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Abstract: Aggregation states of amyloid beta peptides for amyloid beta Aβ1–40 to Aβ1–42 and
Aβp3–42 are investigated through small angle neutron scattering (SANS). The knowledge of
these small peptides and their aggregation state are of key importance for the comprehension
of neurodegenerative diseases (e.g., Alzheimer’s disease). The SANS technique allows to study the
size and fractal nature of the monomers, oligomers and fibrils of the three different peptides. Results
show that all the investigated peptides have monomers with a radius of gyration of the order of
10 Å, while the oligomers and fibrils display differences in size and aggregation ability, with Aβp3–42

showing larger oligomers. These properties are strictly related to the toxicity of the corresponding
amyloid peptide and indeed to the development of the associated disease.

Keywords: beta amyloid; aggregation state; small angle neutron scattering; Alzheimer’s disease

1. Introduction

The formation of neuritic plaques throughout the grey matter of the brain, associated with
neurofibrillary tangles and neuronal loss, is responsible for neurodegenerative illnesses, such as the
Alzheimer’s disease (AD) [1]. Electron microscopy studies have revealed that the plaques comprise
a central mass of extracellular filaments called amyloid fibrils that radially extend toward the
periphery, where they are tangled with dystrophic neurites as well as astrocytic and microglial
processes [1]. Unlike extracellular amyloid fibrils, the neurofibrillary tangles are fibril aggregates of the
microtubule-associated protein tau, which has become hyperphosphorylated and accumulates inside
the cells themselves [1].

Clinicopathological correlation studies have established that the neuritic plaque build-up occurs
primarily in the brain before the onset of cognitive deficits, while neurofibrillary tangles and neuronal
and synaptic loss are directly related to cognitive decline [1,2].

While many questions about the importance of plaques in the pathogenesis of AD remain
unsolved, the abnormal accumulation of neuritic plaques in various areas of the brain in AD
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precedes and, with time, is invariably associated with neurodegeneration [2,3]. While the frequency
and topographical extension of neuritic plaques increase with disease progression [4,5], their size
inexplicably does not significantly grow over an average 50 µm in diameter [6,7].

Plaques contain amyloid fibrils made up of aggregates of small peptides, of 39–43 amino acids in
length, called amyloid beta (Aβ), resulting from the sequential proteolytic cleavage of the amyloid
precursor protein (APP) by the enzymes β- and γ-secretases [8]. Among Aβ polypeptides, Aβ1–42

shows the highest aggregation propensity, and its deposition precedes the deposition of Aβ1–40 in
vivo [9]. In addition, N-truncated and pyroglutamate (pGlu)-modified Aβ peptides, e.g., Aβ5–40/42,
Aβ3–40/42 and Aβp5–40/42, are major constituents of amyloid deposits in sporadic and inherited AD
and show an enhanced aggregation propensity compared to full-length peptides [9]. pGlu-modified
peptides are prominent in AD and have been postulated to initiate amyloid plaque formation [9,10].
However, Bayer et al. [11] hypothesized that N-truncated Aβ peptides form, preferentially, higher
molecular weight soluble toxic oligomers which have a reduced tendency to aggregate in plaques [11].

Despite the enormous advances of the knowledge on the biochemical composition of plaques,
the dynamics of the plaque deposition in vivo throughout the cerebral cortex, the “stop and go”
factors leading to the formation of innumerable plaques of limited size, remain largely unknown.
In fact, the ability of different Aβ polypeptides to aggregate into soluble oligomers and form insoluble
protofibrils and fibrils can be explored only in vitro. Several experimental techniques are available to
measure protein aggregation, but only a few can measure kinetics of the early stage of aggregation
from monomers to small oligomers and fibril formation in aqueous solvents [12]. Recently, the small
angle neutron scattering (SANS) technique was shown to be very useful to study aggregates and
aggregation kinetics of small peptides like Aβ [13].

In the present study, SANS measurements are carried out to compare the aggregation state and the
size of aggregates of monomers, oligomers and fibrils of some peptides involved in neurodegenerative
pathologies, such as Alzheimer’s disease and Parkinson’s disease with dementia [14]. The aim of this
work is extending the analysis made in [14] on Aβ1–40 to other peptides such as Aβ1–42 and Aβp3–42,
using the first as a basis for comparison. For this reason, in the following analyses it will be specified
when data and results from [14] have been used.

2. Results and Discussion

2.1. Formation of Synthetic Aβ1–40, Aβ1–42 and Aβp3–42 Aggregates

The in vitro presence of monomers, and formation of aggregates of the different amyloid β

peptides, was confirmed by running all samples in SDS-PAGE, followed by silver staining. However,
representative SDS-PAGE has been used just to verify the presence of monomer, oligomer and fibrillary
aggregates; the silver staining analysis is not intended as a definitive identification of all the various
aggregation species prepared in vitro [15] and finally observed by SANS.

In monomeric preparations, Aβ1–40, Aβ1–42 and Aβp3–42 peptides show a band at about 4 kDa;
however, Aβ1–42 and Aβp3–42 monomeric preparations also show the presence of spontaneous
aggregates of low molecular weight (Figure 1). As expected, in oligomeric conditions, Aβ1–42 and
Aβp3–42 show bands of low molecular weight in addition to the band at 4 kDa corresponding to the
monomers; moreover, Aβp3–42 shows also high molar weight (∼37 kDa) oligomers. In contrast, in
oligomeric conditions Aβ1–40 does not form SDS stable oligomers [15], showing only the monomer
band in aggregating conditions. In fibrillar conditions Aβ1–40, Aβ1–42 and Aβp3–42 only show the
monomer band, but not the low or high molecular weight oligomers, whereas fibrils are upstream in
the gel column out of the reference molecular mass (column on the left in Figure 1).



Int. J. Mol. Sci. 2019, 20, 4126 3 of 9

Figure 1. (a) Image from SDS-PAGE analysis. Silver stain of synthetic aggregates and monomers of
Aβ1–40, Aβ1–42 and Aβp3–42 peptides. In monomeric preparations the peptides show a band at '4 kDa;
Aβ1–42 and Aβp3–42 form spontaneous aggregates of low molecular weight (in the 11–19 kDa range).
Synthetic Aβ1–42 and Aβp3–42 show bands of low and high molecular weight in aggregating conditions,
while synthetic Aβ1–40 did not form oligomers and fibrils in the same conditions. The letters under the
images describe the aggregation state of the samples (M = monomers, O = oligomers, F = fibrils) while
the leftmost image is the molecular marker reference. The structure of (b) Aβ1–40 (PDB ID 2LFM) and
(c) Aβ1–42 (PDB ID 1IYT) is shown on the right side.

2.2. SANS Results and Discussions of the G, Rg and d Parameters

Figure 2 shows fits to the SANS data using the Beaucage model in two Q ranges (see the
section “Materials and Methods”), with the background levels obtained from fits to high Q values.
For comparison, the data from monomers, oligomers and fibrils for Aβ1–40, previously reported in [14],
are also shown. Not surprisingly, our analysis shows that, for monomers in the high Q region, the
radius of gyration (Rg) has a size of about 10.6 Å for all the peptides (see Table 1), as expected from the
literature [16]. For low Q values, Rg ranges from 175 to 250 Å, consistent with an aggregate made up
of many monomeric unities. The values of the exponent d are consistent with the assignment, ranging
between 2.4 and 3 for low Q values, suggesting the presence of collapsed chains, while being close to 1
for high Q, according to an open chain conformation [17]. The Guinier scale factor G is about 1 cm−1

for low Q and ranges from 0.19 cm−1 to 0.32 cm−1, suggesting, in both cases, small scattering objects, a
result coherent with a low degree of polymerization.

The oligomer data, shown in the middle panel of Figure 2, that fit to the high Q region give Rg

values of about 8.2 Å, smaller than those from monomers, which can be explained by the presence of a
surface layer with higher density, as reported in [13]. For low Q values, Rg has a size ranging from
380 Å to 540 Å (compatible with the size of medium-size oligomers [18]). The d exponent is about
3 at low Q and about 1 at high Q for all three peptides, similar to that observed for the monomers.
In contrast, the Guinier scale factor for the low Q region is larger for oligomers than for monomers,
suggesting a higher degree of aggregation. For the high Q region, the value is around 0.1 cm−1, like
for the monomers.

The behavior of fibril samples in the high Q region is similar to that of the oligomers with the
values Rg and d being similar at about 8 Å and 1.3, respectively. The value of the parameter G
(0.2 cm−1) is similar to that of monomers and slightly larger than that of the oligomers.
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Figure 2. Best fit for small angle neutron scattering (SANS) spectra for monomers (top), oligomers
(middle) and fibrils (bottom) of the Aβ1–40, Aβ1–42 and Aβp3–42 peptides. The data are fitted with the
Beaucage model in two wave-vector regimes: At low Q values (Q < 0.045 Å−1) and at high Q values
(0.045 Å−1 < Q < 0.5 Å−1), highlighted with different colors. The color horizontal lines represent the
background value obtained from high Q data fit for each system. Some data have been scaled by a
factor reported in the figure legend to avoid plots overlapping. Note that the experimental error bars
are smaller than symbol size (except for a few points).

Table 1. Fit parameters obtained by using the Becauge model at low Q (Q < 0.045 Å−1) and at high Q
(0.045 < Q < 0.5 Å−1).

G (cm−1) Rg (Å) d bkg (cm−1)

Aβ1–40

low Q
Monomers 1.30 ± 0.07 253.3 ± 9.6 2.8 ± 0.2 0.596 ± 0.006
Oligomers 2.50 ± 0.56 377.9 ± 40.6 3.1 ± 0.1 0.371 ± 0.001
Fibrils 11.72 ± 1.34 705.6 ± 51.7 2.4 ± 0.1 0.570 ± 0.002

high Q
Monomers 0.19 ± 0.01 10.9 ± 0.4 1.2 ± 0.2 0.427 ± 0.007
Oligomers 0.09 ± 0.01 8.1 ± 1.0 1.3 ± 0.5 0.278 ± 0.012
Fibrils 0.17 ± 0.03 8.4 ± 0.9 1.3 ± 0.6 0.409 ± 0.026

Aβ1–42

low Q
Monomers 0.88 ± 0.03 174.8 ± 5.7 3.1 ± 0.4 0.857 ± 0.006
Oligomers 2.61 ± 0.72 425.9 ± 45.1 3.1 ± 0.4 0.392 ± 0.002
Fibrils 11.49 ± 3.22 879.6 ± 85.8 2.1 ± 0.1 0.753 ± 0.002

high Q
Monomers 0.30 ± 0.01 10.1 ± 0.4 1.1 ± 0.2 0.575 ± 0.014
Oligomers 0.10 ± 0.02 8.1 ± 1.0 1.3 ± 0.8 0.294 ± 0.019
Fibrils 0.24 ± 0.06 7.8 ± 1.2 1.3 ± 0.8 0.525 ± 0.058

Aβp3–42

low Q
Monomers 1.15 ± 0.02 186.1 ± 3.7 2.4 ± 0.1 0.855 ± 0.003
Oligomers 6.14 ± 1.60 541.5 ± 47.0 3.1 ± 0.1 0.375 ± 0.001
Fibrils 11.64 ± 0.69 771.2 ± 33.1 2.0 ± 0.1 0.547 ± 0.002

high Q
Monomers 0.32 ± 0.01 11.3 ± 0.4 1.0 ± 0.1 0.567 ± 0.011
Oligomers 0.09 ± 0.01 8.4 ± 0.9 1.3 ± 0.6 0.285 ± 0.014
Fibrils 0.16 ± 0.02 8.3 ± 0.8 1.3 ± 0.6 0.396 ± 0.022
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Therefore, within the fibril samples, monomeric species are present, although they show a
dimension that is smaller than that within the monomeric solution. Again, this is compatible with the
presence of a surface layer with higher density [13]. In contrast, in the low Q region, fibrils have much
larger Rg compared to monomers or oligomers (in some cases even five times larger), with Aβ1–40

(706 ± 52 Å) being smaller than Aβp3–42 (771 ± 33 Å), than Aβ1–42, which shows the highest value
(880 ± 85 Å). The parameter d varies between 2 for Aβp3–42 and 2.4 for Aβ1–40, indicating the presence
of collapsed chains with an increasing packing degree. Finally, G takes on the value of about 11 cm−1

for all the three peptides. This value is higher with respect to that of monomers and oligomers because
of the presence of bigger scattering objects.

It should be noted that, although the uncertainties given in Table 1 are strictly related to the
analysis performed with the Beaucage model, they provide information about the distribution width of
the corresponding values. In addition, it is important to highlight that the obtained values also depend
on the dispersity of the different species in solutions and that this factor contributes to their variability,
too. Hence, a greater uncertainty in Rg means a bigger size distribution. This is the case, for example,
for the oligomers and fibrils for the Aβ1–42 peptide. The model used to investigate the peptides allows
differentiation on the basis of size, highlighting the co-existence of two different phases. The value of
the parameters, especially at low Q, makes it possible to distinguish different kinds of aggregates in
solution. For instance, it is noteworthy that our results show that the oligomers of Aβp3–42 are greater
and show a higher degree of polymerization with respect to the oligomers from the other two peptides.

The SANS results presented here are consistent with findings from dynamic light scattering
analysis [13] made on Aβ1–40 and Aβ1–42, where the formation of aggregates was monitored with time.
That same study finds two relaxation processes, at 20 µs and 5000 µs, corresponding to objects with a
hydrodynamic radius ranging from 20 Å to 5000 Å.

As previously mentioned, the signals for all the SANS measurements shown in Figure 2 are
affected by a background. By subtracting this contribution from the signal and plotting the subtracted
data versus Q multiplied by the hydrodynamic radius (Q · RH), it is possible to verify the data range in
which the transition from the Guinier to the Porod regime (at Q · RH = 1) takes place. Moreover, from
the slope of the high Q · RH data in a log–log plot, information about the presence of fractal aggregates
can be inferred [19].

Figure 3 shows such plots for all the investigated amyloid samples, yielding average slopes of
the linear fits in the high (Q · RH) region of about 1.06, 1.39 and 1.57 for monomers, oligomers and
fibrils, respectively. The precise and specific values are reported in the corresponding figure legend.
The obtained values suggest the presence of an open structure for the monomers, a more compact
one for the oligomers and the so-called diffusion limited cluster–cluster aggregation (DLCCA) [19]
for the fibrils. However, the small observed differences among the slopes can be ascribed to a slightly
different aggregation ability of the different peptides [19,20].

It is worth mentioning that the signal from the oligomers is systematically lower than the ones
from monomers and fibrils. This effect could be due to the choice of the solvent (HAMs F12) that
promotes the aggregation but that also disappears during the lyophilization process, differently from
the DMSO and HCl used for the monomer and fibril samples, respectively [14]. This could also be
the cause of the bigger spread shown by oligomer data at the highest values of Q · RH , especially for
Aβ1–42 and Aβp3–42. Furthermore, it must be taken into account that one of the most important forces
that drives aggregation phenomena is the hydrophobic interaction, which is in competition with the
hydrophilic one [21]. Hence, the physical properties of the solvent as well as their temperature and
concentration dependencies have great relevance in the development of Alzheimer’s disease [22].
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Figure 3. Background subtracted data as a function of Q · RH , with RH = 13 Å, in a log–log plot. for
monomers, oligomers and fibrils of the three investigated peptides. Data of fibrils in the top and middle
panels have been rescaled by multiplying for 1.8 to avoid overlaps. We have performed a linear best-fit
for Q · RH ≥ 3.5 (Porod region) to get indications about the fractal structure of the systems and the
obtained slopes are reported in the corresponding legend.

3. Materials and Methods

3.1. Preparation of Aβ Aggregates and Their Analysis by SDS-PAGE

Synthetic Aβ1–40, Aβ1–42 and Aβp3–42 peptides were purchased from Anaspec (Fremont, CA,
USA) and American Peptide (Sunnyvale, CA, USA). As previously reported in [15], the aggregates
of peptides were obtained via the Dahlgren’s [23] modification of Lambert’s protocol [24]. Firstly,
6 mg of each peptide was dissolved to 1 mM in 100% hexafluoroisopropanol (HFIP; catalog number
H8508; Sigma-Aldrich S.r.l., Milan, Italy) and sonicated for about 20 min, to disrupt eventual previous
amorphous aggregates; then HFIP was removed under vacuum, and the peptides (Aβ1–40, Aβ1–42

and Aβp3–42 monomers) were dissolved in anhydrous dimethyl sulfoxide (DMSO bought from
Sigma-Aldrich S.r.l., Milan, Italy) to 5 mM and sonicated for 10 min. At this point, in order to
obtain oligomers or fibrils, two different incubation protocols were followed. For the oligomers,
the monomeric solutions were diluted to 2 mg/mL in cold HAM’s-F12 culture medium (Euroclone)
and kept for about 12 h at 4 ◦C. For fibril formation, the samples were diluted in HCl 10 mM and
incubated at 37 ◦C for about 12 h. For un-aggregated conditions, the 5 mM Aβ1–40, Aβ1–42 and Aβp3–42

monomers in Me2SO were diluted directly into H2O. All samples were lyophilized and stored at
–20 ◦C. The samples were finally thawed at room temperature and resuspended in 0.5 mL of deuterium
oxide (D2O) at concentrations of 2 mg/mL before the neutron study.
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3.2. Preparation of Aβ for SANS2D

Samples of Aβ1–40, Aβ1–42 and Aβp3–42 monomers, oligomers and fibrils were prepared with a
concentration of 2 mg/mL and filled into 2 mm path length standard SANS ‘tank’ cuvettes for the
largest beam size possible with the aim to improve the signal-to-background ratio. All measurements
were made at 37 ◦C to simulate physiological conditions. Measurements were taken on 3 samples
of every peptide and each aggregation state. The duration of a single measurement was 2 h per
measurement and 3 repetitions were made to improve the statistics and to check for any changes
as a function of time. The three repeats refer to runs registered at 2, 4 and 6 h from the solution
production. It was important to keep the total measurement time below 10 h, which is the time of
confirmed stability at physiological temperatures. In addition to these, 3 solvent samples of the peptide
media in each case (DMSO/F12 for monomers and oligomers; HCl for fibrils) were also measured for
subtraction purposes during the data analysis.

3.3. SDS-PAGE Analysis

Preliminary analyses concerning the structure of the aggregates were executed through sodium
dodecyl sulfate–poly-acrylamide gel electrophoresis (SDS-PAGE) [25]. The formation of Aβ aggregates
was assessed through SDS-PAGE analysis without heat denaturation and followed by silver staining.
The monomers and the aggregated forms of the peptides (about 1µg of monomers for each sample)
were run in 16% SDS-PAGE tris-tricine buffer and, subsequently, the gels were fixed in 40% methanol
and 10% acetic acid for about 12 h and then were silver stained (with the Bio-Rad Silver Stain kit).

3.4. The Small Angle Neutron Scattering Technique

SANS uses elastic neutron scattering at small scattering angles to investigate the structure of
materials at a mesoscopic scale. Due to the neutron–matter interaction, SANS has high sensitivity to
light elements and the scattering pattern is analyzed to provide information about the size, shape
and orientation of some components of the sample [26]. The measurements were carried out on the
SANS2D instrument at ISIS pulsed neutron and muon source [14,27]. Samples were measured in
circular quartz cuvettes at 37 ◦C. The incident beam was collimated at 12 mm with the front and rear
detector at 4 and 2.4 m from the sample, respectively. This configuration allowed for a Q range of
0.005 Å−1 < Q < 1.5 Å−1 to be covered in a single measurement. Data were corrected and reduced to
an absolute scale using a polymer standard [28].

Since no significant differences were found for different runs belonging to the same sample
(the repeats), the data were merged to increase measurement statistics, confirming at the same time
the stability of the samples diluted in D2O and the safety of the neutron–matter interaction within the
duration of the experiment (<10 h).

3.5. SANS Analysis

The SANS data were treated and analysed following the same protocol as used for the analysis
of data for the Aβ1−40 peptide, as described in our previous work [14]. The analysis is based on the
Beaucage model [17,18] and gives information such as the Guinier scale factor (G), the Porod scale
factor (C), the Porod exponent (d) and the radius of gyration (Rg). The latter represents an estimation
of the particle size and is related to the hydrodynamic radius (RH) by Rg = 0.774 RH . We used the
model and the data analysis was performed in two different wave vector regions (Q < 0.045 Å−1 and
0.045 Å−1 < Q < 0.5 Å−1) because, as suggested by the SDS-PAGE analysis, the system consists of
two phases. More specifically, the basic unit (i.e., the monomer) is always present (and detectable
also in the high Q region) together with the corresponding aggregate state of dimensions gradually
increasing from oligomers to fibrils. By means of the Beaucage model, it is possible to infer the shape
and size of the proteins in the different aggregation states from the corresponding values of the G,
Rg and d parameters.
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4. Conclusions

The data presented here extend the study of the aggregation states of amyloid beta peptides
(begun with the work reported in [14] for Aβ1–40) to Aβ1–42 and Aβp3–42 using SANS. Since the
aggregates are responsible for neurodegenerative diseases (e.g., Alzheimer’s disease), it is important to
understand their structure and aggregation states. The SANS technique has shown a great capability
in discriminating the size and fractal nature of the monomers, oligomers and fibrils of the different
peptides. For this reason, SANS turned out to be a promising and engaging technique for the study
of peptides beyond the more conventional ones. Our data show that, although the monomers of the
three investigated peptides show a similar radius of gyration (Rg) of about 10 Å, the oligomers and
fibrils show quite different sizes and aggregation abilities. Our data support the Bayer et al. hypothesis
that Aβp3–42 has a greater propensity to form low and intermediate molecular weight soluble toxic
oligomers and reduced non-toxic fibrillization activity than Aβ1–42, explaining the different toxicity
of the two peptides [11]. This information is crucial for the determination of the toxicity of the
corresponding amyloid peptide and can help to foresee the rate of the illness development.
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