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Abstract: MicroRNAs (miRNAs) are approximately 22-nucleotide-long, small non-coding RNAs
that post-transcriptionally regulate gene expression. The biogenesis of miRNAs involves multiple
steps, including the transcription of primary miRNAs (pri-miRNAs), nuclear Drosha-mediated
processing, cytoplasmic Dicer-mediated processing, and loading onto Argonaute (Ago) proteins.
Further, miRNAs control diverse biological and pathological processes via the silencing of target
mRNAs. This review summarizes recent findings regarding the quantitative aspects of miRNA
homeostasis, including Drosha-mediated pri-miRNA processing, Ago-mediated asymmetric miRNA
strand selection, and modifications of miRNA pathway components, as well as the roles of RNA
modifications (epitranscriptomics), epigenetics, transcription factor circuits, and super-enhancers in
miRNA regulation. These recent advances have facilitated a system-level understanding of miRNA
networks, as well as the improvement of RNAi performance for both gene-specific targeting and
genome-wide screening. The comprehensive understanding and modeling of miRNA biogenesis and
function have been applied to the design of synthetic gene circuits. In addition, the relationships
between miRNA genes and super-enhancers provide the molecular basis for the highly biased
cell type-specific expression patterns of miRNAs and the evolution of miRNA–target connections,
while highlighting the importance of alterations of super-enhancer-associated miRNAs in a variety of
human diseases.

Keywords: microRNA; RNAi; Drosha; Argonaute; biogenesis; super-enhancer; disease pathogenesis;
synthetic biology

1. Introduction

MicroRNAs (miRNAs) are approximately 22-nucleotide-(nt)-long, small regulatory non-coding
RNAs (ncRNAs) [1,2]. The first known miRNA was described in C. elegans in 1993 [3,4]. miRNA research
was subsequently accelerated by the discovery of RNA interference (RNAi) in 1998 [5] and intensive
molecular searches for similar endogenous small RNAs in various species in 2001 [6–8]. Thus far,
more than 1800 and 1100 miRNA genes have been reported in humans and mice, respectively [9].
Further, miRNAs mediate post-transcriptional regulation of gene expression in a variety of species by
recognizing multiple target mRNAs via sequence complementarity and (typically) repressing target
RNAs. Numerous studies have demonstrated the widespread importance of miRNAs in development,
normal physiology, and disease [1,10].

In this review, we summarize recent advances in miRNA research by focusing on the quantitative
features of miRNA biogenesis and function; regulation by RNA modifications (epitranscriptomics),
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epigenetics, transcription factor circuits, and super-enhancers; and their applications for synthetic
biology and the understanding of disease pathogenesis.

2. Overview of miRNA Biogenesis and Function

The biogenesis of miRNA is mediated by multiple steps: transcription of primary miRNA
transcripts, nuclear processing by Drosha, nucleocytoplasmic export, cytoplasmic processing by Dicer,
and formation of RNA-induced silencing complex (RISC) with Argonaute (Ago) proteins [2,11–13]
(Figure 1). The biogenesis of canonical miRNAs begins with the generation of long primary miRNA
transcripts (pri-miRNAs), mainly by RNA polymerase II. Animal miRNAs are encoded as individual
miRNA genes (monocistronic), as miRNA clusters (polycistronic), or in introns of protein-coding genes
(intronic) [11,14]. Pri-miRNAs are processed to hairpin-structured RNAs, termed precursor miRNAs
(pre-miRNAs), by the Drosha complex in the nucleus. The Drosha complex consists of the RNase
III, Drosha, and the double-stranded RNA (dsRNA)-binding protein, DiGeorge syndrome critical
region 8 (DGCR8), as well as various partner proteins. Following Drosha processing, the pre-miRNAs
are exported to the cytoplasm by exportin-5 (XPO5). The pre-miRNAs are processed by the RNase
III, Dicer, in the cytoplasm, liberating a 21–24 nt miRNA duplex. Several Dicer-associated proteins,
including TRBP, PACT, and ADAR1, are known.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 22 
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Figure 1. Biogenesis pathway of canonical miRNAs. miRNA biogenesis is mediated by multiple
steps, including the transcription of primary miRNA transcripts, nuclear processing by Drosha,
nucleocytoplasmic export by XPO5, cytoplasmic processing by Dicer, and formation of the RISC with
Ago proteins.

The miRNA duplex is next loaded into an Ago protein with assistance from the HSP70/HSP90
chaperone machinery to form RISC. Among the four mammalian Ago proteins (Ago1–4), only Ago2
has the potent slicer activity required for target mRNA cleavage in the small interfering RNA (siRNA)
mechanism; the others have no slicer activity or have complicated substrate requirements to elicit slicer
activity [15–21]. Of the two strands of miRNA duplexes, only one strand, termed the guide strand
(referred to as miRNA), is retained in Ago proteins and stably forms the RISC. The other strand, known as
the passenger strand (referred to as miRNA*), is discarded. The ratios of mature miRNAs derived the
from 5′ (5p) and 3′ (3p) sequences of individual miRNA duplexes vary, and both strands are functional
for some miRNAs [22]. To avoid confusion, mature miRNAs from the 5′ (5p) and 3′ (3p) arms are
annotated with the suffixes -5p and -3p, respectively. The formation of the RISC stabilizes both miRNAs
and Ago proteins. Several mechanisms of miRNA destabilization including Tudor-SN-mediated
endonucleolytic decay and target-directed miRNA destabilization, which frequently involves 3′ end
tailing and trimming and yields miRNA isoforms (isomiRs), have been described [23,24].

Finally, the Ago-miRNA complex binds predominantly to the 3′ untranslated region (3′ UTR) of
target mRNAs in a sequence-specific manner and induces target repression with the aid of TNRC6
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(GW182) proteins by shortening the poly(A) tails of mRNAs, repressing translation, and destabilizing
mRNAs [12,25]. Target recognition of miRNAs typically depends on the seed sequence of miRNAs
(nucleotides 2–7) [26,27]. Because the seed sequence is very short, one miRNA targets hundreds of
target mRNAs, and it has been suggested that target repression is influenced by various RNA-binding
proteins (RBPs) and other RNA molecules, such as circular RNAs, RNA sponges, and competing
endogenous RNAs (ceRNAs) [28–32].

On the other hand, multiple Drosha- or Dicer-independent biogenesis routes have
been characterized for several classes of non-canonical miRNAs, including mirtrons [33–35],
tailed mirtrons [36], tRNA fragments [37,38], snoRNA fragments [39–42], 5′-capped miRNA
precursor-derived 3p miRNAs [43], Dicer-independent erythrocyte-specific miR-451 [44,45],
and transcription start site miRNAs (TSS-miRNAs) [46].

3. Quantitative Features of miRNA Biogenesis and Function

Recent studies have provided molecular and theoretical frameworks for a quantitative
understanding of miRNA biogenesis and function, and a system-level understanding of miRNA
networks. This section introduces recent topics in miRNA biogenesis and function.

Several studies using knock-out cells have reevaluated the relative importance of Drosha,
Dicer, XPO5, TRBP, and PACT in miRNA biogenesis [47,48]. The production of most miRNAs,
i.e., canonical miRNAs, is reportedly almost completely abolished in Drosha knock-out cells.
Although Dicer knock-out cells also exhibited marked reductions of most miRNAs (>100-fold reduction
of approximately 80% of miRNAs), many canonical miRNAs were still detectable [47]. In this
setting, pre-miRNAs are loaded directly onto Ago proteins and trimmed at the 3′ end, producing 5p
miRNAs. Thus, 3p miRNAs were more severely reduced than 5p miRNAs in Dicer knock-out cells.
In contrast to Drosha and Dicer depletion, XPO5 depletion only modestly reduced the miRNA level,
implying potential alternative transport mechanisms independent of XPO5. Another study showed
that TRBP and PACT do not regulate miRNA abundance and strand selection [48], although TRBP
depletion affected the accuracy of Dicer processing sites for several miRNAs and subsequently altered
strand selection [48,49].

Several studies have improved our understanding of how Drosha/DGCR8 process pri-miRNAs
to pre-miRNAs (Figure 2a). Using high-throughput analyses of pri-miRNA variants, a number of
sequence features of pri-miRNAs were shown to be important for efficient pri-miRNA processing;
these features included a UG motif at the base of the pri-miRNA hairpin, a UGU(GUG) motif in the
apical loop, a CNNC motif (SRp20/SRSF3-binding motif) 16–18 bp downstream of the Drosha processing
site, a mismatched GHG motif in the basal stem region, and a narrow range of tolerable pri-miRNA
stem lengths (35 ± 1 base pairs) [50,51]. These sequence features accommodate the structural features
of the interaction between pri-miRNAs and the heterotrimeric Drosha/DGCR8 complex consisting of
one Drosha and two DGCR8 [52,53]. Drosha interacts with the basal stem, recognizes a basal UG motif,
and defines the processing site 11 and 13 bp from the basal ssRNA-dsRNA junction; DGCR8 interacts
with the stem and apical regions and recognizes an apical UGU motif. In addition, the structural
analysis of the Dicer complex with pre-miRNAs was recently reported [54].
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Figure 2. Quantitative features of miRNA homeostasis. (a) Sequence features that define pri-miRNAs.
(b) Molecular principles of asymmetric strand selection. (c) Dynamics of miRNA metabolism and
broad post-transcriptional regulation. (d) Relationships between super-enhancers and the hierarchy of
the miRNA network.

The model for the mechanisms underlying the asymmetry of miRNA strand selection has been also
revised recently (Figure 2b). By integrating systematic biochemical studies, structural insights into Ago
proteins, and mathematical modeling, we demonstrated that small RNA asymmetry is directly driven
by Ago proteins [55]. Ago2 selects strands with 5′-uridine or 5′-adenosine and thermodynamically
unstable 5′ ends in parallel through its two sensor regions in the MID domain, which contact the
5′ nucleobases and 5′-phosphates of prospective guide strands. Thus, miRNA asymmetry shows
superposed patterns reflecting 5′-end nucleotide identity and thermodynamic stability. Several reported
features of small RNA asymmetry are consistent with our findings [56–58], and were integrated into
a unified model. Based on enzyme kinetics modeling, the relative miRNA 5p/3p arm ratio can be
described as follows:

ln(5p/3p) = k∆∆G5p−3p + (N5p − N3p) (1)

where ∆G5p(3p) represents the thermodynamic stability of either end of the miRNA duplex, and k and
N5p(3p) represent the constant for relative thermodynamic stability and the constant corresponding to
the 5′ end identity of the 5p (3p) strand, respectively. This model well explains the strand ratio assessed
by next generation sequencing and the magnitudes of target repression by each strand obtained from
reporter assays, as recently confirmed by another group [59].

Importantly, a recent time-resolved small RNA sequencing study using thiol (SH)-linked alkylation
for the metabolic sequencing of RNA (SLAM-seq) has provided a quantitative view of miRNA
production and destruction in Drosophila S2 cells (Figure 2c) [60]. The processing of pri-miRNAs and
pre-miRNAs and generation of miRNA duplexes occurs in a matter of seconds or minutes, more rapidly
than the generation of most mRNAs, and loading onto Ago proteins occurs approximately 1 h after the
start of biogenesis, suggesting that Ago loading is a key bottleneck step for ensuring faithful miRNA
production. miRNA degradation is typically slow; the median half-life is >10 h. These findings thus
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suggest that miRNAs are the most rapidly produced and longest-lasting cellular RNAs. A recent study
in mammalian cells using 5-ethynyluridine labeling reported similar observations [61].

A number of protein modifications of biogenesis factors, including phosphorylation, are reported
to modulate miRNA homeostasis [2,62]. A recent CRISPR/Cas9-based screening of miRNA
modulators revealed that Ago2 is phosphorylated by CSNK1A1 and dephosphorylated by the
ANKRD52–PPP6C phosphatase complex; moreover, phosphorylation of Ago2 inhibits target
mRNA binding and target repression without a concomitant reduction in miRNA abundance
(Figure 2c) [63]. Ago2 phosphorylation appears to occur at the late stages of target repression [63,64].
This phosphorylation cycle may be important for redirecting the RISC from one target mRNA to another,
thereby maintaining the global efficiency of repression of hundreds of target mRNAs. Several reports
have also described Ago2 phosphorylation by epidermal growth factor receptor (EGFR) and an
interaction between KRAS and Ago2, suggesting widespread crosstalk between miRNA and cellular
signaling pathways [65,66].

In addition, multiple reports have described the broad post-transcriptional mechanisms of
miRNA processing mediated by various RBPs, including Lin28, and crosstalk between the pri-miRNA
processing machinery and transcription-related machinery (Figure 2c) [2,13,62,67,68]. Two recent
systematic surveys using a proteomics-based pull-down approach and enhanced UV crosslinking
followed by immunoprecipitation (eCLIP) analysis have provided an expanded database of the RBPs
that regulate miRNA biogenesis [69,70].

4. Integration of miRNA Biology and Synthetic Biology

A deeper understanding of miRNA biogenesis and function would contribute to the reduction
of off-target effects and improvement of RNAi performance in both gene-specific targeting and
genome-wide screening [71]. Furthermore, such improvements would facilitate the generation of
synthetic RNA-based gene circuits in the field of synthetic biology [72]. Synthetic gene circuits are
generated to process input information and produce a specific output. In this setting, miRNA pathways
can be utilized for the programming of synthetic circuits. Further, miRNAs can be artificially
incorporated into logic gates as internal components, while endogenous miRNAs can be utilized to
sense specific cellular contexts as the input of circuits because of their highly biased cell type-specific
expression patterns. The sequence features that define pri-miRNAs enable the optimization of efficient
miRNA backbones, such as the miR-30 and miR-E backbones, and de novo design of functional miRNA
genes (Figure 2a) [51,73]. The prediction of asymmetrical strand selection, presented in our previous
study, is also able to enhance the utilization of the intended strands and reduce the off-target effects of
passenger strands [55]. Nissim et al. developed a synthetic circuit by combining an RNA-based AND
gate and de novo synthetic cancer-specific promoters that sense two transcription factors expressed in
cancer cells, and adapted this circuit for cancer immunotherapy [74]. This RNA-based AND gate is
based on the optimization of synthetic intronic pri-miRNAs, strand selection, and suppression of the
auto-inhibitory loop by miRNA sponge RNAs. The circuit boosts the antitumor immune responses
in vitro and in vivo, and therefore shows promise for increasing the efficacy and reducing the toxicity
of engineered cell therapies, such as chimeric antigen receptor (CAR)-T cell therapy.

Endogenous miRNAs can also be used to classify cell types or identify cancer cells. As described
later, miRNAs show highly biased cell type-specific expression patterns, and super-enhancers play
central roles in cell type specificity. Several investigations have been performed attempting to
develop a synthetic regulatory circuit that senses the expression levels of a customizable set of
endogenous miRNAs [75–77]. This synthetic sensor triggers an artificial cellular response only when
the expression pattern matches a predetermined profile, and has been recently adapted for cell
type-specific CRISPR/Cas9-based genome regulation and cancer immunotherapy [78,79].
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5. Roles of Epigenetics and Transcription in miRNA Expression

Changes in miRNA expression patterns have been characterized in various diseases,
including cancer [80]. Further, miRNA expression is regulated during the transcription of pri-miRNAs,
as well as during post-transcriptional processing and maturation [2,13,62]. While pervasive
crosstalk between various RBPs and the miRNA processing machinery provides a broad layer
of post-transcriptional regulation of pri-miRNAs and pre-miRNAs, the expression levels of mature
miRNAs correlate with those of pri-miRNAs across diverse cell and tissue types, especially for highly
differentially expressed miRNAs; this underscores the importance of cell type-specific transcription in
organizing miRNA expression [81]. In the latter part of this review, we summarize recent advances
in understanding the epigenetic and transcriptional regulatory mechanisms involved in miRNA
expression by focusing on regulation mediated by (1) epigenetics, (2) transcription factors and
transcription factor circuits, and (3) super-enhancers. We also introduce the roles of epigenetic
modifications of RNAs (epitranscriptomics) in miRNA biology.

6. Regulation of miRNAs by RNA Modifications (Epitranscriptomics)

RNA modifications play important roles in RNA metabolism and modulate miRNA biogenesis and
function; these modifications include alterations of N6-methyladenosine (m6A) and 7-methylguanosine
(m7G), pseudourylation (ψ), and adenosine-to-inosine (A-to-I) editing. The conversion of adenosine
to m6A in pri-miRNAs induced by the RNA methyltransferase, methyltransferase-like (METTL) 3,
has been suggested to facilitate recognition and processing by DGCR8 [82,83]. Another report has
described that m6A modifications by the tRNA methyltransferase, NSun2, suppress the miRNA
processing of miR-125 [84]. In addition, m6A modifications are enriched at the 3′ UTRs and miRNA
target sites of mRNAs, and miRNAs are reported to regulate m6A abundance by modulating METTL3
binding to mRNAs [85,86]. In contrast, phospho-dimethylation of the 5′ ends of pre-miRNAs by the
RNA methyltransferase, BCDIN3D, reportedly inhibits Dicer processing [87].

A recent report described that METTL1 mediates m7G methylation of the G-quadruplex motif
in pri-miRNAs of an important tumor suppressive miRNA, let-7e, leading to the suppression of
G-quadruplex formation and enhancement of Drosha processing [88]; the authors of that study
also reported a new method for detection of m7G methylation, which may provide insight into
miRNA processing. A-to-I editing also affects the efficiency of Drosha and Dicer processing and
recognition of miRNA targets by altering sequence complementarity within miRNA precursors
and seed sequences [89–91]. Several recent studies have revealed distinct levels of A-to-I editing
and m6A modifications of several miRNAs in various cancers, including lung adenocarcinoma and
gastrointestinal cancer [92–95]. Using a non-targeted mass spectrometry sequencing technique for
the unbiased detection of RNA modifications, one study demonstrated that the miR-17-5p m6A
methylation level in serum samples could be used to distinguish patients with early-stage pancreatic
cancer from healthy controls with higher sensitivity and specificity than CA19-9 and CEA, which are
currently used in the clinic [95]. Although the biological importance of these disease-associated miRNA
modifications is largely unclear, these modifications have potential for use as biomarkers to improve
diagnosis and therapy.

7. Regulation of miRNAs by Epigenetics

Epigenetic regulation includes DNA methylation and chromatin/histone modifications, all of
which modulate miRNA expression. The roles of epigenetic mechanisms in regulating miRNA
expression have been reviewed by others [96,97]. In addition, miRNAs regulate various epigenetic
regulators, thus establishing bidirectional crosstalk mechanisms [97].

A previous literature-based review suggested that approximately 120 miRNAs are epigenetically
modulated in 23 cancer types, and that the methylation frequency of human miRNA genes appears to
be much greater than that of protein-coding genes [98,99]. Consistent with this view, miRNA genes
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have been found to frequently overlap with CpG islands susceptible to methylation and with
cancer-associated genomic regions [100,101]. The close proximity of pri-miRNAs to CpG islands
is biased towards intergenic miRNAs, rather than intragenic miRNAs [100]. The methylation of
CpG islands or residues typically reduces the activities of the host gene promoter, intronic miRNA
promoter, miRNA gene promoter overlapping with or proximal to CpG islands, and distal enhancers,
thereby resulting in differential miRNA expression.

In addition, histone modifications either activate or repress miRNA expression. An early study
using breast cancer cell lines suggested that histone deacetylase (HDAC) inhibitors cause rapid
and widespread changes in miRNA expression [102]. This rapid response suggests that epigenetic
regulation affects co-transcriptional and/or post-transcriptional pri-miRNA processing, consistent with
the existence of a super-enhancer-mediated pri-miRNA processing mechanism, as described later.

8. Regulation of miRNAs by Transcription Factor and miRNA Circuits

Transcription factors and miRNAs each alter the other’s expression, and it has been proposed
that positive and negative transcriptional co-regulation circuits of a miRNA and its targets are
prevalent in the mammalian system [103,104]. Several web tools and databases, including TFmiR,
TransmiR, and CMTCN, have been developed to aid in the investigation of transcription factor-miRNA
co-regulation [105–107]. In this section, we introduce the roles of signal transducer and activator of
transcription 3 (STAT3) in miRNA regulation as a well-studied example in cancer biology, because STAT3
is the member of the STAT transcription factor family most frequently implicated in cancer biology.
The STAT protein family is a cardinal component of the signaling cascades of various cytokines,
including interferons and interleukin-6 (IL-6). Notably, STAT3 activation in cancer cells and cells of the
tumor microenvironment has been linked to tumor promotion, suppression of anti-tumor immunity,
and the inflammatory response in the tumor microenvironment [108,109]. STAT3 transcriptionally
regulates multiple protein-coding genes and miRNA genes.

Persistent activation of STAT3 in cancer cells is attributable to autocrine or paracrine cytokine
stimulation in the tumor microenvironment, expression of various oncogenic protein tyrosine kinases
(e.g., Src) or oncogenic fusion proteins (e.g., nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)),
and mutation of STAT3 pathways [110–113]. We and others have described the effects of the
NPM-ALK/STAT3 axis on miRNA expression in ALK-positive anaplastic large cell lymphoma (ALCL).
Our findings demonstrated that NPM-ALK/STAT3-driven miR-135b potentiates tumor progression via
multiple targets—including FOXO1, STAT6, GATA3, and PPP2R5C—in ALK-positive ALCL [114,115].
As a unique mechanism, miR-135b suppresses two master regulators of T-helper (Th) 2 differentiation,
STAT6 and GATA3, and miR-135b blockade suppresses IL-17 production and paracrine inflammatory
response by ALCL cells [114]. These results suggest that miR-135b-mediated Th2 suppression
exerts broad effects on the ALCL immunophenotype, including bias toward a Th17-like phenotype.
This type of non-cell-autonomous role of cancer-related miRNAs in the tumor microenvironment
has been further reinforced by multiple other studies [116]. Other reports have reported that the
NPM-ALK/STAT3 pathway induces downregulation of miR-26a targeting inducible nitric oxide
synthase (iNOS), miR-29a targeting MCL1, miR-150 targeting MYB, and miR-219 targeting CD278 (also
known as ICOS), and upregulation of oncogenic miR-17/92 cluster targeting BIM and transforming
growth factor-β (TGF-β) type II receptors (TβRII) [117–122]. NPM-ALK is also presumed to modulate
several miRNAs via other transcription factors, including C/EBPβ [123].

Furthermore, miRNAs are known to play important roles downstream of the IL-6/STAT3 signaling
axis in various cancer types [124,125]. It has been repeatedly reported that STAT3 directly activates
oncogenic miR-21 (Table 1). In multiple myeloma, this activation involves a highly conserved enhancer
upstream of the miR-21 gene promoter [124]. The activation of several miRNAs (e.g., miR-21 and
miR-181-b1) by the IL-6/STAT3 axis has been proposed to maintain the transformed state by increasing
NF-κB activity through suppression of PTEN and CYLD tumor suppressors in diverse cell lines,
thus forming a positive feedback loop linking inflammation to cancer [126]. A similar inflammatory
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feedback regulation involving STAT3, HNF4α, IL6R, miR-124, miR-24, and miR-629 was reported in
hepatocellular carcinoma [127]. In addition, the STAT3-mediated repression of miR-34a and targeting
of IL6R by miR-34a comprises a feedback loop required for IL-6-induced epithelial–mesenchymal
transition (EMT) in colorectal cancer [128]. In addition, STAT3-suppressed miR-218 targets various
upstream and downstream components of receptor tyrosine kinase (RTK) signaling, thereby promoting
RTK signaling in glioblastoma [129]. In contrast, STAT3-mediated induction of miR-146b suppresses
NF-κB-dependent IL-6 production and forms a negative feedback loop to limit STAT3-driven oncogenic
phenotypes [130]. However, this negative feedback circuit is blunted by increased methylation of
the miR-146b promoter in breast cancer [130]. The literature regarding STAT3-regulated miRNAs is
summarized in Table 1 [131–165].
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Table 1. Summary of miRNAs regulated by STAT3.

STAT3-Regulated miRNA Disease or Target Cell Change in Expression miRNA Target (Potential) Function and Phenotype References

let-7b, -7c, -7e, -7g Breast cancer Downregulation 1 HMGA2 EMT [131]
miR-200b/c Breast cancer Downregulation ZEB1 EMT [131]
miR-106a Ovarian cancer Upregulation PTEN proliferation and invasion [132]

miR-125b-2, -30c-1, -23b/27b/24-1,
-17/92

Toxoplasma gondii
infection Upregulation - anti-apoptosis [133]

miR-135b ALK-positive ALCL Upregulation GATA3, STAT6, FOXO1,
PPP2R5C

modulation of tumor
immune-phenotype, tumor

microenvironment,
and chemotherapeutic resistance

[114,115]

miR-143
Blood brain barrier
damage induced by
methamphetamine

Upregulation PUMA modulation of tight junction proteins [134]

miR-146a Hepatocellular carcinoma Upregulation STAT1, TRAF6 immunosuppressive tumor
microenvironment [135]

miR-146b Breast cancer Downregulation 2 IRAK1, TRAF6 NF-kB/IL-6/STAT3 negative feedback
loop [130]

miR-150 ALK-positive ALCL Downregulation 2 MYB proliferation [119]

miR-155 Th17 cell Upregulation - development of experimental
autoimmune uveitis [136]

miR-155 Chronic lymphocytic
leukemia (CLL) Upregulation - - [137]

miR-155 Acute myelogenous
leukemia (AML) Downregulation SOCS1 cell viability and myeloid differentiation [138]

miR-155, -21, -15a, -16, -181a CLL Upregulation - - [139]

miR-17/92 cluster Pulmonary arterial
hypertension Upregulation BMPR2 vascular remodeling [140]

miR-17/92 cluster ALK-positive ALCL Upregulation BIM, TβRII anti-apoptosis [121]

miR-181a Triple-negative breast
cancer (TNBC) Upregulation BAX anti-apoptosis, chemotherapeutic

resistance, and metastasis [141]

miR-181b Eophageal cancer
stem-like cell Upregulation CYLD proliferation and anti-apoptosis [142]

miR-21 Transformed cell (Colon
cancer) Upregulation PTEN maintenance of transformed state [126]

miR-181b-1 Transformed cell (Colon
cancer) Upregulation CYLD maintenance of transformed state [126]

miR-183/96/182 cluster Breast cancer Upregulation BRMS1L, GHR EMT and invasion [143]
miR-182-5p Glioma Upregulation PCDH8 proliferation and invasion [144]

miR-184 Keratinocyte Upregulation AGO2 cytokine-dependent Ago2 suppression [145]
miR-197 Keratinocyte Upregulation IL22RA1 negative feedback loop of IL-22 signaling [146]
miR-200c Breast cancer Downregulation 2 OBR cancer stem cell plasticity [147]
miR-204 Pancreatic beta cells Downregulation MAFA insulin production [148]

miR-204-5p Endometrial carcinoma Downregulation TrkB growth, migration, and invasion [149]
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Table 1. Cont.

STAT3-Regulated miRNA Disease or Target Cell Change in Expression miRNA Target (Potential) Function and Phenotype References

miR-204
EBV-associated
nasopharyngeal

carcinoma
Downregulation Cdc42 invasion and metastasis [150]

miR-21 Multiple myeloma Upregulation - - [124]
miR-21 Heart failure Upregulation - - [151]
miR-21 ALK-positive ALCL Downregulation DNMT1 suppression of IL2Rγ [152]

miR-21 Coronary artery
endothelial cell Upregulation - angiogenesis [153]

miR-21 Hepatocellular carcinoma Upregulation - HBV-induced transformation [154]

miR-21 Alcoholic liver disease Upregulation FASLG (CD95L), DR5 survival, transformation, and liver
fibrosis [155]

miR-21 Nasopharyngeal
carcinoma Upregulation PTEN proliferation and anti-apoptosis [156]

miR-214 Ulcerative Colitis Upregulation PTEN, PDLIM2 inflammation, colitis, and progression to
colorectal cancer [157]

miR-218 Glioblastoma Downregulation RSK2, S6K1, PDGFRα regulation of RTK signaling [129]
miR-219 ALK positive ALCL Downregulation CD278 (ICOS) proliferation [120]

miR-22 Cutaneous T cell
lymphoma (CTCL) Downregulation NCOA1, PTEN, MAX tumor progression [158]

miR-23a Hepatocellular carcinoma Upregulation G6PC, PGC1α suppression of gluconeogenesis [159]
miR-24, miR-629 Hepatocellular carcinoma Upregulation HNF4α inflammation and tumor progression [127]

miR-26a ALK-positive ALCL Downregulation iNOS cell viability, adhesion, and migration [117]
miR-29a ALK-positive ALCL Downregulation 2 MCL1 anti-apoptosis [118]

miR-29a, -29b, -29c CD4 T cells under HIV-1
infection Upregulation HIV-1 mRNA CD4 T cell-intrinsic resistance to HIV-1

infection [160]

miR-34a Colorectal cancer Downregulation IL6R EMT and invasion [128]
miR-34a Breast cancer Downregulation Wnt1 tumor progression [161]
miR-370 Wilms tumor Upregulation WTX proliferation [162]
miR-383 Skin cancer Downregulation ATR anti-apoptosis [163]

miR-520d-5p Gastric cancer Downregulation CypB proliferation [164]
miR-92a Lung cancer Upregulation RECK invasion [165]

1 Downregulation mediated by Lin28. 2 Downregulation mediated by DNA methylation.
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9. Regulation of miRNAs by Super-Enhancers

A few transcription factors, known as master transcription factors (e.g., Oct4, Sox2, Nanog,
and Klf4 in embryonic stem cells (ESCs)), are essential for the establishment and maintenance of the
identity of each cell type. Cell type-specific transcriptional programs are mediated by the activities of
cell type-specific enhancers bound by transcription factors, and master transcription factors bind to
thousands of enhancer regions, which can be identified by chromatin immunoprecipitation-sequencing
(ChIP-seq) technologies. However, a few hundred large enhancer regions near cell identity genes
consist of clusters of enhancer elements occupied by exceptionally high densities of master transcription
factors [166,167]. Such enhancer domains, known as super-enhancers (SEs), are densely occupied by
Mediator complexes and bear high densities of active chromatin markers, such as H3K27ac. In contrast
to typical enhancers, super-enhancers show high transcriptional activity and marked vulnerability
to the depletion of master transcription factors and transcription coactivators, including Mediator
and Brd4.

These features of SEs and typical enhancers correspond to those of cell type-specific miRNA
expression (Figure 2d). Although about 100 miRNAs show some evidence of expression in one cell type,
a few abundant miRNAs dominate miRNA-guided post-transcriptional regulation from the standpoint
of expression, Ago2 binding, and target repression [32,104,168]. Via the integrated analysis of the
relationships between miRNAs and SEs, we reported that SEs are linked to a few highly abundant and
tissue-specific miRNAs and master transcription factors [169]. The SE-associated miRNAs (SE-miRNAs)
include most miRNAs for which depletion results in developmental abnormalities in the respective
tissues. Further, their targets are associated with cell type-specific functions and transcriptional
regulation, suggesting an intimate interplay between transcription factors and SE-miRNAs [169].
To ensure tissue-specific gene expression programs, it has been suggested that genes coexpressed
with specific miRNAs avoid miRNA sites (target avoidance phenomenon), and that miRNAs and
their targets show mutually exclusive expression patterns [170,171]. We revealed that the depletion
of miRNA sites in coexpressed genes is positively correlated with the connection between SEs and
miRNA genes [169]. This observation is consistent with the strictly conserved relationships among
STAT3, miR-21, and STAT3-bound miR-21 enhancers [124], as described above, collectively suggesting
co-evolution of the network involving transcription factors, enhancers, and miRNAs in development.
While SEs can be identified by the reanalysis of ChIP-seq data and several regulatory regions have
been proposed (e.g., stretch enhancers), our analysis supports SEs as the major drivers of cell identity.
Indeed, a recent report demonstrated that SEs are more transcriptionally active and cell type-specific
than stretch enhancers [172].

In addition, we have reported several unique mechanistic aspects of SEs [169]: (1) multiple SE
constituents drive cell type-specific miRNAs in a cooperative manner, consistent with other functional
studies of SEs [173,174]; (2) SEs are associated with chromatin recruitment of DGCR8 and Drosha,
and facilitate pri-miRNA processing; (3) Drosha-enhanced mRNA degradation events are associated
with DGCR8-dependent suppression of chromatin-associated SE-associated gene products; and (4)
the bromodomain and extraterminal (BET) domain inhibitor, JQ1, inhibits chromatin DGCR8/Drosha
recruitment at SEs and pri-miRNA processing of SE-miRNAs. These features are consistent with
a recent phase separation model of SEs [175].

10. Super-Enhancer-Associated miRNAs in Disease

Disease-associated genome variation identified by genome-wide association studies (GWAS)
is frequently found in SEs of disease-relevant cell types [167]. In addition, multiple mechanisms
contribute to the SE activation responsible for the activation of multiple oncogenes in cancer. We have
described the relationship between SE-miRNAs and cancers [169]. Loss and gain of SEs have been
frequently found in the neighborhoods of tumor-suppressive and oncogenic miRNAs, respectively;
miRNAs with SE alterations were linked to wide aspects of cancer hallmarks [176]. In addition,
miRNAs with SE gain were associated with a worse prognosis. A recent report described the
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relationship between the Chr19q13.41 miRNA cluster (C19MC), encoding 54 miRNAs normally
expressed in placental and germinal tissues, and SEs in highly lethal type of infant brain cancer,
embryonal tumors with multilayered rosettes (ETMRs) [177]. ETMRs are characterized by the
amplification of C19MC. High expression levels of C19MC, LIN28A, and MYCN comprise an
oncogenic circuit in this tumor type [177]. This oncogenic circuit is reinforced by an enhancer
hijacking mechanism: the formation of hybrid SEs via C19MC–TTYH1 gene fusion, which juxtaposes
TTYH1-associated SEs and C19MC-associated enhancers located in distinct loci of chromosome 19.
Additional long-range DNA interactions involving MYCN and neighboring SEs also contribute to the
C19MC–LIN28A–MYCN oncogenic circuits. Reflecting the high dependency on SEs, JQ1 suppresses
the expression of SE-associated oncogenes and C19MC miRNAs in the EMTR cells.

Our recent report has further demonstrated unique involvement of mutations of SE-miRNAs
in human rare disease [178]. Grigelioniene et al. identified a neomorphic seed region
mutation in the chondrocyte-specific SE-associated miR-140 gene (chr16:g.69967007A>G (hg19),
MIR140:NR_029681.1:n.24A>G) in a novel skeletal dysplasia (spondyloepiphyseal dysplasia (SED)
MIR140 type Nishimura) [178]. While miR-140-null mice showed short stature and craniofacial
abnormalities, mice with the corresponding mutation exhibited additional skeletal abnormalities similar
to those observed in human patients. Transcriptome analysis unveiled both widespread derepression
of wild-type miR-140-5p targets and repression of the targets of mutant miR-140-5p (miR-140-5p-G)
in chondrocytes, suggesting both loss-of-function and gain-of-function effects. While heterozygous
loss-of-function point mutations of miRNA genes (miR-96 and miR-184) have been reported in several
congenital diseases (e.g., autosomal dominant deafness 50 and endothelial dystrophy, iris hypoplasia,
congenital cataract, and stromal thinning (EDICT) syndrome) [179–183], the report involving miR-140
is the first report of a gain-of-function mutation of a miRNA gene in human disease. Because the
magnitude of miRNA-mediated target repression is typically small, and the biological roles are thought
to be stabilized by co-evolution of miRNA-target relationships, one may assume that a neomorphic
mutant miRNA would need to target a biologically important regulatory network in order to produce
a disease phenotype. To explain this, we found that the target sequence of the miR-140-5p-G seed
overlaps with the binding motif of the conserved RBP Ybx1, and that miR-140-5p-G competes
with Ybx1 for overlapping binding sites. We investigated whether this type of seed–RBP crosstalk,
termed cross-talk with endogenous RNA-binding protein (ceRBP), contributes to off-target activities of
RNAi; we found that ceRBP effects are observed for many RBPs and affect RNAi performance [184].
Given that RNA modifications, such as m6A and A-to-I editing, are targeted toward specific sequence
motifs, modifications of miRNAs may converge on crosstalk with specific RBPs.

11. Conclusions and Perspectives

In this review, we summarized recent advances in the miRNA field regarding: (1) the quantitative
understanding of miRNA biogenesis with respect to sequence and structural features, (2) the roles
of epitranscriptomics (RNA modifications), epigenetics, and transcription factor circuits in miRNA
regulation, (3) the roles of super-enhancers in miRNA regulation, and (4) the applications of these
findings for synthetic biology, optimization of RNAi, and an understanding of disease pathogenesis
(Figure 2). These advances collectively facilitate a system-level understanding of the broad miRNA
network that programs cell-type specificity and mediates the pathogenesis of diverse diseases.
The quantitative programming of miRNA function and identification of SE-miRNAs would facilitate the
manipulation of specific cell populations and engineering of artificial cellular functions in regenerative
medicine and synthetic biology.

With respect to clinical applications, the miRNA-based drugs Miravirsen (a miR-122 inhibitor) and
MRX34 (a miR-34a mimic) have been subjected to clinical trials [185–187]. In addition, the siRNA-based
agent Onpattro™was approved for the treatment of transthyretin familial amyloid polyneuropathy
(ATTR-FAP) in 2018 [188], as was the anti-sense drug Tegsedi™ [189]. This was the first approved
siRNA-based drug. Continuous efforts towards understanding the biology, improving molecular tools,
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and developing new technologies will provide a basis for the development of miRNA/RNAi-based
diagnostic and therapeutic approaches [190].
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3′ UTR 3′ untranslated region
A-to-I adenosine-to-inosine
Ago Argonaute
ALCL anaplastic large cell lymphoma
AML acute myelogenous leukemia
ATTR-FAP transthyretin familial amyloid polyneuropathy
BET bromodomain and extraterminal
C19MC Chr19q13.41 miRNA cluster
CAR chimeric antigen receptor
ceRBP cross-talk with endogenous RNA binding protein
ceRNA competing endogenous RNA
ChIP-seq chromatin immunoprecipitation-sequencing
CLL chronic lymphocytic leukemia
CTCL cutaneous T cell lymphoma
DGCR8 DiGeorge syndrome critical region 8
dsRNA double-stranded RNA
eCLIP enhanced UV crosslinking followed by immunoprecipitation

EDICT
endothelial dystrophy, iris hypoplasia, congenital cataract, and stromal
thinning

EGFR epidermal growth factor receptor
EMT epithelial–mesenchymal transition
EMTR embryonal tumors with multilayered rosettes
ESC embryonic stem cell
GWAS genome-wide association study
HDAC histone deacetylase
IL-6 interleukin-6
iNOS inducible nitric oxide synthase
m6A N6-methyladenosine
m7G 7-methylguanosine
METTL methyltransferase-like
miRNA microRNA
ncNRA non-coding RNA
NPM-ALK nucleophosmin-anaplastic lymphoma kinase
pre-miRNA precursor miRNA
pri-miRNA primary miRNA
RBP RNA-binding protein
RISC RNA-induced silencing complex
RNAi RNA interference
RTK receptor tyrosine kinase
SE super-enhancer
SE-miRNA super-enhancer-associated miRNA
SED spondyloepiphyseal dysplasia
siRNA small interfering RNA
SLAM-seq Thiol (SH)-linked alkylation for the metabolic sequencing of RNA
STAT3 signal transducer and activator of transcription 3
TGF-β transforming growth factor-β
Th T-helper
TNBC triple-negative breast cancer
TSSmiRNA transcription start site miRNA
TβRII TGF-β type II receptor
XPO5 exportin-5
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