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ABSTRACT

MATERIAL TRANSPORT ON OSCILLATING CONVEYORS

Howard A. Gaberson

Submitted to the Department of Mechanical Engineering
on January 9, 1967 in partial fulfillment of the require-
men: for the degree of Doctor of Philosophy.

Abstract

This thesis presents a theory that predicts the motion of
particles on an important class of practical oscillating conveyors.
The trough of these conveyors undergoes a straight-line harmonic
translational oscillation in a direction inclined to the trough. The
trough may be inclined to the horizontal. The thesis considers
operating conditions in which the araplitude of the oscillation is great
enough to cause small flights of the particles once each cycle, which
conditions are met in most practical conveyors. Experimental evi-
dence, over a wide range of operating conditions, is presented, and
it verifies the theory. Thus far, only a very few, over-simplified
analyses of specific cases have been presented in the literature.

Most of the theoretical work is concentrated on a single
particle on an oscillating plane. The coordinate system is oriented
to the plane which permits separation of the two motion components
regardless of plane inclination, (Fig.1, page 19;.. The motion per-
pendicular to the plane has only two forms; it is either on the plane
or off the plane and flying. This perpendicular motion is defined by
Eq. (11b) on page 25. The motion parallel to the plane has four forms:
sliding forward and backward, riding, and flying. As the operating
conditions vary, the solutions are comprised of many different com-
binations of these four motion forms., Every solution is piecewise
linear. The difficulties arise in matching the boundary conditions be-
tween the linear segments of the solution. A set of rules and condi-
tions is developed restricting the possible combinations, Section2.8.13.
Finally, a set of solution routines are developed and programmed for
computation on a digital computer. They test the operating conditions
to see if one of nine combinations of motion forms yield a solution.
Six of these combinations have been found adequdte to describe the
motlonc of all systems having parameters in the practical range, i.e.,
-5 < 8 < 50; 300 < @< 479;0.2<u<1.0;0< €<1.0;1.15<A<2.0;
where the meaning of the notations is shown on page 9.

The coefficient of friction, u, was a significant factor greatly
affecting the theoretical solution. However, the need for another
parameter became apparent upon analysis of the experimental data,

To obtain qatlsfactory agreement between theory and u»;perlmen+ a
separate dlfferent 'impact coefficient of friction, ¢ pu'', had to be used
in addition to the ' slldmg coefficient of friction, /u". Interestingly
enough, no separate ''static coefficient of friction" was found necessary
to explain the data. A zero coefficient of restitution in impact proved
sufficiently accurate to predict the experimental results.



A general conveyor motion simulator was built to test the
theory, (Figs. 10 and 11, pages 69,70 ). I provided the oscillating
plane for the single particle study and was fitted with a transparent
fronted channel for the study of granular materials (Figs. 12 and 13,
page 71 ), Data was taken photographically by a multiple flash tech-
nique  which was capable of recording 30 points per cycle of one-
third second duration, providing quite detailed information about the
particle motion. (Figs.14, a, b, ¢, d, e, page 73 ).

Many experiments were run on single particles and on
granular materials for a wide range of operating conditions. The
agreement between theory and experiment is very godd; the transition
between motion forms occurs as predicted. The coefficient of sliding
friction was measured by noting the minimum static angle of the plane
for which the particles remained sliding at constant speed.

Experimentally the bed of granular material was found to
move essentially as a slug. It appeared to differ from a single par-
ticle only in having increased friction because of the walls of the
channel. Hence, the theory developed in thesis for a single particle
is applicable directly to beds of granular material.

Thesis Supervisor: J. P. Den Hartog
Title: Professor of Mechanical Engineering
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CHAPTER I
INTRODUCTION

1.1 Problem Statement

This thesis presents a theory that predicts and explains
the motion of particles on the important practical class of oscillating
conveyors in which the motion is sinusoidal in a straight line, inclined

to the conveyor trough, and of a magnitude great enough to cause small
flights of the particles once each cycle. The thesis also presents

experimental evidence proving the theory over a wide range of practical
values.
1.2 Description of Machines

These conveyors are generally in the form of long troughs
mounted on springs or links that constrain the trough motion to a pure

translation in a straight line usually inclined to the trough. Within
limits, the trough need not be horizontal, and many of these conveyors
are designed to transport material uphill quite efficiently. A very
striking example of the uphill conveyor has the trough in the form of a

tall spiral, whose only function is to lift material.

1.3 Advantages
The oscillating conveyor has many advantages. It can

be totally enclosed protecting either the conveyed material or the
environment. Its oscillatory motion makes it self-cleaning and non-
clogging. The machinery need have far fewer rotating parts; in fact,

the spring-supported trough merely moves on its springs which never
require maintenance or lubrication. The oscillatory motion is compara-

tively easy to drive, electromagnetically or mechanically by means of

a rotating eccentric.
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1.4 Different Types of Oscillatory Conveyors

A broad class of these machines are those in which the
oscillation is in the plane of the trough. A sinusoidal oscillation of
the trough in these machines can only cause a downhill motion of the
particles. Thus, to obtain horizontal or uphill particle motion, one
must have the trough accelerate slowly in the forward direction and then
quickly jerk back, leaving a net displacement of the particle. Interest
has waned in these conveyors because of the necessary friction and
inherent loss of efficiency. Also a durable effecient quick-return
mechanism is comparatively expensive.

However, when the oscillation vector is inclined to the
trough, the oscillation can be sinusoidal because the normal,and
hence, the frictional force on the particle is greater on the forward
stroke and reduced on the return stroke. Sinusoidal motion is very
easy to produce, e.g., the trough is supported elastically such that its
lowest mode of vibration is a translation in the desired direction and
then a rotating eccentric or an electromagnet can easily drive it.
Increasing the amplitude brings even more favorable results, for as
the amplitude is increased, the particle begins to "fly' for some portion
of the cycle, thus traveling completely without friction for that interval.
As expected, these conveyors are the most efficient and, hence, the
most popular of this class.

There have been studies where a general two-dimensional
motion is given to the trough, going so far as to employ Calculus of
Variations to the possible path, but the motion becomes so complicated
that the machinery is uneconomical to produce.

1.5 History
Quoting from Guthrie and Morris, (Ref. 21), ""As such,

vibrating equipment in the form of screens or grasshopper -type feeders
have existed for over 100 years in this country and there are indications

15



to believe that ancient civilizations, such as the Greeks and the
Romans, made some use of these products.'

More recently, investigations and analyses of the conveyors
in which the oscillation direction is in the plane of the trough have been
conducted by Blekhman and Dzhanelidze (Ref. 1}, Bolz (Ref. 4), Wolff
(Ref. 9), and Gutman (Ref. 10).

The class of conveyors with an inclined oscillation vector
have received serious analytical treatment by Blekhman and Dzhanelidze

(Ref. 1), Berry (Ref. 6), Burton (Ref.1l), and Taniguchi, et al., (Ref. 2).
Booth and McCallion (Ref. 5), have presented a digital computer techni-
que for analyzing this problem, together with an experimental verifica-
tion, but only measuring average conveying velocity. Shertz and Hazen
(Ref. 8) treat this problem on an analog computer and offer fine experi-
mental support for their findings.

Studies of general two-dimensional trough motion of con-
stant contact conveyors are analytically presented by Blekhman (Ref. 1),
and Troitskii (Ref. 7), the latter employing Calculus of Variations to
demonstrate the optimum trough trajectories. Shertz and Hazen (Ref. 8)
have also used the analog computer in studying elliptical trough trajectories,
their straight line analysis being a special case of the general attack.

The conveyors which are the subject of this report, i.e.,
those with an inclined oscillation vector and amplitudes great enough
to cause flights, are not adeqgately analyzed in the literature. Rachner
and Jungk (Ref. 13) present a logic that concludes that the trough velocity
at the time of particle flight is a reasonable approximation of the con-
veying velocity. Paz (Ref. 3) has presented a very simplified analysis
of a particular case. Taniguchi, et al., (Ref. 2) over simplified

16



in neglecting the effect of impact, and restricting themselves to very
low oscillation angles (less than 200) so that while their solution is
reasonably close to the truth for their case, they have mistakenly
assumed that what will be called the FGL solution in this study applies
to all operating conditions. Because of their neglect of impact, they
could not obtain adequate experimental verification.

All of these investigators have realized the need for
utilizing a zero coefficient of restitution. Ref. 1 introduced the idea
of different behavior at impact. All of the investigators have used
the coordinate system used in this analysis.

Since none of the investigators have had any general
success with single particles experimentally, little has been attempted
in the predicting of the motion of granular materials; the problem has
appeared formidable. In this analysis which does present the single
particle theory, it is shown that the proper single particle analysis can
indeed be extended to the study of granular materials.

1.6 Description of Study

A thorough study of single particle dynamics is undertaken
which leads to a general theory and computer programs to find solutions
for operating conditions. Complicated nondimensional parameters become
evident that reduce the number of variables. An experimental program
verifies the theory. The extension of this single particle theory to

granular material is presented and experimentally verified.

17



CHAPTER II

THEORETICAL ANALYSIS

2.1 The Scope of the Study

The most popular of the oscillating conveyors is the one that
oscillates harmonically in a straight line with the oscillation vector in-
clined to the horizontal. A number of analyses are available on the
transport of material on conveyors which operate in this way, but at

sc¢ low an amplitude that the particle does not leave the plane. (Refs.
1,5,6,9.10, 11, and 2 ). Generally however, in the interest of effi-
cient operation, conveyors are such that a definite flight of the particle
occurs each cycle. The present analysis is therefore restricted to con-
sideration of cases in which the particle leaves the plane at some point
in the cycle. This case has not yet been satisfactorily analyzed in the

literature.

The coefficient of restitution is taken equal to zero in the
analysis that follows. This is a good approximation for most cases
of practical interest. Consider dropping a small flat board, or a box,
or Some loose granular material onto a flat surface. For small drop
heights these items will not rebound at all. In general, as the ampli-
tude of oscillations of a conveyor is increased to the point where re-
bounding might appear, the impacts become severe and damaging, and
the particle motion becomes non-steady-state and unstable. A board
will begin to tumble and toss irregularly, and finally bounce out of the
trough. Thus for any practical conveying device a zero coefficient of

restitution is actually attained.

18



2.2 The Model and the Coordinate Systems

Figure 1 shows a plane inclined to the horizontal at angle B.
The plane is undergoing translational harmonic oscillations in the di-
rection a to the horizontal. On this plane rests a particle of mass m
that is flat enough to inhibit any rolling. Two coordinate systems are
used. The x' -y' coordinate system refers to the position of the plane.
The system is considered fixed to earth, and x' and y' are taken zero

at the mean position of the oscillation.

Figure 1 - The Coordinate Systems and the Angles

The x-y coordinate system refers to the position of the particle. The
system is considered fixed to earth in such a way that y = y' when the
particle is resting on the plane. The x = 0 position is not important
and will be set as a matter of convenience during integration of the
equations of motion. The x axes are directed parallel to the plane at
all times, and the y axes perpendicular to the plane as shown on

Figure 1.

Given the above, the motion of the plane may be written as

follows:

19



x'= a cos (a - B) sin wt, (1a)
x'= awcos (@ - B) cos wt, (1b)
X! = -amz cos (a - B) sin wt, (1c)
y' = a sin (a - B) sin wt, (1d)
§' = aw sin (@ - B) cos wt, (1e)
¥ = -a? sin (e - B) sin wt. (1£)

where dots over the variables indicate differentiation with respect to
time, a is the displacement amplitude of the oscillations, and w is the

frequency.

2.3 The Dynamic Equilibrium of the Particle

Consider the free body diagram of the particle on the plane

shown in Figure 2.

Figure 2 - Free Body Diagram of Particle

In Fig. 2, F is the frictional force, N is the normal force, and mg is
the force of gravity. Dynamic equilibrium in the x and y directions

requires that

N - mg cos B, (2a)

&

F - mg sin B. (2b)

:

20



The frictional force, F, and the normal force, N, in Egs. (2a) and (2b)
have unusual character which adds to the cornplexity of the problem.
Note that the normal force N cannot be negative. It is positive when
the particle is on the plane, and zero whenever the particle is off the
plane, that is, for y > y'. The relationship between the frictional force
F, and the normal force N requires special consideration. When the
particle slides on the plane the frictional force is found in the usual
manner, i.e., it is the product of the coefficient of friction u and the
normal force. However, during the impact, when pressures are apt

to be extremely large and local bouncing may occur, the friction coef-
ficient will be different from u. To account for this, an impact friction
multiplier, €, is introduced that effectively changes the coefficient of
friction at this point. On the other hand, a different, static, coefficient

of friction is not necessary.

Professor Rabinowicz (Ref. 14) has shown that a certain finite
time interval is required for static friction to be developed. Thus, no
static coefficient is required when the particle instantaneously changes
its relative sliding direction, even though an instant of zero relative
velocity exists. Also, for the cases in which a short interval of zero
relative velocity does exist, in practice machine vibration will inhibit
the attainment of truly statie conditions. Finally, when the particle has
the same velocity as the plane, the friction force will take on the value
required to maintain particle velocity. The relationships between F and

N are thus

F= uN when x < x', (3a)
F=-uN when x > x!, (3b)
F=+euN during impact, and (3c)
-uN<F<+uN whenx =x', (3d)

Needless to say, the above require F to be zero whenever N is zero.

21



2.4 The Necessary Ranges of the Angles o and B

Let us consider the ranges of a and 3 that must be considered
in order to assure that the theory covers all cases of interest. In the
first place the angle of inclination B of the plane and the angle of os-
cillation a have a range between + 90°. Also we need only consider
the case where a > 3. Consider the situation where @ < 8 shown in

Fig. 3a. We see that this case is the same as

Figure 32 - o< Figure 3b - o>

the case shown in Fig. 3b, where a > B, except that the direction of the
x axis is reversed. In addition,the case of a = B is covered in the In-
troduction, and is of no interest. Thus, all possible cases are included
for @ and B within the limits '

B<ac< % (4)

One would also expect that 8 is limited by the angle of fric-
tion, and indeed, this is the case. In Fig. 2 only the two forces N and
mg cos B act in the y direction. Since the particle has identical y
velocities at the beginning and end of a cycle of period T, the impulse
from the normal force must be equal and opposite to that of the gravi-

tational force, or
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T
S‘N dT = mgT cos B. (5)
0

The maximum x impulse that friction can offer is the product of the
coefficient of friction and this value, or

T
YF dT = umgT cos B. (6)
0

Again from Fig. 2, there are only the two forces F and mg sin f8 in the
x direction. For periodic motion, the x velocities must be equal at
the beginning and end of this cycle of period T. Hence, the x impulse
from gravity can never be greater than the maximum x impulse avail-
able from friction. Therefore,

mgT sinf < umgT cos B. (7)

and

tan B < . (8)

using an identical argument for sliding in the other direction, we

find the permissible range of values of B is defined by

~p<tan B <+ pu. (9)
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2.9 Initial Observations

As will be seen, because the axes have been oriented to the
plane, the x and y motions will separate; the two sets of equations of
motions can be integrated and analyzed separately. The y motion is
the simpler of the two, because there are only two possible forms;
the particle is either on the plane, riding with the y motion of the plane,
or off the plane and flying. The x motion is more complicated; it has
four forms. The particle can be on the plane and sliding forward,
sliding backward, or riding with the same relative velocity as the plane.
Also, it can be off the plane and flying. No difficulty is encountered in
deriving the equations of motion for any one of these different forms.
The problem is, for a given set of operating conditions, to determine
the correct sequence and phasing of the motion forms, so that the
various equations can be assembled to find the displacement during
the cycle. As will be seen, many combinations are possible. A set
of rules, conditions, and equations must be developed to reduce the
number of possibilities. Finally, by requiring periodicity the solu-
tions of practical importance are obtained. Even with the theory,the
calculations to obtain an actual solution are quite lengthy, thus they
have been programmed for computation on a digital computer. Several
calculated examples are presented which will be later compared to ex-

perimental results which verify the theory.

2.6 The Y Motion of the Particle

2.6.1 The Time of Flight

Just prior to a flight, the particle has the same y velocity,
displacement, and acceleration as the plane. Furthermore, the nor-
mal force acting on the particle is positive and is becoming smaller;
the time at which the normal force becomes zero is the time of initia-
tion of a flight. Since the particle is on the plane prior to the flight
and has the y acceleration of the plane at that time, the expression
for the normal force prior to flight is obtained by substituting the y
acceleration of the plane (Eq. (1f)) in the y equilibrium equation (Eq.
(2a)), giving

24
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N=m[-=34cn2 sin (a - B) sinwt+ g cos B} (10)

Equating this expression to zero yields the time of flight, t p 28 follows:

1/A, (11a)

i

sin wtl

sin (a - B) awz (11b)

cos [ g

where A

The quantity, A, will be seen to be a very important parameter. Ex-
amination of (1f) shows A to be the ratio of the y component of the
maximum plane acceleration to the y component of the acceleration of
gravity. It can be thought of as the reiaw.ve y acceleration. Equations
(4) and (9) reveal that A is always a positive number, and (11a) shows
that A must be greater than unity. This last restriction comes about
because the study is limited to cases in which a flight occurs.

Note that Eq. (11a) yields two values of t, in an interval of
one cycle, one in the first quadrant and one in the second. These will
be denoted as t1 and tl'; by utilizing principal value notation, these may

be written:

sin”! (1/A) (12a)

wtl

ot = - sin”1 (1/A). (12b)

From Eq. (10), one can show that the time interval between 'c1 and tl'
requires a negative N for the particle to remain on the plane. A nega-
tive N is impossible so this interval is a 'definite fly zone', a zone in
which the particle cannot remain on the plane. Since N, in Eq. (10),



is decreasing just prior to tl' t, is the time at which the particle will

1
begin its flight. The second value, t,', is a limiting value. If the im-
pact after the flight occurs prior to t,', the particle will instantly fly

again; if the impact occurs after t,!, the particle remains on the plane,

2. 6. 2 Nondimensional Displacement and Time

For convenience we shall use a time variable 7 non-dimen-
sionalized with respect to w, and displacements, expressed in capital
letters nondimensionalized with respect to a. Thus, 7T = ot, and X=x/a,
and Y = y/a. Dots over the capital letters will denote differentiation with
respect to 7. The new symbols are listed in the symbols table. Utiliz-
ing these new variables, the y velocity, displacement, and acceleration

of the plane become

Y'= sin(a-B)sinT (13a)
Y'= sin(e-B8)cos T ' (13b)
Y' = - sin (a - B) sin 7. (13c)

Finally, Egs. (11) and (12) become

Ty = Sin_1 (1/A) (14a)

T,'= - sin"! (1/A) (14b)

amz sin (o - B)

gcos B

where: A (14c)

2. 6.3 Y Motion During a Flight

The y acceleration during a flight is found from Eq. (2a), with
N set equal to zero, yiélding
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2 e
aw Y -1, (15a)
B

gcos

Equation (15a) is integrated with respect to 7, the integration constant
being evaluated by the condition that the particle velocity equals the

plane velocity at 7 The integration yields:

1

aw2 Y

gcos B

=T+ 71 + A cos Ti- (15b)

Equation (15b) is again integrated with respect to 7, the constant being
evaluated with the condition that the displacement of the particle at Ty
equals that of the plane at Ty This yields:

awz Y

= -1/2 (- 1)+ Acos T (- 7))+ 1.
g cos B

(15¢)

2. 6.4 The Termination of the Fligpl

The flight began with equal y displacement of the particle
and the plane, and the flight terminates when these two displacements
are again equal. Thus, the time of impact, Tos is found by equating
Eq. (15c) and Eq. (13a), at the time o After some manipulation, the
following transcendental equation is obtained:

sin72=B1'22+ CTy+ D (16a)

where Bz -1/2 sin T (16Db)
Cs= T sin T + cos T (16¢c)

D=-1/2 7'12 sin T, - T, €08 T; + sin 7,. (16d)
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Thus, it is seen that both 7, and 7, are functions of A alone. They are
plotted as functions of A in Fig. 4; Table Al in the appendix lists some

values of T1» 1'2, and 'rl', for various A's.

In Appendix A 1.1, it is proved that To definitely lies outside
the definite fly range, i.e., Ty > Tl'. Thus it is assured that a particle
with a zero coefficient of restitution, undergoing once per cycle periodic
behavior, will always fly at T, @s given by Eq. (14a) and remain flying
(with Y > Y') until Ty as given by Egs. (16); throughout the rest of the

cycle the particle will be on the plane with Y = Y'.

2. 6.5 Limiting Amplitude for Once Per Cycle Periodic

Solutions

As was mentioned above, this analysis is only concerned
with steady state solutions, that are once per excitation cycle periodic.
This once per cycle limitation leads to an upper limit on the relative y
acceleration, A, which will in general be referred to as the amplitude.
Clearly, for once per cycle periodic behavior, the termination of the
flight must come before the next time of flight, and in the limiting case
the time of impact will occur just at the next time of flight. For this

particular case

To= T 27, (17)
and
sin T, = sin Ty = 1/A. (18)
The cosine will be
2
_NA" -1
cos Tl =k (19)
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By substituting (17), (18) and (19), in Egs. (16), the limiting

amplitude is found to be

A, =nNT241 = 3. 297 (20)

lim
This limiting value of A is shown as a horizontal dotted line in Fig. 4.
Therefore, this analysis will be concerned with a range of amplitudes,

A, greater than unity to assure a flight and less than N 72 + 1 to assure
periodic once per cycle behavior, or in symbols

o<a<Na?+1 (21)

2. 6.6 The Impact After the Flight

In order to compute the frictional x impulse during the im-
pact, the y velocity change during impact must be computed. The y
velocity of the particle just prior to the impact is given by the flight
equation, Eq. (15b) and since the coefficient of restitution is zero, the
velocity of the particle just following the impact will equal the plane
velocity at that time. Define:

AY =Y (1) - V4 (1,)- (22)

¥(7,) is obtained from Eq. (15b) and Y'(7,) is obtained from (13b) both
evaluated at To» obtained from Egs. (16). Thus, Eq. (22) becomes:

_AY _ -1 (15 - 7,)*+ cos T - cos T, (23)
sin(e-B) A
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It might be pointed out that AY is definitely a negative quantity, other-
wise the particle could not reach the plane.

2.7 X Motion of the Particle

2.7.1 The Nondimensional Quantities ¢, §, and ¢

It is convenient to now introduce three additional nondimen-
sional quantities which simplify manipulation and reduce the number of
variables by one. The discussion of their range of permissible values
is given in Appendix Al. 2, the results of which are summarized in

Table 1, which collects all the nondimensional operating conditions.

2. 7.2 Introductory Comments on the X Motion

The particle y motion, having been thoroughly deduced (i. e.
the particle definitely leaves the plane and flies at Ty continues this
flight until Tos at which times it suffers an inelastic impact and then
remains on the plane until T + 27), the more complicated x motion
must now be considered. For x motion there exist four possibilities:
riding with no relative x velocity, flying, sliding forward, and sliding
backward. Specifically defining these four possibilities, we have

Ride motion when

Y = Y', and (24a)

X =X'; (24b)

F_‘ll motion when
Y>YY; (25)

Slide G (slide greater; sliding forward; particle velocity

greater than plane velocity) motion when
Y =Y', and (26a)
X > X'; (26b)
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Table 1

NON -DIMENSIONALIZED OPERATING CONDITIONS

SYMBOL DEFINITION RANGE EQS.
NOS,
2 .
A (amplitude) 2w sinle - f) 1<A< Vr2 4 1 | (11p)
g o8 B (= 3.3) [(21)
€ (impact friction| experimentally 0<e<w
multiplier) determined
¢ (ND friction) |4 Fcot(e -F) 1< ¢ < oo (A1.9)
u+tanp (and only for 4 =
7/2 can ¢ = 1.) |(Al.15)
¢t (ND plane tilt) u 0.5<8 < (A1.10)
¥ tan B (¢ = 1for g = 0) [(A1.21)
¢ (multiplier) (u+ tan B) sin(a - B) 0<y <2y (A1.11)
(A1.23)
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Slide L (slide less; sliding backward; particle velocity less
than plane velocity) motion when

Y =Y', and (26¢c)
X< X'. (26d)

The following paragraphs derive the x equations of motion applicable
during each type of motion.

2. 7.3 Slide G Motion

The normal force acting on the particle when the particle is
on the plane has been given in Eq. (10). When the particle is sliding
forward the frictional force, F, must act in the negative direction on
the particle as was noted in Eq. (3b). Thus, substituting N from Eq.
(10) into (3b) to obtain F, and in turn substituting the resulting F into
Eq. (2b), yields the x acceleration during this type of motion to be:

X= - ug COSB + [Jawz sin (Q’ - B) sinwt - g SinB- (273)

Utilizing the nondimensional variables of Table 1, this becomes more
simply:

% = -'21:+ ¢ sin 7. (27b)

Integration of Eq. (27b) with the initial condition that X = }.{i, at 7= Ti’
yields the velocity to be

§-= % (7-7) -% (cos 7 - cos )+ —4} (27c)
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Integration of Eq. (27c), with the initial condition that X = xi. when 7= T
yields the displacement to be

X X;

X.
x- 571;(1 - "1)2 - ¢ (sin T - sin Ti)+ (Ecos 7, + q,.l) (7 - Ti)+ b,

(27d)

2.7.4 Slide L. Motion

Again the normal force is given by Eq. (10). However, since
the particle is sliding backward, the frictional force must be taken to be
positive as is indicated in Eq. (3a). Combining (10), and (3a) in (2b)
yields the acceleration to be

¥ =pgcoaf -pu amz sin (o - B) sin wt - g sing. (28a)

Casting this in nondimensional form yields:

X _1 v g
T (2¢ - 1) - sin 7. (28b)

Integration of (28b) with the initial condition that X = ).{i’ when 7= Ut
yields the velocity to be

iﬂ: 21{ (2t -1) (1 - ‘ri)-i- { (cos T - cos Ti)+ -q,—i-. (28c)
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Finally, integration of (28c) util’ .ng the condition that X = X, when

T=1T; yields the displacement

X et-0(r-1)?+ L(sinT - si e ) W
T = 3A t T-T; L (sin 7 sin 7, T (.cos'ri ('r-'ri) T

(28d)

2.7.5 Ride Motion

When a ride is occurring the x velocity of the particle is i-
dentical with that of the plane. In terms of the nondimensional variables
Egs. (1d), (le), (1f) for the x motion of the plane may be written:

X' _

T (6 - L) sin T, ' (29a)
%’ = (4 - L) cos T, (29b)
2}' = - (¢ -t)sin T. (29¢)

Hence, the acceleration and velocity of the particle during a ride may

be written

-(¢ - L) sin 7T, (30a)

€%

(¢ - ) cos T. (30b)

<M
1]

Integration of Eq. (30b), with the initial condition that when 7 = 7.,
X=X, yields the displacement to be
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X,
q}§= (¢ -t) (sin 7 - sin 'ri) + _-.]JI' . (30c¢)

2.7.6 Fly Motion

During a flight the normal force and hence the frictional force
acting on the particle are zero. The acceleration of the particle can be
taken from Eq. (2b) with F taken zero. This gives:

= - g sin B. (31a)

Utilization of the nondimensional variables permits the above to be

written as:

T=-za-0. (31b)

Integration of (31b) with the initial condition that X = X,, at 7= 7,
yields the velocity to be

e R LR A (31¢c)

Finally integration of (31c) taking X = X, at7=1, yields the dis -

placement as

X. X,
X 0@, Gl

2.8 Rules and Conditions for Predicting Transitions Between X

Motion Forms

2. 8.1 The Required and Available Friction Force

36



Two useful concepts are introduced in this section; they are
the available and the required frictional force. Their main use is in
the determination of the times of transition between the various types
of motion.

When a particle is on the plane, a certain minimum frictional
force is required for the particle to maintain a ride, i.e. maintain the
acceleration of the plane. This is called the required friction force and
is symbolized as Fr' Its value is obtained from Eq. (2b), the x equili-
brium equation, with the x acceleration being taken equal to the x ac-

celeration of the plane, Eq.(lc). This yields:

F._ = mg sinf - ma w? cos (@ - B) sin wt. (32a)

r

Manipulating with the nondimensional variables and introducing a non-

dimensional Fr,(32a) becomes

F
—f:—A—-l’g - (¢ - ) sin 7, (32b)
where
— F.
F .= 5 (32c)
ma w °

When the particle is resting on the plane, the coefficient of
friction times the normal force yields the maximum frictional force
attainable at any given time. This is called the available frictional
force. Since this maximum can act in either direction, two values of
force are obtained. That value corresponding to a Slide G, a slide
with X > }.(: is called the available force for a Slide G, and is denoted
F_ . The value corresponding to a Slide L, a slide with X < }'(', is the

ag
available force for a Slide L and is denoted F al’
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Fag is obtained from Eg. (10), the equation for the normal
force, multiplied by a negative u since in this case the frictional force

acts in the negative direction. This yields:

Fag = -umg cos B+ u maw‘?‘ sin (o - B) sin wt. (33a)

Utilizing the nondimensional variables and defining a nondimensional

Fag‘ Eq. (33a) is written as:
F
ag _ _ ¢ .
T & + ¢ sin T, (33b)
where

" e (390

To obtain Fal’ the available force for a Slide L, the only
difference being that friction acts in the opposite direction, all one

need do is reverse the signs on the right hand side of (33b). This

yields:
al _ & _ ¢ sin 7, (34a)
W A
where
F
= al
Fat 2 o

2. 8.2 Terminating A Ride

The first of the transitions to be studied are the terminations
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of a Ride, except that it has been proved that a flight will definitely

initiate at 7,, and terminate at 7,. Given that a ride is occurring,

. . 1’ 2

X = X', the available force for a Slide G is more negative then the
required force, and similarly the available force for a Slide L is more
positive than the required force. Two different terminations must be

considered.

2. 8.3 A Ride Terminating in a Slide G

In Appendix A. 1.3 by comparing Fr and F__, it is proved

ag
that a Ride can only terminate in a Slide G at one time during each
cycle. This time, which is in the first quadrant, is called Tbg d and
is given by:

Togd - Sin 1 (x3) (35)

Further, it is shown that except for the special case where a = er-, and
=1, Tbgd < Ty i. e., virtually every ride that is occurring prior to

the time of flight must terminate in a Slide G before the flight.

2.8.4 A Ride Termination in a Slide L

In Appendix A. 1. 4, by comparing f‘r and F,, it is proved
that a Ride can terminate in a Slide L, only if

2t-¢<0, (36a)

and that this termination can only occur in the third quadrant at a time

Thid? given by

Toid = sin'1 $2T§2%,' K1> + 7, (36b)
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Thus, virtually all Rides terminate in slides. If a Ride is occurring in
the first quadrant it must terminate in a Slide G at Ty gd given in Eq.
(35). If a Ride is occurring in the third quadrant and condition (36a)

is met, it must terminate in a Slide L at Thid given in Eq. (36b).

2. 8.5 Decision Times

Another concept useful in discussing the solutions, is that of
the Decision Time. Specifically, this is any time when the particle is
on the plane and has the same x velocity as the plane. Given this de-
finition, a Ride is then a sequence of Decision Times, but this is not
important in what follows. The usefulness of the concept can be ap-
preciated by considering that the most common way in which the slides
will terminate will be at Decision Times. These points can also occur
following an impact. These are the only times in analyzing solutions
when any further rules for defining the type of transition will be needed.

2. 8. 6 The Definite Slide Zones

As has probably been inferred there are certain time in-
tervals in each cycle when the Force Required to maintain a Ride,
exceeds that available from friction. Inside these intervals a Ride is
impossible, and should a particle reach a Decision Time within one of
these intervals, an appropriate slide will initiate. Generally, two such
zones exist. One each for the Slide G and the Slide L.. However, for
a definite range of operating conditions, no Slide L Definite Zone is

possible.

2. 8.7 G Definite Zone

In Appendix A. 1.5, by noting the interval when F r< Fa g it
is proved that a Slide G Definite Zone exists in the first and second
quadrants between the times 7 gd (time at the beginning of G definite)

and 7

(time at the end of G definite). These times are expressed
egd

as.
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Tbgd = Sin_1 ( ﬁ) (37a)
Toga = T - Sin T (gg)- (37D)

Except for the trivial case of a = %, when ¢ = 1, the beginning of this
zone, Tbgd always precedes the time of flight, Ty Only for cases of
very low amplitude (A <1.15) is it possible for the end of this zone,
Te gd’ to extend beyond the size of impact, 7. These cases will admit
complications which will be mentioned later, but such low amplitudes
will seldom be encountered in practice. No such caseswere computed

in this study.

2. 8. 8 L Definite Zone

In Appendix A. 1. 6, by noting the possible interval when
Fr >F al’ it.is proved that an L Definite Zone will exist only if the

following condition is met

1228 et-¢)>o0. (38a)

If the L Definite Zone exists, it will lie in the third and fourth quadrants
between T, , 4 (time at the beginning of L Definite) and 7, (time at the
end of L Definite). These times are expressed as follows:

Tgq= T - sin”} [27%_—;,— : i] (38b)
Te1qg = 27 Sin'l[-—g’—j-gg _ 1 le] (38¢c)
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2. 8.9 The Termination of a Slide in General

Any slide will terminate in one of two ways. Clearly, any
slide that is occurring just prior to the time of flight terminates at the
time of flights. All other slides terminate when the particle velocity
becomes equal to the plane velocity, i.e., at aDecision Time. Given
that a slide is occurring, it will terminate at the very next Decision
Time, except for the special terminations at the time of flight.

2.8.10 Neither Slide can Terminate in its Corresponding

Definite Zone

A very useful fact for predicting the character of the solu-
tions is the fact that no slide may terminate in the corresponding
Definite Zone, except the Slide G at the time of flight, since the time
of flight takes priority over all other behavior. This certainly ap-

pears intuitively true, and is proved in Appendix Al. 7.

2. 8.11 The Slide Termination Equations

The relationships for determining the time of termination
of a slide are obtained by equating the velocity of the particle during
that slide with the velocity of the plane. The time of termination of
a Slide G, 7, , is obtained by equating Eq. (27c), with Eq. (29b) which

tg’
yields:

T. X (7.)
cos T 1 ! ] =0 (39a)

1 1
tg+m7tg '6 [—K+ t_.COS Ti+_-l-.F_

The time of termination for a Slide L, Ty, is obtained by equating
Eq. (28¢c), with Eq. (29b) which yields:

1 [2g-17 - 1 @t-1) 7 X (7))
CcOS Tt1+K [m] Tt1+ m '—T -C,COS’Ti'Fj‘— = 0.

(39b)
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2. 8.12 The Results of the Impact on the X Motion

The impact will be considered to take place in zero time.

This leads to the conclusion that no displacement takes place during
the impact and that the particle suffers an instantaneous y velocity
change as well as a possible x velocity change. In general, just prior
to impact, the x velocity of the particle will differ from the x velocity
of the plane. The frictional impulse during impact will act so as to
decrease the magnitude of the relative velocity between the particle
and the plane. The pressures during impact will be very high, It is
probable that the pressures become so great that the simple friction
law is really no longer applicable. However, this possibility can be
conveniently introduced later, and so the simple friction law is con-

sidered applicable for the moment.

The product of the mass of the particle and the x velocity
change, the change of the x momentum of the particle, will equal the

impulse fromthe frictional force.

mAx=\Fdt. (40a)

If the particle does not attain the velocity of the plane during the im-
pact, the frictional force will be at its maximum value throughout the

impact and F will equal the product of u and the normal force, hence

mAXxX=u YN dt. (40b)

The SN dt, is the y impulse during impact and is equal to the y momen-

tum change during impact, thus

mAx=pmAYy. (40c)

43




Now, Egq. (23) is substituted into Eq. (40c) to obtain

AX
U sin (a -

By = 21[ (72 - 71)+ cos 72 - cos Ty. (40d)

The negative of Eq. (23) was used in the above so the AX will be a posi-
tive quantity here. Its sign in actual use will depend upon the sign of
(X - X") prior to the impact. Utilizing the nondimensional variables

of Table 1, Eq. {40d) becomes '

%’E: 4 [11 (T4 - Ty) + cos T, - cos Tl] . (41)

The probability that the friction law and the coefficient of
friction are more complicated than has been assumed can now be intro-
duced in the form of an impact friction multiplier € on Eq. (41). It is
assumed that the actual frictional velocity change attained during im-
pact is obtained by multiplying the velocity change computed from the
simple theory Eq. (41) by a complicated quantity, €, the impact fric-
tion multiplier. This ckange in impact friction has been suggested by
Blekhman (Ref. 1).

Another symbolism must be explained. The quantity Tos
represents the nondimensional time at impact and will be used to refer
to velocities just prior to impact, while the quantity 1'2*, represents
this same time, but when used in connection with velocity will refer

to the velocity at that time, but just following the impact.

Finally, the impact velocity change, € AX/yis the maximum
velocity change that can occur. It is only possible as long as a rela-
tive velocity exists between the particle and the plane throughout the
impact. If the two yelocities become equal during the impact some -
thing less than € éq‘E is attained, and the particle will have the velo-
city of the plane following the impact.
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Let us summarize the above with the aid of the diagram in

Fig. 5. Imagine that the horizontal line represents X velocity.

| c a b
"r t ; |= >
I X (12) X
- ¢ AX +€
X (1,5) X(1,) AX |X(71,* |X (1,5 X(7,) AX
- 2 . 2+ € - @- C)cos T, | =2 €.
T T T —‘r‘ 2|5 T T
RESULTS IN SLIDE L RESULTS IN IRESULTS IN SLIDE G
DECISION TIME

Figure 5 - Diagram Depicting the Results of an Impact on X Motion

€ AX is the greatest amount that friction is able to change the x velo-
city during the impact. Point a represents the velocity of the plane.
Points ¢ and b, both € AX either side of point a, represent the ex-
tremes of particle velocity prior to impact, for which the particle

will attain the velocity of the plane following impact. Within these
limits the impact results in a Decision Time. For initial impact
velocities in excess of Point b, the particle velocity is reduced by

the maximum amount and the impact results in a Slide G. For initial
impact velocities less than Point c, the particle velocity is increased
the maximum amount and the impact results in a Slide L.. In summary,

then, the results of impact on the X motion may be stated as follows:

If

X (1,)> X' (1,)+ € A X (42a)
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then

X (159 = X (1,) - € AX,

and a Slide G results.

It
X' (1) - € AX S X (7y)

then

X (1) = X' (1)),

and a Decision Time results.

If
. -‘ _ ™
X(72)<X (72) € AX,

then

and a Slide L results.

2.8.13 A Brief Summary of the Theory Thus Far

§)&' (72)+ € A}&,

(42b)

(42c)

(42d)

(42e)

(42f)

Before proceeding to the solutions, let us quickly list the

various facts that have been presented.

The coefficient of restitution is zero, and the motion -of the

plane is described by (1).

The axes are ordered such that (4) is met. B must lie

within the limits set by (9).

The operating conditions are used to compute the nondimen-

sional variables of Table 1.
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For the motion to be ''once-per-rev'' periodic and contain a
Flight, A, must satisfy (21).

The particle definitely flies at T, glven by (14) and definitely
lands at T, given by (16). At all other times it is on the plane.

In nondimensional variables the motion of the plane is given
by (29).

There are four possible forms the X motion can take; these
are a Slide G, Slide L, Ride, and Flight, and the corresponding equa-
tions of motion are (27), (28), (30), and (31), respectively.

The limits of the Slide G Definite Zone are T and 7__.,
bgd egd
as given by (37).
For a Slide L Definite Zone to exist, (38a) must be met.
If a Slide L Definite Zone exists, its limits are Thid and Tel q,

as given by (38).

Rides only occur between the Definite Slide Zones and must
terminate at the beginning of the next Slide Zone in the corresponding

slide.

It is possible when the amplitudes are very low, for Ty, gd to

exceed Tos this causes complications.
Slides must terminate at the time of flight Ty» OT at Decision
Times given by (39).

The impact causes a velocity change and results in either a
slide or a Decision Time as given by (42).

If a Decision Time occurs in a Definite Slide Zone, the cor-

responding slide ensues: If not a Ride ensues.

Now, we proceed to the solution,

2.9 General Observations about the Solutions

2.9.1 The Maximum Number of Slides and Rides

It is possible to make some observations as to the maximum
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number of transitions that may be expected in any given cycle. Four

dis.inct situations can be envisioned.

For the case of Slide L possible (the satisfaction of (38a))
and Tegd less than Tos the more normal case, there will be two definite
slide zones; thus a Slide G and a Slide L could occur, and the flight could
terminate in a Slide G or L. Two zones in which a ride could initiate are
present. Thus, this case could be as complicated as three slides, two
rides, and a flight. It might proceed Ride, Slide G, Flight, Slide G,
Ride, and Slide I, or RGFGRL. This type of solution has been observed.
The second Slide G could have been a Slide L.

For the above casse, when Tegd’ is greater than Tos the situa-
tion is even more complicated. The flight could terminate in a Slide L,
and then this Slide L in turn terminate still within the G Definite Zone.

Thus, this case could conceivably be as complicated as RGFLGRL.

When no Slide L Definite Zone is possible and the more normal
condition of Tegd less than 72, prevails, the solution can only have two
slides at most. A Slide G or L could result from the flight, and only
one ride could be present. Thus, the two most complex solutions would
be RGFG and RGFL.

Finally, when the L Definite Zone is absent, and Tegd is
greater than Ty there is the added possibility that the Flight terminates
in a Slide L, and thisSlide Lterminates within the G Definite Zone.

Thus, the most complicated solution for this case would be RGFLG.

There is always one flight, and at most two Rides. The
solution could be as simple as FL or FG. FL is quite common at
high amplitudes. The limiting 'cnce-per-rev' solution would be F
alone; it would occur with A at its periodic limit, V72 + 1.

2.9.2 The Two Avenues of Approach Toward Finding the

Solutions

The equations of motion of the particle for each possible
subinterval of the cycle are completely determined now; the condi -

tions that determine which form of motion is occurring, the time of
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termination of any of the motion forms and that form which will initiate at
any termination, are all completely derived. For any given set of opera-
ting conditions, if the velocity were known at any time within the cycle,
one could compute the transition velocities and times around the cycle
from the equations and conditions. Having the velocities and the times,
the displacement could be taken zero at any convenient point, and then
the displacement per cycle could be computed by calculating from transi-
tion point to transition point around the cycle. In general, however,

the velocity is not known at even one point in the cycle.

One approach would certainly be, to set the velocity at any
arbitrary value, at any time, say zero, and begin computing from
transition point to transition point, letting the conditions and equations
determine the transition points as they happen to come. This calcula-
tion would continue until the motion became periodic, and that periodic
set of transition times and velocities would indeed be the true stable
solution, at least for that starting condition. This approach was cer-
tainly considered and tried. In fact, it gave the first hints of the
character of the final solutions. As might be expected though, the
computations are long and cumbersome; there are many transcenden-
tal equations that must be solved by numerical methods. This total
general mathematical analog seemed at best a long computer program
with huge amounts of unimportant results to analyze. The author was
on the verge of beginning it, when another avenue of approach became

apparent.

The other approach, and the one used in this study, is to
anticipate the form of the solution, require periodicity, and then de-
velope fermulae for appropriate transitions times. With this method,
providing the correct form of the solution can be anticipated, one is
led directly to the steady state solution and the calculation and check-
ing of only one cycle is required. Obviously, the difficulty lies in
predicting the appropriate solution form. As a practical matter, this
has not proved troublesome. The solution routines were programmed
for computation on a 1620 IBM Digital Computer, Nine different solu-

tion forms were programmed for this study, seven of which turned out
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spptepruale to peoduce solutions for the operating conditions of inte rest.

[hese routines and procedures will be presented in the next section.

The above two alternatives blend, to a degree, when the solu-
tion contains at least one Ride. Recall that a Ride can only be occurring
in between the Slide Definite Zones, and that it must terminate at the
beginning of the next Slide Definite Zone. Thus, if either of the two
Rides can be anticipated, one definitely knows that the particle must
have the velocity of the plane at the beginning of the next Slide Definite
Zone, In the first method described above, as soon as the transient
solution produced a Ride in the proper place, the very next velocity
calculation around the cycle would yield the final solution. In the
second method, one need not completely anticipate the form of the
solution, but merely the positionfor a Ride. For example, in this study
a Ride was assumed terminating Tbgd; one calculation around the loop,
making the appropriate transitions, proved whether or not a Ride at

this position, for these operating conditions, was a possibility.

Thus, the solutions can be logically divided into two main
categories; solutions with a Ride, and solutions without a Ride. The

next section presents several detailed solutions from each category.

2.10 Solutions Without a Ride

2.10.1 The GFGL Solution

The most complicated solution considered in this category
is the GFGL, or the solution in which the impact results in a Slide G,
which terminates in the L Definite Zone, causing a Slide L., which in
turn persists into the G Definite Zone, bringing about a Slide G, which
persists until the time of flight. A more complicated no-ride solution
can take plane when the amplitudes are very low and the G Definite Zone
persists beyond the time of impact; in this case one has to admit the
possibility of a Slide L terminating within the G Definite Zone following
the impact. However, the present study did not require this solution.
Thus, the solution is restricted to the more normal operating amplitudes

for which Tegd is less than To. Hence, we require

Tegd < 72. (43&)
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In order that the impact result in a Glide G, the velocity of
the particle following impact must meet condition (42a)

X (1,)> X (1,)+ € AX (42a)

This implies that the velocity follewing the impact is give: hy expres-
sion (42b). The Slide G following the impact must terminate in the

L Definite Zone, hence

Trid < ’Ttg < To1gr (43b)

The Slide L. must terminate in the G Definite Zone prior to Flight,

hence,

Tbgd < T <71. (43c)

Further,

Ty < Ttg' (43d)

Thus, the above inequalities constitute tests that every GFGL Solution

must pass.

Since there are four forms of motion in this solution, there
will be four transition times to determine. 75 and Ty being definitely

known, the two remaining transition times are Ttg’ when the Slide G

following the flight terminates, and 7,,, when the Slide L terminates.

tl’
These can be determined Ly requiring periodicity as follows.



T is a Decision Time, and hence, the particle velocity is
equal to that of the plane at that time; thus by (29b) the velocity at T
is expressed in terms of Tiye From T to Ty the particle undergoes
a Slide G, hence, we may write the velocity at T in terms of T by
utilizing the Slide G velocity Eq. (27c). The velocity at Ty is obtained
by using the Flight velocity Eq. (31c); hence we obtain X('rz) in terms
of Tipe The velocity following the impact is obtained from (42b) in
terms of T,;- Now a Slide G initiates and continues until ’Ttg. By sub-
stituting the velocity following impact into the Slide G termination Eq.
(39a), the first equation relating T4 and Ttg is obtained. A second
equation is obtained by noting that the particle velocity equals the
plane velocity at Ttg, and that a Slide L. ensues from 'rtg to Ttl’ Thus,
the particle velocity at Ttg 1s expressed in terms of T by using the
velocity of the plane at that time, from Eq. (29b). Using this initial
velocity in the Slide L termination equation, we obtain a second ex-

pression relating Ty and Ttg‘

Finally by manipulating these two transcendental equations

one obtains the following relations:

Tig = 3 (7 6, (44a)
Ty = ’Ttg -y (44b)
where
y=T9 |2L-1 +(1-e) A (¢-2§)_A_?_<, (44c)
L |¢ - 28 (¢-1) P
=2 (r-sin’! |1 (8 4. A—>£> . (44d)
2¢sin%— A g

The actual derivation of the above is carried out in Appendix A. 1. 8.
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Ttl and Ttg" are

Dccision Times, when the particle velocity equals the plane velocity

Now since the Lwo transition times,

at these times, we know the velocity at two times in the sclution. By
utilizing the appropriate velocity equations all other transition velo-
cities may be computed. Knowing the transition velocities the displace-
ment is set equal to zero at any convenient point and subsequently cal-

culated around the cycle, which completes the solution.

In summary then, (44) are used to compute the transition
times. Presuming they yield reasonable values, we subject them to
the tests (43). Fulfilling these requirements, the transition velocities
are computed. We then make the test indicated in (42a). Fulfilling
this requirement the displacements are computed and the solution is
complete, Failing any of the above tests means that the operating

conditions are not satisfied by a GFGL Solution.

The routine to make these computations is presented in
Appeniiix A, 2, written in Fortran computer language for use on an
IBM 1620 Digital Computer. Experimental Case 10 on page 100
shows a typical solution for a set of operating conditions that require
a GFGL Solution.

2.10.2 The FGL Solution

Another solution that has been of great value in this study
is the FGL Solution. The transition between the GFGL and the FGL
Solutions occurs as friction is reduced and becomes no ionger suffi-
cient to terminate the Slide I. prior to the Flight in the GFGL Solu-

tion. Thus the Slide L persists up to 7,, and hence a necessary check

1,
on every FGL Solution is

X (1)) <X' (1)) (45a)

The velocity at T, must be such that a Slide G results from the im-
pact hence condition (42a) must be met by any valid FGL Solution.

Repeating it
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X (10> X' (1) + e AX. (42a)

Further, for a Slide G to terminate in a Slide 1., an L Definite Zone

must be present, hence by condition (38a)

o (2t-4)> 0. (382)

The Slide G must terminate within the Slide L. Definite Zone, and so

the final check on any solution is

Th1d S ‘Tg<7' 14" (45Db)

There are three transition times in this solution; 7, and T

being known, the remaining 7tg can be determined by requirir}g per'-2
iodicity as follows. Ttg is a Decision Time, hence at that time the
particle has the velocity of the plane. Thus by using the plane velocity
Eq. (29b) we obtain 5((Ttg) = £ (7,,). With this as the initial velocity
the particle undergoes a Sli.de L from Ttg to T F 2 m, hence the Slide
L velocity Eq. (28c) yields X('r ) =1 (T ) With this as the initial
velocity the particle under'goes a Fllght from T to Tos thus by means
of the Flight velocity Eq. (31c) we obtain X(‘T ) =f (Ttg). Now by the
impact velocity change indicated in (42b), we obtain the velocity just
after impact to be X (1 >'”‘) = f ('r ) Finally, a Slide G ensues back to

so with X (’r *) and the 1n1t1a1 velocity and T, as the initial velocity

tg’ 2
and Ty as the 1n1t1al time, we require that the Slide G terminate back
at Ttg by use of the Slide G Termination Eq. (39a). The execution of

the above yields the following transcendental equation for ’Ttg.



- T T —
0 = cos Ttg+ IA Ttg - (12 6) (I2 + cos 72) - (lzl:') (Il-+ cos 71)% (g_%_l)

(46)

In suinmary, if a set of operating conditions, that satisfy (38a),
yields a solution of (46), that satisfies (45b), and yields a set of velo-
cities that satisfy (45a) and (42a), FGL is the correct solution form,
and that set of velocities and transition times is the correct solution
for those operating conditions. The displacements are obtained by
starting at any convenient point and computing around the cycle. Ap-
pendix A. 2. 4 presents the complete Fortran Program to accomplish
these calculations on the computer and Experimental Case 8 on

page 96 presents a typical example of an FGL solution.,

2.10.3 The FL Solution

This solution can come about in two ways. The more normal
type of FL Solution,and the one found useful in this study, comes about
as the amplitude is increased and the time of impact Ty, Occurs within
the L Definite Zone. This increased amplitude causes an increase in
the available x impulse during impact and often causes the impact to
result in a Decision Time, thereby causing the particle to initiate a
Slide L. following the impact. A second type of FL Solution is men-
tioned here for completeness. This solution might occur if the x

velocity prior to impact met condition (42e),

X (15) < X! (Ty) - € A K. (42e)

In this case a Slide L would result from impact even if no Slide L,
Definite Zone existed. The solution would probably become apparent
with increasing 8, and high amplitudes for when To is of the order of
2 m, the plane is at its maximum x velocity. The solution of this case
would pose no difficulty; it is only omitted because it was not needed,
and is thought to be obscure.



The first type of FL Solution will now be considered in de-
tail. Certainly a requisite of this solution is that of Slide L Definite

Zone exists (38a). Further T must lie in the L Definite Zone, hence

<T

eld’ (47)

A

Thid = T2

The impact results in a Decision Time, i,e. the particle has the velo-

city of the plane after impact, hence from (29b)

X (72*)

= (¢ - 0 cos Ty (48)
g

The particle now undergoes a Slide L from 7, to T;*+ 27 Using (48)
as the initial velocity in the Slide L velocity Eq. (27¢c), we find the

velocity at 7 to be

X(Tl)’=(2§—1)(21r+'r

-72)+ { cos 'rl+(d>-2§,)cos T

" A 1 2°

(49)

To find the velocity just prior to impact, we use the Flight velocity

Egq. (31c) from 7, to 7, with (49) as the initial velocity. This yields

T=K [27r(2§.-1)+§71-K_.TZ:I+?;cos‘rl(¢—2l)cos Toe

(50)



Finally two tests must be satisfied by the above velocities. First the
particle velocity must remain less than the plane velocity throughout
the Slide L and at least up until the time of impact, hence from (29c)

X (7,)
L §(¢ - ¢) cos T, (51)
U

And secondly, the difference between the plane velocity and the particle
velocity, pricr to impact, must be small enough so that the impact re-

sults ina Decision Time. This condition was expressed as (42c)

X1(1y) e AXSX (1) <X (T)+ e AKX (420)

In summary then, if Ty satisfies (47), the velocities at T
(49), and T, (50) are computed. If these velocities meet conditions
(51) and (42c),an FL Solution of this type is assured.

Appendix A. 2.5 presents the Fortran Program to ac-
complish these computations on the computer,and Experimental Case

9 on page 98 presents an example of an FL Solution.

2.10.4 Concluding Remarks on the No Ride Solutions

It certainly appears safe to say that other no-ride solutions
exist. One would certainly anticipate an FLG andan FG as well as
the second kind of FL, at least. Further, if one considers the very
low amplitudes for which the G Definite Zone exists beyond the time
of impact, more solutions become possible. No attempt is intended
at being comprehensive and including all possible solutions. The
general procedure used in seeking the above solutions, would serve
to solve any other no-ride solutions for which a need arose. The

next section will take up a number of the solutions containing a ride.
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2.11 Solulions with a Ride

As was stated previously, the solutions containing a Ride are
somewhat easier to confirm, but since a Ride adds more possible transi-
tions there are many more possible solutions with Rides than without.
The convenient feature of these solutions is that the Ride must definitely
be occurring between the Definite Slide Zones and it must terminate,
with the velocily of the plane at the beginning of the next definite slide
zone. Because of this feature, once the position of the Ride has been
assumed, the calculations are quite straightforward following the
equations and conditions previously derived. All one need do is proceed
from the assumed Ride termination point (either Tbgd or Tbld)’ calcula-
ting transition times and termination velocities around one cycle; if
the calculation returns to a Ride in the assumed Ride zone, prior to

or even at the assumed Ride termination, the solution is confirmed.

Because of this straightforwardness, it is possible to write
two computer programs capable of testing for a solution,one for each
possible Ride position. This would solve all possible solutions con-
taining a Ride. Again, however, this becomes a very lengthly com -
plicated program. Itisentirely probable that many of the possible
solutions are obscure and of little practical value. In this study a
much simpler program was written that was capable of checking for
six such solutions,andin all cases computed only four of the solutions

were needed.

It has been shown that a Slide G Definite Zone always exists.
For the case when a Slide L Definite Zone exists (satisfaction of con-
dition (38a)), there will be two positions where a Ride may exist. It
is argued that it is probable that a Ride will occur prior to Tbgd’
whenever a Ride exists prior to To1d* This argument proceeds as
follows. Consider Eq. (10), the equation for the normal force. Ut-

ilizing the definition of A (Eq. (11b)) this may be written

g cos B chos = -AsinT+ 1. (52)
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The possible Ride Zones are near 7 and 2 7 or 0. The normal force
will be zero or small for a good part of the time priorto 7 =¥, while
the normal force will be at its maximum, thereby affording large
friction force, in the third and fourth quadrants prior to the ride zone
near zero. It is likely that a Ride near zero is the more probable of
the two, and hence many more of the practical solutions will be covered
by considering this Ridezone as opposed to the second zone. For this
reason, and certainly because it satisfied all of the needs of the study,
Ride solutions were only considered for cases in which the Ride was

occurring prior to or terminating at Tbgd‘

Further, it was not found necessafy to consider the cases
of extremely low amplitude when the Slide G Definite Zone extends
beyond the time of impact, Te gd > Ty The same restriction imposed
on the FL Solution about the type of Slide L initiation following impact
was also included. This is that the only type of Slide L initiation fol-
lowing impact that the calculatiun routine permits is when the impact
occurs in the L Definite Zone and the Slide L results from a Decision
Time. It must be restated that these restrictions still left the routine
sufficiently general so that a solution was obtained for all operating

conditions of interest.

A solution routine was developed and programmed for com-
putation on the digital computer. The routine assumes a Ride ter-
minating at T gd in a Slide G which continues to 7,, the time of flight.,
It then calculates the velocity at the end of the Flight, Tos and then
goes through the set of impact relations (42) and makes the proper
decision. It continues calculating and testing velocities from transi-
tion point to transition point along one of six different paths. If the
assumed solution passes all of the tests along any one of the paths
and terminates in a Ride prior to the beginning of the next G Definite
Zone, a station has been found. The routine then computes the re-
maining velocities and displacements and prints them out. In this way
the solution routine tests the operating conditions to determine if a
solution exists with any of the following six combinations of motion



forms; RGFGRL, RGFGL, RGFG, RGFL, RGFRL, and RGF. A list-
ing of the Fortran program used for these computations together with
a brief description of the various steps is contained in Appendix A2, 6,
Experimental Case 6 on page 92 shows a typical print out from

this program together with the solution.

2.12 Further Comments on the Computations

2.12.1 The Effect of €

In order to demonstrate the fact that the impact friction mul-
tiplier, €, is a significant factor of the utmost importance, some com-
puter results which demonstrate this fact must be included. Clearly,

e only affects one point on the cycle; it controls the amount of x im-
pulse received at impact. However,v when friction is small and ¢ is
large, the no-ride solutions prevail and these, except for the FL solu-
tion are significantly influenced by €. Figure 6 presents the displace-
ments as a function of time, as computed for a case in which the effect

of € is large.

x.‘ be = 0 a=1.03 in.
5 - A=1.45,
— / w= 315 RPM

i gl }te=0.5¢=17.93
& u=.25
- T t=1.0
+ 1 ?
fé 2 g be = 1.0 o= 30°
o y=0.125
@ T = 00
= gl B=0
2
o] 1 |
"

0 l o T

Tl T 1'2 27
Figure 6

Displacement as a Function of Time for Various Values of €




2. 12,2 The Distribution of the Solution Forms

The solution form, i.e., FGL, FL, RFG, etc., is a function
of the four variables, A, ¢,L, and e. In order to facilitate the testing
of operating conditions for solutions, a set of maps of the distribution
of the solution forms for a particular € and { can be made. These show
the change of solution form as A and ¢ are varied. Since many cases
were computed in testing the programs and the experimental data, a
collection of this information has bezan plotted and is shown in Figs. 7
and 8, for { = 1.0 (i. e., the plane hofizontal), and€ = 1.0 and€ = 0. 5.

The boundaries are estimated from the points shown; no attempt has
been made to derive their actual mathematical shape.

2.12.3 A Comment on the Solution of Transcendental Equations

Since many transcendental equations arise in the actual com-
putation of the solutions , mention might be made of the way in which
they were solved. The Newton-Raphson Method as given in Pipes
(Ref. 17) among others was found to be quite quick and convenient.

The rules for convergence of the method are given in the reference

wud will not be repeated,' but one must be reasonably close to the de-
sired root to obtain a solution. Further, the answer must be checked
to be sure it yields meaningful value. Briefly, if we desire the solu-

tion of
F(x) = 0, {53a)

then we may set up the sequence

x - F(x) | F'(x) (53b)

X
new

and by starting with a ""reasonably' good guess for x, quite quickly
converge to an accurate value.

For example, in every computation for a solution, the
value of Ty had to be computed from Egs. (16). A crude approxima-

tion expression of the 7, curve on Fig. 4, was developed and used for
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this initial guess. Note the Fortran step just prior to number 10, in
all of the computer programs in Appendix 2, in which this approxima-
tion is being made. The approximations for the roots of the Slide
Termination equations were more difficult, especially in the Ride
Program; oftentimes the approximation value had to be changed in

order to obtain a solution.

2.13 The Application of the Single Particle Theory to Granular
Solids in Troughs

The transportation of granular solids is a very important
application of the oscillating conveyor; hence, it is necessary to dis-
cuss the applicability of single particle theory to a trough filled with
a granular solid.

A granular solid can be thought of as a continuum with a
density and bulk modulus. It has absolutely no strength in tension,
great strength in compression, and a frictional strength in shear,

i. e., the greater the compressive stress, the greater the shear
strength. The shearing strength is related to an internal friction
coefficient and the compressive principal stresses, see,for example,
the explanation of yielding given by Jenike (Ref. 19). For these pur-
poses, a sufficient indication of internal friction is the tangent of the
maximum angle of a small hill of the granular solid. There is also
another coefficient of friction of interest; this is an external coefficient
of friction between the granular bed and the walls of the trough. One
would expect the granular solid to move as a slug if the external fric-
tion were less than the internal friction. The experiments conducted
in this study indicate that the granular materials do move as a slug;
see the data phiotographs in Fig. 14 and note the negligible shift of

the marking grains.

Given the emperical knowledge that the bed moves as a slug,
it is possible to make some observations about the nature of the ex-
ternal friction between the bed and the trough. Consider a layer of
a long rectangular bed of granular material, parallel to the bottom of
the trough, up from the bottom a distance n, and of thickness dn, as
shown in Fig. 8.



side view end view
Figure 9 - Diagram of Coordinates and Dimensions of a Bed

of Granular Material

The trough is considered to oscillate in a direction @, and is inclined
to the horizontal with angle B, as in the case of the single particle
analysis. Dynamic equilibrium in the y direction for the layer yields

g-%):-pgcosﬁ-p'}; (552)

Note that when the bed is sliding, friction from the walls has no ver-
tical component. When the bed is in the trough, it has the y motion
of the trough, hence from (1f), (55a) becomes:

%{: (- p g cos B+ pa w2 sin (a - B) sin 7). (55Db)

Equation (55b) is integrated with the boundary condition that p = 0,
when n = h, to yield
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p=(h-n)(pgcosB-pamzsin(a-B)sin'r). (56)

Now a very approximate assumption is made temporarily. We assume,
as in fluid mechanics, that the pressure is the same in all directions.
Hence, while sliding, the frictional force on the bed is given by the
product of the coefficient of external friction, Ko and the pressure
integrated over the area of contact between the bed and the trough.

This yields

F = p, whl (1 +£—) (pg cos B - pawz sin (o - B) sin 7).
(57)

The force analogous to the normal force of Eq. (10) in the single par-
ticle theory is the product of the pressure atn =0 and the area of the
trough bottom, wl. An effective coefficient of sliding friction of a

bed of granular material can be taken to be the friction force from (57)
divided by this analogous normal force. Thus, we find

_ h
“eff - (1 + W) “e- (583)

Now to compensate for the assumption of equal pressure in all direc-
tions, we state that the full pressure given by (56) is not attained be-
tween the walls of the trough and the sides of the bed, that friction
provides a percentage of the support of the sides of the bed. Thus,
we introduce some factor k (less than unity) on the h/w term in (58a)

and obtain
b= (14 k) p (58D)
eff w’ Te’

While the above is admittedly oversimplified, it does lead us to expect

rp



that deeper beds will have greater friction than the shallower beds,
and that they may be related by an expression of the form of (58b).

A further important conclusion can also be drawn from the
above. Note that in (55b), (56), and (57), that if w or a is zero,Eqgs.
(58) also apply to the non-oscillating tilting of the platform if the
particles are sliding. Thus, no matter how complicated the k of (58b)
actually is, we may measure the effective coefficient of sliding fric-
tion by noting the minimum angle of tilt of the channel for which a
constant velocity slug slide of the bed can be maintained. As will be

described later, this was the method used experimentally.

Finally, let us consider the possibility that the sides of the
bed of particles may suffer some frictional restraint from the walls
of the trough during flight. For any frictional force to be present
between the walls and the bed, there will have to be a pressure within
a bed. However, during flight, if the walls of the trough are such that
they do not cause the bed to change shape, i.e., are not leahing inward,
the pressure will be zero within the bed, hence, the frictional force be-
tween the walls and the bed will be negligible.

Thus, given the experimental observation that a bed of free-
flowing granular material moves as a slug in these conveyors, we are
led to expect that single particle theory will predict the motion of
granular solids providing that the effective coefficient of friction is
measured by tilting the channel and noting the minimum angle for

which a constant velocity slug slide can be maintained.
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CHAPTER III

EXPERIMENTAL ANALYSIS

3.1 Description of the Apparatus

A conveyor motion simulator was built to test the theory.
The machine provides an oscillating plane which accurately executes
the motion specified by Eq. (1). The plane can be fitted with a channel
for the study of granular material and is shown with the channel in
place in Figs. 10 and 11. Wood was used as the main construction
material principally because of the need for quickly fabricating a
large stiff structure. Steel was used in the regions where high
stresses demanded it. Both a and B could be varied as shown in the
figures, as well as the amplitude and frequency. The machine had
a "direct drive'" reciprocating motion so that the amplitude, "a' could
be held constant during a test. The amplitude could be set between
tests by bolting the connecting rod bearing to any one of a series of
holes with varying offsets in a crank plane, which in turn was mounted
on an idler shaft. This idler shaft was driven through a V-belt by a
large variable speed motor which permitted adjustment of the fre-
quency. The plane itself, was of sandwich construction for weight
and stiffness reasons. It was surfaced with a hard epoxy resin and
was four feet long and one foot wide. A variable width, transparent-
fronted channel (1 1/2 inches deep by a maximum of 2 inches wide)
was fitted to the plane for the study of granular materials: see Figs.
12 and 13. The construction details are more fully explained in

Appendix 3. 1.

For the single particle study, two different particles were
used. Early ir the experimental study, it was realized that a single
particle with a large coniact area, (e.g., a 3/4 inch board, 3 inches
wide by 6 inches long) was significantly lubricated during impact by
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Figure 12 - The Transparent-Fronted Channel Filled with Rice, showing
the Dyed Marking Grains

Figure 13 - Looking Down on the Transparent-Fronted Channel
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the squeezing out of the air between the board and the plane; thus no

x impulse occurred during impact in these first experiments. This

is unrealistic to actual practice, hence, the particles used in the study
rested on four small pads in the corners. Particle 1 was a wooden
board 2 inches wide by 6 inches long, and 1/2 inch thick. In its bottom
four corners were attached four, 1/4 inch thick, 1/2 inch square wood
pads; four steel thumb tacks were attached to these pads. The particle
was painted black so that it would not be seen by the camersa, and on
the top of the particle,two pins with 1/ 8 inch spherical white heads
were attached a known distance apart, fore and aft of the center.
Particle 2, was made of 1/4 inch thick cloth reinforced rubber, two
inches wide and three inches long. Four wood pads (without tacks)
were attached to its bottom corners. Again, two white headed pins

were placed on the top, a known distance apart.

The data was taken photographically be means of a strobo-
scopic light, triggered by equally spaced holes on a disk mounted on
the idler shaft. The details of this disk and the triggering are given
in Appendix A3. 2. The camera was mounted on a tripod with the lens
open as the particle traveled by. The photograph, therefore, con-
tained a sequence of white dots, which were images of the white-headed
pins, giving the particle position as a function of time. The known
distance between the pins provided a scaling factor. Two of these
white pins were also affixed to the plane to give a trace of its motion,
thereby affording a check on direction and straightness. (See Figs.
14a and b.)

The particles used in the study of granular materials were
small white dried beans or rice. Grains of these particles were dyed
black for marking purposes. Theprocedure for taking granular ma-
terials data had to be altered because the white bed of particles would

"cancel the image of the black marking grains. To obtain the data in
these cases, the camera was rotated at 4 RPM by a synchronous motor
about a horizontal axis. Thus, the information was spread out across
the entire film plane. Data photogr aphs taken in this way are shown
in Figs. 14c, d, and e. In these cases the white pins on the plane
provided the scaling factor,

™o



(a) Experimental Case 1
29 points per cycle

(b) Experimental Case 5
14 points per cycle

, T 3 o
time ——»~ .

(c) Exp. Case 8 (d) Exp. Case 6 (e) Exp.Case 9
6 per cycle 6 per cycle 6 per cycle

Figure 14 - Typical Data Photographs
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Table 2 lists the particles used in the experimental cases

presented.

Table 2 Summary of Particles

Particle 1 2 x 6 x 1/2 inches, wood; steel tacks in contact with

plane;pin separation = 6. 45'".

Particle 2 2 x 3 x 1/4 inches, cloth reinforced rubber; wood pads
in contact with plane; pin separation = 2. 43",

Particle 3 | narrow beans; channel height = 1"; channel width=1/2""
Particle 4 narrow rice; channel height = 1} channel width = 1/2",

Particle 5 wide rice; channel height = 1/2"; channel width = 1 1/2".

3.2 Experimental Procedure

The general procedures are presented as they occurred in
a typical single particle test, with digressions where necessary. Then
the procedures peculiar to the test of granular materials are presented.

3.2.1 Single Particle Procedure

The plane and the pads on the particle were cleaned by a
light sanding and careful dusting. The particle was then placed on
the plane and the plane was tilted. The particle was then given a little
initial motion downhill. If the particle continued to slide, the angle of
+ilt was decreased. If the particle came to a stop, the angle of tilt
was increased. The final angle of friction was taken to be the minimum
angle for which a constant velocityslide of the particle could be main-
tained. The plane was then locked at this angle and the angles mea-
sured with a machinist's protractor that was fitted with a level that
could be read to 1/2°.



Next, the angles a and B were set to the desired values with

this same protractor.

The frequency was then set at first by a hand tachometer on
the idler shaft. The final frequency check and adjustment was made
by counting the number of oscillations of the slider occurring in one
minute. This was accomplished by causing the slider to trip a micro-
switch which, in turn, actuated an electric counter that was energized

for precisely one minute by an accurate electric timer.

The perforated disk on the idler shaft that triggered the
stroboscopic lamp, contained 29 holes spaced at 129 intervals; this
left one blank position to indicate phase. Further, in many of the
tests it was unnecessary to record so many points. Unwanted holes
could be "blacked out" on the disk with black plastic electrical insulat-
ing tape. The majority of the tests were run with fourteen holes
spaced at 24° intervals. In both cases the phase was checked by
photographing the crank plate on the idler shaft. The crank plate
and the connecting rod bearing were painted flat black and marked
with reflective tape. (See Fig.11). Both the camera and the lamp
were then focused on the crank plate, the machine started, and the
shutter opened for 1/2 second. This yielded a photograph showing
the exact angular position of the blank hole, thereby establishing the
phase of that position in the data photographs.

The camera was positioned with its film surface parallel
to the x-y coordinate system of the machine, slightly above the mean
position of the plane, and 3 1/2 feet back. It was then focused on the

anticipated particle path.

The particle was positioned at the far end of the plane,
the room darkened, and the stroboscopic lamp energized and aimed
at the region of interest. The lamp to path distance was about 2 feet.
The machine was then started with a foot switch. When the particle
arrived about 3/4 of the way down the plane, the camera shutter was
opened for one second,' thus taking the photograph. If the particle had
come down the plane with no rotation or other obvious irregularities,
the data was presumed good. A second check on the angular velocity
was then made.



3. 2. 2 Procedure Peculiar to Granular Materials

The channel was fixed to the plane with fiberglass pressure
sensitive tape. The width was adjusted by tightening the movable
channel wall against a block of the desired thickness.

To make the friction measurement the channel was filled
to the desired level with the granular material. A box was attached
to one end of the channel to catch the spilling particles. Then the
plane, channel and box were carefully tipped, during which time the
channel was tapped. As the tip angle increased the particles would
begin to shift some at each tap, while at the lower end, end particles
would be spilling into the box haphazardly. Finally, when the angle
was just great enough, the whole remaining mass of particles would
begin a constant velocity slide with no relative velocity between them.
This angle was taken to be the angle of sliding friction for the parti-
cles. As can be imagined, this is a time consuming measurement;
repeated tests gave values that varied to the extent that it seemed
unrealistic to presume knowledge of the friction coefficient any more
accurately than + 0. 05.

Since the camera was to be rotated and since each image
was to cover the full width of the film it was necessary to reduce the
number of flashes per cycle to six. No phasing by missing images
was attempted for the tests of granular materials; the discontinuities
in the displacement time curve were considered sufficient to identify
the phase, as well as the fact that points of flight could be visually
observed. (See Figs.14c, d, and e).

After having set a, B, and the frequency, the channel was
again filled to the desired level. Then, two pieces of thick celluloid,
the width of the channel, were used to spread a vertical column of the
grains apart. Grains dyed with black ink were then dropped in this
slot and the celluloid removed. The top surface was smoothed out
and the bed was ready for test. Figure 12 shows a bed of rice ready
for test,



The camera was set at a distance of 8 feet from the channel
and aimad such that the channel was at the bottom of the film plane.
With the room darkened and the stroboscopic light energized, the
machine was started. When the marking grains came into view of
the camera, the rotator was started and the shutter opened for one

second, thus taking the photograph.

3.3 Processing The Data

3.3.1 Data Photographs

The film used throughout was Kodak Tri-X Roll Film,
Size 120. It was processed in a tank using Acufine Film Developer
(Baumann Photo-Chemical Corporation; Chicago, Illinois). This de-
veloper increases the film speed from 700 to about 1200. No other
special film techniques were involved. Adequate negatives were al-
ways obtained with the camera lens opening at 3. 5, the stroboscopic
light set on low intensity, and located no further than 2 feet from the

particles.

The printing was performed on an Omega Type D II Enlarger.
The enlarger was mounted horizontally on a dolly, the image being pro-
jected vertically on a panel to which the enlarging paper was pinned.
Many of the prints were exposed with the lens as far as 8 feet from
the panel, especially during the single particle work, where the prints
were enlarged back to original size. Special care had to be exercised
to keep the film plane and the vertical panel parallel and in line, to
avoid distortion. No other special chemicals or techniques were in-

volved.

3. 3. 2 Analyzing the Single Particle Photographs

These photographs were enlarged to actual scale so that
displacements could be directly traced onto vellum graph paper. Con-
sider Fig. (14a), the data photograph for Experimental Case 1. The
phase photograph fortuitously denmonstrated that the 7 = 0 point was
the first dot after the gap. (When this was not the case, interpolation
had to be used). The trace of the most forward pin gave two such dots;



thus a horizontal line through these two points locates the y = 0 line.
A coordinate system with its abscissa divided into thirty equal parts
was drawn on tracing paper and placed over the photograph with the
origin on the first 7 = 0 point (near center of photograph), and the
abscissa over the y = 0 line on the print. Then, a horizontal line from
the next point on the print was drawn to intersect a vertical line from
the next division on the abscissa and this was continued for the whole
cycle. Following this, a line perpendicular to the y = 0 line and
through the 7 = 0 point was drawn on the point. This was the x = 0
line. A new coordinate system, again with thirty equal divisions on
the absicissa, was then placed over the print with its origin at the 7= 0
point and its abscissa over the x = 0 line. Finally,' a vertical line from the
next division waé drawn up to a horizontal line from the next pin image,
and so on throughbut the cycle. Thus, with a minimum of effort the full
scale displacement graphs were produced. Since the points were already on
tracing paper they could be conveniently placed over the plotted computer
solution for comparison.

3. 3.3 Analyzing the Photographs of Granular Materials

In these cases, since only six images were recorded per
cycle, it was only necessary that the prints be enlarged to about half
of the original size. A scale factor was established by noting the dis -
tance between the white-headed pins attached to the plane (Note the
pins on Fig. 10). Notice in Figs. 14 ¢, d, and e, that the pins can be
cleariy seen for over half of the images; a reference line for measur-
ing x displacement of the marking grains was established by vertically
connecting images of the same pin, one cycle apart. Thus, from this
reference line the displacements were measured and recorded.

Two minor complications arise with this procedure. As
the camera is rotating, the lens to subject distance is changing; the
magnification on the negative varies with the reciprocal of the cosine
of the angle between the camera axis and the image. To compensate
for this effect an individual scale factor was measured or interpolated
for each image. The errors at the extreme end of the negatives would
have been as great as 5% without this correction. The other complica-
tion was that minor local random convection of the grains takes place.
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Thus, at the boundary of the marking grains, where it was desired to
follow an individual prominent grain or notch in the grains, often 6 or
7 cycles later the particular observation point would disappear. While
this only causes an error on the order of the size of the grains, no
greater than 5%, when the marking point disappears the displacement
curve is apt to contain an erratic error of this magnitude; this should

be born in mind while examining the data.

3.4 Final Comments on the Experimental Analysis

A list of the specific pieces of equipment used in the experi-

ments is contained in Appendix A3. 3.

The experiments were successful. The actual plots of the
data from the 10 cases presented are given in the next section in com-
parison with the theory, Figs. (15-24). A quick glance at Fig. 15, with
29 images per cycle indicates a dramatic fit of data to experimental
results.
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CHAPTER IV

A COMPARISON OF THE THEORETICAL AND EXPERIMENTAL ANALYSES

4.1 Introductory Comments

Some comment is in order on the actual mechanics of
preparing the comparison of the theoretical and experimental results.
In the single particle case, phase was definitely known and both curves
could be plotted on the same sheet starting from zero time. The
computer was used to calculate the solution with the measured co-
efficient of friction for €e=0, and €=1. These plots were then super-
posed on the experimental solution; the data would invariably lie with-
in the two curves. A linear interpolation of the last point of the experi-
mental curve between the two theoretical curves would yield an inter -
mediate value of e. This value of € was then fed to the computer and
that resulting solution is presented here.

The impact friction multiplier, €, has its greatest effect
when friction is comparatively low, as has been mentioned. When
friction is increased, as is the case with granular materials, € has a
comparatively small effect. Thus for granular materials the value of
€ was not as critical as for single particles. For these cases only two
computer solutions were calculated for each experiment, € = 0.5, and
1.0, the best fit being presented.

Further, in the case of granular materials, phase was only
very approximately known by noting those data points for which the bed
was definitely in flight. (See Figures l4c, d, e.) The two curves, origin-
ally plotted on different sheets of vellum, were shifted along each other
(with the axes parallel) to obtain the best fit. Most data (except the high
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amplitude FL solutions) contain a distinct notch following the impact
which is helpful here. For this reason the data in the case of granular
materials does not necessarily start at z.ro, nor erd at the end of a
cycle.

On the following pages the results of 10 experimental cases
are compared with their theoretical solutions. Table 3 summarizes the
pertinent values and characteristics; the particles have been described
in Table 2. The bulk of the experiments were conducted with « = 30°,
the typical value used by conveyor manufacturers. X displacements
are the output used to compare the theory with the data; measured y
displacements are presented for four of the single particle cases as
well as the y displacement of the plane to indicate the Flight. The x
velocities for four of the solution forms (GFGL, FGL, FL, RGFGL) are
plotted along with the x velocity of the plane to illustrate the various
motion forms.

Note in observing the curves that the particle decelerates
during a Slide G and accelerates during a Slide L; 'durin'g a Flight the
particle has constant velocity except when g is not zero.

Following each Figure the actual listing of the computer
solution is presented. A Fortran symbols table is included in Appendix
A2. Some brief running comments are added in the lower portions of

each list.

4.2 The Comparison
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Calculated Results for Experimental Case I

2.01000 220430000 «330C0 30.00000 000000 «85000
GABE6 - 55 SOLNS WiTH L BUT NO Ry FL#FGLGFGL
AOQ = 2401000 INCHESs OMEGA = 22000000 RPM» MU = 33000
ALPHA = 30.00000 DFGREESs BETA = 0,00000 DEGRS
IMPACT LUBRICZATION FACTOR = «85000
A = 138158 PHI = 6024862 ZETA = 100000 PSI = «16500
PLANE MAX X VEL= 4¢01031E+U]1 MAX X DISPL= 1.74070E-00
FINAL VALUES TFL = «8U930 TL = 3099773

13GD»TEGDs TBLDs TELD
1¢10095E-01 3402545E-00 3.21278E-00 6411199E-00

THIS IS A FGL SOLN

FINAL VALUE OF TGL = 4483498
NG VELOCITIES XO5TGL = «64182 XDSTFL = 2484355 XDSTI = 2484355
XDSTIS = 2402546 xXDS2GL = e64182
X3TFL = 040000V X571 = 9.06648 XSTGL = 10419709
X52TFL = 14493049
AVERAGE VELOCITIESs XDSAV = 2437628 XDAV = «39208
XLDAV = 18415650 INCHES PER SECCND
REL DISPL PER CYCL = 246356ABS DISPL PER CYC = 4495177

VELOCITIES IN IPS FOR INCRS OF 2P1/20

1696195E+01 2409830E+01 2416352E+01 2417267E+01l 2417267E+01 2417267E+01
2¢17267E+01 241726TE+01l 2417267E+01 2417267E+01 2.17267E+01 2.17267E+01
2617267F+01 1444821E+01 1,06147E+01 6451618E-00 7439036E-00 1412577E+01
1446855F+01 14750B82E+01 1496195E+01

DISPLS IN INCHES FOR SAME INCRS

0.00000F =99 247768VE-01 5.69021E-01 B4+65059E~01 1416133E-00 1445760E-00
1.75388E-00 2.,05015E-00 2434643E-00 2.64270E-00 2.93897E-00 3.23525E-00
3453152F-00 3480252E-00 3.97402E-00 4,09096E-00 4417250E-00 4+30003E-00
444T7752E-00 4¢69779E-00 4455177E-00

TRANS VELS 2e17267E+01 2¢17267E+01 1454760E+01 4¢90400E-00
TRANS DISPLS 7439466E-01 3e74637E-00 4412134E-00 5469124E-00

EXPERIMENTAL CASE 1
This is a low frequency, high displacement amplitude, low

friction, moderate ''‘generalized amplitude'' case. Twenty nine measured
points provide a detailed picture of the particle motion. Note the definite
bounce in the Y displacement curve, which can be seen in Figure 14a.
The x motion seems unaffected by it, This is an FGL solution; note

that the transition times predicted by the theory are corroborated by

the data,
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Calculated Results for Experimental Case 2

103000 261,90C0v e33V00 47,U0000 0.00000 +«80000
GABE6 - SS S0LNS WlTH L BUT NO Rs FLsFGLGFGL
AOQ = 1403000 INCHES» OMEGA = 261.00000 RPMs MU = «33000
ALPHA = 47.000v0 DEGREESs BETA = 0.00000 DEGRS
IMPACT LUBRICATION FACTOR = «80000
A = 1445750 PHI = 3482579 ZETA = 1.00000 PSI = e 24134
PLANE MAX X VEL= 191994E+01 MAX X DISPL= 7.02456E-01
FINAL VALUES TFL = «75611 TL = 4619510

TBGD»TEGDsTBLD TELD
1e8BU311E=01 24796127E-00 3452683E-00 5.89794E-00

THIS IS A GFGL SOLUTION

TGL = 4486559 TLG = 50511

XDSTLG = 2047290 XDSTFL = 2444830 XDSTI = 244830

XVSTIS = le53832 XDSTGL = «43118 XDSZLL = Qe472B0

XSTLG = 00000V XSTFL = e61656 XSTI = 903626

XSTGL = 9e701V1 XS2LG = 12497705

XDSAV = 2406535 XDAV = « 49846 XDLAV = 14403281 INCHES PER SECOND
X2LG = 3413197 XLoyco = 3422593 DISPLACEMENT PER CYCLE IN INCHES

VELOCITIES IN IPS FOR INCRS OF 2PI1/20

1e52955E+01 1e642747+01 1:06766E+01 1le66347E+01 la66347E+01 leo6347E+01
1666347TE+01 1e66347TE+0] 146634TE+01 146634TE+0L 1466347TE+01 1466347E+01
1e653476+01 1466347TE+01 8424458E~00 4468050E~00 4474281E~00 8410136E-00
16 10689E+01 1434985E+01 1e52955€401

DISPLS IN INCHES FOR SAME INCRS

0.00000E~-99 1¢82949E-01 3¢74583E-0Ll 5465851E-01 7o57054E-01 9.48258E-01
1413946E-00 1433066E-00 1452186E-00 1471307E-00 1490427E~CO 2409548E-00
2.28668F-00 2.47788E~00 2,61500E-00 2,68939E-00 2.,73332F=-00 2.80743E-00
2491805E~00 340598<E-00 34£42593E-00

TRANS VELS le6BOLBE+0L leb6634TE+01 1466347TE+01 1e04519E+01 24Y2961E-00
TRANS DISPLS 2e9915BE-01 4¢52428E-01 2.54546E~00 2¢71071E-00 3¢52509E-00

EXPERIMENTAL CASE 2
Here the frequency is increased but roughly the same

generalized amplitude is maintained. Here and in the next three cases
14 points were measured per cycle. The oscillation angle is increased
from 3¢°to 47°, Although the friction is the same, note the drastic
decrease in ¢ due to the oscillation angle change; thus an increase in
oscillation angle is similar to an increase in friction.
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Calculated Results for Experimental Case 3

1,03000 318,0000v ¢« 33000 30,09000 -4400000 65000
GABE6 - 55 SOLNS WITH L BUT NO Rs FLsFGL#GFGL
AQ = 1403000 INCHESs OMEGA = 318.00000 RPMsy MU = 33000
ALPHA = 30.000Y0 DEGREESs BETA = -4 ,00000 DEGRS
IMPACT LUBRICATION FACTOK = «65000
A = 1e55835 PHI = 696941 2ETA = le26687 PS] = 014543
PLANZ MAX X VEL= 2e84359E+ul MAX X DISPL= B«53907E-01
FINAL VALUES TFL = 64726 Tl = 4eb2623
TBGD*»TEGD» TBLD» TELD
3.66302FE-02 3405495C-00 3435238E-00 6.07239E-00
THIS IS A GFGL SOLUTION
TGL = 5429475 TLG = 52311
XDSTLG = 4493818 XDSTFL = 4095028 XDSTI = 5459540
XDSTIS = 4436541 XDSTGL = 3413523 XDS2LG = 493816
XSTLG = 040000V XS5TFL = «61365 XSTI = 21459414
XSTGL = 24408694 XS2LG = 30452410
XDsAv = 4485805 XDAV = « 10651 XDLAV = 2423337 INCHES PER SECUND
X2LG = 4e43915 XLCyCL = 4457233 DISPLACEMENT PER CYCLc IN INCHES

IN IPS FOR INCRS OF 2PI1/20
2e¢42031E+01 2446790E+01 2.49322E+01
2.59485E+401 2.62026E+01 2,64567E+01
2.74730E+01 2477271E+01 2.08723E+01
2412968BE+01 2430597E+01

VELOCITIES
2430597€£+01
2456944F401
2.72189€+01
1e4B9447F+01

251862E+01
2.67107E+01
1.79713E+01

2.54403E+01
2669648E+01
1,60912E+01

UISPLS IN INCHES FOR SAME INCRS
1.16387E-00

Ue0VLOO0OE-99
1.4U507E-00
2+90262E-00
4e17236€£-00

202342<E-0]1 4454649E-01
1e64867E~00 1489467E-00
3+16060E-00 3.42098E-00
4436262E-00 4457233E-00

6.88661E-01
2414306E-00
3466649E-G0

9.25069E-01
2+39385E-00
3¢84964E-00

2064704E-00
4+00675€E-00

TRANS VELS 2046331E+01 2046934E+01 2.79115E+01 2416762E+01 le56394E+01
TRANS DiSPLS 3e76771E-01 4e68694E-01 3461144E-00 3498485E-00 4+94910E-00

EXPERIMENTAL CASE 3
This is an illustration of a case in which the plane is tipped

downward. This is again a moderate amplitude, low friction case.
Naurally the velocity increases,
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Calculated Results for Experimental Case 4

1,03000 318.0000v «28V00 130,00000 4400000 ¢ 70000
GABE6 - S5 SOLNS WITH L BUT NO Ry FLsFGL»GFGL
AQ = 1,03000 INCHES» OMEGA = 318400000 RPM» MU = 228000
ALPHA = 30.000v0 DEGREES» HBETA = 4,00000 DEGRS
IMPACT LUBRICATION FACTOR = « 70000
A = 1430C04 PHI = 6.65938 ZETA = «80016 PSI = «15339
PLANE MAX X VEL= 3.08286E+U1 MAX X DISPL= 9.25757E-01
FIMAL VALUES TFL = «87759 Tl = 3475398

TRGR»TEGN»TBLDTELD
Te15765F-01 3.02582E-00 3.23299E-00 6.19178E-00

THIS IS A FGL SOLN

FINAL VALUE OF TGL = Ge49412

ND VELOCITIES XDSTGL = -1e26871 XDSTFL = «647217 XDSTI =
XDSTIS = -e21789 XDsS2G6L = ~1426871

XSTFL = 0.0000v XSTI = le22591 XSTGL = 69056
XS52TFL = «80791

AVERAGE VELOCITIESs XDSAV = «12858 XDAV = «01972
XLDAV = «67655 INCHES PER SECOND

REL DISPL PER CYCL = «12393ABS DISPL PER CYC = «12765

VELOCITIES IN IPS FOR INCKS OF 2PI1/20

2¢79321F-00 3435046E-00 3,51576E-00 3,35317€E-00 3.,09908E-00 2.84500E£-00
2459092E=00 2433684E-00 2.08275E-00 1482867E-00 1+457459E~00 1432051E-0Q0
~1424998F-00~3445288E-00-5,89801E-00-5423340£-00-3,16909E-00~-1423214E-00
4,62567E-01 1482386E~-00 2.79321E-00

DISPLS IN INCHES FOR SAME INCRS

0.00000FE-99 2¢93014E-02 6¢19796E-02 9445883E~02 1.25023E-01 1.53061E-01
1478702E-01 2401947E-01 2422794E-01 2441244E-01 2457297E-01 2470953E-01
2481126E-01 2459173FE-01 2015212E-01 1,58072E-01 1.18489E-01 9,78768E-02

9¢447T1E-02 1405552Z-01 1627653E-01

TRANS VELS 34405647-00 1e07932E-00-1414647E-00-6467541E-00
TRANS DISPLS 880039E-02 2¢81699E-01 1497113E-01 2+15655E-01

EXPERIMENTAL CASES 4 and 5
These are grouped together because they are almost

identical except for a change of 0.05 in u. These are moderate amplitude,
low friction cases that illustrate the motion of a single particle going
uphill. Notice the extreme effect of friction in this "uphill' case. Cer-
tainly case 4 would be useless in any practical conveying situation. The
data photograph for case 4 looks very much like the familiar "ovals"

that many students make in penmanship class. Figure 14b is the actual

full size data print for Case 5. 90
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Calcuiated Results for Experimental Case %

1.03000 318.0000V «33V00 30,00000 4.00000 «40000
GABE6 - SS SOLNS WITH L BUT NO Rs FLsFGL»GFGL

AQ = 103000 INCHESs OMEGA = 318,00000 RPMs MU = «33000

ALPHA = 30.000V0 DEGREES» BETA = 4.,00000 DEGRS

IMPACT LUBRICATION FACTOR = «40000
A = 1.30004 PHI = 5095183 ZETA = «B82515 PSI = «17531
PLANE MAX X VEL= 3eG8286E+01 MAX X DISPL= 9425757E-01
FINAL VALUES TFL = «87759 Tl = 3.,75398
TBGDTEGDs TBLD» TELD

1.29600E-01 3.01198E-00 3.25814E-00 6416663E-00

THIS IS A FGL SOLN

FINAL VALUE OF TGL = 461072

ND VELOCITIES XDSTGL = -¢52031 XDSTFL = l.36628 XDSTI = e97943
XDSTIS = e73v15 XD>2GL = ~¢52031

XSTFL = 0.0000v XSTI = 3437359 XSTGL = 348494
XS2TFL = 545368

AVERAGE VELOCITIESs XDSAV = «86797 XDAV = «15217
XLDAV = 5421947 INCHES PER SECOND

REL DISPL PER CYCL = #95612ABS DISPL PER CYC = « 98480

VELOCITIES IN IPS FOR INCRS OF 2PI1/20

7436745E~00 B+06958F-00 8430977E-00 8416352E-00 7.90943E-00 Te65535E-00
7e4U127E-00 74147197-00 6489310E-00 6¢63902E~00 6+38494E-00 6413086E-00
4427096E-00 1¢72006E-00-1411632E~-00-2431935E-00 1.58957E-01 2448716E-00
445¢987E-00 6417963E~-00 7.36745E=-00

DISPLS IN INCHES FOR SAME INCRs

0+00000F-99 7431955E-02 1450798E-01 2428748E=01 3.04564E~-01 3.77983E-01
4e49004E-01 5417629E-01 5.83857E-01 6447688E-01 7.09122E-01 7.68158E~01
8+24055E-01 B+52586E-01 Be55609E-01 8433772E-01 B8+23641E-01 8+36297E-01
8469668E~01 9420527E-01 9.84808E-01

TRANS VELS 8421599E-00 5488966E~00 4439066E-00-3,12884E-00
TRANS DISPLS 2412791E-01 8421982E-01 8.42090E-01 1419759E-00
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Calculated Results for Experimental Case 6

« 76000 305400000 «500U0 47,00000 0.00000 100000

RZSJULTS OF ABREVIATED SULJUTION - THCSE WITH RGF-

AQ = « 76000 INCHES» OMEGA = 305,00000 RPM» MU = 50000

ALPHA = 47.00000 DTGREESY BETA = 0,00000 DEGRS

[MPACT LUBRICATION FACTOR = 1,00000
A = le46860 PHI = 2006502 LETA = 1400000 Pol = e50287
PLANE MAX X VEL= 1e65548E+v]l MAX X DISPL= 5.18317g-01
FINAL VALUES TFL = e 769C1 TL = Gbaglc0o

TdlS> I5 AN R3FGL SwLN

TBGUsTEGDsTBLO» TELUSTTS I

2429961E~C1 2490162E-00 44G4TT79E-00 543769BE-00 44063832E-0G0 54913970E-0C
XDBGD s XDTFL o XDTI s XCTISaXDTTGeXDTTL

146UBO5E+0]1 1e512507+01 1a5125CE+C1 4481 v46E=00-1e2249%4E=0C 1547325+01
XTFLyXTIsXTTGeXTTLYABGD»X2TFL

0400000F-99 1404460F~-00 1.668525-00 1497943E-00 2423689E-00 2+53289E-00
AVERAGE VELOCITY (I7S)= 14287535E+01

EXPERIMENTAL CASE 6

The remainder of the cases are for granular materials.
The particles in this case are "narrow beans'' (height greater than the
depth in the channel). The shake angle is also increased, hence this is
a very high friction case; note that ¢ is at its lowest value in Table 3.
The solution is RGFGL and quite complicated; note the velocity diagram.
This is the oniy case presented that contains a Ride. The data photo-
graph is Figure 14d.
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Calculated Results for Experimental Case 7

1.03000 315.00000 «60000 30000000 0.00000 100000
GABE6 - SS SOLNS WITH L BUT NO Rs FL#FGLGFGL
AO = 1,03000 INCHESs OMEGA = 315.,00000 RPMy» MU = ¢60000
ALPHA = 30.000Y0 DEGREESs BETA = 0,00000 DEGRS
IMPACT LUBRICATION FACTOR = 1.00000
A = 1e45142 PII = 3.,88674 2ETA = 100000 PSI = «30000
PLANE MAX X VEL= 2¢94244E+01 MAX X DISPL= B84952005E-01
FINAL VALUES TFL = «76008 T1 = 4618014
TBGD»TEGDs TBLD TELD
1¢78205E~01 2.96338E-00 3.51540E-00 5.90937E-00
THIS IS A GFGL SOLUTION
TGL = 4480295 TLG = «57307
XDSTLG = 2442555 XDSTFL = 2441216 XDSTI = 2441216
XDSTIS = 1.28805 XDoTGL = «26104 XDSZLG = 2442553
XSTLG = 040000V XSTFL = e45192 XSTI = 8470169
XSTGL = 9.18846 X82LG = 1252928
XDSAV = 1499409 XDAV = «59822 XDLAV = 2032567 INCHES PER SECOND
X2LG = 3475879 XLCYCL = 387155 DISPLACEMENT PER CYCLE IN INCHES
VELOCITIES IM IPS FOR INCRS OF 2PI/20
2023272E+01 2¢40345E+01 244653BE+01 2445870E+01 2.45870E+0L 2445870E+01
2.45870E+01 2¢45870E+01 2445870E+01 2.45870E+01 2.45870E+01 2.45870E+01
2e45870E+0]1 2e45870E+01 9e57461E-00 4.21854E-00 6445913E~00 1¢15068E+01
1e59680E+01 1696221E+01 2,23272E+01

DISPLS IN INCHES FOR SAME INCRS

0.00000E-99
1,391397--00
2479637€-00
3.5U082€E-00

2421557E-01 4.54655E-01
1462555F~-00 1485972E-00
34030537-00 3.,17730£-00
3467101E-00 3.87156E-00

6.88906E-01
2.,09388E-00
3424310E-00

9.23069E-01
2432804E-00
3,28351E-00

1,15723E~00
2456220E-00
3436943E-00

TRANS VELS  2447235E+01 2e458T0E+01 2445870E+01 1431291E+01 2+66081E-00
TRANS DISPLS 4¢133U9E-01 5652953E-01 3,10213E-00 3425255E-00 4428486E-00
EXPERIMENTAL CASE 17
In this case a has been dropped back to the more normal
30°, and the particles are "narrow rice," the highest friction particles
used. Still the decrease in shake angle causes an increase in ¢, the '
nondimensional variable indicating friction. The solution is GFGL.
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Calculated Results for Experimental Case 8

1403000 31240000V «40UV0 30,90000 0.00000 1400000
GABE6 - SS SOLNS WITH L BUT NO Ry FLsFGLSGFGL
AQ = 1403000 INCHES» UMZGA = 312,00000 RPMy» MU = #40000
ALPHA = 30.000v0 DEGREESy BETA = 0,00000 DEGRS
IMPACT LUBRICATION FACTOR = 1.00000
A= 1642390 PHI = 5433011 ZETA = 1.00000 PSI1 = «20000
PLANE MAX X VEL= 2¢91441E+01 MAX X DISPL= 8+492005E-01
FINAL VALJES TFL = «71861 TI = 4411073
TBGDTEGDs» TBLD TELD
1,32143E-01 3,00944-00 3,35407g-00 6,07070E-00
THIS IS A FGL SOLN
FINAL VALUE OF TGL = 4480383
ND VELOCITIES XDSTGL = «39543 XDSTFL = 2460176 XDSTI =
XDSTIS = 53953 XDS2GL = «39544
XSTFL = 0.0000vV XSTI = 8.66938 XSTGL = 9e34687
XS2TFL = 13,52178
AVERAGE VELOCITIESy XDSAV = 215208 XDAV = «43041
XLDAV = 14448477 INCHES PER SECOND
REL DISPL PER CYCL = 2.70440ABS DISPL PER CYC = 2478553
VELOCITIES IN IPS FOR INCRS OF 2PI/20
1657701E+01 1469257E+01 1¢74546E+01 1,75113E+401 1475113E+01 1.75113E+01
1e75113E+01 1e¢75113E+01 1e75113E+01l 1475113E+01 1.75113E+01 1l475113E+01
1¢75113E+01 1e75113E+01 7427319E-00 3470834E-00 5,17958E~-00 8.54083E-00
1.15148F+401 1439557E+01 1457701E+01

DISPLS IN INCHES FOR SAME INCRS

040U000E=-99 1e57710E-01 3423479E-01 4,91772E-01
9496908E~-01 1616528E-00 1433366E-00 1450204E-00
2400718E-00 2+17555E-00 2.26761E-00 2432049E-00
2451917E-00 2464209E-00 2.78553E-00

TRANS VELS 1e75113E+01 1475113F+01 1403619E+01

TRANS DISPLS 4e03945E-01 2¢18984E-00 2432940E~00 3.18948E-00

EXPERIMENTAL CASE 8

6.60151E-01
1.67042E-00
2435617E-00

2466153E-00

8+28529E-01
1.83880E-00
2¢42237E-00

The channel width is increased using the same particles

and friction considerably reduced. This would be a low friction, moderate

amplitude case. Note the drop in conveying velocity in the table. The
solution is FGL and the data photograph is Figure 14c.
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Calculated Results for Experimental Case 9

103000 368400000 40000 1230400000 0.00000 1.00000
GABE6 - SS SOLNS WITH L BUT NO Rs FLsFGLGFGL
AQ = 1.03000 INCHESs OMEGA = 368.00000 RPMs MU = 40000
ALPHA = 30.000U0 DEGREESs BETA = 0,00000 DEGRS
IMPACT LUBRICATION FACTOR = 1.00000
A = 198092 PHI = 5033011 ZETA = 1400000 PSI = « 20000
PLANE MAX X VEL= 3+43751E+U1 MAX X DISPL= Be92005E~01
FINAL VALUES TFL = «52916 Tl = 5415526

TBGDTEGDs TBLO» TELD
9¢48520E-02 3.04673E-00 2429376E-00 6413101E-00

THIS 1S A FL SOLN

XDSTFL = 34126B4E-00XDSTI = 3,12684E~00XDSTIS = 1.85562E=00
XSTFL = 0,00000E-99XST1 = 1444650E+01XS2FL = 1.89313E+0]
XDSAV = 34013C1E-UOXDLAV = 2439191E+01IPSs XLCYCL(IN) = 3489986E-00

VELOCITIES IN IPS FOR INCRS OF 2P1/20

2¢37879E+01 2446584E+01 2448228E+01 2,48228E+01 2.48228E+01‘2.482285+01
244822BE+01 2.4822BE+01 2.48228E+01 2.48228E+01 244B22BE+01 2,48228E+01
2048228E+01 2448220E+01 2.48228E+01 2448228E+01 2048228E+01 1.67386E+01

1e97538E+01 2421404E+01 2437879€+01

DISPLS IN INCHES FOR SAME INCRS

0¢0V000E=99 1497996E-01 4+00053E-01 6,02413E-01 8.04773E~-01 1.00713E-00
1620949E=-00 1¢41185E-00 1¢61421E-00 1481657E-00 2.01893E-00 2.22129E-00
2442365E-00 2462601E-00 2.82837€E-00 3.03073E-00 3.23309€-00 3439177€E-00

3¢54089E-00 3471213E-00 3.89986E-00

TRANS VELS 2048228E+01 2448228E+0]1 1447311E+01
TRANS DISPLS 3436185E-01 3,31599E~00 4+23605E-00

EXPERIMENTAL CASE 9
Here we have taken the above case and increased the ampli-

tude. This would be low friction, high amplitude. The particles are
again "wide rice." The solution is FL; note the smoothnéss of the
displacement plot. Figure 14e is the data photograph for this case;

note the high lift of the bed and the particles bouncing out of the channel.
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Calculated Results for Experimental Case 10

1.03000 27840000V «50V00 30,00000 000000 100000
GABE6 - SS SOLNS WITH L BUT NO Ry FL#FGLGFGL

AQ = 1603000 INCHESs OMEGA = 27800000 RPMs MU = +50000

ALPHA = 30.000V0 DEGREESs BETA = 0.,00000 DEGRS

IMPACT LUBRICATION FACTOR = 1.00000
A = 16413047 PHI = 4046409 ZETA = 100000 PSI = «25000
PLANE MAX X VEL= 2459682E+01 MAX X DISPL= 8492005E-01
FINAL VALUES TFL = 1,08559 Tl = 3405909
TBGDs»TEGD» TBLD TELD

1499475E-01 2494211E-00 3450877E-00 5491600E-00

THIS IS A GFGL SOLUTION

TGL = 4,70332 TLG = «65482
XDSTLG = 2474756 XDSTFL = 2469328 XDSTI = 2469328
XDSTIS = 2041054 XDSTGL = -e03144 XDS2LG = 2474754
XSTLG = 0.0000V XSTFL = 116761 XSTI = 6e48279
XSTGL = 8469429 XS2LG = 1246198 .
XDSAV = 198338 XDAV = «49584 XDLAV = 1486821 INCHES PER SECOND
X2LG = 3611550 XLcyclh = 320896 DISPLACEMENT PER CYCLE IN INCHES

VELOCITIES IN IPS FOR INCRS OF 2PI/20 ,
1.78050E+01 1.95213E+01 2.05398E+01 2,0228B8E+01 2,01899E+01 2.01899E+01
2.01B99E+01 2.01899YE+01 2401899E+01 2.01899E+01 1.75487E+01 1.50986E+01
1419505E+01 8420886E-00 4¢U3583F-00-1407546E-01 4429221E~00 B8446521E-00
1622068E+01 1¢53549E+01 178050E+0Q1

DISPLS IN INCHES FOR SAME INCRS

0.00000E-99 2+02056E-01 4+1B8B05E~01 6438874E-01 B8456814E-01 1407469E-00
1429256E-00 1e51044FE-00 1472832E-00 14946319E=-00 2415734E-00 2433415E-00
2048069E-00 2458993%-00 2465630E~00 2.673526E-00 2+69894E-00 2+76808E-00
2.88008E-00 3+02939E-00 3.,20897E-00

TRANS VELS 2405968E+01 2401899E+01 2,01899E+01 1+B0704E+01~2435740E-01
TRANS DISPLS 4437530E=-01 7e38192€-01 24.10685E=00 2667631E-00 364649E~00

EXPERIMENTAL CASE 10
In this case we have "narrow beans,' but at the more

normal 30° oscillation angle. The solution is moderate friction, very
low amplitude, and the solution is GFGL. Note that at.the one transi-
tion point the particle velocity drops to slightly negative value. On the
data photograph the flight could not be noticed.
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4.3 Final Comments on the Comparison
Bearing in mind that € was adjusted for the 'best fit,"
but that it only affected one point of the cycle, the agreement between
the theory and the data is excellent. The transitions between the
various motion forms occur as predicted which is indicated by the
change of curvature of the data curves at the proper transition times
calculated from the theory.
One tempting conclusion is that, for granular materials,
a value of unity for € provides good results. This apparent agreement
is mostly due to the method of data analysis. Certainly further research

is needed before this could be taken as a rule.
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CHAPTER V

CONCLUDING REMARKS, COMPARISONS, RECOMMENDATIONS
FOR FUTURE RESEARCH

5.1 A Comparison of this Study with Previous Investigations

As far as the literature is concerned, this is the only study
that presents data concerning the detailed motion of the particles during
the cycle. Reference (8) does present some adequately detailed data,
but only for oscillating conveyors with very low amplitude in which no
flight is occurring. References (2, 3, 5, and 13) only attempt to mea-
sure average velocity. This is certainly part of the reason they have
not discovered the complexity of the solutions.

Reference (13) suggests that an adequate method of predicting
conveying velocities is to take the velocity of the plane at the time of
flight as the average velocity. Looking at the four cases in which the
velocity diagram is given, Figs., 20, 22, 23, and 24, one can compare
the plane velocity at 7, with the average velocity (the dotted line) quite
easily. The errors are apprcximately - 8% + 60% + 25% and - 15%, re-
spectively. This is certainly crude, but will in general yield an order
of magnitude result.

Reference (2) does find the FGL Solution, but totally neglects
the impact and therefore they find very poor agreement with their data.
They do mention, however, that their lack of consideration of the impact
is a possible flaw in their analysis. Further they had conducted their
tests with oscillation angles of 20° or less, which are much less than
the oscillation angles of the practical conveyors used in this country.
Such low angles lead to irery high values of ¢. From Figs.7 and 8, note"
that the FGL Solution does indeed predominate for high ¢ values. Had
they tried to extend their analysis to an oscillation angle of 30°, it would
have been incorrect, or had they used a light flat particle so that gas
lubrication on impact nullified the effect of impact, they would have found

103



excellent agreement. Also they used a static coefficient of friction,
which certainly has not been indicated by this study.

5.2 Effective Friction of Granular L. Materials in Channels

It may be noted by reference to Table 3, in that at least the
trend indicated by Eq. (58b) is observed in the measured values of the
coefficient of friction for the two different channel width to height
ratios in the tests with rice. Taking the measured coefficients of
friction and the two height-width ratios one can calculate the value of
k in (48b) in this particular instance to be 1/3, which seems entirely
reasonable, but alsc highly uncertain being based on one test. Cer-
tainly though, deeper channels will have higher friction and will in

general travel at higher velocities.

5.3 The Impact Friction Multiplier, €

This is a very important parameter that must be experi-
mentally determined. € severely affects the results in the low friction
cases. It is certainly recommended that future study be given this
important parameter.

2. 4 The Practical use of the Theory

It has been demonstrated that the solutions, while compli-
cated, are obtainable, especially by the use of the digital computer.
Any desired output can be arranged in a nondimensiona form and will
be expressible as a function of A, ¢, ¥, €, all multiplied by 4 Thus,
if interested in the required power, one would prepare a computer routine
that would integrate the product of the appropriate components of N as well
as F and the velocity of the plane, around one cycle.

Another example of the use of the theory would be optimizing.
When the conveyors are horizontal, { is always 1.0, If for a class of
particles, € or A is not to be varied a great deal, average velocity, for
instance, could be plotted against ¢. Knowing this optimum value of ¢,
one could then insert the proper friction coefficient in the definition of
¢, from Table 1, and obtain an optimum value of the oscillation angle a.
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5.5 The Final Conclusion

Finally, a theory has been developed and proved that does pre-
dict and explain material transport on sinusoidally oscillating conveyors
in which the oscillation is in a straight line, inclined to the trough and of

a magnitude great enough to cause small flights of the particles.

For single particles on planes, the coefficient of friction, pu,
is measured by noting the minimum static angle of the plane for which a
constant velocity slide of the particle can be maintained. The value of
the impact friction multiplier, € , must be determined experimentally.

Granular materials do move as a slug. Again the coefficient
of friction must be measured by noting the minimum static angle of fric-
tion for which a constant velocity slug slide of the bed of particles can be
maintained. Using this value of u and an experimentally determined im-
pact friction multiplier, €, the single particle theory is applicable directly.
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THEORETICAL DETAILS
APPENDIX A1.1

a

Ty ALWAYS LIES OUTSIDE THE DEFINITE FLY ZONE ™

Table A1l
1

A 1 Ty Tq
1.1000 1,1411 2,.0005 2,.8823
1.1305 1.0856 2,0560 3.05691
1.1722 1.0218 2.1198 3.2660] -
1.2674 0.9092 2.2324 3.6642
1.3000 0.8776 2.2640 3.7540
1.3185 0.8600 2,2316 3.8159
1.3396 0.8428 2,2988 3. 8771
1.3816 0.8093 2,.3323 3.9977
1.4025 0.7938 2.3478 4,0545
1.4239 0.7786 2.3630 4,1107
1.4514 0.7601 2.3815 4,1801
1.4686 0.7490 2.3926 4,2221
1.5510 0.7007 2.4409 4,4095
1.5831 0.6837 2.4579 4.4772
1.5909 0.6797 2,4619 4,4933
1.6120 0.6692 2,.4724 4,5359
1.6583 0.6473 2.4943 4.6262
1.8036 0.5877 2.5539 4,8829
1.8316 0.5775 2.5641 4,.9286
1.9250 0. 5463 2.5953 5.0733
1.9339 0.5434 2.5982 5.0867
1.9809 0. 5292 2.6124 5.1553
2.0790 0.5018 2,6398 5.2914
2,.1902 0.4741 2.6675 5.4360
2,50 0.4115 2,7301 5.794
3.00 0.3398 2.8018 6. 307
3.50 0. 2897 2.8519 6.7863
4,00 0. 2527 2,8889 7.3117

Table A1, clearly shows that for all values of A greater
than 1.10, 7 9 is always greater that 7.', the end of the fly definite
zone, In the following paragraph, it is proved that this is also the case
for values of A between 1.0 and 1.1, |
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As A approaches unity, both T4+ T9» approach m/2. By
expressing T and Ty in terms of the variables Ty and T2’ having
origin at v/2, one can replace the sine and cosine terms in Eqgs. (14)
and (16), with adequate series approximations and complete the

required proof. Hence define:

T, = Ty - /2 (A1, 1a)
T2 = Ty - 7r/:_2 (A1, 1b)
Tl' = 'rl' -m/2 (Al. 1c)
These definitions yield:
T = T, + m/2 (A1, 2a)
2 = T2 + 7/2 (Al.2b)
Tl' = -T1 (Al.2c)
sin T = cos T1 : (A1l.24)
sin Ty = cos T2 (Al. 2e)
cos T, = -8in T1 e (Al. 2f)
cos 7, = -sin T2 (Al.2g)

Substitution of Eqs. (A1, 2) into (16), yields:

2

- 1 - - - i
cos T2 - cos T1 = - -g-cos T1 (T2 Tl) (T2 Tl) sin Tl'

(A1, 3a)
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Since it is desired to compare Tl' with T2, Eq. (Al. 2c) is substituted
into (A1, 3a) which yields:

- | J—— _1 1 !2 J
cos T2 cos T1 = - COS8 T1 (T2 + Tl) + (T2 + Tl') sin Tl"

(Al. 3b)

This expression can be examined for sufficiently small T's by substitut-
ing a truncated series expansion for the sine and cosine terms. Re-
taining terms with a power of 4 and less, these substitutions are (Ref.
15):

sin x = x - x3/6, (A1, 4a)

cos x 1 - x2/2 + x4/24. (A1, 4b)

The substitution of (A1. 4) into (A1, 3b), together with the dropping of
terms whose order is greater than four, yields the following:

4 2, 2 3 4 _
Ty™ - 6T, T, - 8T'"T, + 3T * = 0 (A1, 5)

Consider the substitution

R = T,/T," (Al.6)
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If R can be shown greater than unity,
Equation (A1, 5) is divided by T
in that result; this yields:

the required proof is complete,
1', and then Eq. (Al.6) is substituted

4

R*-6R® -8R -3 - 0. (A1.7)

Since this polynomial has only one sign change, by Descartes' Rule
(Ref. 15), it may only have one positive real root,
easily verified to be 3, and hence for T!
valid

This root is
S such that Eqs. (A1, 4) are

9 3T1'. (A1.8)

Agreeing that Eqs. (Al.4), are not valid all the way out to A = 1, 1, the

application of Eq. (A1.8), at A = 1.1, only results in an error of about

10%. Thus T2 always exceeds Tl" To always exceeds 71', and the im-

pact always occurs after the limiting value of the fly definite zone,
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APPENDIX Al.2

THE NONDIMENSIONAL OPERATING CONDITIONS ¢, 8, Y.

These quantities are:

‘u+COt(a'B)

¢ =
u +tan B
ZJ = —_
u +tan B
y = (u +tan B8) sin (o« - B)

Consider the quantity . From Eq. (9)

[tan B < .

\13.1. 9)

(A1, 10)

(A1,11)

(A1, 12)

Thus the denominator of Eq. Al.9, is always positive and lies in the

range

O<u+tan B < 24,

(A1, 13)

Consider the numerator of Eq.(A1.9). As o approaches 8, the numerator

goes to a large positive number, From Eq.(4)

B<ax /2.
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Thus (a - B) is always positive. The cot (o - §), continuously decreases
with increasing (o - B). Thus for any specific value of the denominator,
¢ can be made smaller by increasing o, Now to find the minimum value
of ¢, merely put o, at its maximum value 7/2, and the following results.

. utcot(m/2 -B) _ u+tanp

S mi 1 (Al.14)
M + tan B u + tan B
Thus ¢, definitely lies in the range
1<¢<ow. (A1, 15)

It is of value to also show that the almost trivial case of o = 7 /2, is the
only condition under which ¢ can equal unity. Set the left hand side of
Eq. (A 1.9) equal to unity and obtain

utcot(e-B) = yu+tanf, (A1, 16)
or
1 = tan g (AL.17)
tan (o - B) | ’

The trignometric identity concerning the tangent of the difference of
two angles yields:

1 + tan o tan 3
tan o - tan 8

= tan B (Al. 18)
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Multiplication of the numerator and the denominator of the right hand
side of Eq. (Al. 18), by the denominator of the left hand side yields:

1+tanata.nB=ta.natanB-tanZB
tan o - tan B tan o - tan B

(A1.19)

Cancellation yields:

1 __-tan’B

tanao -tan B tan o - tan 8

(AL. 20)

Since one cannot admit imaginary values of the tangent of B, and since
a > 3, the only way in which Eq. (Al, 20) can be satisfied is by having
a = n/2, thereby causing the denominators of both sides to go to in-
finity.

Thus, it has been shown that ¢, lies in the range one to in-

finity, and that the only condition for which ¢, can equal unity is the
almost trivial case for which a = 7/2,

Consider Eq. (Al. 10) defining . By Eq, (Al.12), the de-
nominator is always positive, as is the numerator. By inserting the
two extreme values of 8, the range of {, can be seen to be:

0.5<f< w (A1, 21)

Finally, consider Egq.(Al. 11) defining .

y=(u+ tan B) sin (a - B). (Al. 22)
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In Eq. (Al. 13) the range of (u + tan B) has been given, and by recalling
Eq. (4), it is clear that the sin (o - B) lies between zero and positive
one. Inserting the extreme values in the definition leads to the follow -
ing range.

0<y<2u, (Al. 23)

The fact that |} always remains positive is a great saving
in presentation and manipulation. ¢ is used as a multiplier on all of
the results, which enables the elimination of one variable. The fact
that it is always positive and finite assures that no maxima or in-
equalities are upset by its inclusion.
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APPENDIX Al.3

A RIDE TERMINATING IN A SLIDE G

For a Slide G to be impending, the Required Forcemust be
negative, and at the instant of transition from the Ride to the Slide G,
the Required Force will just equal the Force Available for a Slide G;
subsequent to this transition the Required Force will become more
negative than the Available Force for a Slide G. To find this instant
of transition Ty gd’ equate F from Eq. (32b), with Fag from (33b).
This yields:

. _ 1
sSin 'Tbgd = ﬂ (Al. 24)

hence the definition of the quantity ¢. It is well to recall Eq. (Al. 15)
which demonstrated that the range of limits of ¢ were from unity to
positive infinity, with the value of unity only occurring for the special
case of @ = #/2. Since both A and ¢ are positive, Eq. (Al.24) apparent-
ly yields two values of Ty gd’ one in the first and one in the second
quadrant. It willnow be shown that only the first quadrant value is

correct.

When a Ride is terminating in a Slide G, the Required Force
is becoming more negative than the Force Available for a Slide G, or

ai (ﬁr - 'F‘ag) < 0. (A1. 25)
T

Subtraction of Eq. (33b) from (32b), yields:
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- ¢ sin 7. (Al. 26)

F_-F
_r ag )= -pcos T (A1, 27)

From Egq. (AL 25), it can be seen that the right hand side of Eq. (78)
must be negative for a valid transition from a Ride to a Slide G. Since
¢, is positive, the cos Th gd’ must also be positive. Thus, only the
first quadrant solution of Eq. (Al. 24) is valid. By using the notation
of principal values of inversetrigonometric functions, the transition

time T gd’ may be precisely specified as follows:

RPTS S |
Tbgd = Sin W (Al. 28)

One further important point can be deduced from the above. Since
¢ > 1, (except for a = 7/2) the sin T gd’ will always be less than the

sin Ty and since both angles are definitely in the first quadrant

Thgd <7 (Al. 29)

Thus, if a Ride is occurring in the first quadrant, it will always make
a transition to a Slide G prior to the flight, Only in the special case
of @ = 7/2, can a ride persist in the first quadrant up to the time of
flight.
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APPENDIX Al. 4

A RIDE TERMINATING IN A SLIDE L

The conditions and time at which a Ride may terminate in
a Slide L are investigated in much the same way. For a ride to be
occurring, the Required Force must be less positive than the Force
Available for a Slide L; for a Slide- L to be impending, the Required
Force must be positive, and at the instant of transition, must become
equal to the Force Available for a Slide L.. Following the transition
the Required Force must be greater than the Available Force. The
termination time T, ,,. is determined when F = F_,. By equating (32b)

and (34a) we obtain:

sin 7,4 = %—%—% X. (A1l. 30)

At first sight it appears that Eq. (Al. 30) may offer four possible
values; it will be shown that only one is valid.

Since A is definitely positive, concern is focused on the
coefficient of 1/A. Recall from Eq. (Al. 21), that the minimum value
of ¢ is 0. 5; thus the numerator of the right hand side of Eq. (Al. 30)
is never negative. Consider the remifications of the fact that Fr
must definitely be positive for a Slide L to develop. By substituting
Eq. (Al. 30), into the equation for Fr’ (32b), and requiring this posi-
tiveness at that time, the following is obtained:

o<t -9) (Al. 31)
2;'¢ ’
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t is definitely positive. From Egq. (Al. 15), it is seen that (1 - ¢) <0,
and only equal to zero for the special case where a = 7/2. Thus,

(2 ¢ - ¢), the denominator of Eq. {Al. 30) must definitely be negative.
Since the denominator of Eq. (Al. 30) is negative and the numerator is
positive, the right hand side is negative, and the sin Thid is negative.
Thus, 7314 is in the third or fourth quadrant.

By employing the fact that Fr must be becoming more posi-

tive than F the argument is completed. In symbols this requires:

al)

F_-F
S|z _"all s (Al. 31a)

oT g

Subtracting Eq. (34a), from (32b) yields:

F -F 1-2¢
r —al_ +(2¢ - ¢)sin T. (Al. 32)
" A

Taking the derivative indicated in (Al. 31a)yields:

r 31\ =(2¢ - ¢) cos T, (A1. 33)

From Relation (Al. 31) it can be seen that the right hand side of (A1l. 33)
must be ilegative. The factor (2 ¢ - ¢) was just shown to be negative;
hence, the cos Thid’ must definitely be negative. Since both the sine
and the cosine of Thld have been shown to be negative, Tpld has only
one value in a cycle and this value lies in the third quadrant. Again,
using the notation of the principal values of inverse trigonometric func-

tions, this may be precisely specified as follows:

117



N

Toyg = T-Sin J2E21) (A1, 34)
2¢0-¢

where for any valid transition to occur

2% -¢<0. (A1. 35)

Briefly Summarizing, there are two times in each cycle
where a Ride may terminate in a Slide. Excepting the exceptional
case of @ = /2, a Ride, if occurring in the first quadrant will ter-
minate in a Slide G at Tbgd’ as specified in Eq, (A1, 28);if oécurring
in the third quadrant and (2% - ¢)<0, aRide will terminate in a
Slide L at Tp1g» @S specified in Eq. (Al. 34),
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APPENDIX Al. 5

THE G DEFINITE ZONE

When a Slide G is occurring,the friction force on the par-
ticle is negative. For a Slide G to initiate, the Required Force must
be negative and more negative than that available from friction. The
limits of the G Definite zone are the two times for which F equals
Fag’ these are the two solutions of Eq (Al. 24). To determme which
of them is the beginning of the zone, note that at the beginning of the
zone, F will be becoming more negative than F g’ thus the time at
the begmmng of G Definite will be that solution of Eq. (Al. 24) for
which the derivative of (F -F, ) is negative. This was shown to
be the first quadrant value or Tbgd’ as specified in Eq. (Al. 28).
Thus, times at the beginning and end of the G Definite Zone will be
called respectively Ty gd’ (time at the beginning of G Definite), and
T egd’ (the time at the end of G Definite). Using principal value no-
tation once again these may be precisely specified as follows:

Togd ° Sin~! (A%), (37a)

Te gd

=7 -8in"! (A%), (37b)
Since both the G Definite Zone and the Fly Definite Zone
are in the first and second quadrants, the consequences of this over-
lapping must be considered. The Fly Definite Zone takes precedence,
for to have any slide at all,the particle must be on the plane. Except
when ¢ = 1, (the special case of o = 7/ 2), some portion of the G De-
finite Zone always exists prior to the flight. Hence, virtually all
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situations will contain this portion of the G Definite Zone. For ex-
tremely low amplitudes, (A), however, 1'2, the impact time can
occur prior to Teg & and a second portion of the G Definite Zone will
then exist following the impact. This is definitely a complicating fac-
tor in the analysis and leads to several different, although uncommon

solutions. Fortunately, the amplitude for which 7,, the impact time

equals 7, is approximately 1.15, a value far below2 that normally used
in applications. Since Tegd is always less than 7, one need not be con-
cerned with this possibility when the amplitude (A), exceeds 1.15. Any
analysis however, of cases with very low amplitudes would definitely
have to admit this possibility. No such cases were computed in this

study.
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B A AN A b e i 7 R

APPENDIX Al. 6

L DEFINITE ZONE

The logic here proceeds as in the previous section, When
a Slide L is occurring,the friction force must be positive. Further,
for a Slide L to initiate, the Required Force must be positive, and
more positive than that available from friction. The limits of the L
Definite Zone are those two times when Fr equals Fal’ when F r is
positive. The logic following Eq. (Al. 31), in the Ride Termination
Section, demonstrated that, for Fr to be positive, (2 - ¢) had to be
negative, which in turn led to the conclusion that the two solutions
of the equation resulting from the equating of F. and F al’ (Eq.
(A1. 30)) had to be in the third and fourth quadrants. To establish
which of the two solutions is the beginning of the L Definite Zone,
recall that Fr must be becoming more positive than F al at the be-
ginning of the zone. Thus, the derivative of Fr - F al must be posi-
tive at the beginning of the zone. The reasoning following Eq. (Al. 33)
in the Ride termination section proved that this was the third quadrant
value. Now the limits of the L Definite Zone may be written, again
using the notation of principal values, as follows:

) -1 {2t-1 1
Tbld =1 - Sin [Z_Z.'_d) A]’ (38b)
T =27+ Sin ! [g_é__% %] (38c)

It was earlier remarked that it was to be shown that for certain
values of operating conditions a Slide L. Definite Zone is impossible.
This can be seen as follows. Recall Eq. (Al. 32) in the Ride termination
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section, the equation for the difference between F | and F_,. Clearly,
this quantity must be positive in any valid L. Definite Zone. The fac-
tor on sin 7, was shown to be negative. Thus, that relation is most
positive when the sin 7, is most negative, or when 7T = 37/2. For the
limiting case, beyond which it is impossible to make this difference
positive, set the sin 7= -1, and require the result to be positive.
This yields:

__A__l'2§ -(2¢-)> 0. (382)

Thus, summarizing, an L Definite Zone exists if (38a), and it be-
gins at (38b) and ends at (38c).



APPENDIX Al.7

NEITHER SLIDE CAN TERMINATE IN ITS
CORRESPONDING DEFINITE ZONE

Assume a Slide G in the G Definite Zone. This means that
the particle velocity is greater than the plane velocity. Hence (X -X')
is positive. Slide termination will occur when the relative velocity be-
comes zero. For a positive quantity to become zero, its derivative
must become negative, or the relative acceleration of the particle with
respect to the plane must become negative prior to the termination.

Subtraction of Eq. (29¢c) from (29b), yields this relative acceleration
to be

K-EE' . L+ ¢ sinT, (A1. 36)

The substitution of the limits of the G Definite Zone, Tbg @ and 7 cad’
(Egs. (37a), (37b)) into the above, shows the relative acceleration to

be zero at these limits. Since these limits are symmetrical about

1/ 2, the positive sine term becomes more positive between the limits.
Thus, the relative acceleration of the particle with respect to the plane
is positive throughout the G Definite Zone, and no termination can occur

within that zone.

Thus, if a Slide G is occurring within the G Definite Zone,
prior to the time of flight, Tys it must persist until Ty- Further, if the
limit of the G Definite Zone extends beyond the time of impact, (’Te g q> 'rz),
and if a Slide G is occurring after the time of impact and prior to 7, gd’
the slide must persist until after Te gd"

To make the same proof for the Slide L, assume that a Slide
L is occurring within the L Definite Zone. Here the particle velocity
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is less than the plane velocity; the relative velocity of the particle
with respect to the plane, (X - X'), is negative, Slide termination
will occur when the relative velocity becomes equal to zero. Clearly,
for the relative velocity to become zero, its rate of change or the
relative velocity to become zero, its rate of change or the relative ac-
celeration of the particle with respect to the plane must become positive
prior to any slide termination. The subtraction of Eq. (29¢c), from (28b),
yields this acceleration to be

XXV -lpe-n-@t-¢sinm (Al.37)

Y L A

It may be quickly verified that the relative acceleration is zero at the
limits of the Slide L Definite Zone by the substitution of these limits,
To1d (Eq. (38b)), and Teld (Eq. (38c)), into Eq. (A1l.37). In the first
paragraph of the section defining the L Definite Zone, it was proved

that the quantity (2 { - ¢) had to be negative in order that any L. De-
finite Zone exist, hence the coefficient of the sine term in Egq. ‘A1, 37)
is positive. The L Definite Zone being in the third and fourth quadrants,
the sin 7 is always negative, and more negative within the zone than
at its extremities. Thus, the relative acceleration of the particle with
respect to the plane is negative throughout the L Definite Zone when a
Slide L is occurring, and hence no Slide L. Termination can occur with-
in that zone. In summary, if a Slide L is occurring within the Slide L

Definite Zone, it must persist until after Teld®
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APPENDIX Al.8

THE DERIVATION OF THE GFGL EQUATIONS

The x velncity of the particle at Ty must equal the velocity
of the plane. Hence, from Eq. (29Db)

X (1)
—3 = (¢ - L) cos Teps (29Db)

With this value of initial velocity, the particle undergoes a Slide G
from Ty to the time of flight, Ty The substitution of Eq. (29b) into
Eq. (27c¢) yields:

X (1)
Ty
Y -A

) - L cos +¢cos T,. (A1. 38)

The particle now flies from 7, to 7,. Using Eq. (Al. 38) as the initial
velocity in the velocity equation for a Flight, Eq. (31c), the velocity at

Tos just prior to impact may be expressed as

X (1))
I & [—4.71+72(§-1)+1’t1] - Lcos Ty + ¢ cos T,,.

(A1l. 39)

The velocity immediately after the impact, X (72*), is obtained by
substituting Eq. (Al. 39) and (41), into (42b): This yields
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-T?;=21§ {?;7'1 (e ~1)+7‘2(§-€§-1)+7't1]+§(€-1)cos’rl

(Al. 40)

Equation, (39a). The Ssubstitution of Eq. (Al. 40) into (39a),yields the
following

(cos Ttg - cos ’Tﬂ) + v (Ttg - ‘rﬂ) - Tu R4 [21& (72 - 71)

(cos 7y, - cos 7,4 A%(Ttg - 7, - (7;\ =570 (AL 4z)

X (7, )

g = (9 -¢) cos Ttg’ (A1. 43)
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Now by substituting 7 g‘ for T, ;» and ( 1 * 2 ), for iy in Eq. (39b),the

Slide L termination equation, the requ1red equation becomes
2e-1 -5 D (0 1y (2t ¢)(cos 7. - cos 7.)= 0
A T A Mg T Ty tg 5Ty

(A1, 44)

It is convenient to define two new angles, v, and 6, as follows

’Y = Ttg - T.tl) (Al. 45)
6= Ttg + Ty (Al. 46)

From Eq. (A1. 42)

_ (1 -¢€) AX 0%
cos Ttg cos T, TT A - (Al. 47)

The substitution of Eq. (Al. 47) into (Al. 44) yields the angle v, to be

Y

From the familiar trigonometric identity about the difference between
the cosine of two angles, one may write

_ - .6 . Y
cos Ttg cos Ty, 2 sin 5 sin 5. (Al. 48)



The substitution of Eq. (Al. 48), into (Al. 47), permits the value of &,

to be obtained from

.6 1 Y _ AX
sSin 5 = 2¢Sin 1 [K (1 €) ] . (Al. 49)

[\

Equation (44c) yields v, directly with no ambiguity. Equation (Al. 49)
however, involves inverse trigonometric functions and hence is multi-
valued. Consideration must be given to obtaining the correct solution
of (Al. 49). T
lie in the L Definite Zone and will be therefore of the order of 3w/2.

Thus, from Eq. (Al.45), v will be of the order of #, while 6 will be
of the order of 2 m. Necesarily then, §/2 is of the order of 7. This

must be an acute positive angle; further, ‘Ttg must

being the case, the desired solution of Eq. (Al. 49) can be written
without ambiguity by utilizing the notation of principal values of in-

verse trigonometric functions as follows

1 1 AX

- - QinT Y o_ _

Finally, from Egs. (Al. 44) and (A1l. 45),0ne obtains

Tig = (y+ 8)/2 (44a)
Tq = Ttg - 9. (44b)
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APPENDIX A2

THE FORTRAN PROGRAMS OF THE SOLUTION ROUTINES

A2.1 Solutions Without Rides

This Appendix contains the actual FortranPrograms of the
solution routine. The programs for the solutions without Rides each
consist of a general introductory program which computes the para-
meters common to all routines, together with a subroutine for the
particular solution form. If the capacity of the IBM 1620 Computer
had been greater, all three of the subroutines could have been assem-
bled into one program. Thus, the complete FGL solution routine con-
sists of this general program plus the FGL subroutine, the GFGL
Routine consists of the general program plus the GFGL Subroutine,
and so on. The general program is shown only once and is not re-

peated with each subroutine.
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APPENDIX A2.2

INTRODUCTORY NO-RIDE PROGGRAM

AO IN INCHES»WOMEGA IN RPM, ALPHA AND BETA IN DEGREES
READ 43+A0sWOMEGA »WMU»ALPHAMIBETAMHEPS

DIMENSION X(21)sXD(21)

FORMAT(50H GABE& - 55 SOLNS WITH L BUT NO Rs FLsFGLsGFGL
PUNCH 99 AOsWOMEGA »WMUSALPHAMBETAMEPS

PUNCH 2
FORMAT(1H 6H AC = F10e5417H INCHES» OMEGA = F10e5911H RPMy» MU =

.10e5/11H ALPHA = F10e5+17H DEGREESs» BETA = Fl0e5s 6H DEGRS

4

c
-

19

11
12

13

20
22

25

PUNCH 33sA0sWOMEGAsWMUSALPHAMBETAM

FORMAT ( 6F1U45)

PUNCH 79+EPS

ALPHA = ALPHAM%3,1416/180.0

BETA = BETAM#3,1416/7180.0
A=AO*WOMEGA®#2#0,000028403#SINF (ALPHA-BETA) /COSF(BETA)
IF(A=1412792796

DHI=(WMU+1e0/TANF(ALPHA=BETA)) /{WMU+TANF(BETA))
ZETA=WMU/ (WMU+TANF (BETA))

PSI=(WMU+TANF{("ETA) )*SINF(ALPHA=-BETA)

PUNCH 40 sA»PHISZETAWPSI

FORMAT(1Xs29H IMPACT LUBRICATION FACTOR = Fl0e5)

TFL = ASINFL1.0/A)

DISFAK=AO#PS]

VELFAK=DISFAK* {104 72%#WOMEGA

PLAVEL=VELFAK*(PHI-ZETA)

PLADIS=DISFAK*(PHI-ZETA)

PUNCH 8sPLAVELPLADIS

FORMAT(17H PLANE MAX X VEL= El2e5913H MAX X DISPL= El245 )
FORMAT(///6F104.5)

BE = =140/(2,0%A)
CE = TFL/A+COSFI(TFL)
DE = =TFL##2/(2,0%A)~TFL*COSF(TFL)+1.0/A

TI=1e57+SQRTF{11.0%(A-10))
TINEW=TI=(=SINF(TI)+BE*TI*#2+CE*#TI1+DE)/(~=COSF(TI)+2.0#BE#TI+CE)
TEST=ABSF(TI-TINEW)

IFITEST-400005)12911911

T1=TINEW

GO TO 10

PUNCH 13sTFLsTiNEW

TI=TINEW

FORMAT ( 214 FINAL VALUES TFL = Fl0e5s 9H TI = F1045)

DXDS=ZETA*¥((TI=-TFL)/A+COSF(TI)~COSF(TFL))
AIPH=14/(A®PHI)

TBGD=ASINFUAIPH)

TEGD=3414159-TBGD
IF((1e=2e%*ZETA)/A+PHI=2.%#ZETA) 25925922
AIPHP=(2+*2ETA=14)/(A®(2.*ZETA=PHI) )
TBLD=3414159-ASINF(AIPHP)
TELD=6428319+ASINF{AIPHP)

GO 70O 30

PUNCH 26

131
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INTRODUCTORY NC-RIDE PROGRAM

26 FORMAT(/26HNO SLIDE L DEFINITE ZONE )
GC Ul
27 PUNCH 28»sA
28 FORMAT(25HFAILD- A UNDER 1A = E12.5)
GO TO 1
30 R=1e
PUNCH 31+TBGD»TEGD» TBLD TELD
31.FORMAT(ZOHTBGDOTEGDOTULDlTELD /4E1245)
32 CALL FGLL1 (AsPHIsZETAYEPSIDXDSesTFLsTIsPSIsWOMEGAIAOIRsTBGD TEGD
1TBLD»TELDsDISFAKs VELFAK)
40 FORMAT(/ S5H A = F10e5s 7H PHI = F10,59 8H ZETA = Fl045» 7TH PS3I =
1 Fl0.5)
GO TO 1
END

CALL GFGL1(ASPHIZETAYEPSsDXDSoTFL»TI9PSIsWOMEGAYAOIRsTBGDSTEGD Y
1TELDsTELD»DISFAK9»YELFAK)

33 CALL FL1 (ASPHIZZETAYEPSIDXDSoTFLTIsPSI+sWOMEGAYAOIRsTBGDTEGD
1TBLDs TELD+DISFAKsVELFAK)
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APPENDIX A2.3
THE GFGL SUBROUTINE

SUBROUTINE GFGL1(AYPHISZETASEPSsDXDSsTFLeTI9PS19swOMEGAPAOIR»TBGD s
1TEGDs TBLDTELVSDISFAKSVELFAK)
USING GFGL SOLN TO GET TGL AND TLG AND TEST
DIMENSION X{21)sXD(21}
GAMMA=3,1416#PHI /ZETAR {2 *2ZETA=1e)/ (PHI =1 )+A/ 2 #DXDS*(1~EPS)/
12ETA*(PHI=2e#ZETA)/(PHI=14)
DIN={GAMMA/A=(1e~EPS)I*¥DXDS)*]le/(2e*PHI*SINF(GAMMA/24))
. IF(DIN=1e129101
1 PUNCH 90sDIN
9U FORMATI(38HFAILD IN GFULsDIN EXCEEDS 19DIN = El2e5)
RETURN
2 DELTA = 2e0%(341416-ASINF(DIN))
TGL ={GAMMA+DELTA)/2ev
TLG = TGL-=-GAMMA
IF{TFL=TLG) 39204
3 PUNCH 919 TLGTGL
1 FORMAT(42nFALlCD IN GFOLsTFL UNDER TLG» TLGTGL = 2E1245)
RETURN
4 IF(TLG-TEGD)IS1646
5 PUNCH 92 TLG»TBGD
2 FORMAT(41HFAILD IN GFOLY»TLG UNDER TBGDs TLGYTBGO
ZTURN
6 IFITGL-TBLD)728+8
7 PUNCH 93sTGLTBLD
93 FORMATI(4ORFAILD IN GFOULSTGL UNDER TBLOsTGLY TBLD
RETURN
8 IF(TGL-TELD)1v09+9
9 PUNCH 94sTGLTELD
94 FORMAT(41HFAILD IN GFGL»TGL EXCEEDS TELDsTGLSTELD
RETURN
10 IF(TGL=TI)11s1l2s12
11 PUNCH 95 TGL
95 FORMAT(33HFAI<D IN GFGLeTGL UNDER TI,TGL = El265)
RETURN
12 XDSTLG=(PHI=ZETA)#COSF(TLG)
XDSTFL==(TFL=-TLG)/A-ZETA®(COSF(TFL)=COSF(TLG))+XDSTLG
XDSTI=(ZETA~1e¢0)®(TI~TFL)/A+XDSTFL
XDSTIS=XDSTI-cPS*DXDS
XDSTGL==(TGL=T1)/A-ZETA# (COSF(TGL)=-COSF{(TI))+XDSTIS
XDSPTI=(PHI=-ZETA}*COSFI(TI) '
IF(XDSTIS=XCSPTI)13913914
13 PUNCH 96
96 FORMAT(36HFAILD IN GFaLs XDSTIS UNDER XDSPTI )
RETURN
14 XDS2LG=(2e0%ZETA-1e0)*(6e2832+TLG-TGL)/A+ZETA#(COSF(TLG)=-COSF{TSL)
1)+XDSTGL
PUNCH 16
16 FORMAT(/ 24H THIS IS5 A GFGL SOLUTIIN )
PUNCH 179TGLsTLG
17 FORMAT(1H 7H TGL = F1l0e5911H TLG = F1l0.5)

2E12e5)

I
N
m
—
n
.
AV}

2E12+5)
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PUNCH 18y XDSTLOsXDSTFLaXDSTIwXDSTISXDSTOGLIXDS2LG
18 FORMAT(1H 10H XDSTLG = F1l0e5»12H XDSTFL = F1l045»11H XDSTI = F1l

10¢5/12H XDSTIS = F1lJe5s12H XDSTGL = Fl0e5 s10H XDS2LG = F10
1e5) ’

JUST DID VELOCITIES» NOW DO XS

XSTLG=0.0

XSTFL==(TFL-TLG)#%2/(2,0%A)-2ZETA®(1e0/A-SINFITLG))+{XDSTLG+ZETA*CO
1SFITLG))®(TFL-TLG)+XSTLG
XSTI=(ZETA-1eVIR(TI-TFL)®%2/(2,0%A)+XDSTFL*(TI-TFL)+XSTFL
XSTGL=-(TGOL-TI)#%2/(2e0%A)-ZETA®(SINF(TGL)I=SINF(TINI+(ZETARCCHFI{T]
1)+XDSTIS)®(TGL=-TI)+XSTI
XS2LG=(2e0RZETA=~1e0}*(TLG+6e2832-TGL)%%¥2/(2,0%A)+ZETAR(SINF(TLG) =S
1INFITGL) )+ (XDSTGL-ZETA®COSF(TGL) 1 #(T1L.G+642832-TGL)+XSTGL
XDSAV=XS2LG/ 62832
XDAV=PSI*#XDSAV
XLDAV=WOMEGA*642832%AURXDAV /60
X2LG=PSI#XS2L0
XLCYCL=AO*X2LG
PUNCH 199 XSTLGeXSTFLsXSTIsXSTGLeXS2LG
19 FORMAT(1H 9H XSTLG = Fl0e5s11H XSTFL = F1l0e5910H XSTI = F10e5
1/11H XSTGL = F10e5911H XS52LG = F10e5)
PUNCH 203 XDSAVsXDAV s XLDAV
2V FORMATI(1H 9H ADSAV = F1l0e5910H XDAV = F10e5911H XDLAV = FlQe5
118H INCHES PER SECOND )
PUNCH 21 ¢X2LGeXLCYCL
21 FORMAT(1H B8H X2LG = F10e59413H XLCYCL = F10e5933H DISPLACEMENT
1PER CYCLE IN [NCHES )
XO=¢5/A%(642832-TGL)I® 2% (2, #ZETA-1e)-ZETA%SINF(TGLI+(XDSTGL-ZETA¥*
1COSFITOL))®*(6e2832-TGL)
DELX=XS2LG=-XSTGL-XC
DO 70 I=1»21
TINDEX=1
T=(TINDEX-1e)®*e3]1416
IF(T=TLG)60s61961
60 XD(I)=VELFAK®{(24*#2ETA-1e) /A T+642832-TGL)+ZETA*{COSF(T)-COSFI(TOL
1))+XDSTGL)
X{I)=DISFAK*( e5/AR(2e*ZETA-]1e ) #(T+6e2832-TGL)**¥24+ZETA®(SINF(T)=-SIN
1F(TGL) I+ {XDSTOL=-ZETA*COSF(TGL) )% (T+6,2832-TGL)=-X0)
GO TO 70
61 IF(T=TFL162+63,63
62 XD(I)=VELFAK*‘(TLG-T)/A‘ZETA*(COSF(T)—COSF(TLG)1fXDSTLG)
X{T)=DISFAK* (=5 /A% (T-TLG)##*#2-ZETA*¥(SINF(T)~SINFITLG))+{ZETA*COHF (
1TLG)+XDSTLG)®#(T=TLG)+XSTLG+DELX)
GO TO0 70
63 IF(T-T1)64965965
64 XD(I)=VELFAK®*((ZETA=1e)/A%(T=TFL)+XDSTFL}
X{I)=DISFAK*(e5/A* (ZETA=]1e ) ®(T-TFL)*2#2+XDSTFL*(T-TFL)+XSTFL+DELKX)
GO TO 70
65 IF(T=TGL)6696T7967
66 XD(I)=VELFAK*((TI-T)/A-ZETA*(COSF(T)~COSFI(TI))+XDSTIS)
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(@)

67

70
71
72

73

74

X{1)=CiISFAK®(— o5 /AR (T-T)##2=2ETAR{SINF(TI=SINF(TI))+{ZETA*COSF(TI
1)+XDSTIS)*(T=T1)+XSTI+DELX)

GO TO 70
XDU(I)=VELFAK®((T-TGL)® (2% Z2ETA=1e)/A+ZETA*(COSF(T)=COSFITGL)Y)+XDOT
1GL)

X(IVY=DISFAK®* (e 5/ AR (24 % ZETA-1o ) (T=TIL ) #R2+ZETA®(SINF(T)=SINF(TGL))
1+ (XDSTGL=-ZETA®*ZOSF(TGL)Y ) *(T-TGL)I+XSTGL+DELX)

CONTINUE

PUNCH 71

FORMATI(// 1X938H VELOCITIES IN IPS FOR INCRS OF 2P1/20 )
PUNCH 729 (XD(IYsI=1921)

FORMAT(6E12e5)

PUNCH 73

FORMAT(//7/1X932H DISPLS IN INCHES FOR SAME INCRS )

PUNCH T2 (X(I)sI=1921)

MUST GET TRAN> PTS

XOLTLG=VELFAK®*XDSTLG

XDLTFL=VELFAKXK*XDSTFL

XDLTI=VELFAK®#XDSTI

XDLTIS=VELFAK®*XDSTIS

XDLTGL=VELFAK*XDSTGL

PUNCH 74 9XDLTLGsXDLTFLsXDLTT o XDLTISeXDLTGL
FORMAT(//1X912HTRANS VELS SE1l245)
XLTLG=CISFAK*(XSTLG+DELX)

XLTFL=DISFAK®# {XSTFL+DELX}

XLTI=DISFAK® (XSTI+DELA)

XLTGL=DISFAK*(XSTGL+DELX)

XL2LG=DISFAK®{XS2LG+DELX)

PUNCH 759 XLTLGoXLTFLXLT]oXLTGLXL2LG

FORMAT (1X912HTRANS DISPLS 5El2e5)

R=0e

RETJURN

END
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87

APPENDIX A2.4

THE FGL SUBROUTINE

USING FGL SCLN

SUBROUTINE FGL1(AYPHISZETASEPSsDXDSsTFLsTIsPSIsWOMEGA»AOIRsTBGD

1TEGDs TBLD*TELDsDISFAKsVELFAK)
DIMENSION X(21)eXDI(21)
TGL = 46712

EE=eB® (EPS=14 )% (TI/A+COSF(TI))—a5%(1,+EPS)I*(TFL/A+COSF(TFL})~34141

16/A%(2.#2ETA=-14)/2ZETA
DO 2 1=1+10
TGLNEW=TGL=-(CUSF(TGL) +TGL/A+EE) / (=SINF(TGL)+10/A)
TEST=ABSF(TGL-TGLNEW)
IF(TEST-4000051492142
TGL=TGLNEW
PUNCH 3
FORMAT (29HFAILND- COULONT CONVG ON TGL )
RE TURN
TGL=TGLNEW
IF(TGL-TBLD) 59747
PUNCH 6»TGL
FORMAT ( 34HFATLL IN FGLs»TGL UNDER TBLDsTGL = E1265)
RETURN
IF(TGL-TELD) 7488
PUNCH 9 TGL
FORMAT ( 36HFATILD IN FGL»TGL EXCEEDS TELDsTGL =  El245)
RETURN '
IF(TGL-T1180+80+81
PUNCH 10+ TGL
FORMAT (25HFATLD IN FGLsTGL UNDER TI  E12e5)
RE TURN
PUNCH 82
FORMAT(/ 19H THIS IS A FGL SOLN )
PUNCH 15sTGL
FORMAT (1H 22H FINAL VALJE OF TGL = F10e5)
XDSTGL= (PHI-ZETA)*COSF (TGL)

XDS2FL=(2e0%ZETA-1e0)* (TFL+4642832=TGL)/A+ZETA*(COSF(TFL}~COSFI(TGL)

1)+XDSTGL

FLY FR TFL TO TI
XDSPFL=(PHI-ZETA)*#COSF(TFL)
IF(XDSPFL-XDSZFL)B3+85+85

PUNCH B4 s XDSPFL9»XDS2FL

FORMAT (2THFAILDsXDSPFL UNDER XDS2FiL» - 2E1245)
RETURN

XDSTI =(ZETA-1.0)*(TI-TFL)/A+XDS2FL
XDSTFL=XDS2FL

GET IMPACT VELOCITY CHANGE
XDSTIS=XDSTI-EPS*DXDS
XDSPT1=(PHI-ZETA)*COSFI(TI)
IF(XDSTIS-XDSPTI)86+86+88

PUNCH 87
FORMAT (35HFATILD IN FGLs XDSTIS UNDER XDSPTI )
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C

RE TURN
SLI G TO TGL
88 XDS2GL=-(TGL-[1)/A-2ETA*(COSF(TGL)-COSF(TI))+XDSTIS
PUNCH S0 +XDSTULsXDSTFLeXDSTI oXDSTISeXDS26GL
50 FORMATI(1H 26H ND VELOCITIES XDSTGL = F10e5912H XDSTFL
111H XDSTI = Fl0e5/12H XDSTIS = F10e5 v 12H XDS2GL
COMPUTE XS
. XSTFL=040 '
XSTI=(ZETA-1aUl ¥ (T =TFL)#¥%2/(2,0%A)+XDSTFL®(TI-TFL)+XSTFL
XSTGL==(TGL-TI11#%2/(2.,0%A)—ZETA®(SINF(TGL)=SINF(T1 ) )1+( 2" TA*COSFI(TI
1)+XDSTIS)#(TGL-T1)+XSTI
XS2TFL=(2e0%2ETA-1ea0)*(TFL+6e2832-TGL)*#2/(2.0%A)+ZETA" .. (TFL)-
1SINFITGL) )+ (XOSTGL-ZETARCOSF(TSL) I *(TFL+642832-TGL)+XSTGL
XDSAV=XS2TFL/6s2832
XDAV=PSI#XDSAV
XLDAV=WOMEGA#6,2832%A0*XDAV/60Q,
X2TFL=PSI*XS2TFL
XLCYCL=AO#*X2TFL
PUNCH 909 XSTFLsXSTIsX3STGLIXS2TFL
90 FORMATI(1H 9H XSTFL = F10e5910H XSTl = F1l0e5911H XSTGL
1/12H XS2TFL = F1Ge5)
PUNCH 919¢XDSAVsXDAVsXLDAV
91 FORMAT(1H 29H AVERAGE VELOCITIESs XDSAV = F10e5s10A ADAV
1/11H XLDAV = F10e5+18H INCHES PER SECOND )
PUNCH 929 X2TFLeXLCYCL
92 FORMATI(/1Xs21HREL UISPL PER CYCL = F10e5920HABS DISPL PER CYC = F1
10465 )
XO=oS5/AR(24#2ETA-1e)%(662832-TGLI*#2-2ETAM*SINF(TGL)+(XDSTGL-ZETA*
1COSF{TGL) ) #(62832~TGL)
DELX=XS2TFL=-XSTGL-X0
DO 105 1=1921
TINDEA=1
T=(TINDEX-1a)%4,31416
[F(T=-TFL194995+95
94 XDUI)=VELFAK* (2, %2ZETA-14)/A*(T4642832-TGL)+ZETA*(COSF(T)=COSFI(TGL
1))+XDSTGL)
X(I)=DISFAK#{ o5/ A% (2" ZETA-1e ) ¥ (T+6e2832-TGL)*#2+ZETA*¥(SINF(T)=SIN
1F(TGLI )+ (XDSTGL-ZETA®COSF(TGL) 1 #(T+6,2832-TGL)-X0)
GO TO 105
95 IF(T=-TI1196+97+97
96 XD(I)=VELFAK*((ZETA-1e)/A%(T- TFL)+XD$TFL)
X(I)=DISFAK*{ (ZETA=1e ) *¢S/A#(T-TFL)*#%2+XDSTFL*(T-TFL)+XSTFL+DELX)
GO TO 105
97 IF(T-TGL)981+99,59
98 XD(I)=VELFAK*((TI-T)/A-ZETA#{(COSF(T)=COSF(TI))+XDSTIS)
X(I)aDISFAK® (-5 /A#(T-T1)##2~ZLTA®(SINFIT)=SINFITI))+(ZETA®COSFI(TI
1)+XDSTIS)#(T~-Ti1)+XSTI+DELX)
GO TO 105
99 XD(I1)=VELFAK®({(2.%#ZETA-14)/A*(T-TGL)+ZETA*(COSF(T)=COSF(TGL))+XDST
1GL)

F1l0e5
F1005)

F1Ce>

F1l0e>
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105

106

107

108
109
110

X{I)aDISFAKR{ (2, #2ETA-1e )% ,5/AR(T-TGL)**#2+ZETA*(SINF(T)-SINF(TGL))

1+{XDSTOGL-ZETA*®COSFITGL) ) #(T-TGL)+XSTGL+DELX)
CONTINUE

PUNCH 109 .

PUNCH 106s(XDiI)sl=1521)

FORMAT(6E1245)

PUNCH 110

PUNCH 106 (X(11s1=1s21)

GET TRANS PTS

XDLTFL=VELFAK*XDSTFL

XDLTI=VELFAK®ADSTI

XDLTIS=VELFAK®*XDSTIS

XDLTGL=VELFAK*XDSTGL

PUNCH 107 sXDLTFLsXDLTIsXDLTIS»XDLTGL
FORMAT(//7/1Xs11HTRANS VELS 4El245)
XLTFL=DISFAK®(XSTFL+DELX)
XLTI=DISFAK®(ASTI+DELX)
XLTGL=DISFAK#(XSTGL+DELX)
XL2FL=DISFAK®#(XS2TFL+VELX)

PUNCH 10BsXLTFLoXLTI»ALTGLXL2FL

FORMAT (1Xs12HIRANS DISPLS 4E1245) '
FORMAT(// 1X938H VELOUCITIES IN IPS FOR INCRS OF 2P1/20

FORMAT(//1X932H DISPLS IN INCHES FOR SAME INCRS )
R=0s

RETURN

END
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THE FL SUBROUTINE

APPENDIX A2.5

SUBROUTINE F L1(AsPHI+ZETASIEPSsDXDS»TFLTIsPSI swCItZGA9AOIRTBGD

LTEGDs TBLD TELDsDISFAKsVELFAK)

-~ O W\

oo a

119

DIMENSION Xt(21)s XD(21)

IF(TBLD-T1)8+846 ;

PUNCH 7

FORMAT(2BHFAILD IN FLoTBLD EXCEEDS TI )
RETURN

IF(TELD=-TI)19+95110

PUNCH 10

FORMAT(26HFAILD IN FL»TELD UNDER TI )
RETURN

XDSTIS=(PHI-ZZTA)Y*#COSFI(TI])
XDSTFL=(2e*ZETA=1a) /A*(TFL+642832-TI)+ZETA¥(CCSF(TFLI=COSF(T] )+

1XDSTIS

111

1o

il3

—

128

129

130

XOSPFL=(PH]-Z2cTA)*COSF(TFL)

IF(XDSPFL-XOS5TFL)111sl139113

PUNCH 112

FTORMATLG0IIFL 9OLN N3e PART VEL EXCETDS PLANE veb AT TFo )
RETURN

XDSTI=(2ETA=1e ) /AR(TI~-TFL)+XDSTFL

XDSPTI=(PHI-ZCLTA)#COSFI(TI}

IF{XDSTI=-XDSPTI~FPS*#DXDS) 12391235121

PUNCH 122

FORMAT (52HFL 5CLMN NGsPART VEL EXCEEDS PLANE VEL PLUS IMPULSE )
RETURN

IF(XDSTI=XDSPTI+EPS#DADS) 12491269126

PUNCH 125

FORMAT (52HFL >0LN NG» PART VEL UNDER PLANE VEL MINUS IMPULSE )
RETURN

PUNCH 127

FORMAT(/71Xs18H THIS IS A FL SOLN )

XSTFL=0.

XSTI=(ZETA=1o) /A*S#(TT-TFL)**24+XDSTFL*(TI-TFL)
XSOFL=(2e*2ETA~14) /A*aS5*(TFL+662832=TI ) *%¥2+ZETA*(SINF(TFL)~SINFI(TI
V) +(XDSTIo=ZZTA®COSFITI) I *(TFL+542832=T1)+XSTI

PUNCH 128 sXDSIFLsXDSTLsXDSTIS

FORMAT (1Xs SHADSTFL = El2e59 8HXDSTI = E12e¢5sGHXDSETIS = [£l2e5 )
PUNCH 1299 XSTFLoXSTI9XS2FL

FORMAT (1 X9BHXSTFL = E12e¢597HXSTI = E12s598HX52FL = E1245 )
XDSAV=XS2FL/ 62832

XDLAV=XS2FL*AU#PSI #*WOMEGA/ 604

XLCYCL=XS2FL*PSI*A0

PUNCH 1309XDSAVsXDLAVSXLCYCL .

FORMAT (//1X98HXDSAV = E12e59 BHXDLAV = E124%» 19HIPSs XLCYCLI(IN)

1= E12e5 )

X0=(2.*ZETA‘1-)/A*oS*(602332—Tl)**Z-ZETA*SINF(TI)+(XDST[S-ZETA*C05

1F(TI))I*(642832-T1)

DELX=XS2FL=X0O—-XSTI1
DO 140 I=1s21
TINDEX=1
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T=(TINDEX-1e)%*431416

[IF(T=TFL)131s132,132
131 XD(1)=((2%ZETA~14)/A%(T+6.2832-TI)+2ETA*(COSF(T)~-COSF(TI))+XDSTIo

1)*VELFAK .

X{I)=DISFAK# (e5/A% (2o *ZETA-1e ) #{T+6e2832-TI)*#2+2ETA*(SINF(T)-SINF

1(TI) )+ (XDSTIS—ZETA*COSF(TI))1®*(T+662832-T1)-X2)

GO TO 140
132 IF(T=T]1) 13391349134
133 XD(I)=VELFAK*((ZETA‘IO)/A*(T-TFL)+XDSTFL)

X(])aDISFAK* ((ZETA-1a )% oS/ AR(T=TFL) ##2+XDSTFL*{T-TFL)+XSTFL+DELX)

GO TO 140
134 XD(I)=VELFAK® ({24 %ZETA-14)/A*(T=TI)+ZETA¥(CUSF(T)I-COSF(TI))+XDSTIo

1)

K(T)=DISFAK*{ a5/ AR (24 *ZETA=1 o) MU T=TI)##2+2CTA* (SINFIT)=SINF(TI))+1(

1XDSTIS=-ZETA*COSF(TI))*(T=TI)}+XSTI+DELX)
140 CONTINUE

PUNCH 144

PUNCH 1419(XD(I)el=1s21)
14, FORMAT(6E1245)

PUNCH 145

PUNCH 1419(X(1)sI=1y21)

GET TRANS PTS

XDLTFL=VELFAK*XDSTFL

XDLTI=VELFAK®#XDSTI

XDLT!S=VELFAK®*XDSTIS

PUNCH 1429XDLTFLeXDLTI#XDLTIS
142 FORMAT(//1X9»12HTRANS VELS 31265 )

XLTFL=DISFAK# (XSTFL+DELX)

XLTI=aDISFAK*(XSTI+DELX)

XL2FL=DISFAK# (XS2FL+DELX)

PUNCH 142 +XLTFLoXLTI#XL2FL
143 FORMAT(1Xs14H TRANS DISPLS 3E1245 )
144 FORMAT(// 1X978H VELOCITIES IN IPS FOR INCRS OF 2P1/20 )
145 FORMATI(//1X932H DISPLS IN INCHZS FOR SAME [INCRS )

RETURN

END
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APPENDIX A2. 6

THE PROGRAM FOR SOLUTIONS CONTAINING A RIDE

The solution routine for solutions with Rides ig quite long
and involved for; as it tests the operating conditions, it may go down
any one of six paths. Hence, a'briefer,' less precise, description of
the Fortran instructions is included. The numbers to the left of the
description statements refer to the numbering of the Fortran program
which follows this list. The numbering symbolism 41 + 1, refers to
the first instruction in the Fortran program following statement num -
ber 41,

AX
1thrui3+5 The program computes A, ¢, ¢, y, T Ty I Tbgd’ Tegd

13+ 5 The velocity at the beginning of the Slide G Definite Zone
is equal to the velocity of the plane.

13+ 6 The velocity at the time of flight, T,» 18 obtained by using
the Slide G velocity equation, (27¢), between Tbg g andTt

1’
thus, X('rl) is obtained,

13+ 7 The velocity just prior to impact is obtained by applying
the Flight velocity equation (Eq. (31c)) between 7,» and
Ty, Hence X (1'2) is obtained.

13+ 8 ‘The velocity of the plane at impact is computed, by using
Eg. (29b), at To- Hence, X (72) is obtained.

14 -1 A check is now made to assure that the particle velocity

is not less than the plane velocity minus the maximum
frictional impulse,

16 A check is next made to assure that Slide G Definite Zone
does not extend beyond the time of impact.

20 A check is now made to see if a Slide L Definite Zone is
possible (condition (38a)).
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22 If an L Definite Zone is possible, Told* and Te1qr 2T€

computed.
26 If not, Thld’ is set to zero for coding.
30 A check is now made to see if a Slide G or a Decision

Time results from the impact, (42).
If a Decision Time results, jump to Step 150, otherwise

continue,

31 Compute X (72*), using (42b). A Slide G ensues.
Compute 7, g by using (39a).

40+ 1 Check 7 to see that it exceeds 72.

tg’
43 Check Ty g to see that it comes prior to T gd + 27, If
it does not, the Ride as was assumed is impossible.
45 Compute the velocity at T, g; it equals that of the plane.
47+ 3 Check if a Slide L Definite Zone exists. If so, continue;

if not, skip to Step 123.

48 Check if T, the slide termination,occurs before or after
the beginning of the L. Definite Zone, Th1d* If after,skip
to 90; if before,continue.

The particle undergoes a ride to Thid*

50 X (Tbl d
time,
A Slide L begins.

) is computed equal to the plane velocity at that

50 + 3 Compute 7,,, using the Slide L Termination Eq. (39b).

60+ 1 Check Ty to assure that is exceeds Teld'

65 Check Ty to assure that it occurs prior to Tbg d + 27;
if not, the Ride as assumed is impossible.

69 Compute the velocity at Ty It will equal the plane velo-
city at that time.

70 The solution is not complete and this path has led to a

RGFGRL Solution.



70 thru 81 The program computes the remaining velocities and
displacements, the average velocity and then stops,

90 Continuing from Step 48. The Slide G following impact
had terminated beyond Tpigw Now check to see if it oc-
curs within the L, Deﬁnite Zone, i,e., before Teld" If
not,go to Step 118; if so, continue.

A Slide L ensues from T, .

tg
91 Compute Ty fror the Slide L termination Eq. (39b).
97+ 1 Check to assure that T,)» occurs past Teld®
102 Check to assure that T,» occurs prior to T gd + 2w If
not,the Ride as assumed is impossible.
106 Compute velocity at Ty equai to plane velocity at that time.
107 The solution is now complete and this path has led to

RGFGL Solution.
The program computes remaining velocities, displace -
ments, and the average velocity. '

118 Continuing from Step 90. An L Definite Zone existed,
but particle continued in a Slide G Right through it. Go
to Step 123.

123 Continuing from 47 + 3 and 118. This solution is now
complete,
A ride follows Ttg'
the cycle. This is an RGFG Solution. The program

and continues through the end of

calculates the remaining velocities, displacements and
average velocity and then stops.

150 Continuing from Step 30. The impact has resulted in a
Decision Time,
Compute X (757), equal to plane velocity at impact.

150 + 2 Check to see if a Slide L Definite Zone is possible. If
not, skip to Step 180; if so,continue.
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152

153

154

155

160+ 1
165

169

178

180

182

Check to see if 1’2 is less than 7T

bld" If so, skip to 154;

if not, continue,

Check to see if Ty is greater than Teld' If so, skip to
178; if not, continue.

The impact has resulted in a Decision Time in the L
Definite Zone; a Slide L ensues. If the Slide L termina-
tion passes the tests,' this leg will have resulted in a
RGFL Solution.

Skip to 155.

Continuing from 151. The impact resulted in a Decision
Time prior to the L Definit~ Zone, hence the particle
undergoes a Ride to Thld

Compute the velocity at Th1d’ equal to the plane velocity
at that time. If T,1» Passes the tests, this path will have
led to a RGFRL Solution.

Continuing from 154 and 153. A Slide L ensues. Compute
T from Slide L termination Eq. (39b).

Check Ttl to assure that it occurs after 7 eld”

to assure that it occurs prior to T

Check T bed =2

tl
If not, the Ride as assumed is impossible.

Compute velocity at Ty equal to plane velocity. The
solution is confirmed. The program computes remain-
ing velocities, displacements, and average velocity.

Continuing from 152. An L Definite Zone exists, but the
particle flew through it, thus no Slide L will occur.

Continuing from 178 and 150 + 2. No Slide L is possible
after the Flight and hence a Ride initiates following the
impact., This ride will continue until T gd’ and hence
the solution is complete. This path has led to a RFG

- Solution.

The program computes the remainihg velocities, dis-
placements, and average velocities.
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11
12
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FORTRAN PROGRAM FOR SOLUTIONS WITH RIDES

GABE4
READ 4»sA0sWOMEGA s WMUSALPHAMSBETAMEPS

FORMAT ( 50H RESULTS OF ABREVIATED SOLUTION = THOSE WITH RGF- )

PUNCH 9sA0sWOMEGAsWMUSALPHAMsBETAMSEPS
PUNCH 2

FORMAT (1H 6H AQ
0e5/11H ALPHA
PUNCH 3»ACsWOMEGA»WMUIALPHAMBETAM

FORMAT( 6F1lue5)

PUNCH TsEPS

ALPHA = ALPHAM#3,1416/180.0

BETA = BETAM®#3,1416/180.0
A=AO*WOMEGA**2%#0,000028403*SINF (ALPHA-BETA) /COSF(BETA)
PHI=(WMU+1e0/TANF(ALPHA-BETA))/{WMU+TANF(BETA))
ZETA=WMU/ (WMU+TANF (BETA))

PSI=(WMU+TANFIBETA) )*SINFIALPHA=BETA)

PUNCH 69AsPHI»ZETAPSI

FORMAT(/ BS5H A = Fl0e5s 7TH PHI = F10.59 8H ZETA = Fl045

L0e5}
to«MAT (1X929H IMPACT LUBRICATION FACTCR = Flu.5)
TFL = ASINF(10/A)
DISFAK=AO®PSI
VELFAK=DISFAK*¢10472*4OMEGA
PLAVEL=VELFAK*(PHI=ZETA)
PLADIS=DISFAK*(PHI=Z2ETA)
PUNCH 8sPLAVELsPLADIS

FORMAT(17H PLANE MAX X VEL= E1245913H MAX X DISPL= El245

FORMAT(///6F1Ve5)

BE = =140/(24U%*A)
CE = TFL/A+COSF(TFL)
DE = —TFL*%#2/12,0%A)-TFL*COSF(TFLI+1.0/A

TI=1e57+SQRTF(1140%(A-140))

F10e5917H INCHES» OMEGA = F1l0e5911H RPMs
F10e5917H DEGREESs BETA = F10s59s 6H DEGRS

MU = F1
)

TH PSI =

TINEW=TI~(=SINF(TI)+BE#TI*##2+CE#T[+NC1/(~COSF(TI)+2,0%BE*TI+CE)

TEST=ABSF(TI=-TINEW)
IF(TEST~e00005312511911

TI=TINEW

GO 10 10

PUNCH 13 TFLsTINEW

TI=TINEW

FORMAT ( 21H TINAL VALUES TFL = FlQe5s 9H Tl = F10e5)

DXDS=ZETA*( (TI=TFL}/A+COSF(TI)}=COSF(TFL))

AIPH=1e/ (A%PHI)

TBGD=ASINF(AIPH)

TEGD=3414159-TBGD

XDSBGD=(PHI-ZETA)*#COSF(TBGD)
XDSTFL=(TBGD~TFL)/A-ZETA*(COSF(TFL)-COSF(TBGD))+XDSBGD
XDSTI=(ZETA=1e)#(TI=TFL)/A+XDSTFL
XDSPTI=(PHI-ZETAI®COSF(TI)

XDBGD=VELFAK#XDS3GD

XDTFL=VELFAK#XDSTFL
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14
15

16
17
18

20
22

25
26

30
31

35
36
40

41
42

43
44

45
46
47

48
50

FORTRAN PROGRAM FOR SOLUTIONS WITH RIDES

XOTI=VELFAK®#XDSTI

XTFL=0s

XTIsDISFAK®( ¢S/A®(ZETA-L14)®#(TI-TFL)®##2+XDSTFL*(TI-TFL))+XTFL
IF(XDSTI=XDSPTI+EPS*DXDS) 1491416

PUNCH 15

FORMAT (44H FAILURE- PART VELOCITY TOO LOW AT IMPACT )

GO TO 400

IF(TEGD-TI)20+20,17

PUNCH 18

FORMAT (39H FAILURE SGD ZONE PERSIST3 AFTER IMPACT )
GO TO 4o0C

IF({1e=2e*ZETA)/A+PHI-24%#ZETA) 25925422

AIPHP= (2 *ZETA=1 )/ (A¥ (24 *ZETA=PHI))
TBLD=3e14159-ASINF(AIPHP)
TELD=6e28319+ASINF(AIPHP)

GO TO 30

PUNCH 26

FORMAT (/20H NO SLIDE L POSSIBLE )

TBLD=0,

IF(XDST1 —-EPS*DXDS=XDSPTI)15091504+31
XDSTIS=XDSTI-EPS*#DXDS

XDTISaVELFAK®#XDSTIS

TTG=44712

Cl=le/ (A®PHI)

C2=(TI/A+ZETA*COSF(TI)I+XDSTIS)/PHI

DO 35 I=1910

FeCOSF(TTG)+C1*TTG-C2

FP=Cl=SINF(TTG)

TTGNEW=11G-F/FP

TEST=ABSF(TTGNEW-TTG)

IF(TEST=e¢00005)40935935

TTG=TTGNEW

PUNCH 36»TTG

FORMAT( /43H FAILURE COULDNT CONVERGE ON TTGe STOPT ON El2e5 )
GO TO 400

TTG=TTGNEW

IF(TTG=T1)41s41943

PUNCH 42»TTG

FORMAT( /29H FAILURE TTG UNDER TIls TTG= El2e5 )
GO TO 400

IFITTG=TBGD=6028319)45+45944

PUNCH 47+TTG»TBGD

GO TO 400

XDSTTGa(PHI-ZETA)Y*COSFITTG)

XDTTG=VELFAK#XDSTTG

FORMAT(38H FAILD IN GENLs TTG MORE THAN TBGD+2PI 2E12.5 )
XTTGaDISFAKR (=¢S5 /AR (TTG=TI ) ##2=ZETA®(SINF(TTG)-SINFITI))+(ZETA*COS

1F(TI)+XDSTISI®(TTG-TI) )+XT1

IF(TBLD) 1239123448

IF(TTG=TELD)5U»90190

XDSBLD=(PHI-ZETA)®#COSF(TBLD)

XDBLD=VELFAK#XNSBLD

XBLD=DISFAK* (PHI-~ZETA)®(SINF(TRALD)=SINF(TTG))+XTTG
TTL=6.28
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Cl=(2e¢%*ZETA~1e )/ (A% (2e%2ETA-PHI))

C2=0(14=2+%#ZETA)*TBLD/A~ZETA*®COSFITBLD)+XDSBLD) /(2. #ZETA=PHI )

DO 55 [=1910

F=COSF(TTL)+CLl=®TTL+C2

FP=C1l-SINF(TTL)

TTLNEW=TTL=-F/FP

TEST=ABSF(TTLNEW=TTL)

IF(TEST-400005160955455
55 TTL=TTLNEW

PUNCH 56»TTL
56 FORMAT( /52H FAILURE COULDNT CONVERGE ON TTLs IN RGFGRL STUPT AT

1 £12e5)

GO TO 400
60 TTL=TTLNEW

IF(TTL=TELD)%2465465
62 PUNCH 63TTL
63 FORMAT( /37H FAILUREs TTL IN RGFGRL UNDER TELDs= El245)

GO TO 400
65 IF(TTL=-TBGD=628319)69969966
66 PUNCH 67TTLs»TBGD
67 FORMAT( /39H FAILURE IN RGFGRLsTTL MORE THAN TBGD»s 2E12e5)

GO TO 400
69 XDSTTL=(PHI-ZETA)Y®*COSF(TTL)

XDTTL=VELFAK®XNSTTL

XTTL2DISFAK®* (/A% (24 ¥2ETA=1e ) *(TTL=TBLD)**24+ZETA#*#(SINF(TTL)=SINF(

1TBLD)Y ) +( XDSBLD=ZETA*COSF(TBLD) ) *(TTL=TBLD) ) +XBLD

PUNCH 70
70 FORMAT( /23H TIHIS IA AN RGFGRL SOLN )

PUNCH 72
72 FORMAT (29 TBODsTEGDs» TBLDTELD»TTGeTTL )

PUNCH 73 TBGUSTEGOsTOLDsTELDsTTGsTTL
73 FORMAT(6E1245)

PUNCH 74
74 FORMAT(42H XDOGD e XDTFLsXDTI oXDTISsXDTTGeXDBLDSXDTTL » )

PUNCH 759XDBGDsXDTFLsXDTIoXDTISeXDTTGsXDBLD#XDTTL
75 FORMAT(6E1245)

XBGD=DISFAK* (PHI-ZETA)}*(SINF(TBGD)=SINF(TTL))+XTTL

X2TFL=DISFAK®*{—g5/A%(TFL ~TBGD ) *#2-ZETA*(SINF(TFL)-SINF(TBG
1D))+(ZETA*COSF(TBGD)+XDSBGD) #( TFL ~TBGD) )+X8GD
PUNCH 78

78 FORMATI(37H XTFLoXTIoXTTGeXBLDsXTTL#XBGDsX2TFL )
PUNCH 79 s XTFL XTI o XTTGeXBLDeXTTLIXBGDsX2TFL

79 FORMAT(6EL12e5)
XDAVG=X2 TFL*WOMEGA /60
PUNCH 819 XDAVG

81 FORMAT(25H AVERAGE VELOCITY (IPS)= El2e5 )
GO TO 400

90 IF(TTG-TELD)91+1189118

91 TTL=6.28
Cl=(2¢#ZETA=1e )/ (AR (2. #2ZETA=PHI))
C2z((1e=2e#ZETA)#TTG/A-ZETA#COSFITTG)+XDSTTG)/ (24 #2ETA~PHI)
DO 94 I=1,10
F=COSF(TTL)+C1%#TTL+C2
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FORTRAN PROGRAM FOR SOLUTIONS WITH RIDES

FPaC1l-SINF(TTL)

TTLNEW=TTL=-F/FP

TEST=ABSF(TTLNEW-TTL)

IF(TFST=400005)979%94+994

TTL=TTLNEW

PUNCH 95»TTL

FORMAT( /47H FAILURE COULDNT CONVERGE ON TTL IN RGFGLsTTL= E1l2e5)
GO TO 400

TTL=TTLNEW

IF(TTL-TELD)98+»1029102

PUNCH 99sTTL

FORMAT( /331 FAILDTTL IN RGFGL UNDER TELD» = E1245)

GO TO 400

IF(TTL-TBGD-6¢28319)1069106+103

PUNCH 104sTTLsTBGD

FORMAT (34H FAILD IN RGFGLs TTL EXCEEDS TBGDo 2E1245)

GO TO 400

XDSTTL=(PHI~-ZETA)*COSF(TTL)

XDTTL=VELFAK®#XDSTTL

XTTL=DISFAK*( «5/ A% (2% ZETA=-1 o ) *(TTL-TTG)*#2+ZETA®(SINF(TTL)-SINF(

1TTG) )+ (XDSTTG-ZETA*COSF(TTa))®(TTL-TTG))+XTTG

PUNCH 107

FORMAT( /23H THIS 1S AN RGFGL SOLN )

PUNCH 108

FORMAT (29H TBUDs TEGDTBLDITELDs TTGeTTL )

PUNCH 109+TBGLsTEGDs TBLDTELDs TTGs» TTL

FORMAT (6E1245)

PUNCH 110

FORMAT (35H XDBGDsXDTFLeXDTIsXDTISsXDTTGeXDTTL )
PUNCH 109sXDBGDsXDTFL9XDTI sXDTISsXDTTGeXDTTL
XBGD=DISFAK* (PHI-ZETA)*(SINF(TBGD)~-SINF(TTL))+XTTL
X2TFL=DISFAK*(—-g5/A*(TFL —TBGD ) *#2-ZETA*(SINF(TFL)=-SINF(TBG

1D) ) +(ZETA*COSF(TBGD) +XDSBGD) *(TFL -T8GD) ) +XBGD

PUNCH 115

FORMAT(30H XTFLsXTIoXTTGesXTTLsXBGD9X2TFL )

PUNCH 109 eXTFL«XTIoXTTGeXTTLsXBGDsX2TFL
XDAVG=X2TFL*WO"EGA /60

PUNCH 81l»s XDAVG

GO TO 400

PUNCH 119

FORMAT(/37H L POSS»BUT SLID G RIGHT THRU LD ZONE )
PUNCH 124

FORMAT(/21H THIS IS AN RGFG SOLN )

PUNCH 125

FORMAT (19H TBGDsTEGDsTBLDsTTG )

PUNCH 1269TBGDs»TEGDs» TBLDTTG

FORMAT(4E1245)

PUNCH 127

FORMAT(29H XDTFLsXDTI»XDTISsXDTTGeXDBGD )

PUNCH 128sXDTFLsXDTI*ADTI5S+XD1TG9XDBGD
XBGDaDISFAK*(PHI-ZETA)®(SINF(TBGD)-SINF(TTG! )+XTTG
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X2TFL=DISFAK*(=o5/AR(TFL ~TBGD)®##2-2ETA®(SINF(TFL)~SINF(TBG
1D) )+ ZETA®COSF (TBGD)+ADSBGD)I *#( TFL -TBGD) ) +XBGD
PUNCH 129

128 FORMAT(5E12.5)
129 FORMAT(25H XTFLoXTI o XTTGoXBGD*X2TFL )
PUNCH 128 sXTFLeXTIoXTTGsXBGD»X2TFL
XDAVG=X2TFL*WOIIEGA /50
PUNCH 819 XDAVGS
GO TO 400
150 XDSTIS=(PHI=-ZETA)*COSFI(TI)
XDTIS=VELFAK®*XDSTIS
IF({TBLD) 1809180151
151 IF(TI-TBLD)15491529+152
152 IF(TI-TELD)153+1789178
153 PUNCH 300
XDBLD=0e
XBLD=XTI
XDSINP=XDSTIS
TINP=TI
GO TO 155
154 PUNCH 171
XDSBLD=(PHI-ZETA)Y#*#COSF(TBLD)
XDBLD=VELFAK#XD5BLD
XBLD=DISFAK*(PH[—ZETA)*(SINF(TBLD)‘S[NF(T[))+XT1
xXDSINP=XDSBLD
TINP=TBLD
155 TTL=6.28
Cl=(2.*ZETA'l-)/(A*(ZQ*ZETA-PHI))
C2=((lo-Zo*ZETA)*T[NP/A-ZETA*COSF(T[NP)+XDSINP)/(Zo*ZETA-PHl)
DO 156 1=1»910 .
F=COSF(TTL)Y+CLl*TTiL+C2
FP=Cl=-SINF(TTL)
TTLNEW=TTL=F/FP
TEST=ABSF(TTLNEW-TTL)
IF(TEST=000005)16091565156
156 TTL=TTLNEW
PUNCH 157TTL
157 FORMAT(41H FAILD NO CUNVERGE IN RGFRL ON TTLe TTL= El245)
GO TO 400
160 TTL=TTLNEW
IF(TTL~TELD) 16291659165
162 PUNCH 163TTLSTELD
163 FORMAT(44H FAILD» TTL IN RGFRL UNDER TELD» TTLYTELD= 2E12e5 )
GO TO 400
165 IF(TTL-TBGD=6¢28319)16991699166
166 PUNCH 167sTTL97TBGD
167 FORMAT (4&4HFAILD IN RGFRLsTTL EXCEEDS TBGD» TTL»TBGD= 2E1245 )
GO TO 400
169 XDSTTL=(PHI-ZETA)®COSF(TTL)
XDTTL=VELFAK®*XDSTTL
XTTL=DISFAK*(OS/A*(Z-'ZETA-IQ)*(TTL‘TINP)**Z+ZETA*(S[NF(TTL)‘S[NF(
lTlel)+(XDS]NP“ZETA*COSF(T[NP))*(TTL-TINP))+XBLD
, 171 FORMAT(/24H THIS 1S AN RGFRL SOLN )
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178
179
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184

182

187

300
400

FORTRAN PROGRAM FOR SOLUTIONS WITH RIDES

PUNCH 172

FORMAT{24H TBUDSsTEGDs TBLDsTELDTTL )

PUNCH 173 sTBGUsTEGD»TBLDSTELD»TTL

FORMAT(5E12e5)

PUNCH 174

FORMAT(37H XDTFLsXDTIeXDTISsXOBLDsXDTTL »XOBGD )

PUNCH 109sXDTFLsXDTIsXCTIS,XDBLD+XDTTLXDBGD

XBGD=DISFAK* (PHI-ZETA)*#(SINF(TBGD)I=SINF(TTL))I+XTTL
X2TFL=DISFAK*(-oe5/A%(TFL ~TBGD) #%#2-ZETA*(SINFITFL)=SINF(Tz

101 )+(2ZETA*COSF(TBGD ) +XDSBGD I *( TFL =T3GN) ) +XARGD

PUNCH 175

FORMAT (30H XTFLsXTI+XBLDsXTTLsXBGDsX2TFL )
PUNCH 109 sXTFLoXTIsXBLDsXTTL9XBGDsX2TFL
XDAVG=X2TFL*WOMEGA /60

PUNCH 81y XCAVG

GO TO 400

PUNCH 179

FORMAT{(/25H L POSS BUT FLEwW THRU IT )

PUNCH 181

FORMAT¢/23H THIS 1S AN RGF SOLN )

PUNCH 182

FORMAT (15H TBL"sTEGDsTBLD )

PUNCH 1B83TBGD»TEGDTBLD

FORMAT (3E1245)

PUNCH 184

FORMAT(24H XDTFLsXDTIsXOTISsXDBGD )

PUNCH 185sXDTFLsXCTI»XD115,XDBGD

FORMAT (4E12e5)

XBGD=DISFAK* (PHI-ZETAI*(SINF{TBGD)-SINF(TI))1+XT]
X2TFL=DISFAK*(=-4,5/A%(TFL -TBGD) *#2-ZETA®(SINF{TFL)-SINF(TBG

1D) ) +(ZETA*CGSF(TBGD 1 +XDSBGDI*(TFL ~T8GD) ) +XBGD

PUNCH 187

FORMAT(20H XTFL#X119XBGD#X2TFL )

PUNCH 1B85sXTFLsXTI 9XBCD#X2TFL
XDAVG=X2TFL*WOMEGA/60+

PUNCH 81s XDAVG

FORMAT(/24H TAIS 1S AN RGFL SOLN )
GO T0 1

END
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A
ALPHA
ALPHAM
AO

BE, CE, DE

BETA
BETAM

C1, C2

DELTA

DELX
DISFAC

DXDS

EE
EPS

GAMMA

PHI

PLADIS
PLAVEL

TBGD

APPENDIX A2.7
Fortran Symbols Table

A

a (RPM)

a in degrees
a

the constants from (16)
B (radians)
B in degrees

dummy constants

6

same type of constant as XO

a constant to convert nondimensional displacement
to inches

AX
g

a constant in (46)
€

Y

¢

the maximum plane y displacement in inches
the maximum plane y velocity in inches per second

P

dummy variable, not used

T

Tbgd
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TBLD
TEGD
TELD
TFL
TGL
TGLNEW
TI
TINDEX
TINEW
TLG
TTG
TTGNEW
TTL

WMU
WOMEGA

XBLD
XBGD
XDAV
XDAVG
XDBGD
XDBLD

Fortran Symbols Table

Tbld

Te gd

Teld

71
T gl a transition time from a Slide G to a Slide L

new value of 7 gl

To
index
the new value of 1'2

1'1 g a transition time from a Slide L to a Slide G

Ttg

new value of Tt g

L

7]
» (RPM)

X (Tbgd)

Xavg

average x velocity (inches per second)
X (Tbgd)

x (Tpyg)

velocity at 7= 1 7/10

average x velocity in inches per second

X ('rl)



XDLTLG
XDLTGL
XDLTI
XDLTIS
XDSAV
XDSBGD
XDSBLD
XDSPFL
XDSPTI

XDSTFL

XDSTGL

XDSTI

XDSTIS

XDSTLG

XDSTTG

XDSTTL
XDS2FL
XDS2LG
XDTFL
XDTI
XDTIS

Fortran Symbols Table

x ('rlg)

x (Tgl)
x (1'2)

X (1'2*)

average non dimensional x velocity

X (1, gd)ltb
X (1,9
X! (71)/ p
).('(72)/4-‘
X (1)
——

X (1'g1)l"~|J
X (72)
—

X (1.1

X (‘r1 )
—T-g- (x dot over Y at Ty g)

X (1, )V

X (T ¥

X (1, + 2 )¢
X (’rlg+ 271 )¢
x (1)

x (1)

x (1,7)
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XDTTG
XDTTL
X(1)

XLCYCL

XLDAV
XLTFL
XLTGL
XLTLG
XLTI
XL2FL
XL2LG
XO
XSTFL
XSTI
XSTLG
XS2FL
XS2LG
XTFL
XTI
XTTG
XTTL
X2TFL
X2TFL
X2LG

ZETA

Fortran Symbols Téble

X ('rt g)

x (7y)

displacement at 7= I 7/10
Ax per cycle (inches)
*avg

x (1'1)

X (Tgl)

X (Tlg)

x (1'2)

x (1’1 + 2 7)

e (71g+ 2 7)

a constant used to make displacement zero at 7 = 0

X (7))
X(1'2)

¥ (T1g

X(r + 2y
X (1 gt ? m/y
x (17)

x (7,)

X ('rtg)

x (1)

X (1‘1 + 27

x ('r1 + 2 7)

x('rlg+2w)
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APPENDIX A3
DETAILS OF EXPERIMENTAL APPARATUS

APPENDIX 3.1
A DESCRIPTION OF THE MACHINE
Figures 10 and 11 show the machine. The plane is con-
structed of a 2 inch styrofoam core sand viched between two 1/4 inch
plywood sheets. The plane was one foot long and four feet wide. The
plane is pivoted at its center of gravity to two arms extending out
from the slider. This pivot made adjustment of the angle 8 possible.
The slider is essentially a stiff wooden box with two arms on one end
to support the plane, and a neck on the other end to receive motion
from the connecting rod. On the undersurface of the slider two bronze
bushing pillow blocks are attached in a straight line. These pillow
blocks slide on a 3/4 inch diameter steel guide rod and guide the motion
of the slider in a straight line. To eliminate roll and backlash, two ball
bearings used as wheels are pressed up against the undersurface of the
slider six inches either side of the centered pillow blocks. Steel plate
tracks are bonded to the underside of the slider for the wheels to bear
against. This is perhaps seen in better detail in Figure 11. The guide
rod, on which the pillow blocks slide, is attached to a 24 inch long 4 inch
square wooden beam. This beam also had the two ball bearing wheel
assemblies cantilevered out from its center. The elevation of the two
wheels could be raised or lowered to permit crosswise leveling of the
slider and compensate for wear. One of the wheels could be forced
tight with a tightening bolt to load the wheels and pillow blocks, thereby
eliminating backlash. The beam was pivoted to a large wooden base,
which permitted adjustment of the angle «. The base was essentially
a tripod of three wooden "two-by-fours;' bonded to a triangle of "four-
by-fours.”" This triangle was in turn bolted securely to a massive T-
slotted bed plate. The tripod of "two-by-fours,' was completely skirted
with 1/4 inch plywood bonded on all its edges to the "two-by-fours' and
the "four-by-fours'; this was essential to provide torsional stiffness to

the base,
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Atop the tripod of "two-by-fours' was bonded a horizontal plate of
three inch plywood. On the top surface of this plate two vertical
triangular plates of two-inch plywood were bonded. These plates
carried the bolt that pivoted the beam. An attempt was made to keep
everything as stiff as possible, in order to assure pure translation of
the plane.

The slider was driven by a 45 inch connecting rod, bolted
to the neck of the slider. On the other end of the connecting rod was a
bracket to contain a 3/8 inch ball bearing, which was in turn bolted to
a crank plate. The connecting rod was fabricated out of 1 inch diameter,
.049' wall, aluminum tubing.

The 1/2" thick steel crank plate contained a series of tapped
holes (to receive the connecting rod bearing) so that the amplitude
could be varied from 3/4 to 3 inches. It was welded to a hub which was
bolted to a 3/4 inch steel idler shaft, This shaft was supported by two
cast iron ball bearing pillow blocks. The pillow blocks were bolted to
two vertical one inch thick steel plates, and these plates in turn were
bolted to a large one inch steel base plate. This steel base plate was
supported on large wooden blocks so that the elevation of the idler
shaft could be adjusted for different angles, o« . By using pipes and
long bolts, as shown in the figure, this whole idler assembly was secure-
ly bolted to the bed plate. The idler shaft also contained a 14 inch V-
pulley and a perforated disc. The perforations were 3/16 inch holes
and the disk was 1/4 inch thick aluminum. The perforations were dril-
led in a circle of three inch radius and were spaced 12° apart. These
perforations triggered a fast blinking strobe light. The V-pulley was
driven by a large 1/2 HP variable speed electric motor, that was mounted
on wooden beams so that it could be bolted to the bed plate in any desired

position.



The channel used for the testing of granular material was
constructed out of 1/4 inch plywood (see Figures 12 and 13). The trans-
parent front was plexiglass. The channel was attached to the plane
with fiberglass pressure sensitive tape. The width of the channel could
be changed by adjusting a movable wall which was attached with screws
and wing nuts.

All of the wooden joints were bonded with epoxy resins,
which proved a very satisfactory fabrication technique.

An equipment list is included as Appendix A3.3.

Particular construction details are not always apparent.
For example, the upper surface of the plane was made of standard
lumber yard grade of 1/4 inch fir plywood. Effort was being made to
construct light yet stiff plane. This surface was out of flat in excess
of .020 inch, making appreciable hills and valleys on the surface. This
situation was remedied by moulding a flat surface onto the top of the
wood. A thin layer of unfilled epoxy resin (Sears Roebuck and Company
Cat.No. 6H62851) was poured on a large piece of 1/4 inch plate glass;
the upper surface of the plane was placed upon this layer of liquid epoxy
and left in position until the epoxy had cured. Some bubbles resulted
and these were filled with an automotive body putty. The surface was
painted black with two coats of enamel, and then thoroughly rubbed with
powdered pumice to obtain smoothness and uniformity. Careful measure-
ments with a long straightedge and a feeler gage showed the resulting
surface flat throughout within .002 inch.

Another example is the connecting rod. The anticipated
maximum driving frequency was 7 cps (420 RPM), the natural frequency
of the rod was approximately 16.5 cps (calculated) (Ref. 20.p, 432). The
maximum anticipated acceleration of the slider was 10 g's; the weight of

the slider plus the plane was approximately 20 lbs. Hence a 200 lb.



load was anticipated. This load gave a direct compressive stress of
1200 psi in the rod. The critical buckling load for this pin ended column
was calculated in excess of 900 lbs. Thus the design was adequate.

As to the effectiveness of the sandwich construction of the
bed, natural frequency calculations, utilizing beam theory, give favorable
results. The lowest mode of the plane supported in the center as it is,
would be a kind of a symetric umbrella mode. Since the table is four
feet long, this mode would have the same frequency as a cantilever
or clamped-free beam 2 feet long. Using the formula from Ref. 20 (p.
432) the frequency is calculated to be in excess of 150 cps, quite far
above the maximum driving frequency of 7 cps.

The 45 inch connecting rod was necessary to assure
essentially sinusoidal motion. Ref. 18 shows that the error in accelera-
tion of sine wave produced by a slider-crank mechanism is approxi-
mately equal to the ratio of eccentric distance to the connecting rod
length. Thus when the displacement amplitude was one inch, the error

in acceleration of the plane was approximately 2%.
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APPENDIX A3.2

THE TRIGGERING OF THE STROBOSCOPIC LAMP

This was accomplished by causing a lamp to shine on a
black perforated disk, which caused an interrupted beam of light to

strike a photocell. The photocell drastically and quickly drops in
resistance from about 20 megohms in darkness to about 130,000
ohms when excited by the light. The configuration and circuit is
diagramed in Figure A3.l.

Light Photocell
TJ 5

DC = Output

Perforated disk
on idler shaft

Figure A3.1 Stroboscopic Lamp Trigger

The resistor is of the order of 2 megohms; thus when the
cell is dark, there is essentially no voltage drop across the resistance,
but in the presence of light almost the full battery voltage is across the
resistance. The two leads from the resistance give a pulse of voltage
each time a hole in the disk permits light to strike the photocell. This
voltage pulse was used to trigger the stroboscopic lamp. Ref. 16,
describes the voltage pulse requirements and is quite helpful in the de-'
sign of these triggering circuits. The lamp (a six volt pilot lamp,
powered by a filament transformer) was encased in a small tube and
emitted a tiny ray of light out of a pin hole. The ray was aimed at the
photocell. All parts were painted flat black, When it was desired to



et

cover certain holes in the disk, to alter the number of flashes per
cycle, black piastic electrical insulating tape was placed over the

holes. The specifications of the various components are contained in
the equipment list following this section.



Motor:

Stroboscopic Lamp:

Tachometer:

Camera:

Camera Rotator Motor:

Enlarger:

Photocell:

Counter:

Timer:

APPENDIX A3. 3

EQUIPMENT LIST

Master Electric Company - Style 112773

115 V. A.C.; 1725 RPM (Equipped with

Master ''Speed Ranger''; RPM (180-2760)).
General Radio Company; '"Type 1531A Strobotac"
Foxboro Company; S-6/3. 4000; # 85772

Yashica Model 635 - Twin Lens Reflex Type

Bodine Type KYC-22RC, Synchronous Motor
# 4946194; 110 V. A.C.; 4 RPM

Omega Model D II
Clairex # CL 703
Lafayette Radio Corporation # 99R9011; 110 V. A.C.

Dimco-Gray Company; GRALAB Model # 168.
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