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Abstract

We report a method for the highly enantioselective CuH-catalyzed allylation of ketones that 

employs terminal allenes as allylmetal surrogates. Ketones and allenes bearing diverse and 

sensitive functional groups are efficiently coupled with high stereoselectivity and exclusive 

branched regioselectivity. In stoichiometric experiments, each elementary step of the proposed 

hydrocupration–addition–metathesis mechanism can be followed by NMR spectroscopy.

Graphical Abstract

Chiral alcohols and their derivatives are common and essential substructures in biologically 

active compounds. Thus, reactions that generate alcohols in a stereoselective manner 

represent fundamental transformations in organic synthesis. In particular, the nucleophilic 

addition of an allyl group to carbonyl compounds, producing synthetically versatile 

homoallylic alcohols, has been a subject of extensive investigation.1 Despite the invention of 

several successful implementations, such approaches usually require the prior preparation of 

superstoichiometric quantities of an allylmetal reagent in a separate operation.2–12 Often, 

this process is itself required to be highly stereoselective in order for the subsequent 

allylation step to be effective.

Although general solutions exist for simple nucleophiles, such as allyl-, crotyl-, or cinnamyl 

metal complexes, 13 practical reagents for installation of complex allyl fragments are rare, 

and their synthesis typically requires the use of strong bases, restricting compatibility with 
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acidic or polar functional groups.5 As an alternative, we considered a process in which a 

chiral organometallic reagent assembles catalytically from an olefin and subsequently 

engages a ketone stereoselectively within a single mechanistic cycle.

Recently, our laboratory has reported several methods involving in situ generation of 

organocopper nucleophiles via the hydrocupration of unsaturated substrates.14,15 Originally 

developed in the context of hydroamination reactions, 15l,m this hydrometalation–

functionalization strategy has also found success in reductive coupling with carbon-centered 

electrophiles, most notably imines15e,f and ketones. 15g In the context of allylation 

specifically, we were inspired by pioneering work by Krische and others using aldehydes 

and activated ketones.16–24 In general, however, typical ketones are challenging electrophilic 

partners for stereoselective coupling relative to aldehydes, due to their attenuated reactivity 

and minimal steric differentiation between the carbonyl substituents.

Our proposal, described in Figure 1B, takes advantage of the ability of phosphine ligated 

copper hydride complexes to catalytically generate a mixture of allylcopper species when 

exposed to terminal allenes.11a,11c,11f,15e Notably, the rate of this process needed to surpass 

the rate of direct ketone reduction, which has been shown to be a fast process. 24–26 Based 

on theoretical studies on the addition of these nucleophiles to imines,15e we anticipated allyl 

addition to ketones would take place with exclusive branched regioselectivity.15e To 

complete the catalytic cycle, the initial hydride complex would be regenerated either by 

direct metathesis with a hydrosilane, or via intermediate ligand exchange with an auxiliary 

alcohol.

Initial investigations of this transformation were focused on reacting acetophenone (1a) with 

cyclohexyl-allene (1b) under previously described reaction conditions for imine allylation 

(Table 1, entry 1). With a simple achiral supporting ligand, the desired product 1 was 

obtained in high yield, with exclusive branched-selectivity, and with moderate preference for 

the indicated diastereomer (5:1 dr). When the ligand was exchanged for chiral phosphine 

(S,S)-Ph-BPE B, high enantioselectivity was also obtained (Table 1, entry 2). Lowering the 

reaction temperature slightly and switching the solvent to toluene proved to be beneficial 

(Table 1, entries 3 and 4). Further evaluation of common chiral ligands revealed JOSIPHOS-

type phosphine D27 to be optimal (Table 1, entry 7). The effect of tert-butanol on the 

observed diastereo- and enantioselectivity is notable, although its role remains unclear 

(Table 1, entry 8).

Upon scaling up the optimal conditions to preparative quantities of material, we found that 

only a small excess of allene (1.2 equiv) and DMMS (2 equiv)28 were necessary to obtain 

high yields and selectivity, for instance in the case of model compound 1 (Table 2). The 

reaction proceeded efficiently with substrates bearing electron-donating (3, 4) or electron-

withdrawing (6) substituents, although 5 was only obtained in moderate yield. 

Acetophenones bearing ortho-substituents were converted successfully, as well as 

symmetrical (9) or cyclic (10) ketones. Furthermore, substrates containing heterocycles (11–

14) and those with functional groups such as a free hydroxyl group (4), a secondary amine 

(3), aryl halides (6, 12), a sulfonyl protecting group (14), and tert-butyl ester (5) were all 

tolerated under the reaction conditions, providing opportunities for further elaboration. 

Tsai et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2019 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, dialkyl ketone 15 was converted, notably with high diastereoselectivity considering 

the steric similarity of the methyl and methylene substituents on the ketone. In all cases, the 

reaction proceeded with useful to good enantioselectivity. A crystal structure of 14 showed 

the absolute configuration of the major enantiomer to be (S) at the tetrasubstituted 

stereocenter and (R) at the adjacent methane. We note that the relative configuration of these 

stereocenters is consistent with addition through a chair-like 6-membered transition state.

We next assessed the scope of compatible allenes under these conditions. Unbranched (16) 

and 1,1-disubstituted (17) allenes are both coupled with high enantioselectivity. A 

commercial ether, methoxyallene, was employed effectively as a precursor for an 

(alkoxy)allylmetal nucleophile (18), which is rarely utilized in ketone additions even when 

prepared stoichiometrically. Various polar functional groups are tolerated well on the allene 

component, including an alcohol (19), an ester (20), and a secondary amide (21). An allene 

bearing a nitrogen heterocycle (22) reacted efficiently and with a high level of 

enantioselectivity. Under current conditions, however, addition of the parent allyl fragment 

derived from allene gas proceeds with only moderate selectivity (23).

We also carried out a number of experiments by NMR to corroborate the plausibility of our 

mechanistic proposal (Scheme 1). For the purpose of these studies, we chose the achiral, but 

kinetically competent ligand DCyPE (A) for these studies.

The putative copper hydride complex was prepared stoichiometrically by addition of 1.0 

equivalent of DMMS to phosphine ligated copper(I) acetate complex I. From here, addition 

of excess cyclohexylallene led to insertion, forming complex II with spectroscopic 

properties consistent with that of a linear allyl copper species (based on 1H and 31P NMR 

spectroscopy, see Supporting Information). The observed linear allylcopper complex also 

has been previously predicted by DFT studies to be the lowest energy isomer.15e As 

expected, addition of excess acetophenone resulted in insertion to form the copper-alkoxide 

complex III of the desired tertiary alcohol product. This complex can be reconverted into the 

initial hydride complex I directly upon addition of an excess of hydrosilane. Having 

observed each of the proposed intermediates by 31P NMR spectroscopy, we aimed to 

determine the resting state of the copper catalyst under the standard reaction conditions. 

Examination of the reaction mixture by 31P NMR spectroscopy during a catalytic reaction 

starting with DCyPE-ligated copper hydride complex I revealed a single resonance at 10.7 

ppm matching the chemical shift of the copper allyl species II. Thus, we conclude that the 

catalyst is predominantly present in the allylcopper form under the typical reaction 

conditions. Therefore, since we propose that addition to the ketone is irreversible and 

stereoselectivity-determining, we suggest that this step is also turnover-limiting.

In summary, we have developed a mild, base-metal-catalyzed asymmetric allylation of 

ketones from terminal allenes. We anticipate that the chemoselective hydrocupration– 1,2-

addition sequence demonstrated here will serve as a platform for the development of further 

synthetically useful transformations of unsaturated compounds.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of metal-catalyzed reductive allylation reaction of ketones using terminal allenes.
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Scheme 1. Stoichiometric Observation of Relevant Reaction Intermediates by 31P NMR 
Spectroscopy
Quantities shown in blue are chemical shifts of the phosphorus atoms in major species 

shown; see Supporting Information for details. (a) (MeO)2MeSiH, benzene; (b) 

cyclohexylallene, benzene; (c) acetophenone, benzene; (d) (MeO)2MeSiH.
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Table 2

Evaluation of Ketone Scope.

a
Yields indicate isolated yield of product as a mixture of two diastereomers on a 0.5 mmol scale. 1.2 equiv of allene was used, see Supporting 

Information for further details. Diastereomeric ratios were determined by 1H NMR spectroscopy for both the crude and purified products using 
1,1,2,2-tetrachloroethane as internal standard;. Enantiomeric excesses determined by HPLC or SFC analysis on commercial chiral columns; 
enantiomeric ratios of minor diastereomers indicated in parentheses. Yields, diastereomeric ratios, and enantiomeric excesses are the averages for 
two identical runs.

b
The reaction was conducted without tert-butanol;

c
The diastereomeric ratio was determined using both GC and chiral SFC analysis.
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Table 3

Evaluation of Allene Scope.a

a
Yields indicate isolated yield of product as a mixture of two diastereomers on a 0.5 mmol scale, unless otherwise indicated. 1.2 equiv of allene 

was used, see Supporting Information for further details. Diastereomeric ratios determined by 1H NMR spectroscopy of the crude mixture, using 
1,1,2,2-tetrachloroethane as internal standard. Enantiomeric excesses determined by HPLC or SFC analysis on commercial chiral columns; 
enantiomeric ratios of minor diastereomers indicated in parentheses. Yields, diastereomeric ratios, and enantiomeric excesses are the averages for 
two identical runs.

b
The reaction was conducted on a 0.1 mmol scale.
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