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Abstract

Prediction of functional outcome after stroke based on initial presentation remains an open 

challenge, suggesting that an important aspect is missing from these prediction models. There 

exists the notion of a protective mechanism called brain reserve, which may be utilized to 

understand variations in disease outcome. In this work we expand the concept of brain reserve 

(effective reserve) to improve prediction models of functional outcome after acute ischemic stroke.

Consecutive acute ischemic stroke patients with acute brain magnetic resonance imaging (<48 

hours) were eligible for this study. White matter hyperintensity and acute infarct volume were 

determined on T2 fluid attenuated inversion recovery and diffusion weighted images, respectively. 
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Modified Rankin Scale scores were obtained at 90 days post-stroke. Effective reserve was defined 

as a latent variable using structural equation modeling by including age, systolic blood pressure, 

and intracranial volume measurements.

Of 453 AIS patients (mean age 66.6±14.7 years), 36% were male and 311 hypertensive. There was 

inverse association between effective reserve and 90-day modified Rankin Scale scores (path 

coefficient −0.18±0.01, p<0.01). Compared to a model without effective reserve, correlation 

between predicted and observed modified Rankin Scale scores improved in the effective-reserve-

based model (Spearman’s ρ 0.29±0.18 versus 0.15±0.17, p<0.001). Furthermore, hypertensive 

patients exhibited lower effective reserve (p<10−6).

Using effective reserve in prediction models of stroke outcome is feasible and leads to better 

model performance. Furthermore, higher effective reserve is associated with more favorable 

functional post-stoke outcome and might correspond to an overall better vascular health.

Introduction

Early prediction of stroke risk and a better understanding of the underlying disease processes 

may lead to effective prevention strategies for adverse cognitive and functional stroke 

outcomes, thereby improving patients’ quality of life and reducing the economic burden on 

families and society [1]. However, mechanisms of post-stroke recovery are complex and not 

well understood.

Among these, the notion of biological protective mechanisms intrinsic to the brain’s ability 

to withstand insults has been linked to better outcomes after disease onset [2–4]. This innate 

resilience to insults is in part supported by the observation that some subjects experience a 

better outcome than expected given their clinical presentation, and is increasingly referred to 

as “brain reserve” (BR) [5,6]. BR has been proposed as an indirect measure of brain health 

[7] and linked to brain volume [8]; however, understanding of the biological underpinnings 

of such a mechanism remains limited.

In stroke, a theoretical construct such as BR could improve prediction models of poststroke 

outcomes; however, theories describing such mechanism are lacking. Prior nonstroke studies 

that modeled BR as a latent variable in structural equation modeling (SEM) analysis have, 

for example, demonstrated that BR is positively correlated with white matter hyperintensity 

volume (WMHv) in healthy elderly, while controlling for speed/executive or language 

function [9]. This suggests that patients with higher BR can withstand a greater burden of 

cerebral microvascular disease (larger WMHv) before significant deterioration in cognitive 

function occurs.

SEM is commonly used to confirm whether a model is supported by the data and can be 

seen as a combination of multiple regression and confirmatory factor analysis, in which 

latent variables are introduced to model properties of the system that are not measured or 

cannot be observed directly[10]. Given that WMHv is a validated risk factor for poor 

outcomes after stroke [11], we hypothesize that a model which accounts for an intrinsic 

(unmeasured) biological protective mechanism (such as BR), while accounting for known 

risk factors such as WMHv, might improve prediction of stroke outcome [12,13]. 

Schirmer et al. Page 2

J Stroke Cerebrovasc Dis. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, in this work we expand on the idea of BR, by defining a latent variable we call 

“effective reserve” (eR), which models the resilience of the brain after negative effects, e.g. 

of the brain injury, have been taken into account. We hypothesize that accounting for the 

brain’s intrinsic ability to withstand the burden of chronic (pre-stroke) and acute (acute 

ischemia) insults will improve our ability to predict functional outcomes after stroke. To test 

this hypothesis, we examine: (a) whether a model that includes eR can describe functional 

stroke outcome as captured by the modified Rankin scale score (mRS) at 90 days post-stroke 

[14] better than a linear model based on the observed variables only; and (b) the biological 

underpinnings of what eR may represent in relation to overall vascular health of the patient 

based on pre-stroke diagnosis of hypertension.

Methods

Standard protocol approvals, registrations, and patient consent

At the time of enrollment in this study, informed written consent was obtained from all 

participating subjects or their surrogates. The use of human subjects in this study was 

approved by the Institutional Review Board.

Study design, setting, and patient population

Patients presenting to the emergency department at our hospital between 2003 and 2011, 

who were over 18 years of age and showed signs and symptoms of acute ischemic stroke 

(AIS), were eligible for enrollment in the institutional ischemic stroke cohort. In this 

analysis, we included subjects with (a) acute cerebral infarct lesions confirmed by diffusion 

weighted imaging (DWI) scans obtained within 48 hours of symptom onset and (b) T2 fluid-

attenuated inversion recovery (T2-FLAIR) sequences available for WMHv analysis (total 

n=481 subjects).

Clinical variables and outcome assessment

All clinical variables including demographics, past medical history, and vital signs were 

obtained on admission. Patients and/or surrogates were interviewed directly and medical 

records were reviewed, as necessary.

All variables were assessed for outliers. Patients with systolic blood pressure (SBP) below 

50 (20 patients) or above 250 (4 patients), as well as intracranial volume (ICV) below 12 

cm3 (4 patients) were excluded, resulting in a total of 453 subjects. Hypertensive patients 

were defined as those with past medical history of hypertension or those who were on anti-

hypertensive medication (311/453, 68.7%). Hypertension status was missing for 72 of the 

patients.

Patients and/or their caregivers were interviewed in person or by telephone at 3–6 months 

after AIS to assess functional outcome (mRS). Recurrent cerebrovascular events, newly 

diagnosed medical conditions, and medication use were specifically assessed in this 

interview. If the patient could not be contacted, mRS was determined from chart review.
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Neuroimaging analysis

The standard AIS protocol included DWI (single-shot echo-planar imaging; one to five B0 

volumes, 6 to 30 diffusion directions with b=1000 s/mm2, 1–3 averaged volumes) and T2 

FLAIR imaging (TR 5000ms, minimum TE of 62 to 116ms, TI 2200ms, FOV 220240mm). 

DWI data sets were assessed and corrected for motion and eddy current distortions [15]. 

WMHv was determined on the T2-FLAIR images using a semi-automated approach [16] in 

the hemisphere contralateral to the acute ischemic lesion (i.e., contralesional) and doubled to 

estimate the total WMH burden. Additionally, acute infarct volume was manually assessed 

on DWI (DWIv). ICV was calculated on T1 sagittal sequences using a previously validated 

method [17].

Statistical analysis of clinical variables

Group differences in clinical variables between hypertensive and non-hypertensive patients 

are assessed using Wilcox and Fisher exact test for continuous and categorical variables, 

respectively. Inter-measure correlations are assessed using Spearman’s rank correlation 

coefficient. P-values of correlations are approximated based on t-/F- distributions, as 

described previously[18] and implemented in the R package Hmisc[19].

Effective Reserve

In our model, eR is represented as a latent variable. We assume ICV to have a direct 

(positive) association with eR [9,20]. Additionally, age is believed to limit the brain’s 

capacity to counteract insults [21]. This reduced capacity to withstand the impact of an acute 

insult such as AIS might be reflected in long-term exposure to abnormally elevated blood 

pressure, as reflected in admission SBP. Therefore, we include age, SBP and ICV in our eR 

model, where eR is given by:

eR Age + SBP + ICV . (1)

Moreover, we incorporate known links between age and WMHv [22–24], SBP and WMHv 

[22–25], WMHv and mRS [11], and DWIv and mRS [26]. The full (initial) model is shown 

in Figure 1.

Model evaluation

Model parameters are estimated using the publicly available R package LAVAAN [27] for 

SEM estimation and path analysis without priors, using a maximum likelihood estimator 

with robust errors (MLR). The estimated path coefficients provide information on the 

magnitude and significance of the by the model hypothesized causal relationship between 

variables. After the estimation of the full model, non-significant factors/connections are 

eliminated resulting in a simplified model. It is common practice to use multiple statistical 

criteria to assess the model fit in SEM and to determine which model (full/simplified) best 

describes the data. In this work, these criteria (abbreviation; sign of a good model fit) are 

chi-square (χ2; low values, non-significant p-values), normed and comparative fit index 

(NFI/CFI; values greater than 0.95), root mean square error of approximation (RMSEA; 

values smaller than 0.5), Akaike information criterion for comparing models (AIC; smaller 
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values indicate better fit) and Hoelter’s critical n (HCN; values greater than 200). Figure 1 

describes the purpose of each of these measures. For a general overview and discussion of 

these metrics, see e.g. Kline[10].

Using the selected model, we first investigate the stability of the parameter estimation of the 

SEM model. In order to do so, we apply a 20-fold cross-validation, where the data are split 

in 20 approximately equally sized subsets and subsequently re-estimate the model based on 

19 of those subsets. This is repeated 20 times and each time the estimated pathcoefficients 

are recorded. Given the distribution for each parameter, we calculate the coefficient of 

variation as a summary measure.

Using the same 20-fold cross-validation approach, we estimate the parameters of the 

function given by equation (1) based on 19 folds. This allows us to estimate eR without 

inclusion of mRS on the remaining fold. Subsequently, we use the selected model and 

calculate the mRS score:

mRSeR eR + ln(WMHv) + ln(DWIv) . (2)

As a comparison, we use a linear model with the same folds where all observed variables 

(ICV, Age, SBP, WMHv and DWIv) directly relate to mRS (without introducing eR in the 

model):

mRS Linear  ICV + Age + SBP + ln(WMHv) + ln(DWIv) . (3)

We then compare correlation coefficients between the observed mRS score and the estimates 

from equations (2) and (3) to evaluate the benefits of the added latent variable, i.e. eR.

Analysis of hypertension status

Additionally, we use hypertension status (binary yes/no) in our data set as a proxy of the 

overall vascular health, where we assume better vascular health in those not exposed to long-

term effects of hypertension (i.e., non-hypertensive patients), and investigate its relationship 

with eR. For this, we compare both groups with respect to the group-specific eR estimates 

produced by our model.

Results

Baseline characteristics and stroke outcome of this cohort are summarized in Table 2. Here, 

non-hypertensive patients are on average older than hypertensive patients (72.0 years vs 64.4 

years; p<0.001), while no difference in outcome is observed between these groups. Weak to 

moderate correlations are seen between most measures used in our model (Table 3).

Model estimation

Figure 2 shows the full and the simplified model, including their path coefficients with 

corresponding significance. Model parameters of the full model (left) imply that age and 
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SBP negatively affect eR (path coefficients of −0.77 (p<0.01) and −0.29 (p<0.05), 

respectively), whereas ICV has a positive impact (p<0.01; path coefficient of 0.32). The 

model exhibits significant positive association between SBP and WMHv (p<0.05; path 

coefficient of 0.09), and between age and WMHv (p<0.001; path coefficient of 0.46). DWIv 

was significantly associated with mRS (p<0.05; path coefficient of 0.13). Moreover, eR was 

negatively associated with mRS (p<0.05; path coefficient of −0.16), suggesting that a higher 

value of eR results in a lower value of mRS, reflecting a better outcome.

The full model suggests that there is no direct relationship between WMHv and mRS 

(p>0.05; path coefficient of 0.03). In a simplified model without this link ( Figure 2; right), 

path coefficients are nearly identical to those of the full model (on average the change is less 

than 5%) and statistical significance remains the same or improves (p<0.01 for both path 

coefficients between eR and mRS and between eR and SBP, compared to p<0.05 in the full 

model).

Model selection

When assessed by the model evaluation criteria, the two models (full versus simplified) did 

not differ (Figure 1). Based on these results and the parsimony principle, we selected the 

simplified model for the remainder of our analysis.

Utilizing the 20-fold cross-validation, the absolute value of the coefficient of variation was 

on average below 8% (averaged over all parameters; see Figure 2). Comparison of the 

observed mRS and each model’s estimate show that the calculated correlation coefficients 

were higher (mean ± SD; Fisher z-transformation p<0.001) for the model that incorporates 

eR (ρ = 0.29 ± 0.18; 𝑚𝑅𝑆𝑒𝑅) versus that of a linear baseline model (ρ=0.15±0.17, 

𝑚𝑅𝑆𝐿𝑖𝑛𝑒𝑎𝑟).

Analysis of hypertension status

There was statistical group difference in eR between non-hypertensive and hypertensive 

patients (Wilcoxon rank sum test p<10−6), where the non-hypertensive group exhibited 

higher eR.

Discussion

BR has been proposed as a concept that corresponds to the brain’s capacity to withstand 

insults, and it has been shown to co-vary with WMHv [9]. In this analysis, we demonstrated 

that a latent construct, referred to as eR, may act as a surrogate measure of such a protective 

mechanism in AIS patients with regard to functional outcomes, i.e., higher eR is associated 

with a lower 90-day mRS. Moreover, the relatively low calculated coefficients of variation 

suggest that our model parameter estimations are stable, and that, based on correlations 

between estimated and observed mRS, the model which incorporated eR describes the data 

better than the baseline linear model. Furthermore, by splitting the stroke cohort into 

hypertensive and non-hypertensive patients, we demonstrated significant group differences 

with respect to their estimated measure of eR (higher eR in the non-hypertensive group). 

This supports the interpretation that eR may reflect a better ability to compensate for 
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changes in vascular health, as approximated by hypertension status, or even a general 

protective mechanism.

Our results show that most input variables in our model are weakly to moderately correlated 

among each other. In spite of the correlation between WMHv and mRS in the data (ρ=0.1, 

p<0.05; Table 3), however, our full model did not indicate a significant direct association 

between the two. This is in contrast to other findings in the literature [11]. However, 

Brickman et al.[9] showed that their BR construct co-varied with WMHv while controlling 

for “outcome”, which means that it is more likely to see high WMHv in a patient with 

higher BR. In addition, our analysis suggests a slight, although insignificant, improvement 

when excluding the WMHv link to mRS. Therefore, it may be possible that the significant 

association between WMHv and mRS outcome score may be an observed effect of the 

association between eR and mRS instead. This might also suggest that eR mediates the 

previously observed correlations between WMHv and mRS or the other way around. Future 

studies are therefore warranted to disentangle this relationship.

We note that the path coefficient between age and eR, as shown in Figure 2, was estimated 

with approximately twice the amplitude, compared to ICV and SBP. Similarly to the 

correlations with other observed variables (Table 3), age seems to be the strongest modifying 

factor for eR. The high negative impact may be representative of the amount of insult to 

human brains from which the brain has to recover over the lifespan. An investigation where 

patients are matched by age would be of interest and presents an interesting venue for future 

large scale studies.

Furthermore, we found a negative association between age and ICV (Table 3). This 

relationship may at first not seem intuitive for an adult cohort, as ICV has been shown to 

remain constant across age[28]. Moreover, the correlation persists after accounting for 

differences in sex (Spearman’s ρ −0.17, p<0.001). Considering that this is a crosssectional 

study, one explanation could be a secular change in ICV [29]. Further studies are warranted 

to determine its origin.

There is a number of limitations to the presented study design. In this work, we used mRS, 

the most commonly used measure for stroke outcome in the literature [14]. However, it has 

been criticized for its inter-observer variability [30]. Moreover, mRS is not a continuous 

variable, which is one of the assumptions in the presented SEM model and most likely 

results in lower statistical significance in our analysis. This could further explain the 

observed non-significance between WMHv and mRS in our model. Adjusting the SEM 

software to accept ordinal variable classes could further improve future studies. 

Additionally, mRS summarizes differences in patients in predefined categories and is heavily 

weighted for motor function and ambulatory status. Using an outcome metric, which reflects 

more subtle functional differences, may further help improve the model and the investigation 

of eR as a protective mechanism in AIS.

The SEM approach models the shared variance between observations and can be used to 

estimate latent variables, for which no direct measurements exist, but its effects may be seen 

through other (indirect) measurements[10]. One of the strengths of SEM is grounded in its 
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suitability for data with measurement errors or variability (e.g., inter-rater variations) or 

incomplete measurements (not all variables may be present in all subjects; [10]), which may 

be the case in clinical data. However, SEM is hypothesis-driven and is therefore not suitable 

for model generation, as each model relies heavily on experts to specify the links between 

the variables. Moreover, the more complex the model, the more data are required for it to 

converge and give an appropriate estimate of the relations within the model. The results in 

Table 1 (HCN) suggest that we have enough data to estimate each model parameter 

appropriately. However, the sample size limits the complexity and future directions, which 

can be taken using the current dataset. As an example, one bias in our results may be that we 

did not differentiate between male and female patients. It has been shown in the literature 

that many clinical variables are highly correlated with the sex of the patient [31], making 

this an interesting aspect of future work. However, in order to estimate the effects of sex on 

the estimated model parameter, which would require splitting the data and fitting an SEM 

model to each subset, a larger dataset is necessary.

In summary, we have introduced the concept of eR and have shown that it is inversely 

associated with functional post-stroke outcome, suggesting eR can be used as a descriptor of 

protective mechanisms in AIS patients. In particular, it may be representative of the vascular 

health and could therefore be of interest for future research and clinical applications.
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Figure 1: 
Initial structural equation model for effective reserve. Squares represent measured 

phenotypes, whereas the circle indicates the latent variable. According to convention, arrows 

from latent variables point outwards. Associations in the model are indicated by arrows and 

can be estimated using path analysis.

Abbreviations: DWIv – acute lesion volume based on diffusion weighted images; eR – 

effective reserve; ICV – intracranial volume; mRS – modified Rankin Scale; SBP – systolic 

blood pressure; WMHv – white matter hyperintensity volume
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Figure 2: 
SEM with estimated association using path analysis. Statistical significance is indicated for 

each parameter (*: p<0.05; **: p<0.01; ***: p<0.001). Based on the nonsignificant link 

between WMHv and mRS, we exclude this link for a simplified model.

Abbreviations: DWIv – acute lesion volume based on diffusion weighted images; eR – 

effective reserve; ICV – intracranial volume; mRS – modified Rankin Scale; SBP – systolic 

blood pressure; WMHv – white matter hyperintensity volume
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Table 1:

Assessment of model criteria for both full and the simplified model of poststroke outcome.

Criterion Meaning Full model Simplified model

χ2 Assesses magnitude of difference between the model and the data 7.45 (p>0.38) 7.59 (p>0.37)

NFI/CFI Compares χ2 of the model to the “worst case scenario” (null hypoth- 0.96/1.00 
0.96/1.00 esis)

0.96/1.00 0.96/1.00

RMSEA Estimates how well the model fits the population covariance matrix 0.02 0.01

AIC Measure of relative quality of the models, given the data 14530.14 14530.30

HCN (alpha=0.05) Indicative of adequate sample size 856.93 840.99

Abbreviations: AIC - Akaike information criterion; HCN - Hoelter’s critical n; NFI/CFI - normed/comparative fit index; RMSEA - root mean 
square error of approximation
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Table 2:

Baseline characteristics and functional outcome of 453 acute ischemic stroke patients.

All subjects Hypertensive Non-hypertensive

Number of patients 453 311 70

Sex, n (%) male 165 (36.4) 121 (39.0) 24 (34.3)

Age (years)*** 66.6 (55.7–77.6) 64.4 (55.7–77.6) 72.0 (47.7–73.6)

ICV (cm3)* 15.3 (14.5–16.1) 15.3 (14.3–15.9) 15.2 (14.4–17.2)

Admission SBP

(mmHg)*** 148.0 (132.0–169.0) 148.0 (138.0–175.0) 148.5 (126.5–157.8)

ln(WMHv), (mm3)* 1.7 (1.0–2.8) 1.5 (1.1–2.8) 1.9 (0.9–2.4)

ln(DWIv), (mm3) 0.8 (−0.5–2.5) 0.7 (−0.4–2.3) 1.0 (−0.5–2.9)

mRS [0–6] 1 (0–2) 1 (0–3) 1 (0–2)

Each biomarker is reported as median (interquartile range).

*
: p<0.05

**
: p<U.U1;

***
: p<U.UU1 for a test of differences between hypertensive and non-hypertensive groups.

Abbreviations: DWIv - acute lesion volume based on diffusion weighted images; ICV - intracranial volume; ln - natural logarithm; mRS - modified 
Rankin Scale; SBP - systolic blood pressure; WMHv - white matter hyperintensity volume
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Table 3:

Spearman correlation coefficients between clinical variables used in the model.

ICV ln(WMHv) ln(DWIv) SBP mRS

Age −0.24*** 0.51*** −0.02 0.22*** 0.11*

ICV −0.10* −0.01 −0.14** 0.02

ln(WMHv) 0.02 0.20*** 0.08

ln(DWIv) −0.05 0.11*

SBP −0.02

*
: p<0.05

**
: p<0.01

***
: p<0.001

Abbreviations: DWIv - acute lesion volume based on diffusion weighted images; ICV - intracranial volume; ln - natural logarithm; mRS - modified 
Rankin Scale; SBP - systolic blood pressure; WMHv - white matter hyperintensity volume
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