we say |�〉 is strongly obstructed trivial if it satisfies a stronger
condition: |�〉 is strongly obstructed if it is mildly obstructed
with respect to any set of orbitals which is deformable to
the original set, in the sense that the fully filled state |I ′〉 is
deformable into |I〉. An example of a mildly obstructed phase
that is not strongly obstructed is the SSH chain, which is no
longer mildly obstructed when we symmetrically move the
positions of the ions (which corresponds to a deformation of
|I〉), as shown in Appendix C.

Let us give an alternative characterization of strongly ob-
structed trivial: a state |�〉, which is deformable to an elec-
tronic atomic insulator, is strongly obstructed trivial if there is
no electronic atomic insulator |ψ+〉 such that |�〉 ⊗ |ψ+〉 ∼
|I〉. Indeed, if there were such an atomic insulator, then given
that we know that |�〉 ∼ |φ+〉 for some electronic atomic
insulator |φ+〉, we can define |I ′〉 := |φ+〉 ⊗ |ψ+〉, and clearly
|�〉 is not mildly obstructed with respect to |I ′〉 ∼ |I〉. On the
other hand, if |�〉 is not strongly obstructed, then there exists
|I ′〉 ∼ |I〉 such that |�〉 is not mildly obstructed with respect
to |I ′〉, which means that |�〉 is deformable to an electronic
atomic insulator |φ+〉 such that |φ+〉 fills only orbitals that
are filled in |I ′〉. Then, it is easy to see that there must be
an atomic insulator |ψ+〉 such that |φ+〉 ⊗ |ψ+〉 ∼ I ′ ∼ I.

Now, the particle-hole conjugate is also defined with re-
spect to the “allowed orbitals”; in particular, at least in the
case of states that are not stably topological, one can show that
|�〉 ⊗ |�〉 ∼ |I〉, where |�〉 is the particle-hole conjugate
of |�〉.

Now, we can show that if |�〉 is strongly obstructed, then
|�〉 is fragile* topological. To see this, suppose that there
were an electronic atomic insulator |φ+〉 such that |�〉 ∼
|φ+〉. Then, we find that |φ+〉 ⊗ |�〉 ∼ |I〉. But this exactly
contradicts our assumption that |�〉 was strongly obstructed.

We can also answer the following question: If |�〉 is
fragile* topological (but not stably topological), then what is
the nature of its particle-hole conjugate |�〉? It turns out that
|�〉 must either be strongly obstructed trivial or fragile* topo-
logical. Indeed, observe that if |�〉 is not stably topological,
then clearly neither is |�〉, so we write |�〉 ∼ |ψ〉 for some
atomic insulator |ψ〉 (possibly involving positrons). Suppose
that |�〉 is not fragile* topological nor strongly obstructed
trivial, then there exists an electronic atomic insulator |φ+〉
such that |�〉 ⊗ |φ+〉 ∼ |I〉. We then find that |�〉 ⊗ |ψ〉 ∼
|�〉 ⊗ |�〉 ∼ |I〉 ∼ |�〉 ⊗ |φ+〉 ∼ |ψ〉 ⊗ |φ+〉. Now, we use
the fact that for any atomic insulator |φ〉 there is an inverse
atomic insulator |φ−1〉, such that |φ〉 ⊗ |φ−1〉 = 0, to conclude
that |�〉 ∼ |φ+〉, which contradicts our assumption that |�〉
was fragile* topological.

VIII. CONCLUSIONS

In this work, we prove that certain fermionic fragile topo-
logical phases are stable against the introduction of interac-
tions. The gist of the arguments relies on the introduction
of fictitious “positrons,” particles with the opposite charge
compared with the physical ones, and by showing that an
entanglement-free ground state is possible if and only if
positrons are admitted. Our argument extends to problems of
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interacting bosons, and we construct an example of fragile
topological phases for hard-core bosons living on the honey-
comb lattice.

Our results clarify that fragile topological phases can exist
in a much more general setting than systems of noninteracting
electrons. Their necessary ingredients appear to be spatial
symmetries which are rich enough to protect distinct prod-
uct states [1,22,26,29,30], together with particles carrying
a charge which is unbounded and single signed. Provided
oppositely charged particles are physically prohibited, fragile
topological phases showcase protected ground-state entangle-
ment much like their conventional counterparts. It remains an
interesting open question whether or not such entanglement
can lead to nontrivial physical properties. Conversely, when
only quantum entanglement is available as a diagnostic on
the nontriviality of a state, our discussion implies one should
carefully study the stability of such entanglement signatures
in the presence of ancillas in order to fully understand the
topological nature of the state.

Note added. Recently, a related paper appeared (Ref. [49]),
which discussed how unconventional physical responses can
arise in a system with only fragile, instead of stable, topology.
They also discussed the classification of atomic insulators in
the presence of interactions. In places where our discussions
overlap, the results are apparently consistent.

ACKNOWLEDGMENTS

H.W. and D.V.E. would like to acknowledge helpful discus-
sions with E. Altman, X. Chen, M. Cheng, M. Hermele, and
Y. Ran. D.V.E. also thanks B. Ware for helpful discussions.
We also thank S. Liu, A. Vishwanath, and E. Khalaf for
sharing their manuscript with us. This work was initiated
and performed in part at Aspen Center for Physics, which is
supported by National Science Foundation Grant No. PHY-
1607611. This research was also supported in part by the
National Science Foundation under Grant No. NSF PHY-
1748958. D.V.E. acknowledges support from the Gordon and
Betty Moore Foundation. H.C.P. is supported by a Pappalardo
Fellowship at MIT. H.W. acknowledges support from JSPS
KAKENHI Grant No. JP17K17678.

APPENDIX A: EQUIVALENCE RELATIONS
BEYOND HOMOTOPY

In this Appendix, we will show that the homotopy classi-
fication of atomic insulators in two spatial dimensions with
respect to inversion symmetry about one point (and no trans-
lation symmetry) is correct, in the sense that it generates the
same equivalence relation as deformations by local unitaries.
In two dimensions, inversion is the same as a C2 rotation
symmetry; similar arguments will apply to the case of a CN

rotation symmetry, and in fact to any point group in two
dimensions, i.e. a group of spatial symmetries that leaves one
particular point in space invariant. As an example of what we
want to show, with a C2 symmetry the U(1) charge pinned to
the rotation center is invariant modulo 2 in atomic insulator
homotopies; we want to show that, in fact, this charge cannot
be changed modulo 2 by any local unitary respecting U(1) and
C2 symmetry.

FIG. 8. (a) If two atomic insulators with charges q and q′ at the
origin, respectively, can be related to by a local unitary U on the
plane, then (b) the restriction of U to a compact region R produces a
charge q′ at the origin as well as an entangled state on the boundary.
This can be symmetrically disentangled in turn.

Indeed, consider two atomic insulator states |ψ〉 and |φ〉
with charges q and q′ at the origin, respectively (see Fig. 8).
Suppose there exists a symmetric local unitary U that relates
|ψ〉 to |φ〉. By definition, this means there exists a path
of local symmetry-respecting Hamiltonians H(s), 0 � s � 1,
such that

U = T exp

(
−i

∫ 1

0
H(s)

)
. (A1)

Now, consider a large compact C2-symmetric region R. We
can define [50] a symmetric restriction UR of U to the region
R, which acts like U in the interior of R and like the identity
outside of R. To define UR, we just keep all the terms in the
Hamiltonian H(s) which do not act outside of R and throw
out the rest. On the region R, we can talk about the global
U(1) charge of any state. For atomic insulators, in particular,
we can also talk about the charge at the origin. Moreover, for
atomic insulators, since they are product states we can define
restrictions |ψR〉 and |φR〉.

Now, consider the effect of acting with UR on the state |ψR〉.
Obviously, UR |ψR〉 must look like |φ〉, and hence |φR〉, on the
interior of R. However, UR |ψR〉 could still carry an entangled
one-dimensional state along the boundary of R. But now,
following Ref. [25], we consider two nonoverlapping regions
Q1,2 along the boundary of R, separated by a distance large
compared to the correlation length and related by C2 symme-
try. Within Q1, there must be a U(1)-symmetric local unitary
V1 which turns UR |ψR〉 to a product state (atomic insulator)
within the region [because there are no nontrivial bosonic
or fermionic U(1) SPT phases in (1+1)D]. By applying the
C2-related local unitary to UR |ψR〉 in Q2, we now obtain a
C2-symmetric atomic insulator. This state has global charge
q, but the charge at the origin is q′. Any charges away from
the origin must come in C2-related pairs, so it follows that
q = q′[mod 2]. Finally, let us note that the above arguments
are unchanged if we allow ancillas, provided that they are
brought in in states carrying no charge.
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The generalization to other point groups, and to, for ex-
ample, the inversion eigenvalue at the origin, should be clear.
The main point is that if atomic insulators |ψ〉 and |φ〉
are symmetrically deformable into each other, then we can
symmetrically deform |φR〉 into an atomic insulator on R that
carries the same charge and inversion eigenvalue at the origin
as |φ〉, but the same global charge and inversion eigenvalue as
|ψ〉. The difference must come from the charges away from
the origin, and their contribution is precisely captured by the
considerations in Appendix B.

APPENDIX B: FERMIONS VERSUS BOSONS

1. Fermions

Here, we provide more details on the deformation pro-
cess discussed in Sec. IV D. Let us consider an inversion-
symmetric two-fermion state:

|�x,−�x〉F = f̂ †
+�x f̂ †

−�x|0〉, (B1)

where we assume f̂ †
−�x = Î f̂ †

+�x Î† is the inversion image of

f̂ †
+�x [this amounts to assuming that the inversion symmetry

satisfies Î2 = 1; if Î2 = (−1)F then operators must pick up
some extra signs under Î and the below discussion must
be modified]. Due to the fermionic statistics, the inversion
eigenvalue of |�x,−�x〉 is −1:

Î|�x,−�x〉F = f̂ †
−�x f̂ †

+�x|0〉 = − f̂ †
+�x f̂ †

−�x|0〉 = −|�x,−�x〉F . (B2)

We can rewrite the state |�x,−�x〉F as

|�x,−�x〉F = p̂†ŝ†|0〉, (B3)

ŝ ≡ 1√
2

( f̂+�x + f̂−�x ), (B4)

p̂ ≡ 1√
2

( f̂+�x − f̂−�x ). (B5)

This is precisely what Fig. 5(h) means. Namely, a pair of
fermions at ±�x can be understood as the combination of one
electron in the s orbital and the other in the p orbital.

2. Bosons

Similarly, for bosons,

|�x,−�x〉B = b̂†
+�xb̂†

−�x|0〉, (B6)

where b̂†
−�x = Î b̂†

+�x Î†. This time, because of the bosonic statis-
tics, we have

Î|�x,−�x〉B = b̂†
−�xb̂†

+�x|0〉 = b̂†
+�xb̂†

−�x|0〉 = |�x,−�x〉B. (B7)

In terms of s and p orbitals, we have

|�x,−�x〉B = 1

2
[(ŝ†)2 − ( p̂†)2]|0〉, (B8)

ŝ ≡ 1√
2

(b̂+�x + b̂−�x ), (B9)

p̂ ≡ 1√
2

(b̂+�x − b̂−�x ). (B10)

Therefore, unlike Fig. 5(h) for fermions, an inversion pair of
bosons reduces to the superposition of two s orbitals and two
p orbitals.

This difference in the deformation rule results in the differ-
ence of the classification of product states in two dimensions
symmetric under the inversion and the translation. For bosons,
we get Z × (Z2)3 × (Z2)4, where Z is the total filling, (Z2)3

is the U(1) charge mod 2 at sites i = 2, 3, 4, and (Z2)4 is the
parity eigenvalue of the sites i = 1, . . . , 4.

3. Multidimensional irrep of a site symmetry

In Sec. II A, we constructed G-symmetric product states
using one-dimensional representations of site symmetry Gx.
Here, we discuss how one can get a one-dimensional rep-
resentation starting from a multidimensional single-particle
representation.

Suppose that u(g) is a D-dimensional irrep (D � 2) of a
site symmetry. Let { f †

i }D
i=1 be a fermionic multiplet satisfying

ĝ f̂ †
i ĝ† = f̂ †

j U (g) ji. (B11)

Since these D single-particle modes transform into one an-
other under the symmetries, a way to construct a symmetric
state is to fill all of them. As such, one finds that the D-
particle state |D〉 = f̂ †

1 f̂ †
2 . . . f̂ †

D|0〉 obeys the one-dimensional
representation

ĝ|D〉 = det[U (g)]|D〉. (B12)

Note, however, that this is not the only way to construct a one-
dimensional representation for fermions. While the state |D〉
above is still a Slater determinant, in general one can construct
inherently interacting states through the linear superpositions
of Slater determinants. Such states could furnish symmetry
representations that are not realizable within the free-fermion
states [44].

APPENDIX C: SSH MODEL

As the canonical example of mildly obstructed trivial
phases introduced in Sec. VII, let us discuss the SSH chain
[48]. The symmetry group G is generated by the U(1) sym-
metry, the lattice translation symmetry, and the inversion
symmetry. In each unit cell R ∈ Z, we assume one site at
x = R + ξ and the other at x = R − ξ (0 < ξ < 0.5). The
model is thus defined on a lattice � = {R ± ξ | R ∈ Z}. The
tight-binding model in the Fourier space reads as Hk = (t +
t ′ cos k)σ1 + t ′ sin kσ2, where t and t ′ are the intracell and
the intercell hopping. The inversion symmetry is represented
by σ1.

When t 
= t ′, there exists a nonzero band gap. Let |�〉�
be the insulating ground state that fully occupies the lower
band. Suppose that the Wannier center of the lower band
locates at x = R ∈ Z (it may as well be x = R + 1

2 and the
same argument applies to this case). Then, |�〉� would be
deformable to a product state in which charges are strictly
localized at every x ∈ Z, but such a state does not belong
to our original Hilbert state H�. However, this obstruction
can be resolved by smoothly changing the value of ξ to
0. Importantly, no ancillas are required in performing this
deformation.
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