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A contemporary technological milestone is to build a quantum device performing a computational task beyond
the capability of any classical computer, an achievement known as quantum adversarial advantage. In what ways
can the entanglement realized in such a demonstration be quantified? Inspired by the area law of tensor networks,
we derive an upper bound for the minimum random circuit depth needed to generate the maximal bipartite
entanglement correlations between all problem variables (qubits). This bound is lattice geometry dependent and
makes explicit a nuance implicit in other proposals with physical consequence. The hardware itself should be able
to support superlogarithmic ebits of entanglement across some poly(n) number of qubit bipartitions; otherwise
the quantum state itself will not possess volumetric entanglement scaling and full-lattice-range correlations.
Hence, as we present a connection between quantum advantage protocols and quantum entanglement, the
entanglement implicitly generated by such protocols can be tested separately to further ascertain the validity
of any quantum advantage claim.

DOI: 10.1103/PhysRevA.101.012349

I. INTRODUCTION

Rapid experimental advancements have spawned an inter-
national race towards the first experimental quantum adversar-
ial advantage demonstration, in which a quantum computer
outperforms a classical one at some task [1–18]. There is
likewise interest in understanding the effectiveness of low-
depth quantum circuits for, e.g., machine learning [19] and
quantum simulation [14]. Adding to this theory, we propose
a quantification of the maximal entanglement (manifest in
correlations between problem variables) that a given quantum
computation can support [20]. Quantification of the minimal-
size circuits needed to produce, even in principle, maximally
correlated quantum states fills gaps missing in the theory
of quantum adversarial advantage and low-depth circuits in
general. Indeed, such minimal-depth circuits, as predicted
by our theory, seem to be small quantum circuits that are
difficult to simulate classically and hence might offer a quan-
tum advantage for practical problems even beyond random
adversarial advantage benchmarks.

The goal of the quantum adversarial advantage is to per-
form any task that is beyond the capability of any known
classical computer. A naive starting point would be to consider
the evident memory limitations of classical computers and to
create a quantum state exceeding that. If we consider an ideal
quantum state, we must store at most 2n+1 × 16 bytes of infor-
mation, assuming 32-bit precision. This upper bound reaches
80 terabytes (TB) at just less than 43 qubits and 2.2 petabytes
(PB) at just under 47. Eighty TB and 2.2 PB are commonly
referenced as the maximum memory storage capacity of a
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rapid supercomputing node and the supercomputer Trinity
with the world’s largest memory, respectively. Thus a quantum
adversarial advantage might already be possible with 47 or
more qubits (strong simulation). The problem is that the cre-
ation of states requiring 2n+1 independent degrees of freedom
would require O(exp[n]) gates, well beyond the coherence
time of any device beyond the fault-tolerance threshold. Thus
we must search for another adversarial advantage protocol,
requiring lower-depth circuits.

II. BACKGROUND

Broadly speaking, the leading proposals for the quantum
adversarial advantage can be divided into two categories: (i)
those that provide strong complexity-theoretic evidence of
classical intractability (based, for example, on the noncollapse
of the polynomial hierarchy) and (ii) those that promise to be
imminent candidates for experimental realization. Examples
in category (i) include sampling from (a) boson sampling
circuits [2], (b) instantaneous quantum polynomial circuits
[1], and (c) deterministic quantum computation with one
quantum bit circuits [21]. A leading example in category (ii)
is the problem of sampling from random quantum circuits.

The existence of an efficient classical algorithm which can
simulate random quantum circuits seems unlikely. In partic-
ular, it would imply the violation of the quantum threshold
assumption [10]. However, this says nothing about the number
of qubits and the depths of the circuits required to demonstrate
this separation between quantum and classical computational
devices. To address this, all arguments to date have extrap-
olated, based on numerics or counting resources, where the
classical intractability crossover point will occur. Our theory
does not avoid this per se; it simply provides upper bounds
of the entanglement generated by a random circuit. The same
amount of entanglement generated by a random adversarial
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(a) (b)

FIG. 1. Example of (a) a quantum processor grid and (b) the
induced projected entangled pair state. (a) Grid for a quantum
processor of 3 × 3 qubits. Each node represents a qubit and each
edge a tunable coupling between the qubits. (b) PEPS induced by the
grid in (a). Each node with an open wire is a tensor. The open wires
represent physical degrees of freedom in the tensor network and the
internal edges represent internal bonds of some fixed dimension.

advantage circuit can be tested external to the adversarial
advantage demonstration. We bound the required gate depth to
maximally entangle any bipartition on a quantum processor;
prior numerical simulations of the benchmark proposed in [5]
are below this bound. It is important to note that the gate depth
required to maximally entangle all bipartitions is not a suffi-
cient condition to achieve a quantum adversarial advantage.
Our methods to perform an analysis of the entanglement are
based on ideas from tensor networks. Alternative approaches
have previously studied the role of entanglement in quantum
algorithms such as Shor’s algorithm [22,23].

An observation of central importance is that existing quan-
tum processors rely on qubits where the restriction is that
these qubits interact on the two-dimensional planar lattice.
In the long term, the specific layout will be of less conse-
quence. However, for low-depth circuits a subtle implication
is that the lattice embodies a small-world property, in which
long-range correlations must be induced as a sequence of
nearest-neighbor operations. Indeed, the Hilbert space de-
scribing the quantum processor can be entirely induced by a
tensor network [24] with the same underlying grid geometry
of the Hamiltonian governing the quantum processor itself.
Our bounds are formulated in this setting and are generally
applicable across all current quantum adversarial advantage
protocols.

III. RESULTS

We consider a quantum processor with a geometry repre-
sented as a graph G = (V, E ). Nodes v ∈ V are qubits and
edges e ∈ E are couplings which can be adjusted to create
interactions between qubits (two-body gates). At any point in
the calculation, the state of the system is described by the
wave function corresponding to the qubits of the quantum
processor. This naturally gives rise to a projected entangled
pair state (PEPS) tensor network [25].

We will consider quantum circuits that are formed by act-
ing on the interaction graphs appearing in Fig. 1. A quantum
process is hence a space-time diagram codified by a triple of
natural numbers l × m × g where we assume that n = l × m
qubits enumerate the nodes of a rectangular lattice Q and g
is the gate depth of circuits acting on Q. As will be seen,

the variation over all circuits of depth at most g acting on
an l × m qubit grid lifts to a state space. Here the edges
of Q connect 2(

√
n − 1)

√
n horizontal (otherwise vertical)

nearest-neighbor pairs, where
√

n will be deformed later so as
to deviate from a perfect square and hence capture the rectan-
gular structure of certain contemporary quantum information
processors (see Appendix B). We will fix a canonical basis
found from iterating all possible binary values of the qubits
positioned on the nodes of Q, which is given by the complex
linear extension of the domain {0, 1}l × {0, 1}m.

This assignment lifts the internal legs of Q to linear
operators between external (qubit) nodes and hence fully
defines our state space. Indeed, the grid structure induces a
dichotomy between tensors of (i) valence (3,1) and (ii) valence
(4,1), where the first is of type C⊗3

χ → C2 and the second
is C⊗4

χ → C2. The parameter χ will be defined later as the
internal bond dimension. We note that the minimum edge cut
bipartitioning n qubits into two halves is mincut(Q) = √

n,
which will become a quantity of significance. A graphical
example of the induced PEPS from a grid is shown in Fig. 1.

The rank is the Schmidt number (the number of nonzero
singular values) across any of the bipartitions into �n/2�
qubits on a grid. The rank provides an upper bound on the
bipartite entanglement that a quantum state can support; as
will be seen, a rank-k state has at most log2(k) ebits of
entanglement. This provides an entanglement coarse graining
which we use to quantify circuits.

An ebit is a unit of entanglement contained in a maximally
entangled two-qubit (Bell) state. A quantum state with q ebits
of entanglement (quantified by any entanglement measure)
contains the same amount of entanglement (in that measure)
as q Bell states. If a task requires r ebits, it can be done with
r or more Bell states, but not with fewer. Maximally entan-
gled states in Cd ⊗ Cd have log2(d ) ebits of entanglement.
The question is then to upper bound the maximum amount
of bipartite entanglement a given quantum computation can
generate, turning to the aforementioned entanglement coarse
graining to classify quantum algorithms in terms of both the
circuit depth and the maximum number of ebits possible. For
low-depth circuits, these arguments are surprisingly relevant.

To understand this, we note that the maximum number of
ebits generated by a fully entangling two-qubit gate acting
on a pair of qubits is never more than a single ebit. We
then consider that the maximum qubit partition with respect
to ebits is into two (ideally) equal halves, which is never
more than �n/2�. We then arrive at the general result that
a g-depth quantum circuit on n qubits never applies more
than min{�n/2�, g} ebits of entanglement. This in turn (see
Appendix A) puts a lower bound of log2 χ = √

n/2 on the
two-qubit gate depth to potentially drive a system into a state
supporting the maximum possible number of ebits of entan-
glement. However, the grid structure requires the two-qubit
gates acting on each qubit to be stacked, immediately arriving
at ∼√

4n as the lower bound for a circuit to even in principle
generate �n/2� ebits of entanglement. This lower bound is
just below the gate depths of interest which were successfully
simulated in the literature (see Fig. 2 and Sec. IV). Under our
definition of coarse graining, we do not increase entanglement
by the addition of local gates. Following the benchmark of
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FIG. 2. Comparison of findings: qubits versus gate depths superimposed on runtimes. In pink is the area below the gate depth required to
achieve maximally entangled states for every bipartition containing existing numerical data (depicted as the n/2 ebit bound). (Data points are
from Google [5,8], Alibaba [12], Sunway TaihuLight [11], IBM [9], USTC [26], and ETH [27].)

[5], local gates are added before and after each two-qubit
gate, multiplying the gate depth by a factor of 2, and the
possible number of patterns of two-qubit gates is 8, which
to take into consideration we multiply the gate depth by 2,
yielding ∼8

√
n. This number bounds the gate depth of the

circuit following the protocol in [5] to maximally entangle
any bipartition in the grid. This bound is shown in Fig. 2. For
further generalizations see Appendix A.

IV. DISCUSSION

Figure 2 compares our bound to quantum adversarial ad-
vantage predictions. Data points included follow the prescrip-
tion of a quantum circuit simulation by Google [5]. The gate
set used in this prescription comprises H ,

√
X ,

√
Y , T , and

controlled-Z gates. Gate definitions are given in Table I.
While some of these simulations, e.g., those done on the

Sunway TaihuLight supercomputer [11] for a circuit depth of
39, involve the calculation of the amplitudes of all output bit
strings (all 246-bit strings, in the case of Sunway TaihuLight),
others such as Alibaba [9] or Sunway TaihuLight for a circuit

TABLE I. Gate set involved in the random circuit sampling
benchmark recently proposed [5].

Gate Definition

H 1√
2

∑1
k,l=0(−1)kl |k〉〈l|√

X 1
2 [(1 + i)|0〉〈0| + (1 − i)|0〉〈1| + (1 −

i)|1〉〈0| + (1 + i)|1〉〈1|]√
Y 1

2 [(1 + i)|0〉〈0| + (−1 − i)|0〉〈1| +
(1 + i)|1〉〈0| + (1 + i)|1〉〈1|]

T
∑1

k=0 ei(π/4)k |k〉〈k|
controlled-Z

∑1
k,l=0(−1)kl |kl〉〈kl|

depth of 55 involve only the calculation of a single amplitude.
The data points were obtained from different simulations done
recently [5,8,9,11,12,26,27].

It is interesting to note that the reported numerical simula-
tions fall below the n/2 ebit bound (pink online) depicted in
Fig. 2. Such circuits are considered to be low-depth circuits
that are difficult to simulate classically.

We have also included a heat map with an estimation for
the running time based on state-of-the-art algorithms from
Alibaba [9]. To estimate the running time, we made use of the
following upper bound by Markov and Shi [28]: Any α-local
interacting quantum circuit of size M and depth g can be
strongly simulated in time t (M, g) = 10−17MO(1) exp[O(αg)],
where a factor of 10−17 has been included so that the running
time of the simulation is in units of seconds. For this factor,
we assume that a classical computer is capable of doing
1017 flops. In the case of our tensor network G representing
a

√
n × √

n grid, α = √
n, since the quantum circuit that

G represents is
√

n-local interacting. We also estimate the
number of total gates naively as the number of couplers in the
grid multiplied by the depth gate M(n, g) = 2(

√
n − 1)

√
ng.

Hence, we consider the equation

t (n, g) = 10−17M(n, g)a1 2a2g
√

n (1)

= 10−17[2(
√

n − 1)
√

ng]a1 2a2g
√

n (2)

and fit it to the numerical results of Alibaba [9] (where it has
been taken into consideration that only simulations for one
amplitude were realized). For our fit, we obtain the parameters
a1 = 4.360 639 01 and a2 = 0.043 154 88. With this fit we
are able to give an estimation for the gate depth that can be
simulated in 1 month, 1 year, 10 years, and 100 years. It is
important to note here that Alibaba simulations calculate only
one amplitude of an exponential number of possible strings.
The algorithm is a modification from Boixo et al. [8] and
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TABLE II. Estimation based on the fit given by (1) for the gate
depths achievable in the given runtime, assuming strong classical
simulation of one amplitude. For our estimates, we assume that 1
year contains 365.2425 × 24 × 602 seconds and that 1 month is 1

12
of a year. The gate depths obtained are rounded up to the nearest
integer.

Runtime Gate depth for 50 qubits Gate depth for 72 qubits

1 month 75 60
1 year 84 67
10 years 93 75
100 years 102 82

is based on treewidth to measure contraction complexity as
shown by Markov and Shi. Thus, this estimation should be
considered as an approximation. Finally, we include a pair of
vertical lines corresponding to the quantum computers built
by IBM and Google with 50 and 72 qubits, respectively. The
estimations for achievable gate depths in classical computers
for a given threshold are shown in Table II.

Work by Markov et al. [17] changes the prescription on
how gates are applied. One of these changes is the inclusion
of the ISWAP gate. They estimate that the gate depth to be
simulated in a given runtime is about half that for the state-
of-the art algorithms in this benchmark. We do not include
simulations of their work in Fig. 2. Considering this, we show
how the estimations are modified in Table III.

V. CONCLUSION

We have observed a nonlinear tradeoff between the number
of qubits and gate depth, with the fleeting resource (with expo-
nential dependence) being the gate depth. As is predicted, we
remark that quantum adversarial advantage demonstrations
(assuming completely random circuit families) should involve
circuits of depth at least 50 (if not more) for 80–150 qubits.
Circuits of such depth would be inside the area in pink in
Fig. 2 that we derived in the study. We hence provide some
handle to understand the physical entanglement that such
adversarial advantage protocols aim to generate.

The data and source code used to make Fig. 2 are available
online [29].

TABLE III. Estimation based on the fit given by (1) and esti-
mation given by Google [17] considering the change of benchmark
for the gate depths achievable in the given runtime, assuming strong
classical simulation of one amplitude.

Runtime Gate depth for 50 qubits Gate depth for 72 qubits

1 month 38 30
1 year 42 33
10 years 46 38
100 years 51 41
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APPENDIX A: LOWER BOUNDS FOR GENERAL
TENSOR NETWORKS

In the main text we derived bounds for qubits positioned
on a grid. In this Appendix we generalize the result to general
graphs. Consider a tensor network G with n vertices and e
edges. For convenience, we assume that n is even. Assume
that the bond dimension associated with each edge is equal to
χ . Let C be a cut of G that partitions the vertices of G into two
disjoint subsets, each of equal size n/2. Let f be the number
of edges that have exactly one end point in each of the two
parts of C.

Proposition 1. If G supports the maximum number of ebits
across C, then χ � 2n/2 f . The total number of gates #g needed
to produce the state represented by G satisfies #g � ne

2 f .
Proof. The maximum number of ebits across C is n/2.

Hence, 2n/2 � χ f , which implies that χ � 2n/2 f . The total
number of gates associated with each edge is log2 χ � n

2 f .
Multiplying this quantity by the number of edges e, the total
number of gates needed to produce the state represented by G
satisfies

#g = e log2 χ � ne

2 f
. (A1)

�
In the case where G is a

√
n × √

n grid, we have
e = 2

√
n(

√
n − 1). If C is a minimum cut of G, then f = √

n.
Substituting these values of e and f into Proposition 1 allows
us to recover the equations obtained in the main text: χ �
2

√
n/2 and #g � n(

√
n − 1).

Several other geometries can be analyzed as well. Consider
a quantum processor with a line and a ring topology such
as in Figs. 3(a) and 3(b). Following Eq. (A1), the total
number of gates #g to maximally entangle any bipartition in
a quantum processor described by a graph G must be at least
ne
2 f , where n is the number of vertices, e is the total number
of edges, and f is the number of edges that are cut by the
bipartition cutting the most edges in the graph (but keeping
the bipartition with an equal number of vertices). For the line
we have that given n vertices, then e = n − 1 and f = 1; on
the other hand, for the ring topology e = n and f = 2. We thus
conclude that

#line
g � n(n − 1)

2
,

#ring
g � n2

4
,

showing that achieving a maximally entangled bipartition
requires more gates in the line topology than in the ring one
for large n.

We consider as a last example a topology proposed by
Rigetti [30] for a 128-qubit processor. The graph consists of
octagons such as the one in Fig. 3(b), which form a grid as
in Fig. 3(c). Call o the number of octagons in the graph; then
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(a) (b) (c)

FIG. 3. Examples of graph topologies for a quantum processor: (a) Line topology, a line with n = 6 qubits, (b) Ring topology, a ring with
n = 8 qubits, and (c) Rigetti topology, architecture announced by Rigetti [30]. We consider here a grid composed of octagonal rings connected
as shown in the figure.

e = 8o + 2 × [2
√

o(
√

o − 1)]. The first term comes from the
fact that each octagon has eight edges and the second comes
from the fact that there are 2

√
o(

√
o − 1) double edges be-

tween octagons in the grid of octagons. It is directly deter-
mined that the fewest number of edges that a bipartition can
cross is f = 2

√
o. Since o = n

8 , we have that

#Rigett i
g � ne

2 f
= 3√

8
n
√

n − n,

which implies that the required number of gates applied in the
Rigetti topology is greater than in the grid case, as it would be
expected.

APPENDIX B: LOWER BOUNDS FOR
THE DEFORMED GRID

Let H be a (
√

n − k) × ( n√
n−k

) grid. In other words, H is

a deformation of the
√

n × √
n grid G, wherein the number of

qubits along one edge is reduced by k and the total number of
qubits is kept constant at n. Assume that

√
n > k � 0, that n

is a perfect square, and that
√

n − k divides n, to ensure that
the number of qubits in each row and column is an integer.

Note that the length of the longer edge can be written as

n√
n − k

= √
n + k + k2

√
n

+ O

(
k3

n

)
.

Hence, for H , the number of vertices is n and the number of
edges is

e = 2
√

n(
√

n − 1) − k2

√
n

(
1 − k√

n

)−1

.

If C is the minimum cut of G, then f = √
n − k. Applying

Proposition 1 to the graph H and the cut C then gives

log χ �
√

n

2

(
1 − k√

n

)−1

and

#g � n(
√

n − 1)

(
1 − k√

n

)−1

− k2

2

(
1 − k√

n

)−2

.

Since k√
n

< 1, we could expand (1 − k√
n

)−2 and (1 − k√
n

)−2

as Taylor series. This gives

log χ �
√

n

2

∞∑
s=0

(
k√
n

)s

=
√

n

2

[
1 + k√

n
+ k2

n
+ O

((
k√
n

)3)]

and

#g �
∞∑

s=0

[
n(

√
n − 1) − k2

2
(s + 1)

](
k√
n

)s

.
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