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Abstract

We propose a family of novel social choice functions. Our goal is to
explore social choice functions for which ease of auditing is a primary
design goal, instead of being ignored or left as a puzzle to solve later.

Our proposal, “BatchVote,” creates a social choice function f from
an arbitrary “inner” social choice function g, such as instant-runoff voting
(IRV), and an integer B, the number of batches.

We aim to preserve flexibility by allowing g to be arbitrary, while
providing the ease of auditing of a plurality election.

To compute the winner of an election of n votes, the social choice
function f partitions the votes into B batches of roughly the same size,
pseudorandomly. The social choice function g is applied to each batch.
The election winner, according to f , is the weighted plurality winner for
the B outcomes, where the weight of each batch is the number of votes it
contains. The social choice function f may be viewed as an “interpolation”
between plurality (which is easily auditable) and g (which need not be).

Auditing is simple by design: we can view f as being a (weighted)
plurality election by B “supervoters,” where bth supervoter’s vote is de-
termined by applying g to the votes in batch b, and the weight of her vote
is the number of votes in her batch. Since plurality elections are easy to
audit, the election output can be audited by checking a random sample
of “supervotes” against the corresponding paper records.

1 Introduction and Motivation

Designing or selecting a social choice function for elections requires making
tradeoffs among desirable properties—it is well known that many desirable prop-
erties are incompatible. Ease of auditability does not seem to be among the
properties that have been considered when selecting a social choice function. In
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this paper we elevate ease of auditing to be a first-level design criterion, and
propose a specific framework, called BatchVote, for ensuring ease of auditing
while blending in desirable properties from another social choice function.

The paper is organized as follows: Section 2 provides terminology, notation,
and orientation. Then Section 3 overviews of the BatchVote method, giving its
design philosophy and major characteristics. Section 4 takes a deeper look at the
properties of BatchVote, and then Section 5 shows how a BatchVote election
may be audited with the a risk-limiting audit, based on known risk-limiting
audit methods for plurality elections. Simulated auditing results are given in
Section 6. Section 7 presents some variants of BatchVote.

2 Preliminaries

Outcomes, Ballots, Profiles. We assume that the election is designed to
select an outcome from a set C of C alternatives (or candidates). Each of n voters
casts a single ballot. A ballot may have an arbitrary format and semantics. The
profile of cast ballots is

P = {v1, v2, . . . , vn} ,

listing the vote vj cast by voter j, for j = 1, . . . , n. The profile is best viewed as
a sequence or a multiset, since it may contain repeated items (identical ballots).

Social choice functions. A voting rule or social choice function g maps
profiles to a single outcome (one of the alternatives). For any profile P , g(P ) is
the winner or outcome for the profile P .

We require a social choice function g to be deterministic, so g must break any
ties that occur. We therefore allow g to take a second random input K. Here
K is the seed for a (pseudo-)random number generator used to break ties. Thus
f(P,K) is deterministic. We omit f ’s second argument K when it is understood
from context. We assume that g does not depend on the order of the votes, that
is, g applied to every permutation of P must give the same result c ∈ C.

One may choose a social choice function because of its mathematical prop-
erties. For example, Tideman’s “ranked-pairs method”[26] has many desirable
properties [29], as does the Schulze method [14]. But not all otherwise-desirable
social choice functions are readily auditable. Indeed, for both Tideman’s ranked-
pairs method and Schulze’s method there is no known efficient method for per-
forming a risk-limiting audit.

Post-election audits Confidence in an election outcome can be derived from
a post-election audit. We assume that voters cast votes on paper ballots,
and that voters had the opportunity to check that their ballots reflected their
choices before casting the ballots. These paper ballots were scanned and those
data were electronically aggregated to provide the initial or reported outcome
w for the election.

2



The paper ballots represent the “ground truth” for the election; a full and
correct count of the paper ballots should give (essentially by definition) the
actual (or true) outcome t for the election. A “compliance audit” can provide
assurance that the paper trail has integrity (see Benaloh et al. [1], Lindeman
and Stark [9], and Stark and Wagner [16]).

To check the election outcome, rather than recount all the ballots by hand,
it is usually more efficient to audit using a statistical method based on hand
examination of a sample of the paper ballots, a method first proposed by John-
son [7]. Such a statistical (post-election) audit can give statistical assurance
that the reported outcome is indeed equal to the actual outcome, often after
examining only a relatively small sample of the paper ballots. If the reported
outcome is incorrect, the audit may need to examine many ballots, or even all
of them, before concluding that the reported outcome was incorrect.

Stark [17] introduced a particular kind of statistical audit—a risk-limiting
(post-election) audit (or RLA). What distinguishes an RLA is that if the
reported outcome is incorrect, the RLA has a large, pre-specified chance of
correcting it. Lindeman and Stark provide a “gentle introduction” to RLAs [9].
Lindeman et al. [8], Norden et al. [11], and the Risk-Limiting Audit Working
Group [2] give general overviews of post-election audits. Stark and Wagner [16]
promulgate “evidence-based elections,” which include not only a risk-limiting
audit but also ensure that the evidence trail has integrity.

A variety of statistical methods for providing RLAs have been developed [18,
6, 20, 21, 22, 15, 23, 3, 12, 10, 13, 25]; some of these methods form the foundation
of our approach for auditing BatchVote. There are online tools to help condut
risk-limiting audits [24].

3 BatchVote

This section gives an overview of the BatchVote design philosophy, gives details
of the method, and provides an analysis of its efficiency.

3.1 Design philosophy

BatchVote derives a new social choice function f from a pre-existing social choice
function g. Roughly speaking, f divides the n ballots into B “batches,” applies
g to each batch, then defines the overall election outcome as the (weighted)
plurality result of the B batch-level outcomes.

When B is very large, most batches contain at most a single ballot, and f
behaves like plurality voting. But when B is equal to one, f and g are identical.
In between, BatchVote acts like a blend or “interpolation” between plurality and
g. Thus, f(P ) is not generally equal to g(P ), but f may inherit some desirable
features of of g.

For instance, g could be a preferential voting method that allows voters to
express their preferences more clearly than with simple plurality voting. Pref-
erential voting methods are notoriously difficult to audit [25, 30]; for many
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preferential voting methods no efficient risk-limiting audit method is known.
But g is, at the top level, just (weighted) plurality, for which efficient risk-

limiting auditing method are well-known (see, for example [9]).

3.2 The BatchVote method

BatchVote determines the election outcome as follows, given an “inner social
choice function” g.

1. Determine the set C of candidates.

2. Determine the target average batch size λ.

3. Collect the n cast votes and assign each a unique “ballot ID.”

4. Determine the number of batches, B = n/λ.

5. Determine the “random election seed” K, using a public dice-rolling cer-
emony or similar means.

6. Distribute votes to batches in a deterministic manner, based on the elec-
tion seed and the ballot IDs.

7. Compute the winner of each batch, using the social choice function g.

8. Compute the overall winner using a weighted plurality method to combine
the batch-level outcomes, where the weight of a batch is the number of
votes it contains.

Details are given in the following subsections. See Figure 1 for an illustration.

3.3 Inner social choice function g

BatchVote can use any social choice function as its “inner social choice function”
g; g affects basic properties of the election, such whether ballots allow choices
to be ranked in some way.

BatchVote is most interesting when g has desirable properties from a social
choice perspective, but is difficult to audit for the entire profile of cast ballots.
That includes such as many preferential voting methods. Applying g to small
batches of votes, then combining the results with (weighted) plurality, may give
many of the benefits of g while being easy to audit.

When BatchVote is used with inner social choice function g, we call the result
“Batchg”. For example, methods BatchApproval, BatchIRV, BatchRanked-
Pairs, or BatchSchulze are special cases of BatchVote.
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n = 15
cast votes

B = 5
batches

g g g g g

batch
outcomes w(1) w(2) w(3) w(4) w(5)

plurality

BatchVote outcome w

Figure 1: The BatchVote method. The n cast votes are divided pseudorandomly
into B batches. The social choice function g is applied separately to each batch.
The overall BatchVote outcome is the weighted plurality result of the batch
outcomes.
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3.4 Choosing λ

The average batch size λ is a free parameter of the BatchVote. There is no
“right” choice for λ, but different choices result in different social choice func-
tions f , and different auditing workloads. We recommend as a default λ = 10C,
but other values might be preferable, depending on how much one wants f to
act like g (choose λ large) or like plurality (choose λ small).

3.5 Ballot IDs

In BatchVote each ballot has a unique “ballot ID” that determines which batch
the ballot is placed in. The batch a ballot is placed in does not depend on the
choices made on that ballot, on other ballots, or on the number of ballots cast.

Ballot IDs are assigned by a process that does not know how ballot IDs will
determine which batch a ballot will be in. In BatchVote, this isolation is ac-
complished by drawing a random seed K after all of the ballot IDs are assigned.
The seed, together with the ballot IDs, determines the batch assignments.

The ballot IDs may be arbitrary strings of characters; they may be numeric,
alphanumeric, or contain special characters. They may or may not contain
information about where the paper ballot is located. Each ballot should have a
unique ballot ID.

The ballot ID may be printed on the ballot itself when the ballot is scanned.
Some optical scanners can perform this sort of operation. Some states, such as
Texas, require that each ballot be “numbered.”

The database of scanned ballots then contains triples of the form (assuming
a single race):

(ballot-ID, paper-ballot-location, voter-choices) .

3.6 Determining the number B of batches

The number B of batches is computed as B = N/λ. (We assume for convenience
that no rounding is needed here, and that B is an integer.)

BatchVote requires that B be determined before the random election seed K
is determined, for the same reason that ballot IDs should be determined before
the random election seed is determined: to prevent “gerrymandering.” Once
B is determined, it remains fixed, even if the number of ballots in the election
changes somewhat (e.g. if a box of previously unconsidered ballots is discovered
and approved for inclusion in the tally).

If B is very large (much larger than N), then many batches will be empty,
and most nonempty batches will have size 1. In this case BatchVote reduces to
plurality voting.

We remark that the use of a cryptographic hash function makes it harder
for an adversary who can somehow contol the seed (but not the ballots them-
selves) to manipulate the election, in much the same spirit as the suggestions of
Faliszewski et al. [5] on the use of computational complexity to protect elections
from manipulation.
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3.7 Random seed K

BatchVote uses a random “seed” K to help determine which batch a ballot is
placed in. The seed K is also used to help break ties.

The seed K may be determined by a dice-rolling ceremony after all votes
are cast. This gives a result unpredictable to an adversary. The ceremony is
performed after all cast ballots have been collected, to prevent an adversary
from manipulating the ballot IDs.

If K were predictable, an adversary who can assign ballot IDs might be
able to effect the equivalent of “gerrymandering”—giving his own candidate an
advantage in many batches, while the opponent gets an advantage in a few.

Our proposed process of generating a random seed after the votes are as-
signed ballot IDs prevents this sort of “gerrymandering.”

3.8 Mapping ballot IDs to batches

We propose a method based on the use of a “cryptographic hash function”
(specifically, SHA256) to compute the assignment of ballots to batches.

The batch number is determined by the hash of the random seed K con-
catenated with the ballot ID, modulo B. (The fact that 2256 is not an exact
multiple of B is ignorable here.)

This pseudorandom method is effectively indistinguishable from a truly ran-
dom mapping, for someone with a feasible amount of computational power who
doesn’t know the key K. We thus treat this mapping as a random mapping of
ballot IDs to batches.

Appendix A gives details of our proposal.

3.9 Variability of batch sizes

BatchVote has a variable batch size. The number of ballots that end up in a
given batch is a random variable. Different batches may have different sizes.

The size N (b) of batch b is a random variable with a binomial distribution
Bin(k;N, p), where the probability p = 1/B that a ballot ends up in bin b.

The standard Poisson approximation to the binomial, where λ = nT/B is
the mean batch size, gives us

P [N (b) = k] ≈ e−λλk/k! .

BatchVote accommodates this variability by giving each batch a weight equal to
its size in the final plurality election. Empty batches are ignored.

Thus, each voter has the same effective “weight.” A ballot in a batch of
size k has an effective weight of (1/k) ∗ k = 1. BatchVote feels similar to the
U.S. Electoral College, where the number of electoral votes a state gets depends
upon that state’s population.

See Section 7 for some discussion of other ways that we considered but
rejected for dividing ballots into batches.
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3.10 Applying g to each batch

The application of social choice function g to each batch is straightforward,
assuming that g is applicable to a batch of any size.

The social choice function g may need to resolve ties. As some batches may
be small, ties may be fairly common. Lack of space precludes our giving full
details of our proposal, but, roughly speaking, when g is applied to batch b it is
supplied a “tie-breaking seed” Kb derived pseudorandomly from K and batch
index b (say by hashing together K and b).

Appendix B provides a concrete suggestion as to how this might be done.

3.11 Efficiency

BatchVote computes the election outcome in time equal to the sum of the time
taken to assign ballots into batches, plus the time taken to compute each batch
outcome using g, plus the time taken to compute the weight plurality overall
result. In practice, all of these operations are quickly performed, assuming that
g is efficient.

4 Properties

4.1 BatchVote-specific properties

Fairness to voters Because each batch has weight equal to the number of
votes it contains, BatchVote is fair to voters—each voter is treated equally.

4.2 General properties

What properties does f inherit from g and from Plurality, since it is a blend of
the two systems?

Clearly, in order for BatchVote to have some property, then both Plurality
and g must have that property, since when B is large BatchVote becomes Plu-
rality, and when B = 1, BatchVote is g. Wikipedia provides a nice list of voting
system properties1.

Unfortunately, plurality itself has few voting system properties. We mention
two properties here.

Ballot format Obviously, the ballot format for f is identical to the ballot
format for g.

Monotonicity It is easy to see that if g is monotone, then so is f . (Mono-
tonicity means that moving a candidate towards the front of a ballot can only
help that candidate.)

1 https://en.wikipedia.org/wiki/Voting_system
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BatchPlurality versus Plurality BatchPlurality is similar to plurality: there
is precinct level tabulation and reporting of precinct-level results to a central
tabulation. However, with BatchPlurality, precincts do not report the candidate
counts, just the winner for the precinct and the overall number of voters. Thus
BatchPlurality is closer to how the Electoral College works.

5 Auditing

Efficient post-election audits are derived from Wald’s sequential tests of statis-
tical hypotheses [27, 28].

5.1 Ballot-polling audits

The ballot-polling post-election audit studied here is a simple modification of
the ballot-polling audit method introduced by Lindeman, Stark, and Yates [10].

Consider a pair of candidates (w, `) where w is a reported winner and ` is
a reported loser. Candidate w really beat candidate ` in the batch plurality
contest if

∑
b:t(b)=wN

(b) >
∑
b:t(b)=`N

(b), i.e., if

pw` ≡
∑
b:t(b)=wN

(b)∑
b:t(b)=wN

(b) +
∑
b:t(b)=`N

(b)
> 1/2. (1)

Suppose we draw a random batch B such that Pr{B = b} = N (b)/N . Condi-
tion on the event that the true winner of batch B is either w or `. Then the
(conditional) probability that the true winner of the batch is w is pw`. Wald’s
sequential probability ratio test [27] can test the hypothesis that pw` ≤ 1/2

against the alternative that pw` =
∑

b:w(b)=w
N(b)∑

b:w(b)=w
N(b)+

∑
b:w(b)=`

N(b) , the reported

fraction of the weighted votes for either w or ` that are reported votes for w.

5.2 Comparison audits

This section describes a comparison audit for BatchVote.
We have a weighted plurality contest with B batches (voters). Batch b

contains N (b) ballots. Let N ≡
∑
bN

(b) be the total number of ballots cast.
Let C denote the set of possible election outcomes. (Here C standsfor “candi-

dates,” although an outcome might involve more than one candidate winning).
Let w(b) be the reported outcome (reported winner) for batch b and let t(b)

denote the actual (true) outcome for batch b (the outcome that a manual audit
of the batch would show).

The total reported weighted vote for outcome c is

Rc ≡
∑

b:w(b)=c

N (b). (2)

The reported winner of the contest is w ≡ arg maxcRc (assuming no ties).
Similarly, the actual (true) winner of the contest is t ≡ arg maxcAc.
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The reported losers are the candidates L ≡ {` ∈ C : ` 6= w}.
To simplify the notation, define

R(b)
c ≡

{
N (b), if w(b) = c

0, else.
(3)

That is, R
(b)
c is the number of ballots in batch b if batch b was reported to have

voted for outcome c, and is zero if batch b was reported to have voted for any
other outcome. Thus

Rc =
∑
b

R(b)
c . (4)

For ` ∈ L, define the reported pairwise margins:

Rw` ≡ Rw −R` . (5)

This will be positive for all ` ∈ L if and only if w is the reported winner w.
The total actual weighted vote for candidate c is

Ac ≡
∑

b:t(b)=c

N (b) . (6)

Define

A(b)
c ≡

{
N (b), if t(b) = c

0, else ,
(7)

so
Ac =

∑
b

A(b)
c . (8)

The true winner is w if Aw > A` for all ` ∈ L that is, if the actual pairwise
margins

Aw` ≡ Aw −A` > 0, ∀` ∈ L. (9)

We now give a simple auditing procedure based a sufficient condition for the
true winner to be w, couched in terms of a single scalar.

Aw` = Aw −A`
=

∑
b

A(b)
w −

∑
b

A
(b)
`

= Rw` −
∑
b

(
(A

(b)
` −A

(b)
w )− (R

(b)
` −R

(b)
w )
)
. (10)

The correct outcome is w if and only if for all ` 6= w,

Rw` −Aw` =
∑
b

(A
(b)
` −A

(b)
w )− (R

(b)
` −R

(b)
w ) < Rw` . (11)

Define

γ(b) ≡ max
` 6=w

(A
(b)
` −A

(b)
w )− (R

(b)
` −R

(b)
w )

N (b)Rw`
. (12)
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If ∑
b

γ(b)N (b) < 1 , (13)

then for all ` 6= w, ∑
b

(A
(b)
` −A

(b)
w )− (R

(b)
` −R

(b)
w ) < Rw` , (14)

i.e., w is the true winner.
Select a batch B at random, with probability N (b)/N of selecting batch b. If

batch b is selected, it can be tallied by hand, revealing A
(b)
c for all c; then γ(b)

can be calculated. Let X = γB, the value of γ for the randomly selected batch.
Then

IEX =
∑
b

γ(b) Pr{B = b} =
1

N

∑
b

γ(b)N (b) . (15)

Hence, w is the true winner if IEX < 1/N . A sequential test of the hypothesis
IEX ≥ 1/N can be used to construct a risk-limiting audit with risk limit α:
continue to audit until either that hypothesis is rejected at significance level α
or there has been a full hand count.

5.3 Masking of errors

In the presence of no errors, the BatchX method can be viewed as paying a
penalty of a factor of λ compared to doing an audit of X on the entire set of
ballots. Of course, this statement only makes sense when X has an efficient
audit method defined for it, which it may not.

But errors (discrepancies discovered between paper ballots and their elec-
tronic counterparts) may be masked here, as changing a ballot in a batch to its
correct value may have no effect on the batch outcome.

6 Experimental results

We have code available on github2. We have experimented with both synthetic
data sets and data sets from real elections3.

We also estimated audit workloads versus λ; see Figure 2. The number of
batches that need to be examined for a risk limit of α = 0.05 is about 6/m2

for a ballot-polling audit and about 6/m for a comparison audit, where m is
the margin between the top two candidates. The estimated audit workload is
then λ times larger, since auditing a batch requires looking at about λ ballots.
Note that the workload peaks when the winner changes. Our recommendation
for choosing λ = 10C is an attempt to choose a point a bit to the right of the
winner-crossover peak, if it exists.

2The github repo is https://github.com/ron-rivest/2016-batchvote-code. This is cur-
rently private, but will be made public.

3Real data sets available at: http://rangevoting.org/TidemanData.html
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Figure 2: Comparison audit workload estimatefor BatchRankedPairs for the
Burlington VT 2009 Mayoral Race data.

7 Variants

This section describes possible variations of BatchVote.

Replication One might replicate each ballot T times, for some T > 1, giving
extra flexibility to the process allocating ballots to batches.

Fixed-size batches We explored a number of ways of forcing each batch to
have very nearly the same size. For example, one could require all batches to
have a fixed size λ (an integer). (Using a replication factor T = λ may help.)

However, no alternative method seemed sufficiently simple and “random;”
we prefer the proposed BatchVote method for its simplicity.

Using replications and all subsets of size λ BatchVote is sensitive to
the random seed K. For a close election, a different value of K might yield a
different election outcome. This is not surprising, as K controls tie-breaking.

However, K also controls the placement of ballots in batches, and one might
prefer to have a social choice function that is somehow insensitive to the allo-
cation of ballots to batches.

One could consider all subsets of size λ, and apply plurality to their batch-
level results. However, such an approach is too expensive.

MajorityThenBatch or CondorcetThenBatch First check to see if there
is a majority or Condorcet winner. If so, then proclaim that candidate to be the
winner. Else, proceed with the BatchVote method. (This is a common approach
for forcing a voting system to be Majoritarian or Condorcet.)

Question: How to audit such combined systems?

Write-in votes We can treat write-in candidates as regular candidates; de-
riving the list of candidates from ballots cast.

12



Multiple races How should one use the BatchVote method when there are
multiple races in an election? In our description so far, we have implicitly
assumed that there is only one race being audited. See Stark [19, 21] and
Benaloh et al. [1] for approaches for addressing this issue.
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Appendix A. Possible details of batch assignment
method.

We illustrate the proposed procedure with an example. Suppose the random seed K
is the 24-digit decimal number

K = 067541877022641091953584

and suppose that a ballot has the 37-character ballot ID

ID = 2016-11-08-maricopa-az-1562-7631-5515 .

Then the batch to which this ballot is assigned is starting with the concatenation of
these two strings—that is:

K||ID = 0675418770226410919535842016-11-08-maricopa-az-1562-7631-5515 .

Applying SHA256 to this byte string yields the hexadecimal result

db5d8603dcf6e4e122e7b0ff231d4069cb4626f45ab1686cb1b6dd9d424480d9

which, when interpreted as a base-16 integer, yields

99221755554920309225844359348330608520995333449296550547451312649783275192537

(decimal). Finally, we take the result modulo B, the number of batches, and add one.
Suppose B = 10000. Then the batch number for this ballot is

2538 .

Because the result is obtained modulo B, plus one, the batches are numbered 1 to B,
inclusive.

Appendix B. Guidelines for breaking ties

We provide each of the B invocations of g with its own random number seed to use in
tie-breaking. Suppose the overall election-random seed is

067541877022641091953584 .

Suppose we wish to provide the 15th invocation of g with its own tie-breaking seed.
Then the tie-breaking seed K(b) provided will be

K(b) = 067541877022641091953584:batch:15

That is, the overall election seed, followed by “:batch:”, followed by the batch number
b in decimal, for b = 1, 2, . . . , B. This seed can be concatenated with other values
within g to break ties, and then SHA256 may be applied to the result.

Of course, the specification of g needs to clearly specify how ties are to be broken,
given the tie-breaking seed K(b). (We have, for example, python code that illustrates
this for various social choice functions g.)

Each instance of g receives a different tie-breaking seed K(b), to remove the possi-
bility of obviously correlated tie-breaking between the various batches. Although the
seeds for different batches are related, they are nonetheless different, and the pseudo-
random character of SHA256 makes it computationally infeasible to find statistical
correlations in their tie-breaking use.
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Notation
This note summarizes notational conventions we use in this paper.

B Number of batches.

b A particular batch. b = 1, 2, . . . , B.

C The set of candidates.

C Number of candidates (possble election outcomes.

c A particular candidate. (Also w, ` sometimes, for winner, loser.)

n Number of cast votes.

T Replication factor; how many times each vote is replicated.

N Number of ballots being tabulated; N = nT .

N (b) Number of ballots in batch b (so
∑

bN
(b) = N).

λ Average batch size (λ = N/B).

Rc Total reported tabulation in favor of candidate c. (i.e. electronic tabulation)

Ac Total actual tabulation in favor of candidate c (i.e. paper ballot tabulation)

R
(b)
c Reported tabulation for candidate c in batch b (Either N (b) or 0).

A
(b)
c Actual tabulation for candidate c in batch b. (Either N (b) or 0).

Rw` Reported margin of candidate w over candidate ` (Rw` = Rw −R`).

Aw` Actual margin of candidate w over candidate ` (Aw` = Aw −A`).

R
(b)
w` , A

(b)
w` Margins particularized to batch b.

t(b) True winner of batch b.

w(b) Reported winner of batch b.

K Random number seed for the election.

K(b) Random number seed for batch b.

B A randomly selected batch, with Pr{B = b} = N (b)/N .
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