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ABSTRACT 1 
This paper presents a systematic way of understanding and modelling traveler behavior in 2 
response to on-demand mobility services. We explicitly consider the sequential and yet inter-3 
connected decision-making stages specific to on-demand service usage. The framework includes 4 
a hybrid choice model for service subscription, and three logit mixture models with inter-5 
consumer heterogeneity for the service access, menu product choice and opt-out choice. 6 
Different models are connected by feeding logsums. The proposed modelling framework is 7 
essential for accounting the impacts of real-time on-demand system’s dynamics on traveler 8 
behaviors and capturing consumer heterogeneity, thus being greatly relevant for integrations in 9 
multi-modal dynamic simulators. The methodology is applied to a case study of an innovative 10 
personalized on-demand real-time system which incentivizes travelers to select more sustainable 11 
travel options. The data for model estimation is collected through a smartphone-based context-12 
aware stated preference survey. Through model estimation, lower VOTs are observed when the 13 
respondents opt to use the reward system. The perception of incentives and schedule delay by 14 
different population segments are quantified. The obtained results are fundamental in setting the 15 
ground for different behavioral scenarios of such a new on-demand system. The proposed 16 
methodology is flexible to be applied to model other on-demand mobility services such as ride-17 
hailing services and the emerging MaaS (Mobility as a service).  18 
 19 
Keywords: smart mobility, on-demand, incentives, travel behavior, stated preference, 20 
sustainability, smartphone app 21 

22 
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1 INTRODUCTION 1 
In recent years, emerging new mobility services, including ride-hailing, ride-sharing, bike-2 
sharing, and carsharing systems have gained popularity worldwide. Uber, which operates in 600 3 
cities across 78 countries, gave four billion rides worldwide in 2017 alone, while it has just hit 4 
five billion total rides in May 2017 since its first appearance (1). In China, DiDi Chuxing 5 
completed 7.43 billion rides for 450 million users in more than 400 cities in the same year (2). 6 
The French-born peer-to-peer carpooling digital platform BlaBlaCar claims to have 60 million 7 
members in 22 countries and serves over 18 million travelers every quarter (3). The attempts to 8 
design, test and implement MaaS (Mobility as a service) platforms which vend travel packages 9 
integrated from different service providers have also emerged in the last 5 years.  10 

The success and the still growing interest in these new mobility solutions are largely due 11 
to the advancement of Information and Communications Technologies (ICTs) in that these 12 
services usually enable on-demand, efficient, convenient and personalized usage through mobile 13 
applications. All these mobility services usually require users to (i) subscribe (register) to a given 14 
service, (ii) request a service menu with product option(s) through a mobile application and (iii) 15 
select the preferred product. We refer to this broad group of mobility services as on-demand 16 
services.  17 

When designing a new transportation service/mode, predicting its demand and its 18 
sensitivity with respect to service attributes is critical. Currently, the state-of-the-art approaches 19 
rely on disaggregate behavioral modelling and activity-based models or ABM (4, 5). These 20 
models are commonly based on discrete choice methodology and random utility maximization 21 
(6, 7). Since on-demand mobility services are often dynamically tailored to different individual 22 
preferences and contexts (time-of-day, supply demand matching), disaggregate behavioral 23 
models are essential for the accommodation of their complex dynamics which enables the 24 
quantification of user benefits and overall transportation impacts (such as congestion and other 25 
externalities). Constructing and understanding these models are thus of great interest to 26 
researchers, practitioners and service providers.  27 

Current research on the behavior side of on-demand mobility services mainly focuses on 28 
exploring the behavioral insights qualitatively based on aggregate analysis of surveys (e.g. 8,9). 29 
As indicated by Jittrapirom et al. (10), models for MaaS or other on-demand mobility services 30 
have been limited so far.  31 

To the best of our knowledge, discrete choice models for on-demand mobility service 32 
have been focusing only on either the subscription choice or the product choice. In both cases, 33 
usually the service access action (i.e., opening the app) and its impact are not considered. To 34 
name a few efforts put in these two streams, Ghose and Han (11) investigated the demand 35 
(number of downloads) of apps through a 3-level nested logit with consumer taste heterogeneity 36 
and nests divided by app attributes. Zoepf and Keith (12) estimated a logit mixture with taste 37 
heterogeneity to evaluate how carsharing users value each attribute displayed in a product menu. 38 
Dias et al. (13) used a bivariate ordered probit model for the use of ride-hailing and car-sharing 39 
services in terms of weekly usage frequencies. Matyas and Kamargianni (14) investigated 40 
subscription preferences towards Maas with various product bundles by logit mixtures with taste 41 
heterogeneity. Choudhury et al. (15) used nested logit to model the mode choice between smart 42 
mobility solutions and existing modes, along with other choice dimensions. While the methods 43 
in these papers are useful to draw behavioral insights for a specific episode of the decision 44 
process, they are missing the connections between the episodes. These segmented treatments 45 
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could potentially result in inaccurate conclusions and make it hard to engage the models in 1 
simulations without placing assumptions on the unmodeled decision stages (e.g. if one has only 2 
modelled the mode choice decision, he/she would have to assume a penetration rate for 3 
subscription in simulation).  4 

In the greater context of modelling car ownership or service subscriptions, the inter-5 
connections between short-term and long-term decisions have been studied (e.g. 16, 17, 18). The 6 
uniqueness of on-demand mobility service usage arises from an additional level of decision – 7 
whether to access the service menu. This level requires specific treatment to capture the 8 
behaviors of travelers who checked the service menu but opted out and who didn’t bother 9 
checking the menu because they expect unattractive options would had been offered. These 10 
behaviors are especially relevant for on-demand services which present their service menu 11 
dynamically in real-time. 12 

This paper fills the aforementioned gaps by developing a framework which explicitly 13 
considers and integrates all decision-making stages of on-demand service usage, including the 14 
real-time and dynamic aspects of such service. Inter-consumer heterogeneity is captured through 15 
logit mixtures with distributed taste coefficients. The modelling framework could be either used 16 
as a stand-alone or embedded within common ABM frameworks. 17 

Our methodology could be applied to a broad range of on-demand services such as ride-18 
hailing, carsharing and Maas. The capability and flexibility of it are illustrated through a case 19 
study on Tripod – an innovative on-demand incentive scheme (19). Tripod doesn’t provide a 20 
mobility service per se but offers incentives for more energy efficient travel options through a 21 
personalized real-time travel menu.  22 

The remainder of the paper is organized as follows. In the second section, we propose our 23 
modelling framework. In the third section we present the data collection for the case study, 24 
followed by model specifications and estimation shown in section 4. Finally, the conclusions are 25 
provided in the last section.  26 
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2 MODELLING FRAMEWORK FOR ON-DEMAND SERVICES 1 
The decision-making process relevant to an on-demand mobility service is depicted in Figure 1.  2 

 3 
Figure 1 Conceptualized decision-making process in on-demand app usage 4 

First of all, a person needs to decide whether to subscribe to a given service. This choice 5 
is represented by the subscription model. It typically involves downloading the app (if app-6 
based) and registering. With the goal to model the behavior in service usage, the subscription 7 
here refers to people who actually consider to use the service on a regular basis. If a traveler 8 
doesn’t subscribe to the on-demand service of interest, then upon travel, he/she makes a regular 9 
choice, i.e., the choice set excludes options offered by this service. 10 

For a subscriber, the first decision prior to trip-making is whether to access the service 11 
and view the offered products at all, which is represented by the service access model. This may 12 
be conditional on the context (e.g., trip purpose, traveling party) or the user’s past experience 13 
with the service. Sometimes travelers don’t consider using a service as they expect the operator 14 
to offer unattractive terms (for example they might expect higher price in rush hours) and 15 
therefore do not check the menu – while what is offered in the menu might actually be attractive. 16 
The explicit modelling of service access model captures this behavior. 17 

In Figure 1 we represent the choice situation of a subscriber who doesn’t access the 18 
service and that of the non-subscribers by the same model, however, it doesn’t mean that the 19 
traveler should behave identically under these two situations. This potential behavioral difference 20 
could be incorporated in the model specification by segmentation. 21 

If the user decides to access the service, a service menu would be presented and the user 22 
would evaluate the products through a menu product choice model (see an example of a product 23 
menu in Figure 2 (b)). If the user likes one of the products in the menu, he/she would select it 24 
and execute the trip. The user may also reject the entire menu (opt-out) and choose some other 25 
alternative outside the on-demand service at stake.  26 

For subscribers, the choice situation after opt-out (informed regular choice in Figure 1) is 27 
different from the one without opening the app (regular choice in Figure 1) in that the options 28 
offered by on-demand mobility services usually also provide users with real-time information 29 
(e.g., availability of alternatives, travel time estimates). The impact of information is discussed in 30 
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Ben-Akiva et al. (20) and Mahmassani and Lin (21). For example, if a traveler checks a car-1 
based ride-hailing app prior to travel during a congested period and opts out, she/he may be more 2 
likely to select non-road modes.  3 

Based on the sequential nature of the above-described decision process, higher level 4 
choices influence lower level ones. However, lower levels have significant impacts on the upper 5 
levels as well. When a traveler makes the subscription decision, the major consideration is 6 
whether the mobility service is attractive, which is reflected through the experience and 7 
perceived benefits of using the corresponding mobility service, including the app. Furthermore, 8 
whether to access the service for a given trip depends on users’ perceptions of the attractiveness 9 
of the menu given the context of the trip, the attributes of the potential service products and the 10 
user’s sensitivities towards them. To capture this bottom-up dependency, a multi-level nesting 11 
structure is proposed. The logsums feedings between levels provide measurements of 12 
attractiveness of the lower levels, and their coefficients show the corresponding sensitivities. 13 

In conclusion, five choice models should be considered in order to model an on-demand 14 
mobility service: (1) a subscription model, (2) a service access model, (3) a menu product choice 15 
model, (4) an informed regular choice model for those who opts out, (5) a regular choice model 16 
for uninformed users.  17 

The logsum passing directions are illustrated in Figure 1 by dashed lines. By definition, 18 
logsum represents the expected maximum utility from the corresponding lower level. We want to 19 
stress two logsum computations that require additional attention. First, the logsum from the menu 20 
product choice model to service access model should depend on what the users expect to see, 21 
rather than what would be truly offered. An example of how this is handled in the context of our 22 
case study could be found in section 4.1. Second, the long-term logsum (green dashed lines in 23 
Figure 1) should be computed based on corresponding lower level models applied to multiple 24 
trip contexts pertinent to the traveler and weighted according to their frequency and/or 25 
importance. 26 

To estimate the modelling framework we described, a dataset which covers the complete 27 
decision sequence is desired. While the menu product choice and subscription choice are 28 
straight-forward to elicit, the service access choice is intricate. If revealed preferences (RP) data 29 
is used, besides the trips and the choice that are common to most RP datasets, it has to contain 30 
information regarding service access actions. These could be acquired by tracking the 31 
respondents’ smartphones or by including related questions (e.g., “did you access Uber App for 32 
this trip?”) in the RP survey. While the first one requires additional efforts in the data collection, 33 
the second may cause under-reporting of the access-then-opt-out behavior. On the other hand, if 34 
SP data is used, service access process needs to be presented and the corresponding choice needs 35 
to be recorded. In sections 3 and 4 we describe how we addressed this by smartphone-based SP 36 
in the context of Tripod. 37 
 38 
3 CASE STUDY: TRIPOD BACKGROUND AND DATA COLLECTION 39 
3.1 Tripod Overview 40 
Tripod is an app-based on-demand system that influences individuals’ real-time travel decisions 41 
by offering them information and incentives with the objective of achieving system-wide energy 42 
savings (19). The travel decisions of interest are mode, route, departure time, trip-making and 43 
driving style. In response to any changes in any of the above dimensions, users receive 44 
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incentives in the form of tokens that can then be redeemed in a market place for a variety of 1 
goods and services. Like in the above-mentioned decision process, a Tripod user has to subscribe 2 
to the app and decide whether to request a Tripod menu before each trip. The menu is presented 3 
to the user (see Figure 2) with information about the recommended options and their tokens. The 4 
tokens for each alternative are calculated based on the energy savings from the expected choice 5 
and the menu is personalized according to the user’s preferences, characteristic and network 6 
attributes (22). The user may select an option from the menu and use the Tripod app to navigate 7 
to the destination or opt out. In the first case, the app monitors the travel of the user and rewards 8 
her/him at the end of the trip if the guidance was followed.  9 

   

(a) (b) (c) 
Figure 2 User interface of the Tripod app 10 
*From left to right: (a) filling in destination and requesting a menu with options (b) menu 11 
displayed (c) guidance provided and trip being monitored 12 
 13 
3.2 Data Collection Method 14 
In this section we describe the data collection for Tripod, which is based on the methodology 15 
proposed by Atasoy et al. (23).  16 

The core data collection platform is the smartphone-based Future Mobility Sensing 17 
(FMS) (24, 25, 26). It overcomes the main limitations associated with the traditional “paper-and-18 
pencil” or purely web-based questionnaires, such as under-reporting of trips, inaccurate time and 19 
location information, high cost, and lack of detailed route information (25). FMS typically 20 
collects high quality RP data. In this study, a context-aware SP was integrated into FMS for 21 
preferences towards Tripod. Pre- and post-surveys (also integrated within the app) elicit 22 
information on socio-demographics and long-term preferences and perceptions, respectively.  23 

Data collection was carried out in Boston-Cambridge region and its vicinity where 1940 24 
observations from 202 participants were obtained, out of which 154 participants have finished 25 
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the required 14 days of responses and exited the survey at the time of writing this paper (July 1 
2018). Each respondent who had provided 14 days of RP data and completed the corresponding 2 
SP was rewarded with a 100-dollar Amazon gift card1.  3 

 4 
3.2.1 Pre-survey Data 5 
Upon downloading the app and registering, respondents were asked to fill out the pre-survey. 6 
They were asked about their socio-demographic characteristics, such as age, gender, working 7 
status, income, car ownership, bike ownership, and how frequently they use different 8 
transportation modes.  9 
 10 
3.2.2 Revealed Preferences Data 11 
After completing the pre-survey, RP data was collected in the form of trip and activity diaries. 12 
The app collects location data (GPS, WiFi, GSM) on a continuous basis. The data is processed in 13 
the backend for stop detection and inference for trip mode and activity type. The app interface 14 
presents partially filled activity diaries and reminds the respondents to validate their trip and 15 
activity diaries at the end of each day. For activities, the data included activity purpose, location, 16 
start and end times. For trips, the origin, destination, travel mode, arrival and departure times 17 
were obtained. Figure 3 shows an example of a validated trip/activity diary. More details 18 
available in Cottrill et al. (24) and Zhao, et al. (25). 19 

 20 
Figure 3 Trip/activity diary validation 21 
                                                
 
 
1 In the same data collection effort, SP surveys were also generated for another mobility survey 
(23). The 14 surveys required for each respondent are a mixture of the two (randomly presented 
with a higher frequency of Tripod appearance). 
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3.2.3 Stated Preferences Data 1 
Upon validating their diaries, respondents were presented with daily SP questions. For each 2 
validated day, a trip is randomly selected and the respondent is asked about his/her choice if the 3 
trip had to be repeated under a hypothetical scenario (Figure 4 (a)). 4 

The context-aware SP we adopted is different from the conventional SP’s in that the 5 
context of the experiments, although being still hypothetical, is coming from the accurately 6 
collected RP data. Furthermore, the respondent-specific information collected in advance 7 
through the pre-survey, such as, vehicle ownership, usage of car/bike sharing services, etc. is 8 
used in the SP survey generation process as constraints. Google Maps API is used on the fly in 9 
order to obtain the travel times and distances associated with different modes corresponding to 10 
the specific trip. As a result, we expect our SP to be closer to the true decision-making scenarios 11 
and hence able to elicit more realistic responses compared to alternative state-of-the-art SP 12 
approaches (23).   13 

Each SP choice task is presented through a “profile”, defined as a menu that includes all 14 
travel alternatives available to the respondent (along with their attributes), with the addition of a 15 
Tripod menu including options provided by Tripod (see example in Figure 4 (b), (c)).  16 

The set of alternatives might include non-motorized modes (walking, biking, and bike-17 
sharing), private motorized modes (car and carpooling), on-demand modes (e.g. Uber/UberPool, 18 
Lyft/Lyft Line, carsharing, and taxi), and transit (with walk, bike, or car access). The attributes 19 
of these alternatives are presented in Atasoy et al. (23). Each of these sets are shown in a separate 20 
tab, alongside the tab for Tripod menu (Figure 4 (b), (c)). Furthermore, respondents are presented 21 
with ranges that reflect uncertainty in the attributes such as travel time and waiting time.  22 

The Tripod menu presents a subset of the existing alternatives with changes across 23 
multiple dimensions that generate energy savings, e.g., the departure time may be delayed 24 
(between 15 and 90 minutes), a different route or driving in an eco-friendly way may be 25 
presented.  Information on energy savings (relative to the RP choice) and tokens assigned to 26 
alternatives are also presented. Energy consumption values are obtained from TripEnergy (27). 27 
Only alternatives with positive energy savings could be included in this menu. 28 

Upon accessing the SP for the first time, respondents are presented with a “marketplace” 29 
showing the items that can be purchased with tokens (Figure 4 (d)). The redemption value of 30 
tokens is fixed for each individual. The marketplace is accessible to the respondents throughout 31 
the SP.  32 

SP Profiles are generated based on a random design and validated using validity checks 33 
that eliminate dominant and inferior alternatives or unrealistic attribute combinations. The profile 34 
generation algorithm was validated using Monte-Carlo simulations. During each SP session, 35 
respondents’ actions on the app are tracked.   36 
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(a) (b) (c) (d) 

Figure 4 Tripod SP: trip context options and market place 1 
*From left to right: (a) recall of trip context; (b) an option in Tripod tab; (c) an option in Drive 2 
tab; (d) the market place for a respondent 3 
 4 
3.2.4 Post-survey Data 5 
Upon completing two weeks of data collection, respondents are presented with the post-survey, 6 
which collects feedback on the potential use of Tripod if it existed in real life, attitudes and 7 
perceptions towards energy consumption, environment, mobile apps and technology in general. 8 
As an example, respondents rate statements like “I would use Tripod if it were available today” 9 
on a 5-point Likert scale (see section 4 for more details). 10 
 11 
3.3 Sample Characteristics 12 

After data cleaning, sessions completed within 10 seconds were excluded (likely 13 
correspond to random selections), as well as profiles corresponding to trips with very long 14 
distances (e.g. flights and inter-city trips). As a result, 1155 surveys from 183 individuals are 15 
used in the analysis. Figure 5 shows the sample distributions of age, number of household 16 
vehicles, gender, household income, and employment status compared to the population 17 
distributions in the survey region based on American Community Survey (ACS) (28). For 18 
employment status distribution in the population, we only considered population 16 years old 19 
and over because younger population is not considered as the market of Tripod (limited 20 
discretion and not allowed to drive). Since the survey is smartphone-based, the sample is biased 21 
towards young respondents as expected. In addition, females and household income group $50k 22 
to $99k (annual) are slightly oversampled. 23 
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Figure 5 Sample characteristics 1 
 2 
4 CASE STUDY: MODEL FORMULATION AND ESTIMATION 3 
In this section, we apply the model structure proposed in section 2 to the case of Tripod and we 4 
formulate and estimate each model component with the data described in section 3. 5 

In our SP setting, we present attributes (such as travel time and cost) of all the 6 
alternatives to the respondents and expect them to assume the values are real. As a result, the 7 
regular choice model which should be based on expected attributes under uninformed conditions 8 
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cannot be estimated using the SP data. To circumvent this difficulty, we estimated the informed 1 
regular choice model and used it as the regular choice model in the logsum calculations for 2 
model estimation as an approximation. We refer to this model as regular choice model in the rest 3 
of the paper. Due to the limited sample size, the behavioral of subscribers and non-subscribers 4 
are not differentiated in regular choice model. 5 

The models are estimated sequentially from the bottom in the following order:  regular 6 
choice model, menu product choice, service access model and subscription model. This allows us 7 
to compute the logsums of the lower levels which is required for the estimations of higher-level 8 
models. The model specifications and results are presented in this order as well.  9 

 10 
4.1 Model formulation and specification 11 
The utility equations of each model are specified below. The notations are explained in Table 1. 12 
𝛽, 𝛼, 𝛿, 𝜆, 𝜎, and 𝐴𝑆𝐶 are the coefficients to be estimated. Selected mode in the corresponding 13 
RP trip is considered in the utility equations to capture inertia. Binary variables are denoted as 14 
𝐷’s. 15 

Regular choice model 16 
Equation (1) shows the utility specification for an alternative in the regular choice model. 17 

The travel time is divided into in-vehicle travel time, out-of-vehicle travel time and non-18 
motorized travel time.  19 
 20 
𝑈+,-.+/ = −𝑒3!"##𝑡5677 − 𝑒3$"##𝑡8677 − 𝑒3%&&𝑡9:: − 𝑒3'𝑝 + 𝛽./=>-.?𝐷@A + B 𝛽C𝐷C

C∈:

+ 𝜖 21 

 22 
Menu product choice model 23 
Equation (2) shows the utility specification for an option in the menu while equation (3) 24 

shows it for the opt-out option. To capture respondents’ perceptions of the value of the tokens, 25 
we include the tokens as monetary value ($) converted by the token exchange rate that had been 26 
randomly assigned to the respondents upon their registration of the survey (the rate is implicitly 27 
indicated to them by the price of goods in the marketplace, see Figure 4 (d)). 28 

 29 
𝑈C=/F	+,-.+/ = −𝑒3!"##𝑡5677 − 𝑒3$"##𝑡8677 − 𝑒3%&&𝑡9:: − 𝑒3'𝑝 + 𝛽./=>-.?𝐷@A + B 𝛽C𝐷C

C∈:

30 

+ 𝑒3(𝑟 − 𝑒3)*+,- logL𝑡M=N?O + 1Q + 𝜖 31 
 32 
𝑈+F- = 𝐴𝑆𝐶+F- + 𝛽5+F-𝐼@S + 𝜖 33 
 34 

Service access model	35 
Equations (4) and (5) show the utilities of accessing and not accessing the mobile app in 36 

the service access model respectively.  37 
 38 
𝑈/?T = 𝐴𝑆𝐶/?T + 𝛽5/?T𝐼@S + 𝜖 39 
 40 
𝑈?T = 𝐴𝑆𝐶?T + 𝑒3#./𝑋7V@ + 𝛽5?T𝐼:S + 𝜖 41 

(1) 

(2) 

(3) 

(4) 

(5) 
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As mentioned in section 2, the logsum entering equation (5) should be based on what the 1 
respondents expect to see rather than what is truly offered. Tripod’s personalization algorithm 2 
limits the number of offered alternatives (currently to 5). Based on past experience, a respondent 3 
might be expecting a different set of alternatives than the one that is generated from the 4 
personalization algorithm for a trip. In this case, he/she would still access the service in the first 5 
place. Thus, in our estimation we used all the possible alternatives (the ones with energy-savings 6 
and hence positive incentives) from Tripod before the personalization for logsum calculation 7 
rather than what would truly appear on the single trip-specific menu. This provides us with an 8 
optimistic approximation of respondents’ expectations. Ideally a behavioral expectation model 9 
would be necessary to couple with the logsum transfer. This modeling and data collection effort 10 
is however left for future work. The same practice should be carried out accordingly when 11 
applying the estimated model in simulation. 12 

 13 
Subscription Model  14 
We formulate the subscription model as a hybrid choice model. Equations (6) and (7) 15 

show the structural equations for the latent variables “app-lover” and “environmentalist”. 16 
Equations (8) and (9) show the measurement equations of the latent variables with their 17 
corresponding questions specified in Table 1. Equation (10) shows the utility of app subscription.  18 
 19 
𝐴 = 𝐴𝑆𝐶W + 𝛽XY𝑋XY + 𝛽79S𝑋79S + 𝜎W𝑧 20 
 21 
𝐸 = 𝐴𝑆𝐶V + 𝛽6V\(𝑋6V\ > 1) + 𝛽\5𝑋\5 + 𝜎V𝑧 22 
 23 
𝑖W/ = 𝛼W/ + 𝜆W/𝐴 + 𝜖, 𝑓𝑜𝑟	𝑛 = 1,2,3 24 
 25 
𝑖V/ = 𝛼V/ + 𝜆V/𝐸 + 𝜖, 𝑓𝑜𝑟	𝑛 = 1,2,3 26 
 27 
𝑈gFhgT>.h= = 𝐴𝑆𝐶gFh + 𝛽W𝐴 + 𝛽V𝐸 + 𝛽5gFh𝐼gFh + 𝛽5/gFh𝐼/gFh + 𝜖 28 
	29 

The responses to the indicators of measurement equations and whether to subscribe are in 30 
5-point Likert scales ranging from “strongly disagree” to “strongly agree”. As the error terms in 31 
equations (8), (9) and (10) follow the Gumbel distribution, the models of the responses are in 32 
forms of ordinal logit. Due to the limited sample size and the answers being framed as 33 
symmetric, we assumed the to-be-estimated threshold values to be symmetric as shown in 34 
equation (11) using the ones for the whether-to-subscribe question as an example. The thresholds 35 
for each question of each latent variable are estimated separately. In section 4.2, the estimated 36 
thresholds are subscripted according to the measurement equations’ subscripts. 37 

	38 

	

strongly	disagree  −∞ < 𝑈 < −𝛿g,t − 𝛿g,u 
disagree	  −𝛿g,t − 𝛿g,u < 𝑈 < −𝛿g,t 
neither	agree	nor	disagree	 if  −𝛿g,t < 𝑈 < 𝛿g,t 
agree	  𝛿g,t < 𝑈 < 𝛿g,t + 𝛿g,u 
strongly	agree	  𝛿g,t + 𝛿g,u < 𝑈 < ∞ 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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Table 1 Notations in utility specifications 1 
Variable Unit Description Inter-consumer Distribution 

of corresponding parameter 
𝑡5677 	 minute	 In-vehicle	travel	time		

Log-normal	distributions*		

𝑡8677 	 minute	 Out-of-vehicle	travel	time,	
including	access	time,	egress	
time	and	waiting	time	

𝑡9:: 	 minute	 Non-motorized	travel	time,	
used	in	the	bike,	walk	and	
bikeshare	options	

𝑝	 US	dollar	 Cost	
𝑟	 US	dollar	 Reward	in	monetary	token		
𝑡M=N?O 	 minute	 Schedule	delay	 Log-normal	distributions	
𝐷@A 	 binary	 Dummy	for	whether	the	mode	

of	SP	option	is	the	same	as	the	
RP	mode	

Normal	distributions	
𝐷C,𝑚 ∈ 𝑀	
	

binary	 Mode	dummies.	M	includes	
walk,	bike,	bikeshare,	car	and	
carpool,	Uber	and	Uberpool,	
taxi,	and	public	transit	
accessed	by	walk,	bike	and	car	

𝐼@S 	 	 Inclusive	value	calculated	
from	the	regular	choice	model	

Fixed 

𝐼:S 	 	 Inclusive	value	calculated	
from	the	menu	product	choice	
model	

Fixed 

𝑋7V@	 US	
cent/token	

Token	exchange	rate	 Truncated	lognormal	
distribution	

𝐼gFh 	 	 Inclusive	value	calculated	
from	the	service	access	model	

Fixed 

𝐼/gFh 	 	 Inclusive	value	calculated	
from	the	regular	choice	model	

Fixed 

𝑋XY	 binary	 Whether	a	member	of	(using)	
any	bikeshare	service		

Fixed	

𝑋79S 	 binary	 Whether	a	member	of	(using)	
any	ride-hailing	app	

Fixed	

𝑋6V\ 	 cars	 Number	of	household	vehicles	 Fixed	
𝑋\5 	 binary	 Whether	annual	household	

income	>	100k	
Fixed	

𝑧	 	 random	variable	with	i.i.d	
standard	normal	distribution		

	

𝜖	 	 random	variable	with	i.i.d	
Gumbel	distribution	

	

Latent variable  
 

𝐴	 app-lover	 Fixed	
𝐸	 environmentalist	 Fixed	
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Measurement Equations 	
indicator intercept slope Corresponding question asked in the post-survey	
𝑖Vt	 𝛼Vt	 𝜆Vt	 “I	am	aware	of	the	energy	impact	of	my	daily	travel” 

𝑖Vu	 𝛼Vu	 𝜆Vu	 “I	am	interested	in	knowing	how	much	energy	I	can	save	in	my	
commute” 

𝑖Vy	 𝛼Vy	 𝜆Vy	 “I	would	like	to	share	my	energy	savings	with	friends	and	
family” 

𝑖Wt	 𝛼Wt	 𝜆Wt	 “I	am	a	regular	customer	of	eCommerce	services” 
𝑖Wu	 𝛼Wu	 𝜆Wu	 “I	am	interested	in	the	latest	technological	advancements” 
𝑖Wy	 𝛼Wy	 𝜆Wy	 “I	am	interested	in	mobility	apps” 

*the distribution of the parameters of travel time and cost are segmented by full-time workers 1 
and other populations (different means and standard deviations) 2 
 3 
4.2 Estimation results 4 
We estimated the set of models by BIOGEME (29). The models with inter-consumer 5 
heterogeneity were estimated with maximum simulated likelihood. Halton draws (30) were used 6 
and the number of draws was decided based on the stationarity of the parameters.  7 

The regular choice and menu product choice models are estimated with the chosen 8 
alternatives in individual SP experiment. The action of clicking on the Tripod tab in a SP is 9 
recorded and considered as a service access action for the estimation of the service access model. 10 
Finally, the subscription model is based on the degree of agreement on the post-survey statement 11 
“I would use Tripod if it were available today”. 12 

To clearly identify the click action on Tripod tab, the surveys where the default tab (the 13 
tab shown when respondent opened the page, randomly assigned in survey generation) is Tripod 14 
had to be excluded. In addition, we noticed that in 30% of the surveys the respondents viewed 15 
only 1 tab. To nudge the respondents to make the choice of which tab to click, we recommend 16 
that future studies trying to elicit this action do not provide a default tab so that the respondent 17 
has to make a choice of which tab to click before selecting the final option. 18 

The estimation results are presented in Table 2 with the notations specified in section 4.1. 19 
In the menu product choice model, due to the sample size, the standard deviations of the travel 20 
time coefficients’ logarithms are fixed to be the same across population segments. Normalized 21 
parameters are shown without standard errors. The normalization in the hybrid choice model is 22 
done according to Daly et al. (31). 23 

24 
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Table 2 Estimation results 1 
Regular choice model 
Name Mean Robust SE 

 
SD Robust SE 

 

𝛽,	full-time	worker	 -3.29	 0.36	 **	 0.0614	 0.155	
	

𝛽,	other	 -2.27	 0.339	 **	 0.982	 0.432	 **	
𝛽5677 	full-time	worker	 -3.31	 0.318	 **	 0.144	 0.72	

	

𝛽5677 	other	 -3.51	 0.569	 **	 0.206	 0.286	
	

𝛽8677 	full-time	worker	 -3.41	 0.361	 **	 0.174	 0.791	
	

𝛽8677 	other	 -2.83	 0.231	 **	 0.22	 0.173	
	

𝛽9:: 	full-time	worker	 -3.01	 0.187	 **	 0.321	 0.176	 *	
𝛽9:: 	other	 -2.4	 0.197	 **	 0.0215	 0.182	

	

𝛽./=>-.?	 0.944	 0.181	 **	 0.696	 0.308	 **	
𝛽-?z. 	 0	

	 	
0	

	 	

𝛽A7 	 1.59	 0.298	 **	 0.0515	 0.0784	
	

𝛽T?>	 -1.37	 0.494	 **	 1.72	 0.299	 **	
𝛽h.{=	 2.12	 0.372	 **	 0.678	 0.267	 **	
𝛽Fh=>	 1.61	 0.259	 **	 0.0552	 0.427	

	

𝛽h.{=g|?>= 	 1.46	 0.376	 **	 0.11	 0.282	
	

𝛽}?N{ 	 1.89	 0.483	 **	 1.25	 0.358	 **	
Sample	size	 664	

	 	 	 	 	

Null	log-likelihood	 -1539.31	
	 	 	 	 	

Final	log-likelihood	 -1281.74	
	 	 	 	 	

Menu product choice model 
Name Mean Robust SE 

 
SD Robust SE 

 

𝛽,	full-time	worker	 -2.13	 0.369	 **	 0.825	 0.245	 **	
𝛽,	other	 -2.05	 0.481	 **	 0.0917	 0.514	

	

𝛽>	full-time	worker	 -2.03	 0.769	 **	 0.798	 0.471	 *	
𝛽>	other	 -1.94	 0.9	 **	 0.354	 0.359	

	

𝛽5677 	full-time	worker	 -2.96	 0.469	 **	 0.578	 0.238	 **	
𝛽5677 	other	 -3.46	 0.734	 **	 0.578	 0.238	 **	
𝛽8677 	full-time	worker	 -3.05	 0.475	 **	 0.337	 0.333	

	

𝛽8677 	other	 -2.52	 0.43	 **	 0.337	 0.333	
	

𝛽9:: 	full-time	worker	 -2.42	 0.158	 **	 0.00734	 0.236	
	

𝛽9:: 	other	 -2.4	 0.234	 **	 0.00734	 0.236	
	

𝛽M=N?O 	 -1.99	 1.09	 *	 1.31	 1.67	
	

𝛽./=>-.?	 1.14	 0.25	 **	 0.403	 2.51	
	

𝐴𝑆𝐶+F- 	 0	
	 	

2.29	 0.523	 **	
𝛽h.{=	 5.63	 1.29	 **	 2.35	 0.821	 **	
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Menu product choice model – continue  
Name Mean Robust SE 

 
SD Robust SE 

 

𝛽A7 	 4.66	 1.21	 **	 0	
	 	

𝛽T?>	 4.86	 1.15	 **	 1.45	 0.62	 **	
𝛽h.{=g|?>= 	 4.37	 1.24	 **	 2.62	 0.624	 **	
𝛽-?z. 	 5.25	 1.27	 **	 1.17	 1.15	

	

𝛽Fh=>	 6.22	 1.21	 **	 0.946	 1.14	
	

𝛽}?N{ 	 6.95	 1.31	 **	 0.147	 0.669	
	

𝛽5+F- 	 0.905	 0.355	 **	
	 	 	

Sample	size	 455	
	 	 	 	 	

Null	log-likelihood	 -796.831	
	 	 	 	 	

Final	log-likelihood	 -601.226	
	 	 	 	 	

Service access model 
Name Mean Robust SE 

 
SD Robust SE 

 

𝐴𝑆𝐶/~�	 0	
	 	

0.00713	 0.0141	
	

𝐴𝑆𝐶?T 	 -1	 1.12	
	

0	
	 	

𝛽7V@	 -1.82	 1.1	 *	 2.93	 1.38	 **	
𝛽5/?T 	 0.578	 0.229	 **	

	 	 	

𝛽5?T 	 0.201	 0.201	
	 	 	 	

Sample	size	 369	
	 	 	 	 	

Null	log-likelihood	 -255.771	
	 	 	 	 	

Final	log-likelihood	 -219.805	
	 	 	 	 	

Subscription model - structural equations for App lover 
Name	 Value	 Robust SE	 	 Name	 Value	 Robust SE	 	
𝛽XY	 2.65	 1.89	

	
𝛽79S 	 3.17	 1.75	 *	

𝐴𝑆𝐶W		 0	
	 	

𝜎W	 4.72	 2.11	 **	
Subscription model - structural equations for Environmentalist 
Name	 Value	 Robust SE	 	 Name	 Value	 Robust SE	 	
𝛽6V\	 0.163	 0.194	

	
𝛽\5	 -0.535	 0.241	 **	

𝐴𝑆𝐶V 	 0	
	 	

𝜎V 	 0.735	 0.301	 **	
Subscription model - utility in choice model 
Name	 Value	 Robust SE	 	 Name	 Value	 Robust SE	 	
𝐴𝑆𝐶gFh 	 0.856	 0.791	

	
𝛽5gFh 	 0.0946	 0.101	

	

𝛽W	 0.164	 0.0827	 **	 𝛽5/gFh 	 -0.437	 0.3	
	

𝛽V 	 0.71	 0.548	
	 	 	 	 	

Thresholds for the choice model 
Name	 Value	 Robust SE	 	 Name	 Value	 Robust SE	 	
𝛿�,t	 0.97	 0.129	 **	 𝛿�,u	 2.18	 0.262	 **	
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Subscription model - measurement equations 
Name	 Value	 Robust SE	 	 Name	 Value	 Robust SE	 	
𝛼�t	 1.17	 0.223	 **	 𝛼�t	 0.661	 0.239	 **	
𝛼�u	 2.87	 0.617	 **	 𝛼�u	 2.41	 0.602	 **	
𝛼�y	 0.824	 0.241	 **	 𝛼�y	 3	 1.65	 *	
𝜆�t	 1	

	 	
𝜆�t	 0.149	 0.087	 *	

𝜆�u	 3.14	 1.03	 **	 𝜆�u	 0.392	 0.193	 **	
𝜆�y	 1.67	 0.883	 *	 𝜆�y	 1	

	 	

Thresholds for the Measurement Equations 
Name	 Value	 Robust SE	 	 Name	 Value	 Robust SE	 	
𝛿�t,t	 0.56	 0.101	 **	 𝛿�t,u	 2.39	 0.275	 **	
𝛿�u,t	 0.881	 0.217	 **	 𝛿�u,u	 4.59	 0.882	 **	
𝛿�y,t	 0.905	 0.132	 **	 𝛿�y,u	 2.23	 0.279	 **	
𝛿�t,t	 0.362	 0.0791	 **	 𝛿�t,u	 2.08	 0.223	 **	
𝛿�u,t	 0.96	 0.219	 **	 𝛿�u,u	 3.77	 0.538	 **	
𝛿�y,t	 2.21	 0.904	 **	 𝛿�y,u	 8.39	 3.17	 **	
Sample	size	 149	

      

Final	log-likelihood	 -1236.33	
      

* p-value for robust t-test < 0.1  1 
** p-value for robust t-test < 0.05 2 
 3 
4.3 Discussion 4 
All the signs and relative magnitudes of the estimated coefficients are as expected, and most of 5 
them are statistically significant. In this section we present and discuss the distributions of the 6 
monetary values of travel time, schedule delay and tokens.  7 
 8 
4.3.1 Value of Travel Time (VOT) 9 
We present the VOT (in terms of in-vehicle travel time, out-of-vehicle travel time and non-10 
motorized travel time) for the menu product choice model and regular choice model for the two 11 
population segments (full-time workers and others) in Table 3.  12 
 13 
Table 3 Value of travel time 14  

Regular Choice Menu Product Choice 
Unit:	$/hr	 IVTT		 OVTT	 NMM	 IVTT		 OVTT	 NMM	
full-time	worker	mean	 59.5	 54.1	 83.7	 43.5	 35.6	 63.1	
other	mean	 28.7	 56.9	 85.3	 17.4	 39.9	 42.5	
full-time	worker	median	 58.8	 53.2	 79.4	 26.2	 23.9	 44.9	
other	median	 17.4	 34.3	 52.7	 14.6	 37.5	 42.3	
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As can be seen, full-time workers have higher VOT in both choice situations which is 1 
likely due to their higher income and tighter schedules. For the other segment, the VOT is valued 2 
in the order of NMM, OVTT and IVTT from high to low, while for full-time workers, the VOT 3 
for IVTT and OVTT are similar, possibly because full-time workers make longer trips, which 4 
makes them more lenient towards waiting time and access/egress time. 5 

For each population segment, lower VOTs in the menu product choice model are 6 
observed as expected. Travelers are more likely to accept one of the Tripod options when they 7 
have flexible schedule and in search for low-cost alternatives.  8 

 9 
4.3.2 Value of Schedule Delay 10 
In the menu product choice model, the log-transformed delay shows a better fit compared to the 11 
linear case. This indicates that the marginal disutility caused by schedule delay decreases as 12 
delay increases. This sensitivity to delay is specified to be distributed across consumers. From 13 
the estimation result, the monetary value of a 30-minute schedule delay has a median of $4.0 and 14 
a mean of $13.1 for the full-time worker segment, while it has a median of $3.6 and a mean of 15 
$8.6 for the other population segment. The monetary value of 2 hours schedule delay has a 16 
median of $5.5 and a mean of $18.3 for the full-time worker segment, while it has a median of 17 
$5.1 and a mean of $12.1 for the other population segment. Furthermore, schedule delays cause 18 
less disutility than travel times, possibly because travelers may spend the delay time on other 19 
tasks. The diminishing marginal disutility of schedule delay also makes sense to the authors 20 
since larger periods of such time might be easier to utilize. 21 
 22 
4.3.3 Value of Incentives (Tokens) 23 
The probability density function of the value of tokens is shown in Figure 6, segmented by full-24 
time worker and other population segments. The value of token represents how much the 25 
respondents value an amount of tokens that has the purchasing power of 1 dollar.  26 

Since the tokens could only be used in the Tripod marketplace to exchange for gift cards 27 
and merchandise, we expected that the token is valued less than the equivalent amount of real 28 
money. However, contrary results were observed. The lognormally distributed value of token for 29 
full-time workers has a median of 1.1 and a mean of 2.1, while the median and mean for other 30 
populations are both around 1.2. A bit surprisingly, half of the respondents value the dollars in 31 
equivalent tokens more than the real money.  32 
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 1 
Figure 6 Distributions of value of token 2 
 3 

We think there are three potential causes for this. First, the process of token redemption is 4 
not included in the SP. Consequently, the potential inconvenience of it might be unrealized by 5 
some of the respondents. This effect would no longer be relevant when the RP data regarding 6 
Tripod becomes available. Second, since the token value in Tripod is generated based on the 7 
energy savings, the valuation of energy savings is partially incorporated through the valuation of 8 
tokens. Since Tripod promotes environmentally friendly travel options, we expect a group of 9 
environmentalists to appear, in addition to the ones purely motivated by incentives. 10 

Third, since the tokens are perceived as rewards while travel costs are perceived as out-11 
of-pocket expenses, they could be perceived very differently. In the case of Tripod, since energy-12 
efficient and hence highly rewarded options are usually associated with low costs, the situations 13 
where the decision maker needs to evaluate a trade-off between token and real money seldom 14 
happens. In addition, the marginal utility and disutility of gain and loss (cost) are expected to 15 
decreases as gain and loss (cost) increases respectively (32). Under this hypothesis, with the 16 
simplification of utility linear in token and cost might cause the current observation as shown in 17 
Figure 7. To confirm this, it would be interesting to conduct a comparable experiment with 18 
rewards being offered in terms of real money. If our hypothesis is true, we expect the 19 
respondents to value the monetary rewards even higher compared to the token rewards. 20 
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  1 
Figure 7 Hypothesis explaining the higher perception of tokens 2 
 3 
5 CONCLUSION 4 
In this paper, we presented a general framework for modelling the behavior of on-demand 5 
mobility services. The framework uses a nested structure to explicitly account for the 6 
subscription, service access, menu product and opt-out choices and their connections. The 7 
inclusion of the complete service usage decision process differentiates our work from previous 8 
research on the choice modelling of on-demand mobility services. 9 

The framework is applied to modelling the demand of Tripod, which influences 10 
individuals’ real-time travel decisions by offering information and incentives for system-wide 11 
energy efficiency.  Context-aware SP data was collected by a smartphone-based data collection 12 
platform for the model estimation. Inter-consumer heterogeneity was captured in the model 13 
specification. Through estimation and sensitivity analysis, we found that the rewards associated 14 
with energy-savings are valued higher than cost savings in real money. As expected, the VOTs in 15 
the Tripod menu product choice model is much smaller than the VOTs in the regular choice 16 
model (cases where the traveler is not subscribing Tripod, not accessing Tripod or selecting opt-17 
out), which indicates that Tripod’s acceptance would be higher in the lower income population 18 
segments and its usage would be likely associated with trips with less time constraints. 19 

One main difficulty faced in the present work is the actual data collection process. 20 
Compared to traditional one-time “paper-and-pencil” SP surveys, the higher quality of the data 21 
collected by longitudinal RP-SP data collection process is at the cost of longer efforts from the 22 
respondents, especially in our case study where the respondents need to first understand what 23 
Tripod is. 24 

As suggested by the reviewers, it would be interesting to investigate how the service 25 
access action is influenced by other factors such as the ease of access to information. We think 26 
these factors are of great relevance and should be included in future related studies. Several other 27 
future research directions could be developed based on this paper. The first is to collect RP data 28 
for mobility services which meets the data requirements of our framework as mentioned in 29 
section 3. Second, the behavior framework could be extended to incorporate a revision process 30 
where the en-route opt-out behavior would be handled. The necessity of this additional 31 
complexity from a modelling point of view also requires further investigations. Finally, further 32 
work needs to be done to fully integrate the models into an ABM simulator and use it for system-33 

true token true cost Estimated token Estimated cost

Reward Cost 

Utility 

Disutility 
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wide optimization. This process is essential to on-demand incentivization systems such as the 1 
Tripod system. 2 
 3 
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