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ABSTRACT

The ihviscid modes, of oscillation of & contained

rotating fluid (the Poincare. problem) are considered.

Approximate ways of solution, the Galerkin method and
the method of small perturbations are used to find
eigenvalues for container shapés that cannot be dealt
with analytically. The geometries investigated are the
cylinder, the parallelepiped; the right circular cone,

and & cylinder with a conical bottom.
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INTRODUCTION

Our aim is to solve the Poincare’ problem, that is to

say, to find the inviscid modes of oscillation of a con-
tained rotating fluid. The work can be done analytically
for only two geometries, namely the cylinder and the sphere,
(1) Approximate methods of solutions have to be used for
other geometries of interest. 1In this paper the Galerkin
method (3) is used to find approximate eigenvalues. The
geometries investigated are the‘cylinder, for which the
exact solutions are available, the parallelepiped, and the
cone, In each case the axis of rotation coincides_with

“ the axis of symmetry of the container.

The boundary value problem to be solved is

A

Y
VQ_;?(k.v) =0

with the boundary condition

n.ve - 2. ﬁ.’i: X vé - ig ?13{ (1';.\7@) =0
ia A
on the bounding surface S
' The unit vector § is to the rotation axis, n is the
normal to the bounding surface. & 1is the potential and A
the eigenvalue (s) for which nontrivial solutions @& ‘eXist,

The Cylinder

| 1(k6 + A, t) -
Let % = ¢ . (r,z)e mk

then the boundary conditions become




2 |
(1) azmk =0 on z=0,1
3 2k _ =
(i1) 37 T % kr/ b = © on r=r_

using the standard notation of Kudlick's thesis (4).
The exact solutions of the problem are the functions
Yok = Ip (o T) cos mmz
Boundary condition (1) is satisfied, by inspection, by
=@ (r) cos mmz |
Now using the Galerkin method of approximate solution
(3), wé take |

u(r) =y ai(r-ro)i+2 '

i=0,1, 2..
=T af

this funetion satisfies the second boundary condition on

‘the curved surface, for

142
142 | 2k (r-ry)
T 8y (i+2)(r—ro) + ?;; T ay —— =0
on r-—-ro

Now, in cylindrical coordinates the governing equation
is v
F. 3 221 4 _
rri- (1 - “‘"?) nr°r?| g

let A <f‘"7? - i) m
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in the Galerkin method we must make

j L(u) ﬂj =0 where u =y a,8,

that is to say, we must make
3,2 Apl
L oay {f [ SFrE At AT 8, | F

- k2 iiﬂipj} -0

A homogeneous system of n equations in n unknowns

2
A = ]aij - k Bij‘ =0
evaluating the integrals involved we get

i+j+s

%o [(i+2) 2(4+1) (1+2
%3 = i+j+5 T¥ 3+ Y s P
+ 2 Ar
(l+j+7)(i+J+b)]
| (-1)¥5y 14545

Bij = —xF355
Using the one-term approximation u = (r-ro) corre~

sponding to i = J =0, we get

101 . Aroe 2

which defines A as a function of Kk, r,, m.

it

Evaluating, for instance, for. r, i, k=0, m=1
we get' A = 1.40. This is in good agreement with the exact
value of A = 1.708. |

Using the two-term approximation

. . |
u=a (r-ro)‘ + all(r-ro)3
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we get a quadratic in..A, which for r, = 1, k=0, m=1
yields the two roots
A = 1.52 Ay = 1.96 which are in good agreement with
the true values of 1.708 and 1.913.

It should be noted that since this is not a variational
method, successive approximations do not yield necessarily
uniformly better results. (See Appendix).

The Parallelepiped

y
Vox + ¢W+¢ZZ-F¢ZZ=O

Boundary conditions |

(1) 2f=0 at z-0,1
(i1) %% --%%-%X =0 at x = +a
iy ¥ _a3v 2 _ -
(iii) 37 "3xIx -0 at ¥y =4p

It should be noted that the mixed boundary conditions
will make the finding of trial functions that satisfy the
boundary conditions more difficult.

Let ¥ = § (x, ¥) cos mTz this satisfies the b.c. at

%g - %g'%i =0 at x=+a
2
%g-’%%-iT:O at y=ib
: j+2 J+2
B = (x2_32)' (yE_be) : iz 0

satisfies these boundary-éonditions; in fact it makes
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éﬁ:éﬂ: | FS =
5 5 0 at x +a , ¥y fp

This function then is more restrictive than one which
would give balance between two non-zero terms. However,
~even after several prolonged efforts, such functions could
net be found by the author.

- Now according to the Galerkin's method we must make
det lj‘t(ﬁi) ¢Jl =0
Let 1 =J=0
Pgrforming the necessary integrations we get

A L HaP?) 5 3048
ab*° . 406

now for a = b =.% this ylelds A = 1.07 which compares
tolerably with the experimental value of A = .87 (D. Fultz,

oral communication with Prof. H. P. Greenspan),.
Putting more "structure" into the solution we next tried
the functions
B = x (Pua?) (y20%)°

6=y (v302) (xP-a?)’

both of which, for a cube yielded A = 0.G1
The trial function @ = xy (xg-ag)e(ye-be)2 gave
A = 0.71. |
Adding odd terms to the first order approximation did

not improve it; but using the next highest'evenﬁterm




o om

==
‘ 2 2 2 . 2
B =2, (x°-a°) (y°b°) + 8, (x°-a°) (y°-0°)

we obtain

2.2
Xy

A = .95, 1,17 The first A agrees reasonably with the
experimental value.

This finishes the work for the cylinder and the cube.

For the sphere the exact solution is in fact in terms of

Legendre polynomials: so that if a polynomial approximation
is used in the Galerkin method, it should yield the form
of the exact aﬁswer.

The Cone

The boundary conditions become

i
o]

284 2 Y +sina-—-(—2- 1)

z tan o

o]
o]
H
It

= (r - z tan a)2 sin® mw (z-h) e'*®  makes %g =0 on
=h and gg- az =@ = O on r =z tan a hence boundary
conditions are satisfied.
N

Let A = - = 1 as before, we get
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N

>
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D
¢§g§a€¢§d§dz
2

z
i.g¢§3dg dz

Z

=lo

tanea

| e—{1&p
(o

| & [e—

™
O
v
0
o,

substituting the trial function, after some falrly involved
integrations we get that A = 0 implying that A =2 as
f@r’the two parallel plates!!

This problem of the cone merits much more extended
investigation: it is not certain, indeed, whether a
solution exists at all, Of course, if it does not, it is
useless to try to f}nd an approximate solution. Both
experimental and theoreticai work are needed,

To explore further the problem of the cone, a
cylindrical container with a conical bottom of small slope
was considered, and the shape viewed as a small perturbation

of the cylinder.

Z=}

Now
. A -
i+ 2k x § = - v
v 2
Q.
where @ is the velocity vector, & the potential, 7 the

By of

vector normal to the surface.
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Let A = AO + Bll + ...
Q=QO+5Q’1+”'

E— +-s-
n n0 + Bnl

A®, Qe correspond to the known solution of the cylinder
problem, To find Ql is a difficult task; however,
theoretically it is possible to find ml, the first order
perturbation of the eigenvalue, solely in terms of the

zeroth order quantities,_without knowing Ql.

order ao v
.‘ - A

(1) iho Q, + 2k x §_ = - ve
v . Q, = ©
QQ . ﬁo= 0 cn the cylinder

Order o

(ii) irg Ql + 2k X Q = - vE - 1n; Q
v . Ql = 0

~ A

Taking the dot product of the conjugate of (i) with
. *
Ql, and of (ii) with Qi » the complex conjugate of Qs

we get
* - N - * -
-INQ, . 8 428 L kx G =-vg . Q
. - % - ¥ A ) - ¥
ivg8; .8, +28, . kx @, =-98 .70,
. - S
- 1M Qy - Qy
A * - % A
But ’Ql k x Qo- =-Q, . kx Ql hence, adding, we get




L% *
0= - v§o . Ql - v@l . QO

*

- I Q) . Q)

integrating over the volume of the container

Jave ) ay + [ave . (g5

the first integral can be rewritten as
. . % —
| asa. (8.° Q)

and the second as
[ o A * -
~J @ n. (ﬁl Qo Ql)

~ ey ‘A -~
but n . Qo = 0 and n . Ql ==-0Q_ .1

0 1
hence ' f _ 5 *
g ¥ = -1 ) 9 o
- j s B, 1y . % =
hence
[ *
\ J ﬂo n, . Qo ds
1 1)8, .4, av

Now kﬁl - @, = 0 everywhere except at the bottom where

A .
’ n, = ? »- The radial wnit wvector.

““Thus the numerator is j ﬁo* U, as , u,. is the radial
velocity component
f Q 8" av = | (u 25w 4 u 2) av
o Yo J r e z
is & positive definite quantity.
The velocity components and @ are given in Kudlick,

P.72.
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It is not possible to perform all the integrations

analytically.

However, in certain cases it is possible to determine

whether A
where
Q0

I-=|
r=90

v o2k | (3, (a,

Now, by integratien by

_ )
%k Mk T (e T) T (o

is positive or negative.

Def. quantity). I

r)

r)}2 dr

ar .

Lo
)T I (ox) Jk (ar) =
o
Jf'
o
hence
A
Xl = - (Pos. Def.) .,[ =
ok Pmk
if 5 T T Z 0, then A
mi -
r 3
| 16 k
A > -
mk — mng
e.g. for m=1, k=2, a possible
2
put 1.9442 > 4 . 3
;?
when, however 35 -% < 0,

parts

ARIENOTE

r
| 9%

1

2
EMGIRE:

.2
(ar )| +

r dr

ar

2k
o~

. or _0
YN OEJk (z)]
[¢]

ag |

is negative which is equivalent to

A is 1,

Ohh2

. 2
the two terms [Jk (aro)]

and

the integral have to be evaluated and their magnitudes com=-

pared.

é.g. for k = O,

The integral has to be done numerically.

it can be shown that, the smallest

value of ar, being 3;7}the first zero of Jl » the
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integral is larger than [J0 (aro)]2 and hence Ay is again
negative. The work has to be done separately for each Bessel
function and the particular value of ar in question.

Since for the problem of the cone the Galerkin method
yielded A = 2, the conical perturbation to the bottom of
the cylinder would have been expected to yield Al positive.
In general, for most cases, it seems 11 is negative; how-
ever a 45° cone can hardly be considered a small perturbation
to a right cylinder; the results of the perturbation anélysis
are not_really very relevant to the full cone problem.

Conclusion

The Galerkin method yields eiéen#alues for the Poincarg‘
problem without excessive labour for shapes that cannot be
dealt with analytically. However, since it is not necessarily
yield successively better results. It is seemingly very
difficult to find trial functions which satisfy the mixed
boundary conditions in a not overly restrictive manner.

- The problem of the cone is not clear, nor the significance

of the answers obtained. In fact it is not at all certain

that solutions exist; therefore the use of approximate
methods will not necessarily yield meaningful results.

Further, numerical, work has to be done in the perturbation

analysis, to determine the sign of A., for all cases. But

. 1
as said before, the results of a perturbation analysis are

not really carried over to the full problem of the cone.




Appendix

What are the natural boundary conditions of the

Galerkin method viewed as & variational principle?

vy e
A TTE S

to make this an extremum

8A = 8T - A8J = 0 according to (2)
2 2
r 3% 3
8T = & JJ g2 + 25) ax ay
‘ 3X BY?D
. o _2p _ 28
Le p 3X 9 3y

= 0% 09) + 22 (@) - (07 + 0P) ax oy

- A ff 0> ax dy
1 r rro 2 2
J PP dy - | a @ dx - JJ (®° + q%) ax ay
B

- A Ij ﬁg dx dy

Hence

]

5 [ pgay /P88 dy+ |6 pBay=o

Now if we make p = @ on the boundary we get

and variation is zero;similarly for j q @ dx.

8p

0



Thus the

which are not

problem.

ii
natural boundary conditions are

q = 0 on the boundary

0]

the boundary conditions of the Poincaré
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