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Abstract

In this thesis, we develop and evaluate several models for the management of satellite-
based sensors. Motivating applications include both strategic surveillance and envi-
ronmental sensing. In the former case, the focus is on footprint placement for the
coverage of point targets, where an individual sensor is presumed capable of includ-
ing several targets in a single scan. To capture the notion of coverage, we use a
variant of the maximum coverage location model in which we allow sensor footprints
to vary between both targeted locations and sensors. Solution algorithms are de-
veloped and computationally tested against representative problem instances. The
approaches considered include two marginal return algorithms, a Lagrangian relax-
ation with subgradient optimization, and decompositon. Finally, it is shown how the
coverage model can be extended to a dynamic scenario through the use of a rolling
horizon.

In the case of environmental sensing, the issue is that of scan sequencing. Here
the objective is to first determine how to cover or partition a targeted region with
scans, and then to optimally sequence them so as to complete the scans as quickly as
possible. The scan sequencing portion of this problem can be posed as a structured
version of a well known combinatorial paradigm: the Wandering Salesman Problem
(WSP). For the most general regions to be imaged, scan sequencing is shown to be
NP-complete. Optimal strategies are developed for regions whose shape is sub ject
to certain restrictions, while heuristics are specified for less constrained areas. We
consider a specific sensor proposed for use in the Earth Observing System (Eos),
the high resolution imaging spectrometer (HIRIS). Problems representative of the
different science objectives for which HIRIS is intended are used to test the heuristics
developed. Classes of strategies that are wider than those that technical limitations
impose on HIRIS are evaluated. Techniques for constructing feasible shortest scan
paths include nearest neighbor and multiple fragment heuristics followed by local




optimization. Lower bounds are provided by a tree relaxation with a Lagrangian
objective function.

Scan sequencing can be regarded as a subproblem, the solution of which is then
fed to a higher level management problem: project selection and scheduling. As a
direction for further research, we show how previous work in space mission scheduling
can be extended to encompass the selection and scheduling of imaging projects for
a sensor such as HIRIS. Key constraining resources include time, data bandwidth,
power, and thermal dissipation.

Thesis Supervisor: James B. Orlin
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

While single satellites were once sufficient for a variety of objectives, many mis-
sions today call for multiple satellites working together—even though this presents
substantive tasking issues. Examples include communications applications such as
Motorola’s proposed network of 66 satellites for a worldwide cellular phone system,
the Global Positioning System (GPS), the Earth Observing System (Eos), and space-
based surveillance and tracking systems. Multiple satellites are necessary to achieve
either frequent or continuous observation of specified ground locations, especially if
low-earth orbits are required to provide sufficient resolution for sensors or a short
range for low power transmitters. Some missions, such as either GPS or target track-
ing, depend upon more than single-satellite viewing of a site: tracking may need up
to three satellites and GPS requires four. The Eos satellite constellation is envisioned
to have four levels of simultaneity in its observations, ranging from measurements
that must be made at the same time to those needed within every 1 to 3 days of one
another. The principal applications that we model are surveillance and environmental
observation.

The number of satellites necessary to provide continuous coverage of all ground

12



CHAPTER 1. INTRODUCTION 13

sites is typically prohibitively high. With fewer satellites than this available, real-time
decisions must be made as to which regions will be covered, and when. In the case
of communications satellites, a schedule must be determined that establishes when
contact is made with specific ground stations. An algorithm that does so must be
sufficiently responsive to allow for the failure of either a satellite or ground station,
as well as the need for unplanned contacts. Similarly, a surveillance satellite must be
oriented so as to capture as wany of the objects that it is desired be covered, but must
have the flexibility to handle changing priorities among ground sites. And while most
Eos instruments will have planned observation strategies, the high resolution optical
surface imagers will be programmable so that targets of opportunity (volcanos, fires)
can be scanned.

The problems of greatest interest are inherently dynamic and real time—a se-
quence of assignments must be scheduled for each satellite as they move in their or-
bits. A low-earth orbit satellite can circle the earth (actually the earth spins beneath
it) in approximately 90 minutes. Due to this movement, there will be restrictions on
the surface sites that can be selected for a particular satellite as a function of time
since the sensor-target geometry will change. In addition, there is no longer a single,
unambiguous objective to optimize when considering the dynamic satellite assign-
ment problem. Besides selecting scans so as to maximize coverage, another objective
is to sequence them in an order that permits efficient repositioning of the sensors be-
tween scans. This avoids the need for erratic sensor movement and alse allows for the
scheduling of as many scans as possible within a given time span. In most scenarios,
the time since each object was last visited is relevant—the less recently observed, the
more desirable it is to view an object again soon.

Furthermore, solving a multiperiod decision problem requires estimates of target
values for several periods ahead. Since forecasts for periods farther into the future
are likely to be less certain than those made now, a common practice for solving such

problems is to use a “rolling horizon” [23], [69]. This entails first solving a finite
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horizon multiperiod problem and then implementing only the first period’s decisions.
One period later, the multiperiod problem is updated as better information becomes
available, and then the procedure is repeated. For a satellite, a time period might be
no more than a few minutes. This approach is well suited to re-tasking surveillarce
or observation satellites in future periods when significant events are observed in the
current period.

There are other tasking issues of concern in tae operation of satellite based sensors.
For an application such as environmental observation, the focus is less on footprint
placement for the the coverage of point targets than on regional mapping or the
implementation of a sampling strategy. The selection of scans to be made, along with
the order in which they are sequenced, must be determined. Remote sensing satellites,
which have been circling the earth since Landsat was launched in 1972, routinely
pose this problem. Remote sensing detects the reflected electromagnetic energy from
an object, the pattern of which produces a unique signature. This can indicate an
object’s density, surface texture, moisture, and other physical and chemical properties.
Virtually every quarter-acre of the earth’s surface has been imaged by Landsat sensors
in the last 20 years, with over 2.5 million pictures. The current generation of Landsats,
4 and 5, are in near-polar orbits with a 16 day repeat cycle. They are equipped with
two sensors: a multispectral scanner and a thematic mapper.

The thematic mapper reccrds an image by sweeping a mirror from side to side
seven times a second. Light is deflected into detectors, scanning the scene below in a
series of parallel swaths. The mirror itself is pointable to different regions of the earth.
Seven separate spectral bands are viewed simuitaneously, covering the visible, near
infrared, shortwave infrared, and thermal infrared bands of the spectrum. The first
band is used for coastal water mapping, differentiating between soil and vegetation,
and identifying trees. Band 2 detects green reflectance by healthy vegetation. Infrared
sensing in band 3 detects the chlorophyll absorption of different plant species. Band

4 is near-infrared and is used for biomass surveys and water body characterization.
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Bands 5 and 7 are shortwave-infrared, with band 5 being used to measure vegetation
moisture and to separate snow from clouds. Band 7 has the best penetration of
haze. Band 6 is far-infrared, or thermal, and is used to distinguish between different
types of vegetation, measure vegetation heat stress, and map coastal boundaries. The
measurements taken from a particular scene can be used to identify and characterize
water pollution, crops, forest, landforms, cities, and patterns of land use.

About 273 million pixels are contained in a 115-mile by 110-mile thematic map-
per scene. Its resolution is 30 yards; an improved thematic mapper scheduled to be
launched on Landsat 6 later this year will have an additional black and white band
with about 15 yard resolution. While the Landsat thematic mapper currently has the
best combination of spectral and spatial resolution with wide area coverage, an even
more sophisticated imaging spectrometer with 192 spectral bands is envisioned for
Eos; we describe this in detail as an application of our work. As is implied by Land-
sat’s mapping characteristics, both it and the proposed Eos sensor pose substantive
problems regarding how to select and sequence scans so as to accomplish any of a
variety of prospective science objectives.

The solution to the scan sequencing problem is useful in a broader context: the
seléction and scheduling of which imaging projects to perform with a specific in-
strument, and when. Development of observation schedules is typically a large and
complex task. From all the requests submitted in a period of time, some subset of
. them must be selected and scheduled. Decisions are subject to many constraints, to
include orbit characteristics, power and thermal balance requirements for the entire
platform, instrument capabilities, viewing conditions, guidance requirements, overall
resource allocatien objectives such as data bandwidth, and image specific restrictions
and preferences. Constraints can emanate from the activities that are necessary to
physically perform an observation, such as moving the sensor so that it points at the
correct spot, as well from mission objectives. An example of the latter are schedul-

ing constraints imposed by science goals. Numerous relationships among observa-
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tions may be specified, including partial orderings over sets of observations, temporal
separation constraints between crdered observations, temporal grouping constraints
over unordered observations, coordinated parallel observations with different viewing
instruments, same sensor orientation constraints for repeat observations, and condi-
tional executiion of dependent observations [82]. And within a given project, scans
can have differing priorities.

It will often not be possible to satisfy all problem constraints. In such situations,
it may be necessary to selectively relax requirements that are not absolute. In gen-
eral, the scheduling problem is one of seeking to maximize the amount of “science”
performed, subject to insuring feasibility with respect to a complex set of constraints
involved with instrument operation, image execution, and overall resource allocation
objectives.

Specific instrument scheduling is similar to the larger domain of space mission
scheduling [4], [17], [18], [38], [62] in which the same basic decisions of selection and
scheduling of science projects must be made. The primary means currently used by
the National Aeronautics and Space Administration (NASA) is a knowledge-based
system called Plan-It. The claim is made that classical optimization techniques are
not able to handle scheduling in this large, complex domain [18]. An alternative
approach [57] is to consider only a subset of the constraints involved, which would
certainly seem suitable for the smaller scale problem of scheduling a single instrument.
A model that can quickly generate high quality solutions with respect to changing
resource constraints could be quite useful as part of a comprehensive scheduling sys-

tem.

1.2 Applications

Applications for satellite-based sensors in surveillance and environmental sensing mo-

tivated our study of satellite coverage and scheduling problems. Before mathemati-
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cally formulating models for these problems, however, we describe these applications

in some detail, as well as the additional example of communications.

1.2.1 Strategic Surveillance

As part of the Strategic Defense Initiative, “Brilliant Eyes” is proposed as a con-
stellation of some 40-60 satellites that would track nuclear warheads from intercon-
tinental ballistic missiles in midcourse. Current proposals favor large numbers of
small-aperture satellites, since proliferated systems of spacecraft enhance their abil-
ity to survive an adversary’s antisatellite attack. Brilliant Eyes would use sensors to
track objects, discriminate reentry vehicles from decoys, and cue interceptors. The
sensor satellites themselves would typically have to be cued to look for targets by
other warning satellites, but could also be told to look in an area the size of Iraq. At
a minimum, several tens of satellites would be needed to provide continuous coverage
of priority launch areas, which would also ensure adequate coverage around the globe
for submarine-launched missiles. Redundancy would be required for stereo viewing of
targets as well as survivability. Such a satellite sensor constellation is also envisioned
to play a role in theater missile defense, in addition to strategic defense.

Each satellite would be about the size of a desk and weigh less than half a ton.
The most recent concept calls for two telescopes for target discrimination. An on-axis
telescope would have sensors in the visible and mid-wavelength infrared range for the
acquisition and tracking of warm objects. Long-wavelength infrared sensors would be
used for tracking somewhat warm and cold objects. Such sensors could not detect tar-
gets by looking straight down against the relatively warm earth background. Instead,
they would only look above the horizon in a pattern that provides the necessary cold
space background for infrared detectors. A laser radar would probably be included
to permit precise range determination, allowing a single satellite to determine a tar-
get’s state vector. The exact selection of sensors will depend on both engineering

constraints and the missions for which the constellation is to be intended. While the
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orbits of the satellites have yet to be determined, they will likely fall within the range
of 700-1600 km.

The assignment of satellite-based sensors for strategic surveillance entails consid-
ering the coverage problems already described. All potential launch sites can not
be covered with high resolution sensors at a given instant, and thus the best sensor
.footprint placement must be determined. A sequence of assignments that creates a
smooth scan sequence and captures the most high-priority locations is sought. The
scheduling process must account for the recency with which an object was last viewed,
as well as be responsive to adaptive rescheduling if the cueing satellites identify a pos-

sible missile launch.

1.2.2 Earth Observing System (Eos)

The traditional approach to earth science has been to study individual components—
the atmosphere, oceans and inland bodies of water, alpine snow and ice, soils, vege-
tation, and geology. Models of these separate components have not been designed to
interact with one another, but rather were developed independently and focused only
on their specific discipline. Some models, such as ecological and hydrological models,
require information and provide results only over very small areas, while global cli-
mate models characterize the entire planet. Thus the outputs of the former cannot
easily be incorporated into the coarse spatial grid of the latter.

The current trend is to consider .e various interactions between different com-
ponents at all temporal and spatial scales. The satellite-based Earth Observing Sys-
tem (Eos) is intended to provide the sensing capability necessary to collect data in
support of such an integrated model of the earth’s environment. It will contain in-
struments that sample various phenomena throughout the electromagnetic spectrum.
‘One objective is to understand the scale dependencies that are involved among the
different terrestrial components. This has the potential to allow the outputs of models

for small scale events to be used as inputs for larger scale models, which can enhance
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our ability to predict environmental change.

An instrument that will make measurements at the finest temporal and spatial
scales is the high resolution imaging spectrometer (HIRIS). HIRIS will operate at an
intermediate level in a multistage sampling program between in situ human-acquired
field data and global mapping instruments. The sensor employs a pointable imaging
spectrometer with area array detectors that can sample any point on the surface of
the earth at least once every 2 days. The instrument obtains images in the 0.4- to
2.45-um wavelength region in 192 spectral bands with 10-nm spectral sampling and
a 30 meter pixel size. The swath width is 24 km (800 pixels). It is a targeting (rather
than continuous acquisition) instrument that images areas of interest by pointing
line-of-sight from +60° to -30° along-track (positive is the velocity direction) and
+45° cross-track. Cross-track pointing permits frequent repeat sampling. Along-
track pointing will be used to estimate the reflectance distribution of surfaces, to
remove atmospheric attenuation, and to implement image-motion compensation that
increase the signal-to-noise ratio for dark targets. Contiguous spectral coverage will
be used to perform spectral analyses. Relevant technical parameters for HIRIS are
discussed more fully in section 3.1 of Chapter 3.

The planned spectral resolution of HIRIS (10-nm) is sufficien: to reproduce essen-
tially all diagnostic features in the spectra of solids, and thus is a major step toward
direct identification of minerals and soils. It will also allow for the examination of
suspended sediments and phytoplankton in coastal and inland waters; estimation of
the grain size of snow and its contamination by a,b.sorbing impurities; and study of
biochemical processes in vegetation canopies, such as chlorophyll concentration, leaf
area index, leaf tissue water content, canopy composition and geometry, vegetation
indices, and the distribution of dead and green biomass [36]. With present broadband
sensors, none of these attributes have been measured.

High spatial resolution for HIRIS is important because various processes that

occur on a global scale have surface features with dimensions on the order of tens
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of meters. Examples include upwelling and mixing along fronts in coastal waters;
damage to vegetation such as tree death, windfall, and other disturbances which can
occur in patches; forest clearing; land-use change; mineral outcrops that may only
have a few square meters of surface exposure; and alpine snow and ice [53]. Greater
detail regarding the science objectives and uses of HIRIS is provided in Appendix A.

HIRIS is tentative for the Eos-A2 and -A3 platforms, which will be launched
around the turn of the century. If included, they will obtain at least 1 decade of
overlapping, calibrated observations. HIRIS will allow scientists to observe and an-
alyze specific terrestrial phenomena in a manner that is not currently possible with
existing ground-based or spaceborne instruments. Imaging requests from prospective
users are likely to be numerous, and efficient management of the instrument so as to
maximize scientific use is thus a critical concern. Since adaptive scheduling of HIRIS
will be necessary to image targets of opportunity such as volcanos or fires, the abil-
ity to quickly generate high quality solutions with the respect to changing resource
constraints for the project scheduling problem is potentially quite useful.

Because the Eos platforms will be in low-earth, sun-synchronous orbits (705 km),
the various projects can only be performed during specific time windows. Depending
upon the length of the planning horizon for which a schedule is being constructed,
there may be multiple opportunities during which specific imaging requests can be
accomplished. Different time windows for the same project may have differing levels
. of desirability, to reflect preferences between viewing angles. Viewing vegetation from
an off-nadir angle, for instance, can provide a better estimate of the total albedo of the
canopy, since the angular distribution of reflectance from vegetation is sensitive to leaf
density, leaf orientation, and the distance between plants [51]. It may also be the case
that projects will consist of linked or repeat observations. The frequency requirements
of coverage flow directly from the nature of the science area to be studied. Water and
snow /ice studies need frequent measurements, while vegetation studies require less

frequent onec. Geological studies are a distant third, but must acquire data under
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optimal lighting and visibility conditions and when the area of interest is neither
covered by vegetation nor obscured by clouds.

There are constraints for other shared resources relevant to the operation of HIRIS.
The sensor is capable of producing data at a prodigious rate—on the order of terabytes
a day. This vastly exceeds the capacity of the Eos Data Information System, which
is the system that wili manage the collection, processing, and communication of data
produced by the entire suite of instruments. HIRIS tentatively has a long term data
rate “budget” of 10 mbps, as well as a short term data rate limit of 100 mbps that can
be passed across the platform interface from the instrument to the data information
system. Since the data that many measurements produce will easily exceed 100 mbps,
a tape recorder will be used to buffer data. The buffer size provides a storage budget
that must be allocated between projects and over time (stored data is downlinked to
the ground, freeing up storage capacity). Power consumption and thermal dissipation
are other operating constraints.

In addition to macro-level project scheduling, in which projects from various areas
of earth science 2re to be selected and scheduled, there are issues related to the
sequencing of scans within an individual imaging project. The processing time for
a given project is taken as an input to the larger scale scheduling problem. Many
projects, however, are likely to require far more than a single 24 km by 30 m scan.

Thus the following problem is posed:

Given & region that is to be imaged, what selection of scans and in
what sequence will minimize the amouat of time necessary to cover the

desired area?

Note that in its most general form, the region to be imaged for » particular project
need be neither contiguous nor convex. This problem really has two coupled parts:
determining which scans produce the optimal partition or cover of the targeted area,
and then sequencing them. The two parts are coupled in that the scan selection

that ultimately minimizes the processing time might not be a minimum cardinality
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partition or cover. If it is assumed that the optimal scan cover is already known,
then the remaining problem of sequencing the scans has the flavor of a geometric

wandering salesman problem, but with an underlying scan structure.

1.2.3 Satellite-Linked Mobile Phones

Several competing proposals for satellite-linked mobile phone systems are currently
under consideration by a combination of investors and policy makers. All of them
envision a system that would let users make calls to and from places that are not
currently served by either traditional or cellular telephone services, such as the forests
of Canada or the outback of Australia. In addition, the satellites could also serve as
relays for computers or paging devices. The proposed designs and their costs vary
significantly, depending on how ambitious they are. A fundamental question yet to
be resolved, is exactly what service should be provided?

One version, Motorola’s Iridium plan, calls for a constellation of 66 (recently scaled
down from 77) satellites in low polar orbit, each weighing about 680 kilograms and
carrying complex switching equipment. They would pick up mobile phone calls from
any location on Earth and be capable of handling 200 simultaneous calls. The system
would be able to relay calls on its own, from satellite to satellite, bypassing the present
land-based long-distance carriers. These features would require the satellite array to
provide continuous coverage of the entire earth’s surface.

Several rivals to Motorola’s plan propose systems employing between 12 and 48
satellites that would generally be lighter, cheaper, and less capable. In particular,
there would be no provision for routing calls. Instead, the satellites’ only role would
be to link mobile phones to regional ground stations. All switching and routing be-
tween ground stations would be done over lines provided by the current long distance
carriers. Far fewer satellites are needed for such an architecture, since unpopulated
land areas and the oceans would not be covered. In addition, their design can be

much simpler since they do no switching.
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All of the competing systems would use low-earth orbit satellites. Unlike previ-
ous generations of geostationary communications satellites that orbit at 22,300 miles
above the earth, these would circle the earth at distances of a few hundred to sev-
eral thousand miles. Since they move across the horizon, the only to way to provide
adequate coverage is to launch a dozen or more satellites, and then optimize the as-
signment of antennas to gateways on the ground. Such a system poses challenging
scheduling issues related to insuring acceptable antenna coverage. The advantage of
low-earth orbit satellites for communications, however, is that :%ey need much less
power, are cheaper to launch, and are close enough to acquire signals from very weak
transmitters.

Regardless of the proposal, there are profound issues concerning the coverage of
ground sites that is to be provided by the antennas that will be used, some of which are
directional. Moreover, this is not a problem that needs be solved only once. Failures
of various system components (transmitters, antennas, receivers, power units) will
result in the need to re-solve a dynamically evolving coverage problem, and possibly
to do so very quickly. Thus our analysis of these issues is a potential contribution to

development of the technology.

1.3 Contributions of Thesis

The satellite coverage and scheduling problems considered are significant because
their optimal or near optimal solution will allow for the effective utilization of costly
space resources—both from economic and operational perspectives. If exercised to
the extent of their capabilities, fewer such resources will ultimately need to be de-
ployed. And once deployed, the level of service provided will be sufficient to meet
most mission objectives by means of adaptive rescheduling. These perspectives corre-
spond to optimizing strategic (economic) and tactical (operational) decisions. In this

research we develop, implement and computationally test algorithms for the schedul-
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ing and tasking of satellite based sensors. We are primarily interested in the physical
paradigms of either surveillance or environmental observation.

We first consider a static version of satellite coverage. In a fashion similar to
problems in the location theory literature, we formulate the static version as a maxi-
mal covering location problem model in which the objective is to cover as many of a
discrete set of objects as is possible with a given number of satellites. In comparison
to traditional specifications, ours does not assume that different sensors (satellites)
will cover an identical region when oriented toward the same area; i.e., we allow
for different “footprints.” Various algorithms are developed and several of them im-
plemented and tested in C. Implementation and testing entails generating data for
realistic problem instances with which to test the various algorithms specified. For
the static problem we produce surface objects whose values and sensors whose posi-
tions are both time-invariant. We then show how the static model can be extended to
consider a dynamic version of the coverage problem, in which the additional issues of
time windows, construction of smooth scan sequences, and time-dependence of target
values are addressed.

We also study sequencing and scheduling problems of interest in the management
of space-based sensors. First we examine a micro-level sequencing problem, in which
we evaluate the selection of scans and their subsequent ordering for actual imaging.
The basic problem has the flavor of a wandering salesman (or shortest Hamiltonian
path) problem, in which a salesman seeks to minimize the distance necessary to visit
each in a set of cities exactly once, starting and stopping at the cities of his choosing.
In the problem of interest to us, the “cities”, or scan points, have an underlying scan
structure. We establish upper and lower bounds on the number of scans that will
need to be made to cover a region, as well as for the amount of time that it will take
to perform the scans. We consider a special case of the scan sequencing problem for
which we can specify a polynomial algorithm that will provide an optimal solution.

The general optimal scan sequencing problem (OSSP) is shown to be N'P-complete,
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and thus we consider practical heuristics. A number of heuristics that exploit the
structure of the OSSP are specified and computationally tested.

The scan sequencing problems are useful in a broader context, that of project
selection and scheduling. The outputs of numerous different OSSP problems are input
to this higher level problem. Whatever the scheduling horizon may be, there will far
more projects to be performed than there are resources to conduct them. The selection
of projects is based on their relative importance, as well as the availability of a number
of constraining resources such as time and data bandwidth. Rather than constructing
a large, complex model that attempts to solve all scheduling problems at one time,
a potential approach is a relatively simple formulation that is capable of quickly
generating very good solutions to the base resource allocation problem. It could then
be adapted to other emerging requirements, or re-solved altogether if circumstances
should change sufficiently. As a future research direction, we discuss this wider setting

in which the scan sequencing algorithms would be used as subroutines.



Chapter 2

Sensor Coverage Models

2.1 Introduction

In this chapter we present coverage models for satellite based sensors. Although the
applications of greatest interest include environmental observation as well as surveil-
lance, it is the latter for which the fit is best for the models we will be describing.
The sensors used in a surveillance context would likely be sensitive to mid- and long-
wavelength infrared, in addition to visible wavelengths, and thus a single satellite may
well have several sensors. The underlying optimization problem is relatively simple
to state: we seek the best placement of sensor footprints for the coverage of point ta:-
gets, where different sensors may have different footprints based upon satellite-target
geometry. The “footprint” of a sensor is the pattern that its instantaneous coverage
region takes, where “coverage” refers to the area or volume within which the sensor
will respond to a stimulus.

An example of such a sensor is a camera mounted on a satellite. The stimulus
to which it responds can be visible, infrared, or other wavelengths of electromagnetic
radiation, depending on the sensitivity of the particular detector. If it is visible
wavelengths, then the total terrestrial region within which the sensor can acquire

targets is limited to those surface areas with which straight-line line-of-sight can be
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established. The camera’s footprint is determined by its technical characteristics,
such as the focal length of the lens, its aperture setting, the size of the focal plane,
and other attributes. The image recorded by the sensor is of a specified resolution,
which is the size of the smallest area for which the sensor can measure a response.
Each of these minimally distinguishable elements of the coverage region is called a
pixel, or picture element.

It is assumed that a sensor’s footprint, which may consist of many pixels, is ca-
pable of covering multiple objects. The size of an individual pixel will increase as a
sensor is pointed off-nadir (nadir being the point on earth closest to the satellite—its
projection to the earth below). Although this implies that the sensor will be covering
more area, that is not always desirable. In imaging spectrometry, for example, the
spectral response within a pixel is a mixture of signals from a diversity of surfaces.
Thus increased pixel size serves to decrease spatial resolution, degrading the abil-
ity of scientists to investigate reflectance characteristics with a precision that allows
recognition of features and analysis of the mixing process. Similarly in surveillance,
off-nadir imagery may be accompanied by a loss in resolution.

A static (snapshot) version of such a coverage problem can be posed as locating
the sensors under deterministic conditions, i.e., when there are specific sets of sensors
and of objects to be scanned or “covered.” Figure 2-1 shows the basic model. The
three different shapes (squares, triangles, and circles) represent the possible footprint
placements of three different sensors. We do not mean to imply that this these
patterns are the actual shapes that a sensor footprint might take on the surface, which
are likely to be far more complex, but simply seek to distinguish between sensors. As
shown, the coverage capabilities of a particular sensor will vary depending on where
it is pointed. And different sensors, even if oriented toward the same location, may
have different footprints. In Figure 2-1 we seek the circle, triangle, and square that
together cover the most valuable collection of objects; the relative importance of

different objects is reflected by associating a non-zero value with each one. Although
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Figure 2-1: Coverage Model.
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the upper left square covers only one object while the bottom square covers eight, it
may well be that the single object is far more significant than the other eight. Since
the small square is the only sensor shown to be capable of capturing that object, that
position may represent the sensor’s optimal placement at the particular time that this
diagram shows the alternatives available.

There are several classic operations research problems in discrete location theory
that are explicitly concerned with the notion of coverage, one of whicli we use as the
departure point for our models. The most well known of them is the set covering
problem (SCP), which can readily be formulated as a 0-1 integer program. Let A
be an m x n binary incidence matrix. Each i € M, where M is the set of rows,
represents an element in a ground set. The columns, M; for j € N, correspond to a

set of subsets defined on the ground set; that is, for i € M ,

1 ifiEMj
ai; =
0 ifiQMj.
Also define
1 fjeF
:Bj=
0 ifjgF.

Then F'is a cover of M if and only if z € {0, 1}" satisfies

where 1 is an m-vector all of whose components equal 1. If, instead, we have Az < 1 or
Az = 1, then this problem becomes, respectively, the set packing and set partitioning
problems. The optimization problem defined over the set covering constraints consists
of finding a cover z whose cost ¢z is minimum; c is an n-vector and its components,
¢j, are the costs of the M;’s.

Many practical problems have been formulated using the set covering model
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[34], [40], [77], [79], [107]. A representative application is the location of an emer-
gency services facility [93], [108], [112]. Assume we are given a set of possible sites
N = {1,...,n} for the location of police stations in a county. A police station at
site j costs c;. Suppose we have a set of towns M = {1,...,m} that have to be
covered. The subset of towns that can be patrolled from a station at j is M;, which
could correspond to the towns that could be reached within some time limit, say, 15
minutes. Then the optimization problem of selecting the minimum-cost set of police
stations that is capable of reaching every community within 15 minutes is a set cover-
ing problem. Other applications include airline flight and crew scheduling, assigning
customers to vehicle routes, and assigning workers to cover shifts.

There are a number of similarities between the set-covering problem and the sensor
management problem that we seek to model. They include the basic notion of spatial
coverage, in which the ability of some sort of “server” to satisfy “demand” occurring at
geographically distributed points is a function of distance from wherever the server is
located. The potential objectives of either minimizing cost or maximizing coveragé are
similar also. Nonetheless, there is a significant difference between the two problems:
in our case, an arbitrary number of sensors cannot be selected. We assume that the
nuxﬁbet of sensors and their locations are given. The constellation design problem [9],
(35], which is not addressed here, would consider how many sensors/satellites to
launch and into what orbits (e.g., orbital altitude and inclination). The goal of our
modeling is to optimize the use of a specified set of resources; as observed earlier, this
corresponds to tactical rather than strategic decision making.

The second location theory problem that deals with coverage, however, comes
closer to capturing the physical paradigm we are examining. The maximal covering

location problem (MCLP) adds an additional constraint to the SCP:

sz=P,

JjEN
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where p is a limit on the number of subsets (columns in the integer program) that can
be selected. The weights are now defined over the elements of the ground set (rows
in the integer program), and the optimization problem is to select the set of columns
that covers the maximum weight. The MCLP can also be formulated as a generalized
assignment problem (GAP) [96] or as a p-median problem with a distance matrix of
special structure [29]. A typical application of the maximal covering location problem
is to maximize the population within a service distance S of a fixed number of facilities
p, which could be on a transportation network. The population at a node is said to
be covered if there is a facility located within a distance or time S of the demand
node.

The difference between the traditional MCLP formulation and our model is that
our “servers” (satellite-based sensors) are distinguishable. Typically, all service facil-
ities in an MCLP are assumed to have the same service distance regardless of their
location, e.g., a warehouse in Houston has the same service capabilities as does one in
Cleveland. If service distances differ, it is on the basis of either the service level in a
hierarchy of service categories [80], or on some attribute of the customer/demand [76).
An example of the first case is the hierarchical covering problem [80] in which there
are N types of facilities that provide different levels of service. A facility of type i
provides a radius r; of coverage, and the objective is to loczte n; facilities of type j to
maximize the total demand that has access to all levels of service. The coverage foot-
print (which is the analog of service distance) of a space based sensor, however, can
vary with the satellite-target geometry. While there is no dependence on the object
being imaged, different types of sensors will have different footprints, and the same
sensor’s footprint can change depending on the scan geometry. Thus the “servers” in
this context are distinguishable. This is in contrast to the MCLP and set covering
models that will be described with greater detail in the literature survey.

After considering the static version of such a coverage model, we will discuss the

salient issues that one must address in a dynamic version, and indicate how the static




CHAPTER 2. SENSOR COVERAGE MODELS 32

problem could be exploited in further work in the dynamic domain.

2.2 Literature Survey

Optimization problems similar to sensor coverage have been treated in the location
theory literature. The general location paradigm is one in which a number of servers
{sensors in our context) serve a spatially distributed set of demands (surface objects
here). The underlying structure may be discrete or continuous, possibly with some
special network structure. The goal is to locate the servers so as to optimize an
objective that in some fashion is spatially dependent. It is easily seen that both the
objective and general character of this research domain share significant features with
the sensor coverage problem.

Using location research as a starting point, then, we identify various modeling
approaches and problems whose foci are germane to those of interest to us. At times,
it is appropriate to consider the paradigms so identified more broadly than in just
the location literature. An example is the set covering problem, which has received
considerable attention elsewhere. QOur intent is not to review all possible different
models or to describe their analysis, but rather to furnish an overview of how relevant
problems have been treated. In particular, we identify how previous work relates to
our interests; to a substantial degree this was also done in section 2.1.

In [20] Brandeau and Chiu present a taxonomy to distinguish different location
problems based upon their objective function, decision variables, and system param-
eters. Common objectives that they identify include: minimizing average travel time
or distance between demands and servers; minimizing average response time (travel
time plus any queue delay); minimizing a cost function of travel or response time;
minimizing maximum travel time; or maximizing minimum travel time. They briefly
review a representative sample of more than 50 different problem types. Examples

of typical location problems are warehouse siting, firebox coverage, competitive facil-
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ity location and network design. Brandeau and Chiu identify five problems that are
concerned with the notion of coverage: covering, maximal covering, minimum cost
partial covering, p-cover, and hierarchical covering problems.

As noted, the objective in the covering problem is to locate a minimum number of
servers, typically on a network, so that every demand point is within a given distance
of the nearest server. In [40] Elzinga and Hearn consider the minimum covering sphere
problem, in which they seek the sphere of smallest radius that covers a set of points
in Euclidean n-space. Moon and Chaudry [79] examine a class of network location
problems with minimum or maximum separation requirements between uncapacitated
facilities or between demand points and the facilities, or both. Other applications of
the set covering model include the location of emergency facilities (93], [108], [112],
assembly line balancing [100], and information retrieval [34]. Although the concept
of coverage used in all of these cases is comparable to that for sensors (for which
coverage may be variable), our goal is not to determine the minimum number of
sensors needed, but instead to optimize the use of an existing set of resources.

The mazimal covering location problem seeks to position a specified number of
servers so as to maximize the aggregate demand that falls within a given distance
of the nearest server, capturing the dimension of finite resources. Church and Rev-
elle [28] maximize coverage (population covered) within a desired service distance S
by locating a fixed number of facilities. They distinguish this objective from those of
minimizing the measures of total weighted distance or time for travel to the service
facilities (p-median problem), and the distance or time that the user most distant
from a service facility would have to travel to reach that facility (p-center problem).
The p-median and p-center problems are similar to the inaxiinal covering location
problem in that they, too, specify the number of service facilities (p) that will be
opened as problem input. But instead of focussing on the service provided (max-
imizing coverage), they concentrate on the service not provided. Respectively, the

p- center and median problems are minimaz and minisum formulations. There is a
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substantial literature for both of these problems [65], [66], [55], [56], [77], [107).

In the context of facility layout, Francis and White [45] discuss what they call
the partial-covering problem for discrete plant location, which is essentially the same
as a maximal covering location problem: the demand, or service population, is only
partially covered. They review both cutting plane and heuristic solution approaches.
Megiddo et al. [76] consider the maximal covering location problem from the point
of view of a company which is interested in establishing new facilities on a network
so as to maximize the company’s “share of the market.” The company gains w;
if customer ¢ switches to one of their new facilities, and the decision to switch is
based only on a customer dependent distance r;. The problem is to locate p new
facilities so as to maximize the total gein. Daskin [32] extends the maximal covering
location model to account for the chance that when a demand arrives at the system
it will not be covered since all facilities capable of covering the demand are engaged
serving other demands. The computational performance of commercial MPS software
in solving maximal covering location problems is compared to the performance of a
special purpose optimal algorithm (DUALOC) [41] in solving MCLPs structured as
median location problems in [113]. None of the maximal covering location problem’
work addresses the issue of service distance being dependent on the particular server,
or on the combination of both the server and where it is located. Megiddo [76] does,
as noted, consider a customer dependent service distance.

When the number of servers is specified and the goal is to locate the servers
so that the maximum distance between any two servers is minimized, the problem
becomes the p-cover problem; an example of which is [39]. The hierarchical covering
problem assumes that different facilities provide different levels of service, and seeks
to maximize the total demand that has access to all levels of service. Moore and
Revelle [80] formulate such a problem as an integer program, and give as examples of
service hierarchies an educational system with primary and secondary school levels,

and health care systems. Daskin and Stern [33] use a hierarchical formulation to
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extend a conventional set covering problem for locating emergency medical service
vehicles. They account for interdistrict responses by finding the minimum number
of vehicles needed to cover all zones while simultaneously maximizing the extent of
multiple coverage of zones. The concept of service hierarchies could be useful in
modeling satellite coverage when one considers sensors of different types or quality,
and there is potentially a desire to either seek or require multiple coverage.
Mirchandani and Francis [78] recently edited a comprehensive reference text on
discrete location theory. Their treatment of covering problems focusses on those with
an underlying network structure, in which both servers and demands are assumed to
be located on the nodes or arcs of a network. Service facilities must be established on
the network, and all are assumed to be of the same type, with each having sufficient
capacity to satisfy the total demand. Three types of costs associated with a given set
of facility locations are considered: setup, transportation, and penalty costs, where
the latter is a cost which is applied only if a demand is not served by any facility.
In addition they look at budget, client, and facility constraints. Client and facility
constraints include service distance restrictions. Mirchandani and Francis identify

five different classes of objective functions:
1. minimize the maximum transportation cost (the center problem);
2. minimize the sum of the transportation costs (the median problem);

3. minimize the sum of the transportation costs and the setup costs (the uncapac-

itated facility location problem);
4. minimize the sum of the setup costs and penalty costs (the covering problem);
5. minimize the penalty costs (the coverage problem).

Many of these problems are solvable in polynomial time when the underlying network
has a tree structure. The general problems, (p-center, p-median, and set covering)

are all N'P-complete [49]. This highlights the most critical difference between the
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particular variants of location problems that Mirchandani and Francis [78] consider
and ours: there is no underlying network or tree structure to the sensor coverage
problem. The ideas relating to costs and coverage are much the same, though.

The literature on the set covering problem itself extends well beyond its specific
application to location analysis. Two somewhat dated surveys of prior research are
Garfinkel and Nemhauser [50] and Christofides and Korman |27). Theoretical results
are presented in Balas (5] and Bellmore and Ratliff [13]. Algorithms have been devel-
oped by Lemke, Salkin, and Sp:clberg [70], Salkin and Koncal [99], Etcheberry [42],
Balas and Ho [6], and Beasley [10]. Most of these algorithms employ Lagrangian re-
laxation with subgradient optimization in some fashion, and are similar to one of the
approaches that we take in solving the sensor coverage problem. Recent algorithmic
work, however, has focussed on characterizing the facial structure of the set covering
polytope (7], [8], [30], [85], [102]. Any facets that can be identified are then used to
strengthen the linear programming relaxation. There has been no examination of the
maximal covering location problem’s polyhedral structure; adding the complicating

side constraint significantly alters it from the fundamental set covering problem.

2.3 The Static Coverage Problem

2.3.1 Problem Definition

We consider a system of sensors, referred to also as satellites, that can be oriented
in different positions. Note that a single satellite may well have a collection of up
to a dozen or more instruments/sensors, each of which has different scan related
parameters. The scan parameters of an instrument include characteristics such as
the swath dimensions for various mapping modes (local, regional, and global), spatial
resolution, pointing capabilities, instantaneous-field-of-view, field-of-view, and data
rate. To give an example, consider the Eos synthetic aperture radar (SAR) (83].

Geophysical products generated from the SAR image data include forest biomass and
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deforestation extent; soil, vegetation, and snow moisture; sea ice type and motion;
and geomorphological properties. Its swath dimension ranges from 30- to 50-km (with
20- to 30-m spatial resolution) in the local high resolution mode to 350- to 500-km
(250- to 500-m spatial resolution) in the global mapping mode. Its field-of-view is a
15 — 50° look angle from nadir, on both sides of nadir, and its data rate is 15 mbps
(average) and 180 mbps (peak).

Despite the potential multiplicity of instruments, when we speak of a “satellite,”
we are referring to a single discrete sensor. In addition, there is an array of distributed
point objects, or demands, to be covered and a nonnegative set of values that reflect
their relative importance. At any given point in time a satellite will not likely be
visible to or able to establish visibility with all of the objects; however, optimizing
the assignment of satellites to feasible positions can maximize the ones covered. We
assume that the set of “feasible positions” to which a sensor can be assigned is differ-
ent for different sensors. Since the footprints of the various sensors may differ even
when oriented toward the same location, we consider a version of the maximal cov-
ering location problem that distinguishes the coverage for each sensor at its feasible
locations.

The geometry of the basic model, then, is that shown in Figure 2-1. “Pointing”
involves aiming the sensor at a targeted object or region, with the sensor footprint
then taking a particular shape. Different sensors may have different shapes, and
for a given sensor its shape may vary depending on the geometry with a particular
target. We assume that each sensor will be assigned to some point. The mathematical
formulation of our problem models the objective of covering as many of the ground

sites or regions as possible with a limited number of sensors.
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2.3.2 Mathematical Formulation

Defined discretely, a mathematical formulation of the problem is as follows:

Maximize E CiYi
iEM

subject to Z Z afj:c;f > vy VieM
keP jeN*

Zz;f — l VkEP
JENK
yi € {0,1} VieM

¢ € {0,1} VjeN* keP

J

where M = set of demand sites; |M| = m
N = set of server locations; |[N| = n
N* = set of server locations for sensor k; |[N*| = n*

P = set of servers; |P| = p

¢; = value of demand 1
w1 if server k at position j can cover demand ¢
. 0 otherwise
v 1 if server k is assigned to position j
5z 0 otherwise
R if demand i is covered
s 0 otherwise .

A common variable substitution is to let §; = 1 — y;. Then

1 if demand :is not covered
0 otherwise.
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(2.1)

(2.2)
(2.3)

(2.4)
(2.5)
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This will produce the equivalent generalized upper bound (GUB) constrained maximal

covering location problem:

Minimize _ e (2.6)
ieM
subjectto ) Y a?jzf-f-y,- > 1 VieM (2.7)
kEP jeN»

ozt =1 VkerP (2.8)

JENk
3 € {0,1} VieM (2.9)
zt € {0,1} VjeN keP (2.10)

The objective now is to minimize the uncovered demand; this is the version we
will consider henceforth in the paper. Equations (2.3) and (2.8) are what are referred
to as generalized upper bound constraints, where the (j, k) combinations for a given
constraint produce disjoint subsets of N x P. The classical formulaticn of a maximal
covering location problem does not have GUB constraints.

Note that the use of the a:-‘j variables implies a large binary matrix that is po-
tentially quite sparse. Another way to represent the coverage constraints (2.7) is to

define:

N} = {j|a =1}

= {jlie M}}
M} = {i|af =1}
= {i|je N},

N} is the set of positions from which sensor k is capable of covering object i. Similarly,

MJ" is the set of objects that eensor k is capable of covering when it is pointed at

position j. The two can be related to one another by observing that if a given position
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is in the set of positions from which a particular sensor can observe a specific object,
then that object must, in turn, be in the set of objects observable by that sensor in
the given position. Thus N¥ = {j | i € MF}. Analogously, if a given object is in the
set of objects that are observable by a particular sensor in a specific position, then
that position must be in the set of positions from which that sensor can observe the
given object. Hence M} = {i | j € Nf}. We will let m* = |M¥| and n* = |N¥|. This

leads to the following alternative specification of constraint (2.7):

oS ttg>1 vieM. (2.11)
keP jeN*
This notation is consistent with the implementations described in section 2.5.
The typical formulation of a maximal covering location problem does not discrim-
inate between the various servers at different locations; the assignment variables are

traditionally defined as:

B 1 if a server is placed at position j
e 0 otherwise.
For the problems of interest here we do not assume that each server can be assigned
to the same set of locations or that they are capable of covering the same objects if it
is feasible for more than one to be pointed toward the same region. Thus the covering
constraints have a different set of columns for each sensor. In addition, there is an

individual assignment constraint for each sensor. Note also that the §;’s actually need

not be binary but could be continuous
0<%<1 VieM

since in a minimization problem they will always attain their lower bound, which here

is either 0 or 1.
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2.3.3 Computational Complexity

The SENSOR COVERAGE problem is A'P-complete by transformation from the prob-
lem MINIMUM COVER (49, p. 222], which is stated as follows:
INSTANCE: Collection C' of subsets of a finite set S, positive integer K < |C|.
QUESTION: Does C contain a cover for S of size K or less, i.e., a subset C' C C with
|C| < K such that every element of S belongs to at least one member of C'?

A recognition version of the SENSOR COVERAGE problem, using previously intro-
duced notation is:
INSTANCE: Set M of objects with weights ¢; > 0 for all i € M; set P of sensors with
|P| < |M|; set N of locations to which each sensor k can possibly be assigned to the
subset N*; and positive integer V < }:lﬂ ci.
QUESTION: Does there exist an assignment of the sensors k € P to locations in the
respective sets N*, subject to constraints (2.7)-(2.10), such that the total weight they
cover is greater than or equal to V?

Equivalently, the question asks if there is a solution to the mathematical program

(2.6)—(2.10) with objective function value less than or equal to Y ;cpr ;i — V.
Theorem 2.1 The SENSOR COVERAGE problem is N'P-complete.

PROOF: Giver an instance of MINIMUM COVER, let M = S, |P| = K, |N| = |[N¥|
fork=1,...,|P; N=C;V =|S|,and ¢; = J;s{-[ fori =1,...,|M|. By construction
of this instance of SENSOR COVERAGE, each sensor can be placed at any position
(IN* = |N| for all k)—so assigning | P| sensors is equivalent to selecting | P| positions
(or columns in the mathematical programming representation).

C will contain a cover for S of size K or less if and only if there is an assignment
of sensors to locations such they contain a subset of M whose total weight is greater
than or equal to V. Since ¢; = Jlf(-' for all < and a total weight of greater than or equal
to V = |§] is sought, the sensor assignments must produce a full cover of the object

array, and SENSOR COVERAGE becomes equivalent to MINIMUM COVER. O



CHAPTER 2. SENSOR COVERAGE MODELS 42

2.4 Solution Techniques

2.4.1 Marginal Return Algorithm

A natural approach to assigning sensors to targets is to successively choose that
combination of sensor k and position j € N* that provides the greatest marginal
decrease in uncovered demand. We will term the matching of a sensor with one
of the positions to which it can feasibly be assigned to be a “pairing.” Among all
feasible pairings, the one that captures the most additional uncovered demand is the
assignment made; this is a “greedy” approach. If demand values are all equal, this will
correspond to selecting the sensor-location pairings that cover the greatest number of
additional demands. The heuristic will be referred to as MR-1, and in the following
specification we use this additional notation: z is a counter; v}‘ is the value that sensor
k covers if it is assigned to position j € N*; V is the set of all possible v;-"s; and C'is

the set of objects already covered by sensors that have been assigned.

MR-1:

1. Initia.lize.z<—0;v;-’4— Zc, VjEN",kEP;V«—-{v}‘IjGN",keP};
ieM}

C = {¢}.

2. z—z+4+1; v}‘.'«-—ma.xv'-’.

viev J
3. Assign server k” to position j°. If z = p, stop. All servers have been assigned.

Otherwise, C «— C U MX'.
4. Update V. V — V\ {v¥|j € N¥, k = k*}.

5. Update v%. v¥ —v% — 3" ¢;. Return to step (2).
ie{M}nC}

In the initialization step we create a “value list” V = {v}‘}, where v}‘ is the

aggregate value covered by assigning sensor k to position j € N*. The highest value
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in V is selected, and then V is updated appropriately. The update process involves
removing from V other feasible pairings that involve the sensor that has just been
selected, as weil as updating the individual vf’s remaining on V to account for the
value of objects that were just covered by the most recent assignment. This procedure
repeats until all servers have been assigned.

Step (1) requires at most mnp arithmetic operations; steps (2) and (4) each require
scanning a list of at most np elements per iteration for a total of O(np?) steps.
Step (5) can require up to m additions in computing Tieq MnC} Cir which is the value
just covered, and then m subtractions of this quantity from up to np v;-"s. These
calculations occur over all iterations, for a total of O(mnp) operations. There will be
p iterations of the loop. Since we assume n > p, m > p, and n ~ m, the overall run
time is O(mnp).

The runtime analysis can be refined by considering specific data structures to effi-
ciently perform the operations indicated; nonetheless, it still comes out to be O(mnp).
The list V created in step (1) can be implemented as a heap, which will require
nplog np time. Then in step (2) finding the maximum will be O(1), while “fixing”
the heap will take O(log np). Updating V in step (4) can be done in O(nlog np) time
if there is a pointer array into the heap such that each pairing involving the sensor
just assigned can be found in O(1) time. M} can be stored as a singly linked list
of the objects covered when sensor k is at position j, and, similarly, N* as a singly
linked list of the locations from which sensor k can cover object i. Two bit-vectors,
M' and P’ respectively, can indicate the objects uncovered and the satellites not yet
assigned. Then, in general, vj-’ = Tie( Mamy) Cis Now, suppose that object 7 is covered
in the most recent step and was not covered earlier. Updating v¥ for all j € N¥ and
k € P’ will take O(3 ;4 | Nf|) steps, with an extra log np factor if the v¥’s are stored as
a heap. Ignoring the extra log factor, the update time is O(mnp). In addition, there
is still the potential for there to be mnp arithmetic operations in the initialization,

step (1). And while the sets N} and M} speed up the updating process, their creation
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can take O(mnp) time.

A variant of the marginal return algorithm considers the placement of each sensor
individually and successively, creating a much smaller value list in the process. A
priori, one would expect this version to run more quickly than the former since any
list operations would be working with significantly shorter lists, although we will see

that the worst case run time is the same. It can be stated as follows:

MR-2:
1. Initialize data structures. k = 1.
2.v8= Y ¢ VjeNk VE= {v¥|j € N*}.

i€(M}M)

3. v5,. = max k.

7 jeNwukeva 7

4. Assign server k to position j*. If k = p, stop. All servers have been assigned.
5. P={P\k}; N*={N*\j*}forallk€ P; M = M\ {ifi € Nk}

6. k =k + 1. Return to step (2).

In the update step, step (5), we remove the sensor just assigned from the set P,
and the position to which it went from the sets N*, k € P. Those objects just covered
are removed from the set M, so that when the v¥’s for the next sensor to be assigned
are computed in step (2), only uncovered objects ({M * N M}) are considered.

As observed in MR-1, the creation of data structures in step (1) can take O(mnp)
time. Computing the v¥’s in step (2) can require O(mnp) arithmetic operations.
Finding the maximum v¥ in step (3) can be done in O(1) time if they are stored in
a heap, however heap construction requires m logm time and is done for each of P
sensors. Updating the index sets in step (5) require, respectively, O(1), O(p), and

O(m) time, and are performed for each of p iterations. Overall run time remains

O(mnp).
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Either MR-1 or MR-2 can be used to provide an upper bound on the amount of
demand that can be covered (or conversely, a lower bound on the amount of demand
that is not covered). This is done by not updating the vj-"s on the value list V in MR-
1, which occurs in step (5). Instead, we simply return to step (2) after completing
step (4). Similarly, in step (5) of MR-2, M = M\ {i]i € Nk} is not performed. The
v;-"s are computed in step (2) as v}‘ =Y M} Ci- This is a greedy upper bound, and
equals ",cp v* where v* = max;cys v¥; note that the value produced by the modified
versions of either MR-1 or MR-2 is the same. The quality of the bound provided
will be dependent on the data; we conjecture that the bound will be excellent for
uniformly distributed demand values. It can be arbitrarily poor. Suppose that all p
sensors are capable of covering a single object whose value is 1, while all other objects

have no value. Then,
Value(bound)

Value(optimum) =

2.4.2 Lagrangian Relaxation

In this heuristic a lower bound for the SENSOR COVERAGE problem is generated
via Lagrangian relaxation and then used to produce a feasible solution. Subgradient
optimization then provides a sequence of such lower bounds and feasible solutions.
The approach we use here is based on Fisher [43] and Beasley [11].

Using ¢; as the nonnegative Lagrange multipliers for constraints (2.7), the La-

" grangian lower bound program, L(t), is defined as follows:
L(t):

Minimize Y_(ci — )i+ 3. & (1 - ¥ af,:cf) (2.12)

ieM ieM kEP jeN*

subjectto ) z;? =1 VkeP (2.13)
JENK
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e € {0,1} VjeN* keP (2.14)

J

5 € {0,1} YieM (2.15)

The problem, L(t), defined by (2.12)-(2.15) is a Lagrangian relazation of the
SENSOR COVERAGE problem. It is easy to see that for any ¢, L(t) < v(SC), where
v(SC) is the optimal value of the sensor coverage problem defined by equations (2.6)-
(2.10). The strongest Lagrangian relaxation is given by ¢ = { such that

L(2) = max{L(t)}. (2.18

Problem (2.16) is sometimes called a Lagrangian dual.
For a given set of multipliers ¢, this Lagrangian lower bound problem (2.12)-(2.15)

is separable, and it follows that in any optimal solution (Z,7):
(ci—t) <0 = §; =1; otherwise§; = 0.

The z¥’s are determined as follows: for each k, choose j* so as to maximize 3¢ p tial;;
set the corresponding :c?. to 1, all other :cf set equal to 0. The objective function of
(2.16) is piecewise linear and concave in ¢, and hence is not everywhere differentiable.
As a result, subgradient optimization is used t6 maximize the lower bound.

We now state the algorithm.

LLB:
1. Initialize. zpez = 0; 2z = Yjemcis ti=0and & =¢; Vie M.

2. Compute the solution to the Lagrangian relaxation as detailed above with the
current multipliers and let the objective function value be z;, with decision

variables :c? and §;. Update zy,,, with the maximum of (zmaz, 21).

3. Produce a feasible solution to the SENSOR COVERAGE problem as follows:
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(a) forall i: if ¥ =0 Vk € P, j € N} then object ¢ is uncovered = §; = 1;

otherwise §; = 0.
(b) Compute 3 ;cpr cifi- Update 2z, with the minimum of (24, ¥icpr %) for
the feasible solution just generated.

4. Stop if zmae = zu; this is the optimal solution.

5. Calculate the subgradients for the lower bound solution:

Gi=1-3-Y Y afzt VieM.

kep jeN*

6. Stop if 3";cpr G? = 0 since a stepsize cannot be computed in step (7).

7. Determine a stepsize T using:

T = f(1.05zub—zu,)/ (Z Gf) .

iEM
Initially f=2, and if the lower bound has not increased for the last 30 iterations

then f is halved. (This is a typical approach for subgradient optimization; the
computation of f is based on [11] and [43].)

8. Stop if f < € (e.g., € = .005).

9. Update the multipliers with ¢; = ¢t; + TG; Vi € M, subject to t; > 0. Return

to step 1 and iterate.

It can be shown [60], [101] that this approach converges if 352, T* = oo and
kl.i_{g T* = 0, where T* is the step length in iteration k. These conditions are satisfied
if one starts with f=2 and periodically reduces f as shown in the algorithm.

The gap between the upper and lower bounds reflects the quality of the best

feasible solution produced.
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2.4.3 Decomposition

The block-angular structure of this problem, in which a number of separate satellite
assignment constraints (2.8) are linked together by a common covering constraint
(2.7), makes the LP relaxation of this problem a candidate for solution by Dantzig-
Wolfe decomposition. This is an iterative approach wherein a number of different
subproblems, each of which is a linear program, are solved. The objective functions
of these subproblems for one iteration are based on the dual price information of
the linear programs in the preceding iteration. The costs serve to “coordinate” the
subproblems so that eventually the original problem is solved. Our description of
Dantzig-Wolfe decomposition follows that of Luenberger [75, pp. 68-75).

The kth subproblem has as its constraint set

sz = 1 (2.17)

JEN*
¢ > 0 Vje NF (2.18)

J

for k =1,...,p. The subproblem polyhedrons are all bounded, and thus their feasible
regions, S*, consist of points that are expressible as convex combinations of their
respective extreme points. If the extreme points of S* are Ui {7}, 742, ... 7k6"}
where G* is the number of extreme points for S*, then any point z¥, j = 1,..., Nk,

in §* can be represented by

where

Gh
Yot =1

=1
o > 01=1,...,G% je N-
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The a¥’s are the weights for the extreme points.

The LP relaxation of the original integer program can be transformed to an equiv-
alent master problem for which the objective is to optimize the weights for each S*, as
well as to minimize uncovered demand (3 ;cpar ¢i%i). The original SENSOR COVERAGE

problem becomes

Minimize Z ci¥i (2.19)
iEM

subject to

Gk
S ¥ el +5

> 1 VieM (2.20)
kEP jeNk I=1
L
Yo = 1VkeP jeNt (2.21)
=1
i < 1VieM (2.22)
i > 0VieM (2.23)
o > 01=1,..,G5 ke P je N~ (2.24)

The master problem has as decision variables af’ forl=1,...,G* k€ P, j € N*
and §; for all : € M.

We will suppose that at some stage of the simplex method for the master problem
we know the basis and the corresponding simplex multipliers (); for the ith linking
constraint and m; for the constraint summing the weights for the extreme points of
the kth subproblem. An algorithm for the solution of the master problem is the

following:

DW:

1. Calculate the current basic solution for the master problem, and compute the

simplex multipliers.
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2. For all k € P find the optimal solution z*" of the kth subproblem using con-
straints (2.17) and (2.18) and with the following as the objective function:

ri = Minimize (- SN Y afat - wk) , (2.25)

€M  jeNhk
3. If r; > 0 for all k, stop. The current solution is optimal.

4. Determine which extreme point (column) is to enter the basis by choosing the

minimum 7.

5. Update the basis of the master problem using the revised simplex method and

return to step (1).

The subproblem in step (2) can be solved for binary :cf,‘ quite easily: select the
column j* € N* that maximizes ) Aiaf; and then set z% = 1, zf =0 for j # j°.
Note that this is a greedy algoritther:l{: the sensc. location that provides the greatest
weighted coverage of demands, where the weights are given by the simplex multipliers,
is selected.

We have not constructed subproblems for the §; decision variables. The subprob-

lem that would be solved in the Dantzig-Wolfe algorithm would be:

Minimize Y (¢ — ) (2.26)
iEM

subjectto §; < 1 Vie M (2.27)
9 > 0VieM. (2.28)

This can be solved by inspection: ; =1 if ¢; — A\; < 0 and ; = 0 if ¢; — A\; > 0. The

extreme points generated for §; are either 0 or 1, which are also the values that it will
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assume in the master problem as we have stated it. As noted earlier, §; will assume

its minimum, which is either 0 or 1.

2.5 Computational Performance

2.5.1 Introduction

In this section we discuss a probabilistic model for satellite location and coverage.
With this model, the marginal return and Lagrangian relaxation (LR) heuristics have
been tested using representative problems formed with randomly generated demand
data. The general parameters that distinguish a representative satellite-based sen-
sor coverage problem include the altitude and characteristics of the platform’s orbit
and the individual instrument’s specific technical features. Examples from the Eos
program will help to clarify what we mean.

The altitude of a low-earth orbit satellite will range from a couple of hundred
kilometers up to 1500 or so. For a satellite orbiting at 400 km the horizon is approx-
imately 2300 km distant (a farther observation distance is possible if one considers
events occurring above the surface of the earth), which is easily within a nominal
sensing range of 3000 km for most types of surveillance and environmental instru-
ments. A 2300 km feasible coverage circle, if centrally placed, would effectively cover
the continental US. For a 15° sensor field-of-view (FOV) the actual imaging region is
approximately 300 km wide when 2300 km distant and 50 km wide at 400 km. These
figures highlight the different types of field-of-view that are relevant in coverage plan-
ning. The instrument instantaneous-field-of-view (IFOV) s the size of the area that is
characterized in a single pixel, or element, of a measurement which may be composed
of many pixels. If many pixels are measured, it can be done either simultaneously by
some type of area array detector, or sequentially, using perhaps a “push-broom” type
detector to sweep over a region. Many pixels need not be measured, however, as will

be shown in the following Eos examples. The general instrument field-of-view refers
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to the total area that is characterized in a single measurement, which typically con-
sists of many smaller pixels. The total region within which measurements can feasibly
be made is determined by either pointing or geometry (line-of-sight) restrictions that
limit instrument coverage. Sensor pointing can be accomplished by physically moving
a scanning mirror, employing electronic beam steering, or other means. These terms
are often blurred: field-of-view is sometimes used to refer to the angles within which
the pointing capabilities of an instrument permit it to make measurements, and IFOV
is sometimes cited as the the angle that specifies the region captured within a single
measurement.

The numbers just given are nominal and will vary depending on orbit altitude and
sensor parameters; a couple of specific examples taken from the suite of instruments
proposed for Eos should make the ideas more concrete. Consider first the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [83]. ASTER's
science objectives include surface and cloud imaging with high spatial resolution and
with multispectral channels from visible to thermal infrared. At the Eos 705 km
orbital altitude, ASTER will have pointing capabilities such that any point on the
globe will be accessible at least once every 16 days. The instrument’s swath is 60 km
at nadir, but is pointable cross-track 106 km. It’s spatial resolution, which is de-
termined by the IFOV, varies by wavelength: 15 meters for visible and near-infrared
(VNIR); 30 meters for short-wave infrared (SWIR); and 90 meters for thermal in-
- frared. All pointing is near nadir except for VNIR forward, which is 29.7° forward of

nadir. Fields of view, including SWIR and TIR, are as follows:

FOV: TIR = SWIR = 4.9° (nadir) x IFOV

VNIR = 6.09° (nadir) x IFOV, 5.19° (forward) xIFOV
IFOV: SWIR = 43prad (nadir)

TIR = 128 prad (nadir)

VNIR = 21prad (nadir), 18.1urad (forward).

The field-of-view determines the 60 km measurement swath.
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The Eos Synthetic Aperture Radar (SAR), mentioned in section 2.3.1, uses elec-
tronic beam steering in the cross-track direction to acquire images at selectable inci-
dence angles of 15° to 50° from both sides of nadir—this is termed its field-of-view
in [83]. Its IFOV varies from 30-500 km, with variable spatial resolution, depending
on the mapping mode (which can be local, regional, or global). The SAR is an ac-
tive instrument (it emits electromagnetic radiation and then measures the response,
rather than passively observing), and its instantaneous measurements characterize
the entire swath. Their resolution is determined by the frequency used in each of the
mapping modes (L, C, and X bands).

Fully at the opposite end of the resolution spectrum from the high spatial capa-
bilities of ASTER is the Multifrequency Imaging Microwave Radiometer (MIMR).
MIMR will be used for retrieval of numerous atmospheric and oceanic parameters,
including precipitation, soil moisture, global ice and snow cover, sea surface temper-
ature and wind speed, atmospheric cloud water, and water vapor. It is designed to
have a cross-track swath of 1400 km at an incidence angle of 50°, with spatial res-
olution ranging from 4.86 km at 90 GHz to 60.3 km at 6.8 GHz. This will provide
a minimum of three day global coverage of the earth; at high latitudes there will be
daﬂy coverage. MIMR’s IFOV is +80° cross-track.

As can be seen from the examples just given, the potential area within which an
instrument can be pointed and images taken is quite large. The number of feasible
sensor locations is in principle infinite, and it is still typically quite large even if
we discretize the space so that the corresponding footprints constitute a partition.
This has implications for the algorithms that are employed to determine assignments.
Thus in our model we make assumptions regarding the set of positions to which each
sensor can potentially be assigned.

One way to limit the size of N* is to let N* be restricted to be a subset of M,
the target locations. Although this restriction can be sub-optimal, it is regarded

as a reasonable one. Instances in which it results in poor assignments will be either
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infrequent and pathological. An example would be three objects that form the vertices
of a properly sized equilateral triangle. They could all be viewed in a single image if
the sensor were pointed at the center of the triangle, while only two could be viewed
at a time if the sensor were directed at any of the vertices of the triangle.

For a plane of 5 sensors that can cover a consolidated region containing 200 de-
mands, however, there are potentially 1000 possible sensor-location combinations—
fewer need be considered if some demands are not visible to a subset of the satellites.
Moreover, there are realistic satellite scenarios that envision a constellation of 50-60
satellites, although they would not all be in a given region. For example, Motorola’s
proposed Iridium communications satellite array would ultimately consist of 66 satel-
lites; prior to complete deployment there will be significant tasking problems with the
number of satellites in the dozens. When fully operational, the system would provide
wireless telephone connections over virtually every spot on the earth’s surface and be
capable of handling 200 simultaneous calls. With fewer satellites available, far less
area can be covered and there will be a need to solve dynamic coverage problems so
as to insure that ground “gateways” have a satellite link (otherwise communications
is lost). Conversely, gateways cannot be established for a given array of satellites
unless optimization of the coverage problem establishes that they can be serviced
adequately. A recent policy decision by NASA regarding Eos [2] will result in more,
smaller (and less expensive) satellites, again producing greater management complex-
ity. Part of the original motivation to have large platforms on which a dozen or more
instruments could be placed was that it reduced the scheduling complexity in trying
to achieve desired degrees of simultaneity and similarity between measurements taken
by complementary instruments.

The objects, or demand points, of which sensor coverage is sought, were pro-
duced by generating up to 4500 randomly placed points on the surface of the earth.
Different sets of such demand points were used for different problem instances. To

generate a random vector uniformly distributed on the surface of a sphere of radius
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r, we simulate a random vector uniformly distributed in the 3-dimensional hypercube
{—-1<z; <1}2, and then accept or reject the sample (X,, X,, X3), depending on
whether the point is inside or outside the sphere [37, p. 51]. The algorithm is as

follows:
1. Generate U,,U,, U from a uniform distribution over the interval (0,1).
2. Xl — 1—2U1; Tg ¢ 1—‘2[’2; X3 — 1—2U3; YZ — Z?.:lX‘-z.

3. Y2 < 1, accept Z = (21, 2Z2,23), where Z; = r x (X;/Yi), t = 1,2,3 is the

desired vector.

4. Return to step (1).

Observe that to generate a random vector uniformly distributed inside a sphere, we
need only modify step (3) to accept the point under consideration if Y2 < 1.

For a tctal of 64 satellites with an instrument field-of-view of 15° and at an
orbital altitude of 1000 km, we can generally cover at most 20% of the earth in our
examples. If demand placement is uniformly distributed, it constitutes a worst case
test of the ability of our algorithms’ coverage performance; for certain scenarios, such
a distribution is also realistic. A strategic surveillance system will potentially want to
scan the entire surface of the earth. A typical surveillance strategy might be to cover
the entire globe at all times with broadband sensors, and then “sample” those areas
that are of particular interest with high resolution sensors. Note that the nominal
scan parameters we have assumed, e.g., a 15° field-of-view, are more on the order
of moderate, rather than high, resolution. For applications other than surveillance,
however, demand will have different distributions. HIRIS is used primarily to scan
the continental land masses, coastal zones, and inland bodies of water; it is not used
to make any measurements over the open ocean. Thus “demand” for an imaging
spectrometer is clustered over less than 25% of the earth’s surface. Given Eos’s

orbital inclination, the North-South America corridor is an ideal opportunity for
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imaging—in a single pass targets on both continents can be imaged. Coverage for
the commurications satellites envisioned for Iridium would be even more focussed:
earth gateways, which would require continuous antenna coverage from the satellites,
would be located primarily in the vicinity of high population density areas in North
America, Japan, and Western Europe.

The 15° field-of-view for the area coverage of a single measurement was selected
as a compromise value for computational purposes. In practice, the size of the region
covered in an image will be the product of both design decisions made before a sensor
is ever fielded, and operational decisions. Design specifications will include the size
and type of detectors, as well as determining the scanning capabilities. In addition,
the imaging characteristics will be regulated by operational decisions regarding how
much of the scanning capabilities to use, and image sequencing strategies that pro-
duce continuous imaging—essentially turning on the sensor and letting it run. Such

approaches will be examined in more detail in Chapter 3.

2.5.2 Computational Tests

Computational tests of the algorithms implemented have been performed on both
VAXstation 3100s and DECstation 5000s. Both the marginal return and LR heuristics
have been implemented in the programming language C, using linked lists to store
the sparse coverage matrix—a data structure that requires much less space than a
matrix representation. Linked lists call for ;e prrep ¥+ jepmrer mjf space, while the
matrix takes m X 3 ,cp nk. Since n¥ < n* and m_’; < m, it follows that the linked lists
make for much more efficient use of memory. The a¥’s (the elements of the coverage
matrix A) are very useful conceptually, but should not be stored explicitly. Problem
dimensionzlity is less of a concern in the performance of the greedy heuristic than in
the Lagrangian relaxation, since the greedy heuristic eliminates all of the assignment
variables asscciated with a particular server at each iteration. In the Lagrangian

relaxation, however, each Lagrangian lower bound problem and corresponding feasible
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solution entails dealing with all feasible assignment variables, and thus each iteration
is comparable to solving the entire greedy problem.

In generating satellite positions, we assume circular orbits and symmetric con-
stellations. The true orbit of a satellite around the earth is an ellipse, but since we
are considering low-earth orbits the orbital periods are short and there is only very
small orbital eccentricity. This makes circular orbits a reasonable approximation.
Two terms from astrodynamics are helpful in understanding symmetric constella-
tions: mean anomaly and ascending node cressing. Mean anomaly is the angle at
which a satellite is located within its orbital plane. The angle must be related to
something, and here mean anomaly is referenced to the ascending node crossing. The
ascending node crossing is the point (measured in longitude) at which a satellite’s
orbital plane crosses the equatorial plane as the satellite ascends into the northern
hemisphere. Symmetric satellite constellations mean that satellites in a single orbital
plane are distributed evenly in mean anomaly, and orbital planes are distributed
evenly in longitude of ascending node. The assumption of symmetric constellations
has previously been used in [9] for the continuous global and continuous regional
earth coverage problem, and in [35] to obtain intermittent ground coverage of the
earth. Note that these two assumptions are used to generate data for the static cov-
erage problems, but the algorithms themselves do not exploit any symmetry, nor is
it obvious how to do so.

Tests were performed with 8 planes of 8 satellites each. With 4500 ground sites,
typically less than 1% of the demand was invisible to all satellites, while, as observed
earlier, generally at most 20% could be covered with a single set of assignments.
With fewer than 4500 demands (e.g., 500 or 1500) usually all were capable of being

covered. The computational results are shown in Table 2.1, where we use previously

—introduced abbreviations for the algorithms (LB, MR-1, MR-2). The entries for

upper and lower bounds are expressed as the fraction of total value that is uncovered,

and represent averages taken over 50 problem instances. For MR-1 and MR-2, they
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have been converted from the corresponding values for the lower and upper bounds
on covered value that the marginal return algorithms actually compute (remember
that in LLB our objective is to minimize the uncovered value); this is done to provide
ease of comparison in contrasting LLB performance with that of the marginal return
algorithms MR-1 and MR-2. For instance, the figure of 0.8026 for MR-1 and 4500
demand points is a lower bound on the fraction of demand value that will be left
uncovered; as an output of the algorithm, however, it was an upper bound on the
covered value of 0.1974 (= 1—0.1762). The gap between the upper and lower bounds
for both LLB and the MR algorithms is expressed an a percentage of the uncovered
value lower bound, as was computed directly for the Lagrangian. Alternatively, the
gaps could have been computed as a percentage of the covered value lower bound; if
so calculated, the gaps will be larger. Using the same example as before for MR-1
and 4500 demand points, we have the gap in Table 2.1 shown as a percentage of

uncovered value
0.8143 — 0.8026

55076 = 1.46%

or, alternatively, as a percentage of covered value

(1 —0.8026) — (1 — .8143)

(1 —.8143) 6.30% .
Lower Bound | Upper Bound | Gap in %

500 500.04 |  0.6332 0.6644 4.93 '

LLB 1500 492.62 0.7445 0.7561 1.55
4500 492.86 0.8124 0.8238 1.40
500 — 0.5846 0.6388 9.27

MR-1 1500 — 0.7227 0.7482 3.53
4500 j— 0.8026 0.8143 1.46
500 — 0.5846 0.6492 11.05

MR-2 1500 — 0.7227 0.7529 4.18
4500 - 0.8026 0.8170 1.79

Table 2.1: Summary of computational experience for coverage algorithms; bounds
and gaps are for uncovered value.
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In an absolute sense, the entries in Table 2.1 for the upper and lower bounds
don’t convey much useful information, since they are the averages from 50 prob-
lem instances. It is a relative figure of merit, which, if averaged, is most useful in
comparing different heuristics—it conveys expected performance. The solution gap,
computed as a percentage of the lower bound, is such a relative measure. But here,
however, we are randomly generating problems from a specified distribution (uni-
form), and it makes sense to compute the ezpected value of upper and lower bounds
on the optimal solution for this problem class. If viewed in this light, the figures in
Table 2.1 provide insight into how the heuristics perform.

As can be seen, the average gap between the Lagrangian relaxation upper and
lower bounds for uncovered value was found to be less than 2% for the problems with
1500 and 4500 demands. For the larger problem instances, the value that was covered
represented approximately 18% of the total coverable value. In comparison, the gap
between the upper and lower bounds from marginal return assignments for problems
with 1500 and 4500 demands ranged from 1.5% to 4.2%. In all cases, however, the
value covered by assignments from the marginal return algorithm fell within the gap
from the Lagrangian relaxation. In particular, this means that the greedy algorithms
pro.vided better feasible solutions. We conclude that the marginal return algorithm
provides very good assignments, but not very good bounds. The marginal return
algorithm ran significantly faster than the Lagrangian for large problems, typically
taking about 30 seconds per instance compared to almost 240, although they were
comparable when tested against smaller sized instances. Considerable code optimiza-
tion could be done for both implementations, so this is more an indication of relative
performance rather than a finding.

In Figures 2-2 and 2-3 the gaps between bounds are displayed in dot charts,
grouped in the first case by the algorithm used and in the second by the size of
the problem instance. Both serve to reinforce the observation just made, which is

that smaller gaps are provided by the Lagrangian; it should be remembered, though,
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that both MR-1 and MR-2 provide better feasible solutions than did the LLB—
this can be seen in boxplots of the lower bounds. Figure 2-3 shows that as demand
gets increasingly dense, there is increasingly less difference between “good” and “bad”
assignments. In effect, no matter where you point the sensor, you capture comparable
amounts of value. Thus the gap between upper and lower bounds shrinks since

different assignments become roughly equivalent.

MR-2

1800 Demande |[———--—e

4800 Demanda |-—e

Figure 2-2: Solution gaps in %, grouped by heuristic.

In Figures 2-4, 2-5, and 2-6, boxplots' show the spread of lower bounds (feasible
solutions) for covered demand in 50 problem instances. This is the data as computed
by MR-1 and MR-2, as opposed to LLB, which computes a lower bound on un-
covered demand. The outcomes plotted for LLB-1 reflect the complements of upper

bounds on uncovered demand. For all levels of demand, both MR-1 and MR-2

1The box in a boxplot contains the middle half of the data. The whiskers extending from the
box reach to the most extreme non-outlier; points lying beyond 1.5 times the inter-quartile range
are plotted individually.
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Figure 2-3: Solution gaps in %, grouped by number of demands.

provide better feasible solutions (e.g., higher expected covered value from these al-
gorithms). Moreover, both of the MR heuristics provide consistently good solutions,
as evidenced by the tighter distributions about the mean; this is particularly true for

the problem insta:"ces with 1500 and 4500 demands.

2.5.3 Summary

Both marginal return and Lagrangian relaxation a.léorithms have been specified, im-
plemented, and computationally tested. They have been demonstrated to be capable
of providing good bounding information, as well as quite satisfactory feasible solu-
tions. In addition, they can perform very quickly. A question that arises is whether or
not the problems against which these heuristics have been tested, although it has been
argued that they present a worst case scenario of demand distribution, are inherently

easy. In particular, might it be that any algorithm, albeit perhaps simple-minded
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Figure 2-4: Boxplot of 50 lower bounds for covered demand (500 demands).
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Figure 2-6: Boxplot of 50 lower bounds for covered demand (4500 demands).

(and straightforward), would perform just as well?
With this objective in mind, three “dumb” algorithms were specified and tested
against some of the same problem instances used in the computational results dis-

played in Table 2.1. The three algorithms, each increasingly less “dumb,” are

1. Point each sensor at nadir. Objects will be observed only if they fall within a
path running along the satellite ground-track whose width is the sensor field-

of-view.

2. Point the sensor at the first object that is found to be within the sensor’s
pointing range. The value covered will be that within the field-of-view of the

sensor when it is targeted at the object so identified.

3. Point the sensor at the highest value object within the sensor’s feasible region;

if it is covered, then target the next highest value object. If that is covered



CHAPTER 2. SENSOR COVERAGE MODELS 64

also, then target as in algorithm 2. The value covered will be that within the

field-of-view of the sensor when it is pointed at the appropriate object.

The fraction of demand value covered increased with each heuristic, averaging 0.0253,
0.0644, and 0.0731, respectively. They were run against problem instances with 4500
demands, for which experience indicated they should perform the best (Figure 2-
3). Even the third one, however, captured only about a third of the value that
MR-2 did. For a greedy algorithm to be effective, it must search a reasonably sized

neighborhood—the ones searched here are too small.

2.6 The Dynamic Coverage Problem

Our interest now is in scheduling the satellites over a small time horizon. As noted
in the introduction, maximizing the coverage of ground sites is no longer the sole
objective. There are new concerns that must be considered, either as additional
objectives or as constraints on the assignment process. We will discuss each additional

dimension in turn.

2.6.1 Erratic Scanning

The time it takes to form an image on a receiver is on the order of tenths of a second

or less, while it takes seconds to reorient the sensor itself—an order of magritude
difference. By reorientation we refer to the actual repositioning of the sensor (this
may entail physically moving a scanning mirror) that is necessary to cover a different
surface region which is considerably distant from the location last covered. Thus
the desire to sequence demands so as to achieve a smooth scan profile is a reasonably
important one; if the objects targeted by a particular sensor are well-ordered, it should
be possible to provide more coverage within a given time frame.

There are several ways of addressing this issue in the context of a finite horizon

problem where each sensor will perform several scans while moving in space. One
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approach is to define pairwise costs between potential sensor locations that reflect
the desirability of scheduling sites as successive assignments for a particular sensor:

locations that are close incur a smaller cost than those that are far apart. The

cost structure could be either linear or concave, the latter reflecting a diminishing————
incremental cost for increasing distance. A realization might simply be the Euclidean
or great circle distance between locations, appropriately scaled; it could also be the
time it takes to reposition the sensor when the indicated locations succeed one another.

Such a sequencing cost, d;, j,, can be included in the objective function:

Minimize Z Z Zdjx.jz‘”.’;l.jz

kEP j,j€ N* IEL

where “’?;.jz is 1 if sensor k is assigned to j, immediately after being assigned to j,
and 0 otherwise. The cost is incurred only when the appropriate assignment variable

is nonzero.

2.6.2 Time Coverage Constraints

Time constraints must be included to insure that any sensor-position pairings selected
are geometrically feasible at the time they are to be executed. Thus sensor k can be
assigned to position j € N* only during some specified time interval: (b.';, fJ") For
an assignment to be feasible, using the variable z . introduced above, it is then
required that:
ko e k k k k ke

Tiia = 1 = b.il = tJ'x < a and bjz < t.‘iz = Ja
where t% € [0,T] is the time that sensor k is assigned to position j and T is the time
horizon. Note that when a time variable is employed, we also need a constraint of
the form

k k ik kg
tJ'z 2 mJ'xtJ'x + Zj th.Jz
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where t;, ;, is the “transit” or repointing time between j, and j,. If the pairwise costs
d;, ;, between successive locations take the value of the transit time, however, then
this constraint is not needed.

Alternatively, the coverage constraints can be changed to reflect that the footprint
of a sensor will vary with time, even when assigned to the same location. Then afj
becomes af-‘j(t), which equals 1 if sensor k can cover position j from location 7 at
time ¢t and 0 otherwise. With time as a continuous variable, this will no longer be a
discrete model. Time can be discretized, however, and then the coverage coeflicients
would take the form aff, where a discretization interval is defined and the coefficients
are specified for each increment. Even for a modest time horizon this would result in
a huge state space, so some sort of a state space relaration solution approach would
likely be needed.

A heuristic approach to addressing the erratic scan issue in a dynamic formulation
essentially decomposes the assignment process. It entails first determining the places
that each satellite will scan, and then ordering the assignments so as to create a
smooth sequence. The ordering could be done greedily, successively choosing the
closest location among the sites regardless of their value. Following this with an
interchange heuristic would reduce the impact of the final several assignments, which
could be very unfavorable. Unless all of the assignments are feasible throughout the
time horizon, it becomes necessary to insure that the ordering produced does not
violate the time windows during which the different sites selected for a particular
sensor are available for its placement. An altemafive to the greedy ordering with
feasibility checks is to solve the sequencing of the selected sites for a particular sensor
as a shortest path problem with time windows. This heuristic approach has the
advantage of decomposing a large, complex problem into smaller components that

are probably more tractable.
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2.6.3 Time-varying Demand Value
2.6.3.1 Recency Effect

In the static problem it is assumed that there is a single value that represents the rel-
ative importance or desirability of viewing each of the various objects that are within
the range of the sensor array. From a practical perspective, it may be difficult to assign
such values to a large number of demands. One alternative is to create a relatively
small number of equivalence classes: groupings into which the various objects are
placed such that all of those that are in a particular class are of roughly comparable
importance. Presumably it would be much easier to make such judgments.

When considering a finite horizon dynamic problem, the recency with which a
particular object has been visited will affect how desirable it is to revisit it. If this
were not the case, we would tend to observe the same set of objects repeatedly until
it became infeasible to do so because of geometry. There are a couple of ways to
address this concern; one is to allow a demand’s value to vary with time. There are
several different functional forms that could be assumed to reflect the time-varying
character of object values. For instance, there could be zero value for observing an
object i again if the time since the last visit is less than some threshold level, 7;,
and then once that level is reached the value climbs in either a linear or a non-linear
and concave fashion. Alternatively, it could be assumed that it is always desirable to
observe the demands, and that when viewed their value merely resets to a lower level

from which it then grows. Both can be represented by:
ci(t) = ai + Bits

for linear growth and by:

ci(t) = o — Pie™™"

for concave growth. In both cases ¢; is measured from the time that object i was
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last observed; a; and a; — f3; are the intercepts, respectively. The linear case grows
without bound, while the nonlinear case has a limit of ;. Either scenario is arguably
plausible: in the former case a revisit will ultimately be forced, while in the latter it
is implied that there is a limit to the value of that particular site.

Another means of addressing the frequency of observations/ground contacts is
to establish minimum “revisit times”-—the interval of time during which no satellite
observes a particular ground site. An upper bound on the maximum revisit time ¢;

for an object : would be specified based on mission objectives:
A .
d <t

where t;’: is the minimum time greater than t:: such that ¢ € Mjkl‘ M j’;’ for some jy, 72
and k;,k;. The effects of such a requirement would drive the assignment process in
a dynamic model. There would be two levels of observation priority, revisit time and

intrinsic value.

2.6.3.2 State Changes

Another dimension to the time-varying character of object values in addition to that
attributable to the recency with which a site was viewed, is the potential for “state

” This could correspond, for instance, to an event such as a missile being

changes.
launched or a volcano erupting at a particular location. The implication is that it
becomes highly desirable to scan that region again immediately. If indeed a launch
has occurred, then sensor assignments will subsequently be made with the cbjective
of tracking (with a potential need for multiple sensors per object) rather than surveil-
lance. If a relook reflects that a launch has not occurred, however, then the value of
that particular demand will reset to the level that would be appropriate for having
just been viewed.

There are potentially several ways to model such object value state changes. At

one level, a sensitivity analysis of an algorithm’s performance will reflect how great a
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change is necessary in an object’s value to produce different assignments or sequenc-
ings. Alternatively, if the solution to the dynamic model entails forming a rolling
schedule then only the first period’s decisions will be implemented. One period later
the multiperiod problem is updated as better information on demand value becomes
available, and the procedure iterates. Such a rolling horizon approach inherently ad-
dresses the problem of changing demand values. For the purposes of simulations one
could consider demand value to be Markovian where there is a nonzero probability
that the existing value jumps to one of a finite number of other states at specified

times.

2.6.4 Problem Approaches

Several simplifying assumptions can be made in considering solution approaches to
the dynamic problem. A significant one is that if the time frame over which sensor
assignments are to be computed is sufficiently short, such as 30-60 seconds, it can
be assumed that the satellite does not move to an extent that would significantly
affect the sequencing of selections due to geometric restrictions on the time of the
assignments. This does not eliminate such constraints, but rather relegates them to
the domain of preprocessing. For each assignment update computation, the input
data will reflect the changes in sensor coverage capabilities that have occurred since
the last assignment. This implies that over up to a one minute period, the areas that
cannot be continuously covered are small relative to the area that is covered. Thus if
the geometric domain under consideration for sensor assignments is restricted to that
for which there is continuous coverage, there is little loss.

In addition, focussing on assignments for a single satellite is a means to decompose
the dynamic problem. This is not done without loss of generality, but the potential
reduction in problem complexity and increase in computation speed are reasons for
doing so.

We have suggested two general approaches to the dynamic problem. The first
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would exploit work done on the static problem, by essentially embedding it in a
rolling horizon model for sensor assignments. Rolling planning horizons come from
production planning [23], [69], where intermediate-range forecasts are often done on
a “rolling” basis. At the start of each period, a prodaction plan is set for that
period and for the next several periods on the basis of the current inventory and
the forecasted demands for those periods. In each period, the current period’s plan
becomes firm and the rest remain tentative. Various heuristics are used to set a plan
for the current period in the hope of avoiding poor inventory positions later on. It is
a rolling procedure because it is redone each period; the time horizon is the number
of periods into the future for which demands are forecast and tentative production
plans are set. Examples of models for which rolling horizon procedures are applied
are the facilities in series inventory model (23] and the dynamic lot size model [69].

In such a framework for dynamically managing sensor assignments, the static
coverage model could be used to provide current assignments based on the the best
known values for various surface objects to be scanned. Future assignments could
be computed based on current estimates of values for objects not being scanned.
Then in the next period, assignments would be updated for those periods for which
coverage had tentatively been computed, with the assignments for the current period
being made firm. The updating would incorporate any changes that had occurred
in estimated object values based upon observed events or recent coverage. A plan
would also be drafted for tasking sensors in the newest period added to the time
horizon. An adaptation to the static model would be necessary to insure that smooth
scan profiles are created. One way of doing this would be to modify object values to
reflect their distance from the nearest location that was scanned in the most recent
period. This could be done prior to updating and then making firm the current
period’s assignments.

The other general approach would take advantage of the vehicle routing problem

(VRP) flavor that arises in the dynamic problem if we incorporate pairwise costs
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between surface locations. In a problem with P sensors for which L assignments are
to be determined, we essentially seek to construct P minimum length paths each con-
sisting of L arcs that maximize covered value. The use of flow variables (z* . ) and
time-coverage restrictions produce a problem similar to a VRP with time windows.
There are a couple of critical differences: a site need not be visited for its “demand”
to be satisfied, and not all demands need be met. Nonetheless, this approach al-
lows drawing upon the rich literature for vehicle routing problems; a detailed survey
compiled by Bodin et al. in 1983 [19] contains about 700 references, documenting

optimization as well as approximation methods proposed to solve the vehicle routing

problem or its many variants.
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Scan Sequencing Models

A fundamental management issue in the use of space-based sensors is the sequencing
of their scans, which are the individual images that they create so as to characterize an
area or target of interest. An image can be thought of as a photograph, although that
is a specific realization of an imaging product using visible wavelengths. Beginning
with Landsat in 1972, and continuing through numerous other sensors in the visible
and near-visible wavelengths, instruments have been used to image the surface of
the earth. Since specific regions will be targetable only during relatively short time
windows, it is essential that the selection and ordering of scans be done prudently.
We will examine strategies for use by such instruments in either covering a region or
acquiring a sequence of samples. To lend concreteness to the analysis, a description
of a representative sensor will be provided. The one we discuss is a high resolution
imaging spectrometer (HIRIS) intended for use in NASA’s Earth Observing System.
It should be noted that sensors will in many cases be mounted on board aircraft, and
the scan sequencing strategies that we discuss here are equally applicable to them.
The problem of interest is as follows: given a target region, such as in Figure 3-1,
what selection of scans is best and in what sequence should they be made? The
area that is covered by an individual scan will have some characteristic pattern or

shape that is dictated primarily by the technical parameters of the sensor, and to

72
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a much smaller degree by the geometry between the sensor and the target. As an
example, the basic shape of an instantaneous HIRIS image is a rectangle that is 30
meters deep in the direction of the satellite’s ground track (this is called the down-
or along-track direction), and 24 kilometers wide in the direction orthogonal to the
ground-track (the cross-track direction). These dimensions are the exact pattern for
when the sensor is pointed directly at the ground beneath the satellite, which is called
the satellite’s nadir; when the sensor is pointed +45° cross-track, the width of the
rectangle is 60 kilometers wide. Figures 3-2 and 3-3 show possible alternatives for the
scans that are selected to cover the area in Figure 3-1; we assume that the scan shapes
are the same in both figures. The scans are graphically represented in these figures
using a rectangle, which is intended to convey the general sense of scan planning for
HIRIS, but that is obviously not drawn to scale. The example in Figure 3-2 has
fewer scans than the example in Figure 3-3, while the latter example requires less
lateral “maneuvering” of the sensor. This identifies one trade-off, i.e., between the
number of scans taken and the repositioning of the sensor between scans. The relative
importance of these two criteria depend on the specific sensor. We will describe the

technical characteristics of this trade-off for the HIRIS sensor in section 3.1.

Figure 3-1: Representative region to be imaged.
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Figure 3-2: Scanning strategy for region in Figure 3-1.
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Figure 3-3: Alternate scanning strategy for region in Figure 3-1.
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3.1 HIRIS

For a specific instrument to motivate our analysis, we consider the high resolution
‘imaging spectrometer (HIRIS) (36], (53], [83]. It is an Eos facility instrument that
is planned for the Eos-A2 and -A3 platforms, which are scheduled for launch near
the turn of the century. If included, they will provide the capability to acquire high
spatial and spectral resolution observations over at least a decade. Such measurements
are not currently possible with existing ground-based or spaceborne instruments. A
detailed description of the motivation, science objectives, and technical design of the
HIRIS sensor is provided in Appendix A. For completeness, however, we describe here
the salient technical characteristics that drive our modeling of image sequencing for

space (and airborne) based sensors.

3.1.1 Instrument Design

HIRIS is designed to acquire simultaneous images in 192 spectral bands in the dom-
inant wavelengths of the solar spectrum, 0.4 to 2.5 microns, at an approximate sam-
pling interval of 10 nanometers. The ground instantaneous field-of-view will be 30
meters over a 24 kilometer wide swath. What this means is that an individual pic-
ture element, or pixel, in an image is 30 meters square. The 24 kilometer wide swath
consists of 800 such pixels side by side. Figure 3-4 depicts an instantaneous HIRIS

scan.

X

je———— 24 kilometers (800 pixels)

N

Individual pixels, 30 meters by 30 meters

Figure 3-4: An instantaneous image from the High Resolution Imaging Spectrometer.

To make the ensuing discussion of HIRIS more understandable, we provide a small
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glossary of some of the terms commonly used in describing the technical characteristics

of satellite or airborne based surface imagers.

— ——————

Term Definition
along-track The direction in which the satellite moves
cross-track The direction that is orthogonal to along-track
integration time The time over which the detectors measure

solar radiation within a pixel
instantaneous-field- | The angle that determines the smallest

of-view (IFOV) distinguishable area that can be delineated
ground-IFOV The surface distance that the IFOV produces
field-of-view (FOV) | The angle that determines the size of the region
that is characterized in a single image

resolution The precision with which an item or activity

is measured or performed
settling time The time it takes the sensor to settle down

after having been repointed
slew-rate The speed with which the sensor is repointed
stability The accuracy with which the sensor can be held still
swath The width of an image (determined by the FOV)

Table 3.1: Glossary of terms used to describe sensor capabilities.

The “ground-instantaneous-field-of-view” of 30 meters is the ground distance over
which a measurement is made of reflected solar radiation. The sensor may be used to
scan a swath at either the spacecraft ground-track speed of 6.83 kilometers/second
or at reduced effective ground speeds of %, %, or 1 of the satellite ,round-track speed,
which is produced by a compensating scan of the along-track mirror. This increases
the effective pixel integration time, and thus improves the signal-to-noise ratio when
imaging dark targets; this will be especially useful for water studies. Figure 3-5 [89,
Figures 2d and 33] shows the general geometry and concept of imaging spectrome-
try using area array detectors. Physically, the way that the spectrometer works is
that incident radiation passing through a slit at the front of the fore-optics is col-
limated, separated into two bands, and then dispersed and reimaged onto separate

detector arrays for visible and near-infrared wavelengths, and for shortwave infrared

wavelengths.
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Figure 3-5: Imaging spectrocmetry concept.
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The center of the spatial swath line may be placed anywhere within the instrument
pointing capabilities that are given in Table 3.2 [53, p. 141]. Figure 3-6 shows the
dimensions of the overall area within which HIRIS can acquire data based upon these
pointing parameters. To give a sense of proportion, a 96 kilometer by 96 kilometer
scan box is shown roughly to scale; this is about the largest size of area that can be

imaged in a single pass of the satellite.

Parameter _ Alo.‘t;-track_ Cross-track
Total Range +60°/ — 30° | +45°
Pointing Resolution .070° .070°
Stability (jitter) 0.74 arc-sec | 0.74 arc-sec
(0.1 pixel) (0.1 pixel)
Slew Rate (max) 5°/sec 2°/sec
Settling Time (after slew) | 0.5 sec 0.5 sec

Table 3.2: HIRIS pointing parameters.

In operation, the image from a line on the ground is spectrally distributed over a
detector array. At the end of one line integration period the photon-generated charge
on each line is shifted into a storage area, and then shifted into registers that are
shifted out and read through amplifiers. The integration time corresponding to the
6.83 km/s satellite ground-track speed and 30 meter pixel size is 4.39 milliseconds. For
an 800 pixel swath width and 192 spectral bands digitized to 12 bits, the corresponding
data rate is about 410 Mbps. The amount of time that it takes to shift out and then
read the charge that has been generated takes several orders of magnitude less time
than a single integration period. Thus the instrument can essentially be turned on
and allowed to run continuously, taking and recording a large number of contiguous
along-track images, so long as it is not repointed between images. This does not take
into account, however, limitations on the allowable data rate.

Performing a scan consists of pointing the sensor at a spot on the ground and then
“turning it on.” After 4.39 milliseconds (or the appropriate multiple of 4.39; longer
scan times provide a better signal-to-noise ratio) the photonr charge that has been

generated while the sensor moves along its ground-track is processed as described
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Figure 3-6: Region within which HIRIS can acquire targets, based on its pointing

capabilities.
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above. To model scannning, we represent an individual scan with a point located in
the middle of the rectangular sensor ground pattern. The point is symmetric with
respect to the distance traveled during a pixel integration period, as well as with

respect to the scan swath.

3.1.2 Current Planning

Many science users are interested in imaging regions that are very small, and for
which the best sequence of scans is obvious. One major exception to this is the
cloud researchers, whose goal is to scan areas that are quite wide in the across-
track direction. Because of the amount of time that it takes to reposition the sensor,
planners think in terms of placing “boxes”, which consist of scanning continuously in
an along-track direction. This is often done for 800 along-track scans, creating a 24
km by 24 km square—800 x 800 pixels. Such a scan sequence takes approximately 3.5
seconds. A 24 km wide by 96 km long scan region would take roughly 14 seconds, and
a 96 km by 96 km region would take about 56 seconds. The 56 seconds for the 96 km
X 96 km region does not include the time needed to reposition the sensor between
along-track scans. Planning figures for sensor maneuvering, as shown in Table 3.2,
are 2° /sec across-track and 5°/sec along-track; after moving the sensor there will be
about a half-second settling time. The strategy employed to image a 96 km x 96 km
region is to point the sensor well ahead of nadir to begin the first 96 km long scan
line, and then to move it over and back for each scan line as needed, until the desired
number of scan lines have been imaged. Repointing and sensor settling between each
scan line will take approximately 3.5 seconds, producing a total scan time for a 96 km
box of approximately 66 seconds. As has been noted, with the detector readout time
being considerably less than the pixel integration time, along-track scanning for many

instantaneous images is essentially continuous.
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3.1.3 Management Issues

As currently envisioned, the scheduling of HIRIS for imaging a particular region is
fairly restricted. The amount of time needed to repoint the sensor from one location
to another, plus the settling time afterward, dictates that as little of these movements
be incurred as is possible. Even at the expense of covering areas that are of little
or no interest, it is clearly advantageous to identify a single (or several) long scan
line(s) and then continuously collect data. Spatial editing can be used to filter out
information that is not needed; along with spectral editing and pixel averaging this
will be used to reduce the data rate to a manageable level. Nonetheless, instrument
repointing will be necessary both to move from one region to another for different
observation applications, and to implement sampling strategies within a specific area
that is of interest.

Potential scan sequencing strategies for airborne imaging spectrometers (and other
sensors) are much broader, though. An aircraft is certainly not as severely restricted
in its movements as is a satellite. Extensive pointing isn’t needed since multiple views
of a location can be obtained by another overflight, although some off-nadir viewing
capability is necessary to compensate for atmospheric effects and to measure different
reflectance characteristics of specific phenomena. Future generations of space-based
sensors are likely to be more responsive, and hence the strategies that we consider

capture a wider range of sequencing options than will strictly be permitted for HIRIS.

3.2 Problem Formulation

Many projects are likely to require far more than a single 24 km by 30 m scan, thus

the following problem is posed:

Given a region that is to be imaged, what selection of scans and in what
sequence will minimize the amount of time necessary to cover the desired

area?
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Note that in its most general form, the region to be imaged for a particular project

need be neither contiguous nor convex. This problem really has two coupled parts:

1. Determining what scans produce the optimal partition or cover of the targeted

area.
2. Sequencing the scans.

The two parts are coupled in that the scan selection that ultimately minimizes
the processing time might not be a minimum cardinality partition or cover. In a
partition the scans would be non-overlapping yet still contain the desired area (they
would be both a packing and a covering). A certain amount of “dispersion” of the
scan points would result, even if the region partitioned were convex. In addition,
though, areas that are of little or no interest might be imaged. A cover of the region
of interest, however, would tend to minimize the dispersion of the scan points. Over-
lapping scans would result, and duplicate measurements could be either discarded or
used for comparison purposes. Moreover, the cover that produces the scan sequence
requiring the minimum amount of time to complete might intentionally incur greater
overlap than is necessary—because it requires less repointing of the sensor. This is an
important issue, as was noted in section 3.1.2, when we described current planning
for HIRIS. A single instantaneous image requires only 4.39 ms, whereas repointing
is at best as fast as 5°/sec, with roughly .5 seconds required for settling after the
sensor is moved. At the present platform altitude of 705 km, it will take approx-

imately 975 milliseconds to move the surface point at which the sensor is targeted
2xarctan( )

T ~ 975 ms). Thus any reduction in the repointing

24 km cross-track (
that occurs as a consequence of an increased number of scans is likely to result in
a favorable trade-off in terms of the overall time that is needed to complete the de-
sired mapping. So although the objective of minimizing the time it takes to image

an area cannot truly be optimized if the two constituent subproblems of selection

and sequencing are separated and addressed individually, the preponderant impact of
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sequencing in comparison to selection supports an approach in which they they are
considered separately for modeling tractability.

We have assumed that scans constituting either a cover or a partition of a region
are required; this need not be the case. If the region is very large yet measurements
characterizing it must be made within a single time window, then some sort of sam-
pling strategy appropriate for the particular scientific use will have to be employed.
While such sampling strategies are of interest in their own right, they are beyond the
scope of this thesis. Scan sequencing, though, would still remain an issue.

Even if the number of scans to be made were known, the set of locations at
which they could be placed is of infinite cardinality. From a practical perspective
there are several reasonable approaches that can be used to select both the number
and location of HIRIS scans, given the sensor’s 24 km wide by 30 meter deep scan
swath. A straightforward heuristic can produce a near-optimal cover of the target area
by simply overlaying the contiguous regions with 30 meter deep (in the along-track
direction) non-overlapping strips. Within each strip (in the cross-track direction), the
requisite number of 24 km wide scans can be placed; these can either overlap or be
non-overlapping. If the final scan were to cover area that was not of interest, then
thdse pixels could simply be discarded as noted earlier. This is explained in greater
detail when we discuss lower bounds for scan sequencing in section 3.6: Figure 3-11
displays the heuristic in a diagram.

If we assume that we already know the optimal scan cover, the remaining problem
of sequencing the scans has the flavor of a traveling salesman problem. The traveling
salesman problem, or TSP, is a classic combinatorial optimization problem that is
easy to state. If a salesman starts from his home and is to visit each city on a given
list exactly once and then return home, he will want to order the cities such that
the distance that he has to travel is minimized. It is assumed that for each pair i, j
of cities, the salesman knows the distance c;; between the cities. There is a large

and rich literature dealing with a wealth of applications and analysis approaches that
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are related to this problem; a book edited by Lawler, Lenstra, Rinnooy Kan, and
Shmoys [68] cites over 400 such references.

Scan sequencing is most similar to a combination of special cases of the TSP. A
standard special case is the symmetric TSP, which is restricted to only those instances
where ¢;; = c;; for all cities : and j—this is typically what people mean when they
refer to the ‘TSP.” Another way to restrict the general TSP is to require that the
distances between cities obey the triangle inequality: Cij + cjr > cip for all 4,7, k. An
important special case of the symmetric TSP with triangle inequality is the Euclidean
TSP. The cities are given as points with coordinates in the two-dimensional plane,
and their distances are computed according to the Euclidean metric. A final special
case of the TSP that is relevant here is the ‘Wandering Salesman’ problem. It is the
same as the TSP, except that the salesman can start his tour in any city, and does
not have to return to the first city at the end. The ordering of scans is ruch the same
in that there is no particular spot at which the imaging must begin or e¢nd.

In the case of scan sequencing, “distances” are symmetric if each movement of the
sensor between scans entails repointing. When scanning is done continuously along-
track, the sensor does not have to be repointed between instantaneous images, and no
sensor maneuvering or settling time is incurred. We assume pairwise sensor movement
times to be symmetric by considering strategies in which we constrain ourselves to
placing scan rectangles consisting of some predetermined number of consecutive along-
track scans. The true calculation of repointing times, even with this assumption, is
an involved computation that must account for the orbital dynamics of the satellite—
which will cause forward movements of the sensor scanning mirror to be faster than
bzckward movements, since the satellite is itself moving.

Sensor movement times are computed by a metric that that can be specified as a
function of the L, distance between scan points in Euclidean three-space. The time
it takes the sensor to travel between two scan locations is determined by the angle

between them as perceived by the sensor at its orbital position (the sensor slew rate
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was given in degrees per second in Table 3.2). If the locations of all three points are

known, then the angle can be computed using the law of cosines:
c® = a® + b — 2abcos b, (3.1)

where 0 is the angle opposite the side of length c¢. While the triangle itself is a two-
dimensional body, the lengths a, b, and ¢ are computed from the three dimensional
locations of each vertex, with the two scan points in question being located on the
surface of the earth.

Instead of calculating the precise angle subtended by two scan points, we instead
use the Euclidean distance, scaled appropriately. This follows from an approximation:
we assume that the Euclidean distance between two scan points is comparable to the
great circle distance between them on the surface of a sphere whose radius is the
satellite’s orbital altitude. The great ¢ircle distance between two points on a sphere
is the geodesic distance that comes from traversing the surface between them, and
equals r x 8, where 7 is the radius of the sphere and 4 is the angle subtended by
the two points in question. This results in the following approximation for the angle

between scans:
d( 81,382 )

0 ~ d(s;,3;) => 0 = .
where s, and s, are two scan points, d(s1,s2) is the L, distance between them, and r
and @ are defined as before. Since computing the sensor movement time entails only
including another scale factor (the sensor slew rate), the Euclidean metric provides
an adequate proxy for the transit time.

In reality, the scan points are on the surface of what is essentially a planar region—
the surface of a large sphere (the earth). Since the scan points for a regional imaging
project are relatively close to one another, the error introduced by this approximation

is minor. The error due to further assuming that the points are on the surface of a

sphere centered at the satellite will be greater, but still relatively small, again because
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we are assuming that the scan points are clustered together in an area, rather than
distributed over the surface of the sphere. Given these considerations, the use of
the scaled L, distance is a reasonable approximation. Bounds on the size of the
difference that these approximations introduce as a function of the radius of the
sphere at the center of which we assume the satellite is located are developed in
section 3.4: Computational Complezity.

For more general imaging projects in which the sensor may move up to its design
limits (see Table 3.2), this approximation cannot be used. It is well known that there
exists no general isometric (distance-preserving) transformation from a sphere to the
plane, although there are isometric transformations from the sphere to the plane from
a single point. This eliminates the possibility of a transformation so that Euclidean
geometry can be used to measure all spherical distances. Hence using the scaled
Euclidean metric instead of an exact computation of the subtended angle is indeed
an approximation, however, over the relatively small regions that are being considered
the potential error is small. In particular, we will make use of this approximation in
conducting computa.ional experiments in section 3.8: Computational Testing.

The performance of the algorithms that we present is independent of the metric,
so long as the one used is both symmetric and obeys the triangle inequality. The
physical mechanics of moving the sensor may actually result in either an L, or L,
metric equivalent, rather than L,. And in reality, the calculations aren’t quite this
simple since, as has been noted, the satellite continues to move while the sensor is

being repointed and the computations must address orbital dynamics.

3.3 Literature Survey

3.3.1 Scan Selection

The problem of scan selection is one of a larger class of problems that deals with par-

titioning or covering a geometric figure with a minimum number of more fundamental
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geometric figures. Applications arise in VLSI artwork data, image processing, and
architectural databases. Triangles, convex polygons, and rectangles have been chosen
to be the fundamental figures. In most cases these problems have been shown to be
N'P-complete, although there are some polynomial time algorithms for specific cases.
One such problem is that of finding a minimum size collection of rectangles, which
are allowed to overlap, whose union is a polygon. An application of this problem is
to efficiently create masks for photolithography, using a pattern generator which is
constrained to print rectangles (22]. An algorithm for constructing a minimum rect-
angle cover when the region in question is vertically convex is presented in (46]. It is
quadratic in the number of vertices of the polygon.

Ohtsuki [86] gives an O(n>/2) algorithm for partitioning a rectilinear polygonal
region (which may contain holes) into a minimum number of rectangles, where n is
the number of vertices of the polygon. Asano and Asano [1] consider the problem
of partitioning a polygonal region into a minimum number of trapezoids with two
horizontal sides, and include triangles as degenerate trapezoids. In both cases the
motivation is again VLSI photolithography. In such systems the circuit layout is
stored as a set of polygonal regions per layer. These regions are bounded by straight
lines that may have any slope. Processing time is proportional to the number of
regions in the cover/partition, and thus a minimum number of figures is sought.

In comparison to the work just described, the problem of scan selection that we
consider is highly constrained: the cover/partition of the polygonal region being im-
aged is to be constructed of uniformly shaped rectangles, not ones of variable size.
The heuristic already described provides a minimum cardinality cover for rectangles
that are the same shape as the focal plane image of the HIRIS sensor. An optimal
cover of the region to be scanned is less obvious when we consider the linkage between
selection and sequencing, but, as has been noted, scan selection is relatively unimpor-
tant in the overall context of the sensor scheduling process. For our purposes, we can

effectively use even simpler algorithms to determine a cover or partition of a target
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region than are provided by the polynomial approaches described in the work above.

3.3.2 The Traveling Salesman Problem

Scan sequencing has the character of a traveling salesman problem, for which there
is a vast literature. At the present time TSP’s with several hundreds of nodes can
be solved routinely to optimality using methods that exploit the facial structure of
the feasible polytope and branch and bound techniques. Currently the largest prob-
lem solved to optimality has 2392 cities and was done using a branch and cut algo-
rithm [88]. Because the TSP is N'P-complete, considerable effort has been devoted to
approximation algorithms that produce high quality, if not optimal, solutions. There
is a wide spectrum of such approaches that include insertion heuristics [95], local
search exchanges [72], simulated annealing [21], [54], threshold accepting [37], tabu
search [52], neural networks [47], simulated tunneling [98], and genetic methods (81].
A book edited by Lawler, Lenstra, Rinooy Kan, and Sh...oys (68] is devoted to the
TSP, and it provides many references. Its first chapter gives the history of the prob-
lem and shows its role in several disciplines. A more recent survey of TSP algorithms
that use local optimization is provided by Johnson [64].

Instead of attempting to review the entire body of literature for the TSP, we
selectively identify references that deal with specific algorithmic approaches that we
either use or adapt for our purposes in analyzing scan sequencing. Since our final
goal in scan sequencing is a shortest Hamiltonian path, any TSP heuristic that we
use must be adapted appropriately. Our work is similar to the intersection of a
number of special cases of the TSP, the most salient of which is the geometric, or
Euclides ., TSP. Heuristics for geometric traveling salesman problems are discussed in
Bentley [16] and Reinelt [92]. Geometric versions of the TSP are still N'P-hard [48).

Two of the heuristics that we use are tour building heuristics. The nearest neigh-
bor TSP heuristic starts with a partial tour consisting of a single, arbitrarily chosen

city. It then successively visits the closest unvisited point, and it ultimately adds
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an arc from the last city to the first city, completing the tour. This is an approach
that has long been employed in the analysis of the TSP and that is not attributed
to a specific researcher; Flood [44] refers to this approach as the “next closest city
method.” Analysis of this heuristic [95] has shown that the length of a geometric
nearest neighbor tour can never be more than ({log n] +1)/2 times the length of the
shortest tour. Another approach that grows a tour is the multiple fragment heuristic,
in which edges of the underlying graph are successively selected so long as they do
not create cycles or nodes of degree three. Steiglitz and Weiner [106] consider an
approach similar to this, while Bentley and Saxe [15] analyze its performance. Its
worst case length for n peints in the unit square is O( /).

The Minimum Spanning Tree (MST) heuristic first finds the minimum spanning
tree of the cities, and then traverses the nodes of the tree in a depth-first, inorder
traversal to produce a tour. This tour can be no more than twice the length of the
optimal tour, since the MST itself is a lower bound and the MST tour is at most two
times the length of the MST. This heuristic is well known; an elaborate version was
published in [95]. Christofides’ heuristic [25] improves upon the minimum spanning
tree by computing a matching of all vertices that have odd degree, and then finding
an Eulerian tour through the graph that combines the matched edges with those from
the MST.

The first local optimization heuristic that we employ is the straightforward 2-Opt
heuristic, which reverses a subsequence of the tour. A 2-Opt swap is referred to as an
“inversion” in [31]; in [44] it is described as removing intersections. A 2-Opt algorithm
can be implemented in many ways; we follow the approach outlined in [16]. More
powerful than 2-Opt is what is referred to as Two-and-a-Half-Opt swap, or 2H-Opt.
Bellmore and Nemhauser [12] describe this heuristic by viewing a tour as a sequence
.of points, and 2H-opt moves a single point from one place in the sequence to another.
These heuristics are described in greater detail in section 3.7.4: Local Optimization,

and diagrams depicting how they work are shown in Figures 3-15 and 3-16.
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One of the best lower bounds for the traveling salesman problem is provided by
what is called the 1-tree problem with Lagrangian objective function. This relaxation
has been used successfully by a number of researchers [59], [24], [58], [105], [111]. For
the complete undirected graph G = (N, A), the relaxation consists of finding an n
arc connected spanning subgraph of G that minimizes the total distance traveled.
Such a subgraph consists of a spanning tree plus one more edge. This can be further
restricted by specifving a node, say 1, that is to be of degree 2 and that is to be in
the unique cycle that the n arc subgraph contains. It is easily seen that this is a
relaxation of the original TSP. Mathematically, the constraints defining a 1-tree can

be stated as [68, p. 371]:

YN 2+ Y Y =z > 1L, VSCN'=N-{1},S#£¢ (3.2)
€S jEN'-S iEN'-S JES, j>1
> YTy = n (3.3)
ieEN j>i
DTy = 2 (3.4)
JEN
z;; € {0,1}, (3.5)

where z;; is 1 if an arc from node ¢ to node j is included, and 0 otherwise. Equation
(3.3) is a relaxed subtour breaking constraint that insures that the tree is connected;
(3.4) requires n arcs to be chosen; and (3.5) makes node 1 the arbitrarily seiected
vertex.

Finding the minimum length 1-tree defined by (3.3)-(3.5) decomposes into first
finding the MST defined over the cities—{1}, and then finding the two smallest cost
arcs among those incident to node 1. There are many 1-trees contained in the complete
undirected graph induced by the cities of a TSP, and computational experience with
randomly generated symmetric problems found the value of an optimal 1-tree to be

only about two thirds that of the optimal solution. The relaxation is much stronger,
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though, if the constraint

sz,-+z:cgj=2, Vie N (3.6)

J<i >t
from the integer programming formulation of the TSP is taken into the objective
function in a Lagrangian dual; equation (3.4) in the 1-tre~ is the sum of 2!l equations
(3.6) divided by 2. The Lagrangian is then maximized as a function of the multipliers.
Computational experience with this approach has produced lower bounds that are
greater than 99% of the optimal solution [26], [111]. The Lagrangian dual problem is
typically solved by subgradient optimnization, a general description of which is in [60]
or [101].

3.4 Computational Complexity

Several results on the complexity of problems related to the ones considered here
have been noted. In the area of scan selection, the general problem of partitioning a
geometric figure into a minimum number of more fundamental ones has been shown
to be N'P-complete in many cases [63], [73]. On the other hand, there are polynomial-
time algorithms for partitioning specific figures {e.g., polygonal regions) into other
forms [22], [46], even if the figures contain holes 1], [86]. The complexity of the
specific covering/partitioning done here, however, isn’t really an issue since relatively
simple (and fast) heuristics are capable of providing very good covers in the context
of scan selection and sequencing. As a result, we focus on the complexity of scan
sequencing.

If we assume that we already know the optimal scan cover, or at least have iden-
tified one that is acceptable, then the remaining problem of sequencing the scans is
similar to a geometric traveling salesman problem. The geometric traveling salesman
problem [48] is derived from the original traveling salesman problem, both of which

we will state [49, p. 211-212]:
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TRAVELING SALESMAN PROBLEM (TSP):
Instance: Set C of m cities, distance d(c;,c;) € Z* for each pair of cities ¢;,¢; € C,
positive integer B.

Question: Is there a tour of C having length B or less, such that

m-—1
(Z d(cn(i))cr(i+1))) + d(cn(m)’cw(l)) < B?

i=1

GEOMETRIC TRAVELING SALESMAN PROBLEM (GTSP):
Instance: Set P C Z x Z of points in the plane, positive integer B.
Question: Is there a tour of length B or less for the TRAVELING SALESMAN in-

stance with C' = P and d((z1,y1),(z2,¥2)) equal to the discretized Euclidean distance
[((z1 = 22)* + (31 — 32)%)"/%] ?

A tour is a permutation < Cr(1)s Cn(2)y - - - y C(m) > Of the cities in the set C'. The
transformation in the A'P-completeness proof of the GTSP is from EXAcT COVER
By 3-SETs (X3C) [48]. Note that this problem is strongly NP-complete, and re-
mains strongly NP-complete if the distance measure is replaced by the L; “Manhat-
tan” metric or the Lo, metric. If the non-discretized Euclidean metric is used, the
problem remains strongly A'P-hard, but is not known to be in N'P (49, p. 212].

It can be shown that the optimal scan seciuencing problem, which we refer to
as OSSP, is N'P-complete by transformation from the geometric traveling salesman
problem. A “scan” is a point on the surface of the earth, which for all practical
purposes is a planar region. In the A'P-completeness proof we show how points in
an instance of the GTSP (which is specified for the planar lattice) transform to scan
points on the surface of a sphere whose radius is the orbital altitude of the satellite.
Assuming that the scan points are on such a sphere allows us to employ a scaled

discretized Euclidean distance for the scan time metric:

of ~ olden 0l (3.7)

r
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where a is the sensor slew rate that converts the angle # subtended by the scan points
to an actual time, and r is the satellite’s orbital altitude. In the proof, the conditions
such that the Euclidean metric in the GTSP can be polynomially transformed to this
approximation are established. The cities in the GTSP also transform to scan points
on the surface of the earth, providing the link between points on the surface of the
satellite centered sphere and points actually on the surface of the earth. As before, a
sequence of scans is a path in the induced complete graph.

We state the recognition version of OSSP as follows:

OPTIMAL SCAN SEQUENCING PROBLEM (OSSP):

Instance: Set @ of n scans on the surface of the earth, sensor slew rate a, and
positive integer T.

Question: Is there a sequence of the scans in () that can be performed in time less

than or equal to T, such that

n-1
Z t(‘sﬂ(i)’sﬂ(i+1)) < T )
i=1
where £(s;,3;) = af is the pairwise transit time between scan points s; and s;?

As above, a is the sensor slew rate, # is the angle subtended by s; and s;, and

< 7(1),...,m(n) > is a permutation of the scan points.

Theorem 3.1 The Optimal Scan Sequencing Problem is N'P-complete.

PROOF: Given an instance of OSSP, it can easily be determined if a specified sequence
can be completed in time less than or equal to T. Problem input includes a set @ of
n scans, which are specified by giving three-dimensional coordinates on the surface of
the earth for each point, as well as the sensor slew rate a. The angle # subtended by
each pair can be calculated by using the law of cosines (equation (3.1)), and then the

transit time between them computed by multiplying § by a. Determining the to‘al
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scan sequencing time entails adding the transit times between successive locations in
the sequence, which is then compared to the given integer T. Thus OSSP has the
succinct certificate property and is in N'P.

The transformation to OSSP is from the GTSP, using the discretized Euclidean
metric. First, using an instance of the the GTSP, we show how to construct an
instance of scan sequencing in which the scan points are on the surface of a sphere
whose radius is the orbital altitude of a satellite. Conditions are established for
the construction so that even though the points are on the surface of a sphere, the
distances between them will discretize to be the same as those on the planar lattice.
The observing satellite is taken to be at the center of the sphere, and conditions on
the construction so that the approximation of equation (3.7) can be transformed to
are found.

We start with an instance of the GTSP, which consists of a set P C Z x Z of
points in the plane, and a positive integer B. Above the plane we construct a sphere
of radius = that is tangent to the plane at the origin (0,0). The scan points for which
we consider a sequencing will be the vertical projection of the points in P onto the
sphere. By “vertical projection” we mean the point at which a line orthogonal to the
plane and passing through a point p € P intersects the sphere. Figure 3-7 displays
an example and several other elements of the construction.

The length of the pairwise distances between points on the sphere will be greater
than or equal to the corresponding distance between the original points in the GTSP.
The original distances in the plane are the projection of the Euclidean distances
between points on the sphere onto the plane: d,ppere X cosy = dplane. In Figure 3-7

phere? d;,‘:,’;'e, and 7 are examples of d,phere, dpiane, and 7. If the radius r of the
sphere at which the satellite is centered is sufficiently large, then the length d, here

will discretize, or round up, to [dpiane]. For this to hold, it is required that:

max

d
az ] 5 plane '
2xrplane]—2x<cos‘y)1 (38)
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Figure 3-7: Construction for complexity proof.
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where [d7;2%. ] is the maximum distance from any point in the GTSP to the origin
(and thus twice that is an upper bound on the greatest pairwise distance), and v
is the largest possible “inflating” angle. 7 is shown in Figure 3-7; the angle can be
no greater than that subtended by arcs from the origin to the points producing the

distances d7;o7, and dji% .. Equation 3.8 produces the following condition for v:

v < arccos (I_ f{;:e]) (3.9)
plane

From planar geometry it follows that

[dgiare ]
" s sin~ (3.10)

will be a radius sufficiently large such that the two L, distances discretize to the same
value.

To approximate the discretized Euclidean distance between scan points with the
great circle distance, a similar such bourd and ensuing condition on 4 must be estab-
lished: the great circle distance can be no greater than the the discretized L, distance

on the sphere.

2 x fdl';'iid)

2x[4ph~re]>rx(47 =>7<( 4r

(3.11)

Note that Figure 3-7 shows the angle 2y and L, chord d733%_.; for the bound we must

sphere )

use 47 as the greatest possible angle, and 2 x [d}33% ] as its subtending chord. Using

. dnar " . .
equation (3.10) to set r = %—ﬁi‘;—f’], the second condition that 4 must satisfy is

max

sin Y sphere
> 3.12
¥ [dpiz..] (3.12)

Thus if we select a v satisfying equations (3.9) and (3.12), then r as computed in

(3.10) will be sufficiently large so that the great circle distance between scan points
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discretizes to the planar L, distance. The transit time between scan points becomes

a I-dp!ane-}

T

ab = (3.13)

We now make a simple modification to the instance of optimal scan sequencing
that has been constructed from the instance of the GTSP. It insures that if an optimal
path producing algorithm is applied to the modified construction, it provides a path
whose length is equal to the optimal tour length in the original instance of GTSP.
The change consists of arbitrarily selecting a node, and “splitting” it into two nodes.
The distances from these two points to all other scan points remain as they were for
the original point; the distance between them is taken to be greater than max; ;c;;,
say V. An optimal path will not contain the arc between the split nodes, since its
length ¥ is greater than all others.

Now let T = g. [t follows that there is an optimal tour among the points in the
set P of length less than or equal to B if and only if there is a scan sequence for the

set @@ that can be done in time less than or equal to 7. O

In practice, particularly when the exact metric for transit time is being em-
ployed, the discrete Euclidean distance will not be used. It is used here for the
NP-completeness proof, for otherwise interpoint distances could be irrational num-
bers and the distance matrix might require infinite precision. In addition, there is
the problem of evaluating path lengths that are the sums of square roots. There is no
known method to predict the number of significant digits needed in order to compare
-a sum of square roots to an integer. Thus it is not known if the version of OSSP with

a non-discretized Euclidean metric is in N P.
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3.5 A Special Case of Scan Sequencing

As has already been noted, the time-savings that can be realized from intelligently
selecting and sequencing scans has the potential to be quite large. Planning figures
for HIRIS sernsor slew rates (max) are 5°/sec along-track and 2°/sec cross-track, with
a .5 sec after slew settling time. Since the sensor can essentially image continuously
for scans that are contiguous and aligned in the along-track direction (along-track
aligned scans lie on a line parallel to the satellite ground-track), a selection of scans
that maximizes along-track alignment is desirable in comparison to a selection that
incurs a greater amount of between scan repointing, especially in the cross-track
direction. This can remain true even if along-track alignment requires more scans
than does an alternative selection with more repointing. It follows that a sequence
that generally minimizes “back-and-forth” sensor movement as opposed to “up-and-
down” movement is likely to be considerably better. This observation leads to a
special case of scan sequencing, for which the optimal sequence can be determined
polynomially. Given :he previous result on the complexity of OSSP, this can only
be true if there are restrictions on the selection and placement of scans. Specifically,
they must be non-overlapping, aligned in the along-track direction, and constitute a
polygon-convex! region that is bounded. It is assumed that the sensor is capable of

scanning along-track in either direction.

Theorem 3.2 The optimal scan sequencing problem for a bounded polygon-convez
region in which scans are constrained to be along-track aligned and non-overlapping

can be solved as a weighted bipartite matching problem.

PROOF: The bipartite matching that we solve is on the graph which is defined as
follows. The nodes correspond to the top and bottommost scan points within a

column of vertically aligned scans. Each node is adjacent (connected by an arc) to the

LA region is vertically (horizontally) polygon-convez if every column (row) of scan pixels in the
polygon is connected.
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analogously defined node in the left and right contiguous scan columns (see Figure 3-
8). The left and right most (in a cross-track sense) scan columns are represented by
a single node which is adjacent t. both nodes in the adjoining column. The weights
attached to each arc are the time that it would take to transit between the two end

nodes. It is easily seen that this graph is two-colorable.

2 4 6 8

Figure 3-8: Special case of scan sequencing that reduces to bipartite matching.

Jf the along-track distance between paired nodes is appropriately bounded, then it
will always be the case that for vertically aligned, non-overlapping scans it is optimal
to transit the entire column without leaving it, i.e., departing only from the top or

"bottommost scan points and going to an analogous scan point in one of the two
adjacent columns. Suppose, to the contrary, that it were optimal to leave a vertical

scan column prior to one of the endpoints. At a minimum, it would be necessary to
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return to the scan column departed, and so doing would incur the additional distance
of the cross-track spacing between (non-overlapping) vertical scan lines.

Figure 3-9 shows the construction for the bound. The time needed to transit
either a or b must be less than that needed to transit ¢, for otherwise, a strategy
of leaving the middle of the long scan line to perform the scan on the left would be

quicker than the strategy produced by the matching described above. The difference

Y

Figure 3-9: Relevant dimensions used in computing bounds on region size for the
optimal sequencing of non-overlapping, along-track aligned, polygon-convex scans.

in along-track versus cross-track distances for a single instantaneous scan (a factor of
8§00 for HIRIS) allows for a large bound on the along-track distance between paired
nodes. The bound serves to insure that the cross-track distance (¢ in Figure 3-9) that
would be covered in moving back to a long scan column after having performed scans
in an adjacent track is a greater distance than is any along-track sensor movement (a
or b in Figure 3-9) over unscanned area that is incurred after departing a vertical

scan line endpoint. If the cross- and along-track scan dimensions are o and 3, and
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the cross- and along-track sensor slew rates are 4 and 6, then the bound is

5)- (@)=

Moreover, a shorter path cannot result from jumping to a non-adjacent column
in a polygon-convex region, because it would then be necessary to backtrack so as to

scan the jumped column. O

The optimal scan sequencing strategy for a polygon-convex coverage region that
results from solving the bipartite matching is essentially to successively move up-
over-and-down. Note that this is fundamentally the same strategy that NASA has
employed in the simulations that they have done to date for HIRIS, although HIRIS
cannot scan along-track in both directions. While long, continuous scan lines may not
be ideal for many applications, the time saved by avoiding repositioning th - sensor
leads to consideration of scan strategies in which some minimum, predetermined
number of instantaneous images must be made before contemplating any repointing
that entails lateral movement to another location.

‘The bound on the distances ¢ and b in Figure 3-9 such that the strategy of
Theorem 3.2 will be optimal for HIRIS is 60 km:

24km  5°/sec

0w X 2%0/5& x 30 m = 6C km

which represents 2000 along-track scans. Note that this bound means that both a and
b cannot be greater than 60 km, and thus the length of the entire scan column can-
not exceed 120 km. The conditions of polygon-convexity and vertical alignment are
necessary, as can be demonstrated by simple counterexamples for which the strategy
of Theorem 3.2 is not optimal. The necessity of solving a bipartite matching rather
than simply comparing the lengths of the two alternating sequences in which one

successively goes up-over-down can be seen in the example of Figure 3-10.
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4

Figure 3-10: Example that shows need for bipartite matching.
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As an alternative to bipartite matching, the scan sequence can be computed by

dynamic programming. A backward recursion for computing the optimal sequence is:

vi(s.-) = I;nilll {d(s,-, 8,'_1) + v,-_l(s,-_l)} . (314)
where
¢ = number of stages remaining, t = 1,...,n
3; = state of the system at stagen, 1 =1,...,n

d(-,) = Ly, Ly, or Ly distance metric
vi(8;) = optimal value of all subsequent decisions, given that we are in state

s; with ¢ stages to go,2=1,...,n.

Stage n represents the number of vertical columns remaining to be scanned; in each
stage there are two states s;, corresponding to the top or bottommost scans in that
column. Whether we move from left-to-right or right-to-left does not matter. The
overall computation will run in O(n) time, since there are a constant number of
computations and states for each stage. This is faster than solving the bipartite
matching, for which an O(n%) algorithm in [61] is the best known time bound. In

both cases n is the number of nodes.

. 3.6 Lower Bounds for Scan Sequencing

Our objective here is as follows: Given a region for which we do not know the best
selection of scans, bound the time it will take to image the region. As has been
discussed previously, this can be separated into consideration first of bounds for the
number of scan points, and then of the time needed to move the sensor between
them. Although our analysis and algorithms are stated using the specific technical

parameters of HIRIS, they are easily generalized to the characteristics of other sensors.
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3.6.1 Bounds for the Number of Scan Points

A bound on the minimum number of instantaneous scans necessary to cover a region

~ can be provided by the following construction.

Point Bound 1 (PB-1):

1. Let the y-axis coincide with the along-track direction of the sensor. Beginning
with the scan point having the minimum y-coordinate, create 30 meter deep
horizontal strips until the point with the maximum y-coordinate is contained
within such a strip. The minimum and maximum y-coordinates are taken over
all scan points. The strip width of the nth strip will be taken to be the length

of the line forming its upper boundary.
2. Within each strip, place [%] scan points.

Figure 3-11 is an example.

The sum of the points needed for each strip will be a lower bound on the number
of scans needed to cover the entire region. This is because the number of points that
we compute for each strip need only be capable of covering the upper boundary. If we
redefine the strip width we can get an upper bound on the number of points needed.
Instead of using the length of the upper boundary, we compute the strip width as
the distance between the two points within a given strip that have the minimum
and maximum z-coordinates. Note that these two points need not have the same
y-coordinate, as is the case for the previous definition of strip width. This definition
of strip width insures that we cover any surface features that extend beyond the
intersection points of successive boundary lines with the polygon exterior. Figure 3-
11 shows the distinction between the two definitions of strip width.

While the difference between strip width definitions may not seem important
when we are layering the scan region with 30 meter strips, it becomes significant if we

consider a strategy in which we use layers that are longer in the along-track direction.
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Figure 3-11: Polygon with horizontal layers.
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Scan rectangles consisting of from 200 to 3200 consecutive instantaneous images will
range in along-track length from 6 km to 96 km. Over these distances, it becomes
much more reasonable to expect that terrain features within a given strip may extend
beyond the arbitrarily defined upper boundary.

The positions of the scan points within a strip can be determined by a simple

placement algorithm, such as the following.

Point Placement 1 (PP-1):
1. If the strip is less than 24 km, place the single point in the middle of the strip.

2. For strips wider than 24 km, place two outer points 12 km inside each edge of
the polygon, referenced from the intersection of the upper boundary line for the

strip with the exterior boundary of the polygon.

3. If more than two scan points are needed, the first two are positioned as in

step (2) and additional points are equally spaced between them.

3.6.2 Bounds for the Scan Sequencing Time

With a point placement heuristic, we can now bound the time necessary to scan the

region:

Scan Sequencing Bound 1 (SSB-1): Compute a minimum spanning tree for the

points computed by PB-1 and placed by PP-1.

The weight of a minimum spanning tree {(MST) for the complete graph induced
by the scan points provides a lower bound on the time necessary to complete OSSP,
-with weights defined to be transit times. This is because an MST, which is an acyclic,
minimum weight collection of n — 1 arcs that connect all n nodes, need not visit the

scan points sequentially as does an OSSP path. Thus the shortest OSSP path is at
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least as long as a minimum spanning tree. This bound is valid independent of whether
the region is polygon-convex, connected, or the scans are vertically aligned. It can
be strengthened considerably by placing the MST in a Lagrangian objective function

and using subgradient optimization to solve the dual.

Tree Relaxation with Lagrangian Objective Function. This algorithm uses a
“Lagrangian dual relaxation. It takes as input the induced graph G = (N, A) where
node 1 is an additional, fictitious node added to the original set of scan points and the
arc costs ¢;; are defined to be transit times. The distance from node 1 to all others is
zero: ¢;; = 0. A= (A =0,Xs,...,An)) € RIN! is the set of Lagrange multipliers; ),

is set to zero. The Lagrangian objectiva function is

z(\) = zggf}u {(i'j;“(c,-j + X+ )\j):c,-,-} - 2{621\1 iy (3.15)
where z is a 1-tree as defined in equations (3.3)—(3.5) and the fictitious node is the
one constrained to be of degree 2. The constraint that is relaxed and placed in the
Lagrangian objective function is equation (3.6); it requires that all nodes be of degree
2 in a tour. We observe that a tour through the set of scan points with a fictitious
node added is the same as a shortcst path. From equation (3.15) and the fact that
the set of 1-trees contains all tours, it is easy to see that for any A, z(\) < v(OSSP).
The Lagrangian dual problem is

L)) = renin z(A).

For given ), we find a minimum weight spanning tree with respect to the weights
cij + A + Aj, and then add to the weight of the MST the two smallest Lagrange
multipliers (adding the two smallest );’s corresponds to including the two shortest
arcs from node 1 to the MST in a 1-tree, since ¢;; = 0 for all j and A, = 0). Tle
lower bound is provided by then subtracting (23 ;e Ai) from the tree weight. If
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the tree computed is a path (all nodes are of degree 2, including two connected to
the fictitious node), then the solution to the Lagrangian is feasible for OSSP. Since
z(2) < v(OSSP), such a solution is the optimal solution to OSSP. If the tree is not a
path, however, subgradient optimization can be used to iterate on the A’s. Intuitively,
we want to decrease ); when the degree of node ¢ in the tree is equal to 1 and to
increase ); when the degree of node i is greater than 2. For a given ), the vector
m(A) = (degree of node ¢ in a minimum weight tree—2) is a subgradient to the
objective function of the Lagrangian dual (84|, and we only need to determine a step
size to solve the dual by subgradient optimization. If the iterations are ended prior
to producing an optimal solution, the algorithm could be continued using branch and
bound to ultimately reach optimality.

A summary of the tree relaxation with Lagrangian objective function for a set of

scan points N is as follows, where the subscript LB stands for “Lower Bound”:

Tree Relaxation (TR):

1. Initialize. k «— 0; @ — 2.0; X\; — 0 for all : € N; zf5 = 0. The dummy node
will be taken to be node 1, thus ¢;; = 0 for all ¢ and A\¥ = 0 for all k.

2. Find a minimum spanning tree using c¢;; -+ A; + A; as the arc costs.

3. Compute the Lagrangian lower bound, z(A):

Z(Ak) «— min { Z (C,'J' + Af + /\Lf)z,-_,-} -2 Z Ai (316)

A
=€BlAl { :T)ea ieN

where z is also a 1-tree. If 2(\*) > zpp, then zpp «— z(A*). zpp is the greatest

Lagrangian lower bound from any iteration.

@

4. If zpp has not improved for 20 iterations, then a « . If a < .005, stop.

5. Compute the subgradients, an n-vector with components (d* — 2) where ¢ is
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an element of the node set N and d* is the degree of node 7 in the minimum
spanning l-tree at iteration k. If Y;cn(d¥ — 2)? = 0 then stop, because the

minimum spanning 1-tree just constructed is the optimal solution.

6. Set
AL Ak L tk(d* ~2),ie N (3.17)

where
a(zup — zLB)

th — .
Tien(df —2)2

(3.18)

zyp is an upper bound from a feasible solution to OSSP, which can be provided

by any of a variety of heuristics described in section 3.7.

7. k — k + 1 and return to step 2.

Conceptually we deal with I-trees in this algorithm; in our actual implementation,
however, we deal with frees. Bookkeeping for the Lagrange multipliers requires com-
putational details that are most easily explained using a 1-tree that includes a ficti-
tious node.

The tree relaxation provides us with a second scan sequencing bound:

Scan Sequencing Bound 2 (SSB-2): Use TR for the scan points computed by
PB-1 and placed by PP-1.

3.6.3 Time Bounds for Continuous Scanning

Sensor transit times could reasonably foilow either an L,, Lz, or Lo, metric?. If we

assume a 2°/sec cross-track slew rate for moving the sensor, it will take approximately

2 x arctan(
20 /sec

975 ms to move 24 km laterally ( ) ~ 975 ms). The along-track slew-rate

3The L, and Lo, mectrics in Euclidean 2-space are equivalent under a 45° rotation for the purposes
of an optimization problem; the difference between them is a constant that can be neglected. Their
iso-norms are identical except for the 45° rotation noted.
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is assumed to be 5°/sec; another .5 seconds are needed for settling after movement in
eitner direction. This leads us to consider bounds for classes of problems in which we
employ the strategy referred to earlier: constrain ourselves to placing scan rectangles
consisting of some predetermined number of consecutive along-track scans. Consec-
utive along-track scans avoid the time needed to move the sensor to a new location,
and, in particular, avoid the settling time after such a movement. By considering
bounds for problems in which we first constrain ourselves to perform some minimum
number of along-track scans, we can parametrically evaluate the advantage of such
restrictions by comparing the total scan time required for different such strategies.
Otherwise, the only way to guarantee a lower bound on the amount of time needed to
scan the entire target area is to use a scan peint placement algorithm that optimizes
the degree of along-track scan point alignment. Mazimizing the amount of along-track
alignment is tantamount to minimizing the number of scan tracks needed, where a
scan track is a line on which scan points lie that is parallel to the satellite’s ground
track. Note that there is an obvious trade-off: although along-track scan alignment
may require more scans overall to cover the target area, the time savings due to
avoiding sensor movement may dwarf the time cost due to the additional scans. Any
data collected from areas that are not of interest can simply be discarded—spatial
data-editing. An example of a point placement algorithm that forces maximal scan
alignment is as follows, where LB is the lower bound on the number of sczn points

computed in PB-1.

Point Placement 2 (PP-2):

1. Divide the region to be scanned into 24 km wide columns, starting from the
point having the most negative z-coordinate. Let C be the number of columns

produced.

2. Within each column ¢, compute the y-range, l;, by differencing the y-coordinates

of the along-track extreme points. Then [ﬁ“;] will equal the number of along-
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track scans in that particular column.
3. Continue to fill the columns in this fashion until LB is reached.

Constructed in this fashion, the scans are vertically aligned. The scan time 'ower

bound for this sequence can be determined directly:

c
Scan Time Bound = (4.39 ms X Zl;) +(C - 1) x (975 ms + .5 sec).

=1

4.39 s is the amount of time it takes to perform a single instantaneous HIRIS scan,

and 975 ms is the time necessary to move the sensor laterally 24 km.

3.6.4 Bounds for Regions with Holes

PB-1 is appropriate only for an area that is contiguous and contains no windows,
or “polygon holes.” More general regions, which we assume are bounded by straight
lines that can have any slope, may contain such holes. Figure 3-12 is an example of
the polygon in Figure 3-11 with a polygon hole added.

First we will consider a simple extension of SSB-1 for a contiguous region with
holes. The primary difference is that we compute 2 new point bound. In a region
with holes, step 1 of PB-1 will create strip boundary lines that cross the boundaries
of interior holes, as well as the exterior boundaries of the polygon. As a result, we

must modify step 2 in which we determine the number of scan points.

Point Bound 2 (PB-2):

1. Let the y-axis coincide with the along-track direction of the sensor or satel-
lite. Beginning with the scan point having the minimum y-coordinate, create
30 m deep horizontal strips until the point with the maximum y-coordinate is
contained within such a strip. The minimum and maximum y-coordinates are

taken over all scan points. This is the same as step 1 of PB-1.
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-----------------------------------------------------------

Polygon Hole \rrrrssssesesss-meses

Strip Segments

Figure 3-12: Polygon with hole.
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2. Place [%"—iﬂ] scan points in each segment within a given strip.

A segment is a chord of the upper strip boundary line that runs between any two
polygon boundaries (exterior or holes); its width is the length of that chord. Figure 3-
12 gives an example of strip segments. The point placement algorithm must also be

modified.

Point Placement 2 (PP-2): Same as PP-1, except we substitute “segment” for
“strip.”

Scan Sequencing Bounds 3 & 4: Same as SSB-1 and SSB-2, but use PB-2 and
PP-2 as inputs.

An alternative approach to establishing a lower bound on the time necessary to
scan a region containing holes is to first partition it into more fundamental figures.
Such partitioning problems have been considered in the context of VLSI lithography
for which the simpler figures are trapezoids [1], rectangles [22], [86], and squares.
Typically, however, the figures used to cover the target area are allowed to be of
varying sizes, such as different shaped trapezoids. Our interest is in covering a region
with uniformly sized rectangles (e.g., 24 km x30 m).

A straightforward partition method is as follows:

For each vertez of a polygonal region, draw as many vertical chords as

possible within the region to the first edge encountered.

Figure 3-13 shows such a partition of a polygon with a hole.

This is not only very simple, but can be shown ([1], for a horizontal partition
method) to be an optimal trapezoidal partition for a polygonal region P where no
two edges are collinear and no two vertices have the same z-coordinate. The number

of trapezoids is given by :

n(P) + w(P) —v(P) -1
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AN 1

Figure 3-13: Partitioned polygon.

where n(P), w(P), and v(P), are the number of vertices, windows, and vertical edges,
respectively, of polygon P.

A lower bound on the amount of time necessary to scan each of the regions pro-
duced by this partition could then be computed by SSB-1. Another modification to
PB-1 is needed, though: we replace [ﬁ’—;%%] by I_L';P;“IST-M‘J. The points selected
will cover a strip only if its width is an integral multiple of 24 km; if a strip is less
than 24 km wide, then lit%%!kj%‘-J = 0 and the strip will be unscanned. This is done
because the positions of the vertices of a particular polygon, both for its exterior
boundary and its holes, could drive the vertical partition of the region to produce
many sub-regions that are of very small width. If each was scanned, the sum of those
scan times could exceed the optimal value even when ignoring the need to patch them

together. An alternative to “under-covering” strips would be to use some sort of a

merging process to join together adjacent strips that are very slender.
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Since the spanning trees (which need not be paths) for each region are not patched
together, the sum of their lengths represents a lower bound on the time needed to
scan the region. We have constructed a spanning forest for the union of the scan
points, rather than a spanning tree. Scan time bounds provided by SSB-2 generally
dominate those produced by the partitioning process, since the under-estimation of

scan points needed will be less in the former case than in the latter.

3.7 Scan Sequencing Algorithms

In this section we consider algorithms for several different feasible solution producing
heuristics, as well for local optimization heuristics. The best worst-case bound for
most of them is O(n?). All of the ones that we describe have been implemented in C,
and their performance is described in section 3.8. Despite their lack of good analytical
time bounds, the empirical evaluation of such algorithms demonstrates their utility
as tools for use in analyzing practical, real-world problems such as scan sequencing.

Since geometric versions of the TSP remain N'P-hard, heuristics are where much
of the experimental work for them has been directed. The algorithms we describe
are not limited in their use to geometric problems, but rather to problems for which
the triangle inequality holds. The focus of our work is on the lengths of the paths
computed, rather than the computational time it takes to produce them. Nonetheless,
we have pursued only those approaches that have a history of efficient implementation

and performance.
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3.7.1 Nearest Neighbor

The nearest neighbor algorithm is a heuristic that grows a fragment of a tour or path.

The following is a straightforward implementation:

NN:
1. Start with an arbitrarily chosen scan point, p;.

2. If the current fragment is pq,p2,...,pk, k < n, let pry; be the scan point that

is not currently on the path and which is closest to pi, and add it to the path.

3. When all the scan points have been visited, add an arc from the last scan point

back to the first. This produces a tour.
4. Delete the single longest link in the tour to produce a feasible path.

Note that the final arc that is added from the last scan point visited back to the
starting point need not be the longest link in the tour. That is why it is included,
and in the final step we delete the arc that is the longest.

The greatest shortcoming of this approach is that although the earher arcs that are
selected may be relatively short, the last several arcs may be quite long. Rosenkrantz,
Stearns & Lewis [95] have shown that the length of a geometric nearest neighbor tour
is at most ([log n]+1)/2 times the length of the optimal tour. If the triangle inequality
does not hold, the ratio of value(ININ) to the optimal solution can be arbitrarily large,
independent of n.

An obvious implementation of this algorithm accesses the scan points as an array.
The search for the next point to be added to the path would then take O(n) time,
and must be done n times, for an O(n?) time bound. We implement NN using a
'2-dimensional binary search tree (K-d tree, in general, for K dimensions). The con-
struction of a K-d tree takes O(nlog n) time, and deletions can be done in O(n) time.

Bentley [16] hypothesizes a constant expected time for nearest neighbor searching,
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yielding an overall O(nlogn) time bound for computing a NN path. A common
strategy is to build the data structure, and then construct m different NN tours
using m different starting points (m is arbitrarily chosen, and presumably much less
than n; computational experience can indicate what a good value of m is relative
to n). Such an approach would result in O(nlogn + mn), assuming that Bentley’s

constant-expected-time hypothesis is correct.

3.7.2 Multiple Fragment

The nearest neighbor algorithm is a straightforward greedy algorithm. The multiple

fragment (MF') algorithm is a less obvious greedy approach that can be viewed as an

extension of Kruskal’s algorithm for computing a minimum spanning tree. Kruskal’s
MST algorithm considers the arcs of the underlying network in increasing order of
length, including in the tree any arc that does not create a cycle. MF does the same
except that an arc is excluded if it creates a cycle or a node of degree three. Thus
it is called “multiple fragment” [16] because the tour is grown from a multiplicity
of shorter paths that ultimately will merge as arcs are selected that connect the
fragments. Bentley and Saxe [15] analyze a similar heuristic, and find its worst case
performance to be O(y/n) times the optimal distance. The approach just cutlined
takes O(n?logn) time. If a K-d tree is used for nearest neighbor searching and a
priority queue for nearest neighbor links, it is argued that MF runs in O(nlogn)
expected time overall {16]. The following is a statement of the multiple fragment

algorithm:

MF:

1. Begin with each scan point an individual fragment. Construct a K-d tree for
nearest neighbor searching, and use a heap to support a priority queue that
contains the nearest neighbor of each scan point that is eligible to be linked to

another arc.
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2. Select the shortest arc from the priority queue (the arc length is its priority).

3. Update the data structures, and return to step 2. Stop when n -- 1 arcs have

been chosen.

The key to this algorithm running efficiently is the data structures. In addition to
the K-d tree and priority queue, there is an array that has the number of path edges
adjacent to each scan point; an array that contains, for each scan point, the index of
the nearest scan point; and an array that identifies the end points of the fragments.
Note that as opposed to the NIN algorithm, we stop when we have n — 1 arcs, since
the next arc that would be selected to complete a tour must be longer than any that

has been selected so far.

3.7.3 Spanning Tree Based Heuristics

The spanning tree based heuristic that we implement is a Christofides-type algo-
rithm, however, before describing it we first detail the original minimum spanning

tree heuristic.

3.7.3.1 The Minimum Spanning Tree Heuristic

This heuristic has long been used in the analysis of the TSP. A spanning tree for a
graph is a collection of n — 1 arcs that produces a connected subgraph. There are a
" number of fast algorithms for computing a minimum weight spanning tree, the most
well known of which are due to Prim [Y1] and Kruskal [67]. Prim’s algorithm is a
straightforward greedy approach in which the node closest to any of those already
in the tree is added; it is essentially a nearest neighbor routine. Kruskal’s algorithm
successively considers arcs in order of increasing length, adding them to the tree so
long as they do not create a cycle.

If the input for the computation of an MST is in the form of a distance matrix, it

can be found in O(n?) time using either Prim’s or Kruskal’s algorithms. As observed



CHAPTER 3. SCAN SEQUENCING MODELS 119

earlier, the minimum spanning tree provides a lower bound on the length of the
optimal path. If the arcs of the MST are then toured in a depth-first traversal, this
will produce a path that traverses no arc of the MST more than twice. Such a path
provides a route that visits all the nodes and is of length at most twice that of the
minimuin spanning tree.

Depth first traversal is also known as depth-first search plus backtracking. The arcs
of the graph searched are stored in a last in, first out (LIFO) fashion when they are
visited. If any arc from the current node has not been traversed, that arc is followed
to a new node. If all arcs from the present node have been crossed, then the search
goes back along the arc by which the present node was first reached to return to the
node from which it was visited (thus the arcs are stored in a LIFQ data structure).
This continues until the starting node is revisited and it has no untraversed edges.

Depth first traversal can be used to find an Fulerian walk, a closed walk in which
each node appears at least once and each arc appears exactly once. The following

theorem is is due to Euler:

Theorem 3.3 A graph G=(N,A) contains an Eulerian walk if and only if
1. G is connected
2. All nodes in N are of even degree.

If the arcs of a spanning tree are doubled, the resulting graph is Eulerian. A depth
first traversal of the minimum spanning tree is equivalent to finding an Eulerian walk
in the doubled minimum spanning tree.

An Eulerian walk may visit a node more than once, and it is here that the triangle
inequality can be exgloited in the optimal scan sequencing problem. If the Eulerian
walk causes the path to go back to an already visited node, we can skip ahead to the
next unvisited node in the sequence. A direct link between two scan points can be
no longer than previous path that contained intervening points. This construction

provides a path, and since its length can be at most twice that of the original tree,
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which was a lower bound, this path is within a factor of two of the optimal solution.

A summary of the minimum spanning tree algorithm:
MST:

1. Find a minimum spanning tree for the set of scan points.

2. Compute an Eulerian walk of the MST.

3. Take shortcuts as needed to produce the final path.

The first step will be O(n?), and the second and third are each O(n).
The following recursive procedure will find an Eulerian walk in a graph, and is

based on [90, p. 413]:

Euler:

1. Accept as input a node, n,, of the graph G = (N, A). If n; has no adjacent

edges, then return as output n;; this is an empty walk. Otherwise, go to step 2.

2. Starting at n;, construct a walk in G that never traverses the same edge twice,
and that ultimately returns to n;. Let < ny,n,,...,n, > be the walk created.
Delete from G all the edges in the walk.

3. Return <Euler(n,),Euler(n,),..., Euler(n;)>.

————This procedure runs-in-O(}A4{)-time.—As nodes-are visited-during—awalk; they can————
be pushed onto a stack, and then popped off for the recursive call. An adjacency
list representation of the MST efficiently supports constructing walks and deleting
arcs as they are traversed. In our implementation of Euler as part of the algorithm
described in section 3.7.3.2, step {2) is completed by performing a depth first search

that stops when the input node is revisited.
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3.7.3.2 Christofides-Type Algorithm

Christofides’ [25] heuristic makes very clever use of the minimum spanning tree. It
involves the concept of a minimum weight matching. A matching is a collection of
arcs in a graph such that each node is an endpoint of at most one arc. If each
node is the endpoint of ezactly one arc, then the matching is complete. A minimum
weight matching is one for which the total length of the arcs selected is minimized.

Christofides algorithm for finding a TSP tour is summarized as follows:

Christofides:

1. Find the minimum spanning tree for the scan points.

2. Compute the minimum weight complete matching for all the nodes in the min-

imum spanning tree that are of odd degree.

3. Add the edges identified in the matching to the MST; this produces an Eulerian
graph (a graph that contains an Eulerian walk).

4. Find an Eulerian walk of the resulting graph, introducing shortcuts to determine

the final path.

An optimal minimum weight matching can be found in O(n?) time, and this step
dominates the algorithm. Note that there is always an even number of odd degree
nodes in the MST. Christofides’ heuristic provides what is currently the best worst
case bound for a TSP that obeys the triangle inequality.

Theorem 3.4 For any instance of the triangle inequality TSP, Christofides’ heuristic

provides a feasible solution whose length is at most 2 times that of the optimal solution.

A slightly different matching problem is solved to provide a %-approximate algo-
rithm for the shortest Hamiltonian path problem rather than the TSP. It entails
adding two fictitious nodes to the collection of odd-degree nodes in the MST. The

distance between these two nodes is infinite, and the distance d betwe=n each of them
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and all other nodes is equal and greater than max; ; c; ;. The minimum weight match-
ing will then identify the two nodes that are to remain unmatched in the shortest path
as the mates of the two fictitious nodes. Figure 3-14 shows the construction. The
arcs connecting the two nodes on the path to the two fictitious nodes will contribute
a constant to the weight of any matching computed for the set of odd degree nodes
in the MST: 2 x d. Thus if there exists a matching of shorter length that leaves two
nodes “unmatched” (i.e., mated to the fictitious nodes), then the optimal matching

algorithm would have found it.

Fictitious nodes

infinite

o
0
o
*
o"‘
0
o

‘..,00-0.....

© Odd degree nodes in MST

........ Optimal path
=== Matching

Figure 3-14: The modified matching solved when Christofides’ algorithm is applied
to a path rather than a tour.
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In our implemertation we do not actually find the optimal minimum weight match-
ing, but rather find a greedy matching: successively select the shortest arc among
those feasible so long as it is not incident on a node that has already been matched.
This produces a much faster algorithm, since finding the minimum weight match-
ing was the bottleneck step in the runtime for Christofides’ heuristic. Avis, Davis,
and Steele (3] show that for every dimension k > 2, the expected length of a greedy
matching grows as an!~* + o((n'~%), which is within a constant factor of the optimal
solution. Matchings produced by the greedy algorithm can usually be improved by
using two-opt [16].

In addition, we do not use the minimum spanning tree as input for the matching
of odd-degree nodes. Instead, the final spanning tree that is produced by the tree
relaxation (TR) is used. Solution of the Lagrangian dual identifies a tree with a small
number of nodes that are not of degree 2, since the subgradient optimization process
serves to so drive the MST computations. A description of the tree relaxation with
Lagrangian objective function is contained in section 3.6.

Note that adding the degree-k side condition to the minimum spanning tree prob-
lem can make it hard:

DEGREE-L- MINIMUM SPANNING TREE:

Instance: Integer n > 3, n x n distance matrix C.

Question: What is the shortest spanning tree for C in which no vertex has degree
exceeding k7

DEGREE-2 MINIMUM SPANNING TREE is the WANDERING SALESMAN version
of the TSP, and is thus ANP-hard. In fact, the DEGREE-k MINIMUM SPANNING
TREE problem is AP-hard for any fixed £ > 2 and general graphs. If the graphs
are restricted to being Euclidean (®2), the problem is AP-hard for k¥ = 2 and 3.
Complexity for £ = 4 is unknown. For & > 5 the EUCLIDEAN DEGREE-k MINIMUM
SPANNING TREE problem is equivalent to the unconstrained problem since it can be

shown that the MST of a graph whose nodes are on the planar lattice can have no
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vertex of degree greater than 5.

3.7.4 Local Optimization

In this section we describe two heuristics that are used to improve a previously con-
structed feasible path. The best known tour improvement approaches, of which these
are representative, are edge exchange procedures {31}, [71], [72]. In general, an r-opt
procedure entails exchanging r arcs in a feasible path for r arcs not in the current

solution such that a path is maintained and its length is less than it was before.

3.7.4.1 Two-Opt

Figure 3-15 demonstrates a two-opt swap in a path. Two arcs that cross one another,
1-4 and 2-3, are exchanged for two arcs that do not, 1-2 and 3-4. This is equivalent
to reversing a subsequence of the cities. If a path cannot be improved by performing

any further two-opt exchanges, then it is two-optimal.

1 2
o .
o
3 4
1 2
o *— o
o ® °
3 4

Figure 3-15: Two-opt example.

An obvious but inefficient way to perform two-opt exchanges would involve exam-
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ining all possible pairs of arcs in the path, of which there are (n — 1)(n — 2)/2, and
executing an exchange if a suitable pair is found. This would take O(n?) time, and
achieving a two-optimal path potentially much longer. In addition, there are many
choices for implementing two-opt. They include specifying the order of checking arcs
for possible swaps, the selection of the arcs to be exchanged, which two-opt to perform
if there is more than one possible, and so on.

Our approach follows that of [16]. We walk along the path, visiting each scan
point in order, and inspect both neighbors of the current scan point for candidate
arcs to use in a swap. A fixed-radius nearest neighbor search centered at the scan
point under consideration is used to identify any other scan points in the vicinity.
For each such scan point so found, the neighbor that could be used in a swap is
checked to see if an exchange would reduce the path length. Note that there is only
one candidate neighbor for the points identified in the search, since using the other
neighber in a swap would serve to break the path into a fragment or a cycle, as can
be seen in Figure 3-15. If a walk of the path can be completed without any two-opt

exchanges being found, then it is considered two-optimal.

3.7.4.2 Two-H-Cpt

A two-H-opt, or two-and-a-half-opt exchange is a limited version of a 3-opt swap.
A 3-opt exchange involves 6 points, while two-H-opt only deals with 5. Whereas
two-opt reverses a subsequence of the path, two-H-opt takes a single scan point and
moves it to another spot in the path. Figure 3-16 shows an example. If no more
two-H-opt exchanges improve a path, then it is considered two-H-optimal, analogous
te a two-optimal path.

Two-H-opt is implemented as an extension of two-opt. As before, a fixed-radius
nearest neighbor search is made around each scan point in the walk to identify other
points whose adjacent arcs are candidates for a two-opt swap. Each point found in

the search is also considered for a two-H-opt exchange in which it is the point moved.
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Figure 3-16: Two-H-opt example.

And then the original point about which the search was conducted is considered for

a move in a two-H-opt swap.

3.8 Computational Testing

The algorithms described in section 3.7 were implemented in C' and then computa-
tionally tested on either a DECstation 5000 or a VAXstation 3100. Testing involved
first generating problems believed to be representative of the uses for which such
space-based sensors will be employed. HIRIS is again taken as an example, and re-
gions that are judged to be reasonable representations of the objectives of science
users were constructed. This is similar to the approach that has been taken by re-
searchers at the Jet Propulsion Laboratory (JPL), in that the generation of demand
for driving their simulations of HIRIS operations was done with little input from the

science team—they produced the imaging projects on their own [94].
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3.8.1 Problem Generator

The regions for imaging were taken to be polygons, with randomly generated fea-
tures. This was done by beginning with a circle of radius r, centered at the origin.
At equally distributed angles around the circle, two values, v, and 4,, are drawn
randomly from U(-a/2,+a/2), a distribution that is uniform over the symmetric
interval [—a/2,+a/2]. They are then added to r and projected onto the z and y
axes, producing the = coordinate ((r +7;)sin §) and the y coordinate (r ++,) sin 8) of
the feature that is at the specified angle §. Inputs for generating the polygon include
the radius r of the underlying circle; the number of features 1, which determines the
angles at which they are computed since the features are evenly distributed around
the circle; the range a; and a seed for a random number generator that is used to
provide the draws from [—a/2, +a/2|. A summary of how the polygons are produced,

where (z;,y;) are the coordinates of the ith feature cf the polygon:
1. Input r, 7, ,a, and a random number seed.
2. Fori =1 to 9, do:
(2) Draw v, and 7, from U(—a/2,+a/2); 6 =i x 22
(b) zi = (r +7:)sin8; y; = (r 4+ 7,)siné.
(c)t=1+1.
3. Return (z;,y;) for all <.

An example of a polygon generated by this algorithm is shown in Figure 3-17. Its
parameters are » = 40, 7 = 36, a = 30. Units for the parameters are unnecessary,
since they can be arbitrarily scaled. If we think of » and o as being in kilometers,
however, then the region is roughly of a size that could be imaged by HIRIS as part
of an imaging project. As can be seen, shapes generated in this manner need not be

polygon-convex, although they must be connected.
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After generating the region, a slightly modified version of the heuristic PB-1
(discussed in section 3.6.1) is used to determine the number of scan points that are
needed to cover the region. The modification is that the number of continuous aiong-
track scans that are performed before considering moving the sensor is an input, 3;
in PB-1 3 was set to 1, which for HIRIS produces a strip depth of 30 meters. If 3
were 167, then the strip depth would be 5 kilometers. This allows us to examine the
different classes of strategies referred to earher. In addition, the upper bound strip

width (see Figure 3-11) is used in PB-1 so that we produce a cover of the region.

40

20 —

-20 —

40 —

Figure 3-17: Sample polygon produced by the problem generator.

PP-1 is then used to place the scan points in strips whose depth is 3 times the
spatial resolution for the sensor (this depth is the actual input to the heuristic).
Figure 3-18 shows the scan points constructed in this fashion for the polygon of
Figure 3-17; 56 scans of depth 5.0 are needed to cover the region. If 8 is reduced
much below 5.0, it is generally not possible to distinguish between different scan

points on the graphical plot.
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Figure 3-18: Scan points for the sample polygon produced by the problem generator.

3.8.2 Data Structures

A significant shortcoming of many heuristics for the TSP and shortest Hamiltonian
path problems is that when they are implemented in the obvious way, they spend
a large amount of time considering arcs between nodes that are not likely to be
contained in any sensible path. Two different approaches have been described recently
in the literature [16], [62], [92] that provide the means to speed up spatial searches
that are necessary in geometric based problems. We discuss these approaches because
the use of such data structures is vital in efficiently implementing the path heuristics.

Reinelt [92] exploits the information contained in the Voronoi diagram or its dual,
the Delaunay triangulation. A Voronoi diagram is a partition of the plane into N
polygonal regions, each of which is associated with a given point. The region as-
sociated with a given point is the locus of points closer to that point than to any

other given point. Points « and y are connected in the Delaunay triangulation if their
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Voronoi polygons have an edge in common. There are several efficient algorithms
for computing the Voronoi diagram (and hence the Delaunay triangulation). Shamos
and Hoey [104] present a divide-and-conquer algorithm that computes the diagram
in O(nlogn) time. Ohya, Iri and Murota [87] give an algorithm with a worst case
time bound of O(n?) that is said run in linear time in practice. Nonetheless, writing
a program to compute the Voronoi dual is challenging [103].

The Delaunay graph is used in [92] to restrict the extent of spatial searches by
providing, for each point, a set of arcs that are candidates to be in a tour. Two such
sets are constructed, the first of which is the arcs to a point’s k& nearest neighbors,
where k& was taken to be between 5 and 20. The k nearest neighbors are found by
examining nodes that are at most k arcs away in the Delaunay graph. This can be
done in linear time for fixed & by doing a breadth-first-search. The second set of
candidate arcs begins with arcs in the Delaunay graph and adds to them transitive
arcs of order 2 (arcs between nodes that are two arcs apart in the Delaunay graph).

The other efficient way for capturing the spatial character of geometric problems
and finding nearest neighbors is to use a K-d tree [14], [16], [62], [103], which is a
K-dimensional binary search tree. That is the approach we implement; it assists in
twb types of searches in particular, nearest neighbor and fixed-radius. The version
used here is a semidynamic tree that, once constructed, can support deletions and
urdeletions but not the insertion of new points. Restricting K-d trees to semidynamic
point sets allows a pointer array that is indexed by the point number to tell which
terminal node of the tree contains a given point. Many functions can then be im-
plemented using “bottom-up” algorithms for which the expected run time is reduced
from O(nlog n) to O(1), or constant time. These operations include deletion, undele-
tion, nearest neighbor searching, and fixed-radius near neighbor searching. The time
to build the tree itself is O(Kn + nlogn). Bentley [14] describes a wide spectrum of
K-d trees.

A K-d tree supports fast implementation of the various path heuristics and local
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optimization routines presented in section 3.7. The nearest neighbor heuristic NN
can be done in a loop that performs a nearest neighbor search and then deletes the
point identified from the K-d tree. The multiple fragment heuristic MF uses a heap
representation of a priority queue in addition to the K-d tree for a fast implemen-
tation. Greedy matching, minimum spanning tree, two-opt and two-H-opt are other

proximity problems that can be solved using K-d trees.

3.8.3 Simulations
3.8.3.1 Data

The algorithms presented in section 3.7 have been implemented in C' and computa-
tionally tested on either a DECstation 5000 or a VAXstation 3100. The Euclidean
distance between points was used as an approximation for the actual metric of cal-
culating the perceived angle between points. Since the scale factors needed for this
approximation remain the same and would appear in every distance, they are a con-
stant that can be neglected.

One of two heuristics, nearest neighbor (NN) or multiple fragment (MF), was
used to generate an initial feasible solution. Each solution was then potentially fol-
lowed by one of two local optimization heuristics, two-opt (2-Opt) or two-H-opt (2H-
Opt). This produced six different possible upper bounds on the optimal solution,
each of which was then used in equation (3.18) of TR step (6), the subgradient op-
timization step of the tree relaxation with Lagrangian objective function. Table 3.3
spells out the different combinations. In Appendix B we provide figures showing the
starting tour (from which we obtain an initial path) for each of these six combinations
using the scan points of Figure 3-18 as input.

The tree relaxation provides a lower bound for the optimal solution of OSSP, in
the process of which it identifies spanning trees for the set of scan points that are
successively “better” in that they have increasingly fewer nodes that are not of degree

2. The final tree computed by the Lagrangian is then input to a Christofides-type
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Initial Feasible Solutions for OSSP

Nearest Neighbor, followed by 2-Opt

Nearest Neighbor, followed by 2H-Opt

Nearest Neighbor, with no Local Optimization

Multiple Fragment, followed by 2-Opt
Multiple Fragment, followed by 2H-Opt

| Multiple Fragment, with no Local Optimization i

Table 3.3: Combinations of path-forming and local optimization heuristics that pro-
vide initial feasible solutions whose length can be used in the subgradient optimization
step of the tree relaxation with Lagrangian objective function.

heuristic, producing another feasible solution to OSSP. This path can then potentially
be improved by use of the same two local optimization procedures, two-opt and 2-H-
opt. Thus in addition to the feasible solutions listed in Table 3.3, we also produce
those shown in Table 3.4.

Final Feasible Solutions for OSSP from Tree Relaxation |
[ Christofides heuristic, with no Local Optimization |
Christofides heuristic, followed by 2-Opt

Christofides heuristic, followed by 2H-Opt

Table 3.4: Final feasible solutions for OSSP produced from the tree relaxation.

The cross-product of the initial upper bounds and those derived from the tree
relaxation, plus the initial feasible solutions themselves, yields 24 different combina-
_ tions of heuristics that produce feasible solutions. Each of these is compared to the
lower bound from the Lagrangian dual problem (LLB), and the gaps between them
are computed in either distance units (nominally kilometers) or as a percentage of

the lower bound:

Upper Bound — Lower Bound

Gap in percent =
ap1np Lower Bound

Before displaying the data, we clarify how the various heuristics interact by pro-

viding figures that show a sequence of them in use. In each figure, the borders of
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the region and symbols for scan points have been removed to improve clearness. The
initial heuristic used is multiple fragment, and it takes as input the scan points shown
in Figure 3-18, which were computed for the region shown in Figure 3-17. The near-
est neighbor starting heuristic is followed by no local optimization, and the tour it
produces is shown in Figure 3-19 (in Appendix B we provide figures showing all of
the tours produced by the six different starting heuristics for the scan points of Fig-
ure 3-18). Note that we compute and display a four, rather than a path. Although
the last arc included in the tour formed by the heuristic is often the longest, it need
not be. Thus by finding a tour we can then delete the longest arc amongst all the
arcs in the tour—a less restrictive approach than specifying the starting and stopping
points. When appropriate, this is done in other heuristics as well. The length of
the path specified by the nearest neighbor heuristic is then used in the subgradient
optimization of TR. This is the sole role that the heuristic for an initial feasible so-
lution plays in subsequent computations: it provides an upper bound that is used in
calculating the step size for updating the Lagrange multipliers (A’s) in TR. The first
minimum spanning tree computed by TR is shown in Figure 3-20; this is simply an
MST for the scan points of Figure 3-18. The final minimum spanning tree found by
the tree relaxation with Lagrangian objective furction is shown in Figure 3-21. The
feasible solution computed using the minimum spanning tree of Figure 3-21 as input

to Christofides’ heuristic is shown in Figure 3-22; no local optimization has been done.
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Figure 3-19: Tour formed by nearest neighbor heuristic with no local optimization.
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Figure 3-20: Minimum spanning tree for scan points.
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Figure 3-21: Final MST from tree relaxation with Lagrangian objective function.
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Figure 3-22: Feasible solution from Christofides’ heuristic that uses the final MST
from TR as input.
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Table 3.6 displays the average gap, in kilometers, for 100 problem instances with a
scan depth of 5.0 km. The scan depth refers to the along-track distance that the sensor
will image before repointing; it essentially results in the placement of 5 kmx24 km
rectangles for HIRIS. The parameters used in generating the regions that constitute
a problem instance are the same as those that produced Figure 3-17: circle radius
of 40 km with a potential range of £15 km, and 36 features. Scan points were
placed using the algorithms of section 3.6.1 as modified in section 3.8.1, an example
of which is displayed in Figure 3-18. Table 3.7 presents the same results with the gaps
expressed in percentages rather than distance. Figure 3.5 specifies the abbreviations
used in these and subsequent tables and figures.

| Legend |
IFS | Initial Feasible Solution
NN | Nearest Neighbor
MF | Multiple Fragment
LLB | Lagrangian Lower Bound

LO | Local Optimization
CFS | Christofides Feasible Solution

Table 3.5: Legend for tables and figures.

IFS | Local Opt (LO) | Init Feas Soln— Christofides Feasible Solution
Heuristic Lagrangian LB | +No LO — LLB | +2-Opt—LLB | +2H-Opt—LLB |
[ 2-Opt 23.78041 19.00723 [ 20.48472 17.27395 |
NN 2H-Opt 19.27257 18.13398 20.02544 17.30529
No Local Opt 48.93607 20.20401 22.16178 18.41962
2-Opt 21.15284 18.61599 21.41143 17.52738
MF 2H-Opt 17.91947 19.09654 21.77544 17.78759
[~ No Local Opt 21.91366 20.43237 21.06920 17.32557

Table 3.6: Summary of solution gaps, expressed in km, for a scan depth of 5.0.

Similazly, Tables 3.8 and 3.9 contain the average gaps, expressed in kilometers
and percentages, respectively, for problem instances that are parameterized by a scan

depth of 1.0 km (but that zre otherwise analogous).
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IFS | Local Opt (LO) | Init Feas Soln— | Christofides Feasible Solution
Heuristic Lagrangian LB | +No LO — LLB | +2-Opt—LLB | +2H-Opt-LLB
2-Opt 5.655579 4.488320 4.841463 4.084706
NN 2H-Opt 4.589976 4.277951 4.741894 4.094392
No Local Opt 11.591122 4.788114 5.266107 4.369063
2-Opt 5.023462 4.398191 5.059161 4.150057
MF 2H-Opt 4.253908 4.500003 5.164872 4211713
No Local Opt 5.154425 4.828965 4.970617 __4.084878

Table 3.7: Summary of solution gaps, expressed in %, for a scan depth of 5.0.

IFS | Local Opt (LO) | Init Feas Soln— Christofides Feasible Solution N
Heuristic Lagraagian LB | +No LO — LLB | +2-Opt—LLB | +2H-Opt—LLB

[ — 2-Opt 45.16682 28.47246 27.90070 24.94015
NN 2H-Opt 36.23844 29.51486 29.96878 27.25093
[ No Local Opt 100.71020 30.39483 32.65111 28.50908
2-Opt 31.97162 29.02252 30.72352 28.54207
MF 2H-Opt 27.20955 27.38481 29.93658 26.68985
No Local Opt 37.76638 29.27886 30.33885 27.25459

Table 3.8: Summary of solution gaps, expressed in km, for a scan depth of 1.0.

IFS | Local Opt (LO) | Init Feas Soln— Christofides Feasible Solution
Heuristic Lagrangian LB | +No LO —~ LLB l +2-Opt—LLB I +2H-Opt—-LLB
2-Opt 8.983606 5.640020 " 5.548835 4.965086
NN 2H-Opt 7.223588 5.836850 6.003211 5.440751
No Local Opt 20.012523 6.048354 6.537386 5.704409
2-Opt 6.367048 5.752318 6.163840 5.709083
MF 2H-Opt 5.440552 5.403467 5.063251 5.323017
No Local Opt 7.455047 5.783272 6.051835 5.450134

Table 3.9: Summary of solution gaps, expressed in %, for a scan depth of 1.0.
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3.8.3.2 Analysis

Better insight into the relative performance of the different combinations of initial and
final heuristics is provided by the charts in Figures 3-23 and 3-24 for a scan depth of
5.0 and Figures 3-25 and 3-26 for a scan depth of 1.0; they are a graphical display
of the information in Tables 3.7 and 3.9. Considering first Figure 3-23, the average
solution gaps (in percentages) are grouped by the heuristic used to construct the initial
feasible solution. Within each grouping, then, is given the ultimate gap produced by
the different final heuristics. Note that the label “Initial Feasible Solution—LLB”
refers to the gap between the grouping heuristic and the Lagrangian lower bound.
Thus, for example, “Init Feas Soln—LLB” in the “MF + 2H-Opt” group refers to the
gap for the “MF + 2H-Opt — LLB” combination. Similarly in Figure 3-24, where
the grouping is done by the final heuristic employed, the individual entries in the
“Init Feas Soln—LLB” category are for gaps between the 6 possible initial heuristics
and the Lagrangian lower bound.

Most telling are Figures 3-24 and 3-26. Regardless of the initial heuristic employed,
if the Christofides-type algorithm is then used and followed by two-H-Opt, the solution
gap will be small. Among the heuristics used to construct an initial feasible solution,
the best alternative is the multiple fragment heuristic followed by two-H-opt. The
one clear poor choice is tc construct a nearest neighbor path and then perform no
local optimization. The charts also show that after computing a Christofides feasible
solution, there is relatively little value added to then processing it with two-opt, and
for certain combinations two-opt worsens the the gap. The reason that this can occur
is because the Christofides feasible solution constructed is first a tour, and two-opting
it serves to remove long crossing (non-planar) arcs that would otherwise be removed
in extracting a path.

Boxplots of the distribution of solution gaps, in percent, for 50 problem instances
with a scan depth of 5.0 are shown in Figures 3-27, 3-28, 3-29, and 3-30. They are
grouped by the final heuristic used, with Figure 3-27 reflecting the gap between the
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Figure 3-23:

Figure 3-24: Solution gaps in %, grouped by final heuristic; scan depth = 5.0.
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Figure 3-25:

Figure 3-26: Solution gaps in %, grouped by final heuristic; scan depth = 1.0.

Solution gaps in %, grouped by initial heuristic; scan depth = 1.0.
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initial feasible solution and the Lagrangian lower bound. In comparing the figures,

—the scale should benoted; especially for the first-one:-—The-gaps-produced-by-the-initial
heuristics are large in comparison to the others, with one instance being on the order
of 40%. So although the spread in Figure 3-27 may initially look tighter, that isn’t
actually the case. The distributions for all of the heuristics involving a Christofides-
type feasible solution are generally comparable, although the one producing the best
solutions, the Christofides-type heuristic followed by two-H-opt local optimization,

also has the closest spreads.
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Figure 3-27: Solution gap boxplot for 50 instances of starting heuristics.

As can be seen in the boxplots, there are problem instances for which the solution
gap is zero—this corresponds to when the Lagrangian lower bound problem produces
the optimal solution. For the scan depth of 5.0, there were from 13 to 16 instances in
which the optimal solution was found, depending on the heuristic used to calculate
the initial upper bound. When the scan depth dropped to 1.0, though, there was at

most one problem for which the shortest path was determined. Given that the regions
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Figure 3-28: Solution gap boxplot for 50 instances of CFS final heuristic.
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Figure 3-29: Solution gap boxplot for 50 instances of CFS followed by 2-Opt.
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Figure 3-30: Solution gap boxplot for 50 instances of CFS followed by 2H-Opt.

scanned were the same for both scan depths, a smaller scan depth yields more scan
points: an average of 61 for the 100 instances of 5.0, and 282 for the same instances
with 1.0. We established a rough upper bound of 300 on the number of scan points
that could be sequenced in a single project. Considering settling time alone, 300 x .5
seconds per movement requires 2.5 minutes, and five minutes is about as long as an

imaging time window will last.



Chapter 4

Conclusions & Future Directions

4.1 Summary

In Chapters 2 and 3 we studied two classes of models that can be used to manage
satellite-based sensors. A static, coverage oriented model that focusses on footprint
placement was treated first, and then scan sequencing for area imaging projects was
considered. In both cases the issue of practical concern was modeled, algorithms
were developed, and the solution approaches then computationally tested against
representative problem instances.

It was also discussed in Chapter 2 how the static coverage model could be used in
a rolling horizon context to determine dynamic sensor assignments. Current assign-
ments based on the best known values of targeted objects would be made by the static
model, with future assignments (based on current estimates of demand values) being
held tentative. In the next period, assignments for that period would be updated and
made firm, with a new set of tentative assignments made for the time period added
to the horizon. Tentative assignments for intervening periods could be updated.

The scan sequencing models of Chapter 3 can similarly be used in a broader
context: project selection and scheduling for an instrument. In the following section

we discuss the issues of interest, using as an example the Eos sensor HIRIS, and give a
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possible formulation that extends an existing model so as to capture a greater number

of resource constraints.

4.2 Project Selection and Scheduling

4.2.1 Background

The various projects that prospective users will request for any kind of space-based
sensor will easily exceed the observation capacity of a reasonable planning horizon.
This will remain true for Eos sensors such as HIRIS, which are intended to acquire at
least a decade of overlapping observations. As a result, efficient management of such
sensors so as to maximize scientific use is an obvious goal.

The development of observation schedules has traditionally been a large and com-
plex task. Only a subset of all the requests that are submitted can be performed, and
the ones selected must comply with myriad constraints. The restrictions include such
things as platform orbital characteristics, instrument power requirements, thermal
dissipation, sensor capabilities, viewing conditions, guidance requirements, limited
data bandwidth, and preferences for when and how measurements of certain phenom-
ena should be made. Constraints arise from the activities necessary to perform an
observation, resource sharing considerations with other instruments on the satellite,
and mission objectives. Scheduling constraints imposed by science objectives are an
example of the latter. Numerous relationships among observations may be specified,
including partial orderings over sets of observations, temporal separation constraints
between ordered observations, temporal grouping constraints over unordered obser-
vations, coordinated parallel observations with different viewing instruments, same
sensor orientation constraints for repeat observations, and conditional execution of
dependent observations [82].

It may well not be possible to satisfy all problem constraints, in which case some

may have to be selectively relaxed, or specific projects or project combinations de-
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ferred to a later schedule. Some constraints, such as time windows for measurements,
must be met. The general objective for the project selection and scheduling problem
is to perform as much “science” as possible, subject to insuring feasibility with respect
to a complex set of constraints involved with instrument operation, image execution,
and overall resource allocation objectives.

Specific instrument scheduling is similar to space mission scheduling [4], [17],[18],
(38], [62], in which the same basic decisions of selecting and scheduling science projects
must be made. The Jet Propulsion Laboratory (JPL) has performed mission schedul-
ing for many years for a variety of deep space flight projects. The effort in scheduling
an entire project such as Voyager can be measured in man-centuries. Because of the
cost and time involved, JPL and NASA have recently used a variety of knowledge-
based scheduling engines that have gone by names such as Deviser, Plan-It, Switch,
and Ralph. There are also other program specific scheduling systems, such as the
Science Operations Ground System (SOGS), which supports scheduling for the Hub-
ble space telescope. It is a $70 million fortran-based software system developed by
TRW. Generating a workable schedule using such systems, in addition to being an
extremely long and costly process, still cannot consistently produce an agenda that is
“opfima.l”——wha.tever that may mean in this context. Unanticipated constraints can-
not easily be accommodated, and many sources of scheduling flexibility that might
be permitted by a less comprehensive approach cannot be exploited.

The claim is made that classical optimization techniques are unable to deal with
scheduling problems for which the scope is this large and complex [18]. An alternative
modeling approach, which would use such techniques, considers only a subset of the
constraints involved [57]. Again using the example of HIRIS, we discuss elements
of a problem formulation that address scheduling projects during the abpropriate
time window, and that include restrictions on data bandwidth, power, and thermal
dissipation—these being the limiting resources in the operation of HIRIS that JPL
has identified. Given that adaptive scheduling of HIRIS is desirable so that targets of
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opportunity such as volcanos or fires can be imaged, a model that can quickly gener-
ate high quality solutions with respect to changing objectives and possibly resource

constraints is potentially quite useful.

4.2.2 Modeling Issues

Rather than give a mathematical formulation of project selection and scheduling for
an instrument, we quantify somewhat the salient concerns that must be addressed,
introducing notation and showing how the issues can be captured analytically.

A simplified version of the project selection and scheduling problem has aspects
that are similar to machine scheduling, a classic operations research problem. Each
project j takes time p; to complete, a “processing” time. The processing time would
be determined by using a scan sequencing algorithm to compute how long it takes
to perform a specified job—at the detailed scan level, as was done in Chapter 3.
In addition, a project will be characterized by the amount of data it produces, as
well as its power requirements. It is assumed that the number of proposed projects n
cannot all be performed over the planning horizon of interest due to time and resource
restrictions.

As stated earlier, the general objective is to accomplish as much “science” as is
possible in the time available. For a sensor such as HIRIS, the planning horizon would
probably be on the order of 30 days. This objective can be mapped into the specific
goal of maximizing the weighted value of the projects that are selected and scheduled.
If all jobs are considered to be of equal value, the scheduling component reduces to
minimizing the maximum completion time amongst the jobs selected. Because the
EOS platforms will be in low-earth, sun-synchronous orbits (705 km), various projects
can only be performed during specific time windows, which can be designated as
[rj, d;] for project j. Thus each project can begin only during the interval [r;, d; —p;].

Over a thirty day period, there will be at least 15 opportunities to conduct each
imaging project, and possibly more, depending on the latitude of the target (equatc-
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rial latitudes are least frequently available, and those greater than +40° or more most
frequently available). Not all viewing opportunities will be equally desirable, though,
because they may present different viewing angles. As an example, viewing vegeta-
tion from an off-nadir angle can provide a better estimate of the total albedo of the
canopy. This is because the angular distribution of reflectance from vegetation is sen-
sitive to leaf density, leaf orientation, and the distance between plants [51]. Different
windows for the same project can represent different jobs; this allows the assignment
of various weights to the disparate opportunities, reflecting the preferences between
viewing angles. A constraint that only one of these imaging tasks is to be scheduled
can be imposed. Current JPL planning calls for each project to be scheduled twice,
to increase the chance that acceptable viewing conditions are obtained.

It may also be the case that projects will consist of linked or repeat observations.
The frequency requirements of coverage flow directly from the nature of the science
area to be studied. Water and snow/ice studies need frequent measurements, while
vegetation studies require less frequent ones. Geological studies are a distant third,
bu* must acquire data under optimal lighting and visibility conditions and when the
area of interest is neither covered by vegetation nor obscured by clouds. A penalty
function could be employed to drive imaging assignments toward meeting observation
frequency preferences. ]

Additional notation should help clarify these ideas. It is intended only as a means
of representing elements of project selection and scheduling problem in a ccherent
fashion; these are not propositions that are likely to be solved directly as mathemat-
ical programs. Some of our notation is adopted from [57]. We define the following

variables:

1 if job jis performed, j =1,...,n
Y =
0 otherwise
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1 if job iis performed before job j,
Tij = or job jis performed and job iis not,z,5=1,...,n, 1 # j
0 otherwise

t; = the start time of job jif job jis performed, j = 1,...,n.

The objective in optimizing the selection and scheduling of scans for HIRIS be-

comes:

Maximize z": WY, (4.1)
j=1

where w; is the weight of project j, j = 1,...,n. This, of course, is subject to
many constraints, the most rigid one being that of time windows. Those constraints
that can be selectively relaxed may also be placed in the objective (4.1), using a
penalty or a barrier function approach [75]. These are methods for approximating
a constrained optimization problem with an unconstrained or less constrained one.
The approximation is accomplished with a penalty function by adding to the objective
function a high cost for violating the constraints, and in the case of a barrier method
by adding a term that favors solutions in the interior of the feasible region over those

near the boundary.
A project can only begin during an interval within which the necessary geometry
between the earth and the satellite is achieved, and must begin early enough so that

it can be completed. This can be stated as

t;

tj < (dj—pi)yi+D(l-y;), j=1,...,m, (4.3)

\%

¥, J=1,...,m (4.2)

where D is the planning horizon. We assume that only one project can be performed
at a time. If two requests are combinable, than they could be merged before the

planning process began. Thus when two projects i and j are scheduled, there must be
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sufficient time between between their starts so that the first one can be completed, and
then whatever repositioning of the sensor that needs to take place can be performed:

ti—t; > (pj+cij)y;—2Dzy;, i=1,...,n=1, 7> (4.4)

t; —t; > (p,-+cj.-)y,-—2D:cj,-, i1=1...,n=-1,7>1, (45)

where ¢;; is the minimum transit time needed if project ¢ follows project j. Only
one of the two constraints (4.4) and (4.5) can be active; there are standard ways of
enforcing this.

The constraints of data bandwidth, power consumption, and thermal dissipation
can all be handled in a similar manner. Essentially, the instrument will have a budget
for each such resource available to it; we’ll let BW be the bandwidth available during

the planning time horizon. Then

n
> by; < BW, (4.6)
i=1

where b; is the bandwidth required by project j, is the appropriate budget constraint.

This can be done analogously for thermal dissipation and power. Equation (4.6) is a

knapsack constraint, and several such constraints form a multidimensional knapsack.

As an alternative to posing available bandwidth BW as a strict bound, we could also

take the approach of considering it a relaxable limit and attaching a penalty, say b,

to exceeding it. Then the term

—max (b X (BW -y bjyj) , 0) (4.7)
i=1

could be added to the objective function. For HIRIS, the budget set by NASA on the

"amount of data that can be produced is very limiting. The long-term average of 3

mbps is less than a third of what the instrument could reasonably generate, even after

accounting for both viewing opportunities and sensor movements. The 3 Mbps data
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rate limitation is due to HIRIS having to share the 300 Mbps Eos Data Information
System with numerous other instruments.

User preferences for multiple viewing opportunities or linked observations are also
easily depicted. When at most a limited number of several project opportunities are

to be scheduled, the constraint

Zyj < fk? k=1?'-'1K1 (48)

JEA

captures this. £ is the upper bound on the number selected; A is a set containing the
indices j of the projects that represent multiple opportunities to perform an imaging
request, and for which there are k = 1,..., K, different such groupings. A penalty
function that subtracts 3; from w; probably best shows linked observations as being

preferential, rather than strict. If we let

A; = set of project indices that constitute a group of linked
observations, [ = 1,..., L,
p1 = periodicity of the set 4;,,1=1,...,L,
| B = penalty for violating the periodicity preference ior set A, [ =1,...,L,

t! = time of last scan from set 4;, [ =1,...,L,

then
ﬂ—j-’:ﬂlltj"t;"PllajeAhl;l’-"7L: (4.9)

represents the penalty for deviating from the stated preference p;. The objective
function (4.1) is now 37, (w; —B;)y;. As B;is defined, there is a penalty for observing

a site either too often or too infrequently; this term could be redefined as
Bi =P x (max(t; —t; —p),0), j€A,l=1...,L, (4.10)

so that a penalty is incurred only for imaging too infrequently.
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The modeling ideas embraced by (4.1)-(4.10) follow the same vein as the approach
taken by Hall and Magazine [57]. In their work they considered only the resource
of time and allowed each project to be performed solely during a single time win-
dow, while we include additional resources such as data bandwidth and provide for
multiple opportunities to conduct an imaging project. In addition, science imposed
preferences regarding the temporal distribution of linked observations are considered.
The model of [57] has been shown to be strongly A'P-complete by transformation
from 3-PARTITION. Thus by restriction, the model we propose is //P-complete and
unless P = N'P, it is unlikely that there exists an optimal polynomial time algorithm
for its solution.

There has been work done on other, similar scheduling problems. Traditional
paradigms include the problems of minimizing the total time needed to complete n
jobs within available time intervals on parallel processors, minimizing the number of
processors needed to complete all jobs, and vehicle routing and scheduling problems
with time windows, which we referred to at the end of Chapter 2. In all cases,
however, every task must be completed; there is no notion of choosing amongst those

requested.

4.2.3 Model Analysis

Numerous algorithms have been developed for finding solutions to various scheduling
problems. Several of the same approaches that we used earlier have been exploited
to routinely deliver solutions that are very close to optimal. The challenge here lies
in specifying a sufficiently tractable problem formulation that combines increased
modeling fidelity with responsiveness to analysis. As an indication that the added
scheduling dimensions are ina.na.geable, we show how the interval pricing heuristic
of [57] can be extended to the problem we have framed. Further analysis, such as
upper bounding procedures, Lagrangian relaxation, dynamic programming, or the

computational testing of any of these approaches, should be the subject of future
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research.

The interval pricing heuristic essentially computes a “price” for each discrete in-
terval of time, and then selects a project based on whichever offers the best value
versus cost benefit. The project chosen depends upon both scientific weight and re-
source consumption. If two projects are of equal value, it would be better to choose
first the one that consumes less of the resources available (here we are considering
such things as time, bandwidth, and power). In the case of a single resource problem,
a natural choice for an index of aggregate consumption is merely the amount of that
resource used. The choice is less clear when there are a multiplicity of resources.

An approach for computing a “penalty” factor for resource consumption is de-
scribed by Loulou and Michaelides [74]. It is argued that project selection should be

governed by the worst effect that selection of project j would have on the following:

1. total consumption of resource qif project jis added to the set of projects already

selected.

2. amount of resource ¢ remaining if project jis added to the set of projects already

selected.

3. future potential demand for resource ¢ if project jis added to the set of projects

already selected.

A penalty factor for project j that incorporates these [74] is:

V= max {00t (e - ml - - m)} @

8€ES

@ = number of resources
Ay = fraction of resource q consumed so far, ¢ =1,...,Q
mq; == fraction of resource ¢ that project j would consume, ¢ =1,...,Q,

j=1...,n
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S = set of candidate projects.

An alternative to (4.11) that has been used is

Vi=2 mgirg/ || M ]] (4.12)
9€Q
where A is the () dimensional vector of A;’s, and || - || is the L, norm.

A shortcoming of (4.11) is that as a resource nears depletion, V; can become
numesically unstable; the denominator can near zero while the numerator remains
large. There are two approaches to reducing this problem. The first decreases the
importance of the ratio in (4.11) by t-a,king iis square root (or some other fractional

power):

V=~ max {(’\q + "q.i)(z Tqs — 7"4.1‘)1/2/(1 —Ag - 7"«1:')1/2} . (4.13)
q=1,...,Q@ €S

A second approach is to use (4.11) or (4.13) until max, \; is within somc specified
tolerance of 1, and from then on select projects based upon their weight alone. This
is referred to as a switch in [74].

We incorporate (4.11) into & marginal return heuristic for the time intervals.

Interval Pricing Heuristic :
1. Initialize.

(a) S:={1,...,n}. (The set of unselected projects.)
(b) T::={1,...,D}, for j =1,...,n. {Time intervals available for project j.)

(c) J := . (Set of projects that have been scheduled.)

2. Compute costs.

(8 M1 := Y espi/D; A2 1= Ljes b/ BW.
(b) myj:=p;/D, for all j € S; mp; :=b;j/BW,forall j €S.
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(¢) V; := maxg=1,2 {(Ag + 7¢;)(Les Tas — ai) /(1 = Ay — 7g;)}, for all j € S.
(d) Uj := w;/V;, for all j € §. (“Utility” of project j.)

(e) Ti = Tjespri<i,a;>i Ujs for all i € T;. (Value of time interval i.)

(f) Fji=min ¢4, YIIPTID, for all 5 € 8. (Value of the minimum

{ryeT+pj—1}€T;
cost time slot for project j.)

(g) 2 := argmin ¢pr;4;-5;) YiIP-ID, for all j € S. (Start time for the

{ryet+pi—-1}€T;
minimum cost time slot for project j; its cost is F;.)

3. Select next project: 7.

(a) Q:= 8. (Set of unselected projects.)
(b) n := argmax;eq U;/F;. (Project with the highest utility to cost ratio.)

(c) {2, —cjny 1 Zn—1; Zy+ Doy s Zn+pyten—1} € Ty forall jeJ,
then select 7 and go to step (4); otherwise Q := Q\ {7} and T, := T,\ {Z,}.

(d) If @ # ¢, go to step 3b.

(e) If Q = ¢, got to step 4de.
4. Update and iterate.

(a) S :=8\ {n}. (Remove selected project.)

(b) Tj:=T;\{2,,2,+1,...,2,+p,—1} forall j € S. (Delete newly assigned
time intervals.)

(c) J:=J+{n}.

(d) If n € Ay, for some k*, then § := S\ {j | 7 € Ax-}. (Drop any projects
that are multiple opportunities for the same request.)

(e) If there exists no Z; € [rj,d;] such that {Z; — ¢ji,..., Z;,..., Z; + p; — 1,
cesZi+pit+cij—1} €T then S :=8\ {j}, forall j €S, e J.

(Check to see if any projects are now infeasible.)
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(f) f S # ¢, return to step 2 and iterate.

(g) f S = ¢, stop. (There are no projects left.)

Project weights that vary with the time interval (e.g., w; — (;, where §; is a
function of the time interval) can be incorporated by computing U;; rather than U
forall : € T}, j € §. T, Fj, and Z; would then be calculated as before. An
alternative to selecting the next project in step 3b based on the ratio of project
weight to index of resource consumption is to use the difference between the two:
7 := argmax;jea(Uj — F;). In addition, computational experience may indicate a need
to use (4.13) for V; in step (2c) of the heuristic, or to employ a switch to selection

based on pure project weights [74].

4.3 Conclusions

In this thesis we have considered several classes of models for the management of
satellite-based sensors. In particular, we have studied sensor coverage and scan se-
quencing problems. Although there are many potential applications, the ones that
motivated our work are those of strategic surveillance and environmental observa-
tion. Our intent was to provide an intuitive understanding of the problems and their
solutions. A similar approach can be used to gain insight for the further research di-
rections that have been identified. To the extent that such models and their analysis
provide usable solutions to realistic problems, or even a better understanding of how
to construct them, then they are a contribution to the effective use of resources that
are likely to be even more heavily employed in the future than they have been in the

past.
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HIRIS

A.1 Introduction

Traditionally, scientists within different disciplines related to the study of the Earth
have worked largely independent of one another. No real attempt has been made to
integrate the various models that have been developed through the study of different
components such as the atmosphere, soils, vegetation, and oceans. A recent thrust,
however, is to view the Earth as an integrated system. Such a perspective requires a
remote sensing system that can collect data about the Earth’s surface, oceans, and
atmosphere over a range of scales. An integrated measurement capability, as will
be provided by the Earth Observing System (Eos), can acquire data throughout the
electromagnetic spectrum for the purpose of characterizing various Earth system pro-
cesses. An understanding of the dependencies involved between different disciplines,
particularly between those of different scales, can enhance our ability to predict envi-
ronmental change. The study of specific processes will require the collection of remote
sensing data at a range of spectral, spatial, and temporal resolutions.

The High-Resolution Imaging Spectrometer (HIRIS) [36], [53], [83], [89] is one of
the highest spatial and spectral resolution instruments that will be deployed as part
of the Earth Observing System . It will obtain simultaneous images in 192 spectral
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bands in the range .25-4.0 pm, with a sampling interval of 10 nanometers. The spa-
tial resolution is 30 meters, and an instantaneous image will consist of 800 adjacent
pixels which produces a 24 kilometer wide swath. This image can be made within
the region coverable by pointing the sensor up to +45° cross-track (i.e., orthogonal
to the direction of travel of the satellite), and +60°/—30° along-track. Cross-track
pointing allows for the measurement of reflectance properties under different atmo-
spheric attenuation conditions, as well as providing for more frequent opportunities
to image a particular spot.

Imaging spectrometry is the measurement of electromagnetic radiation from the
sun that is reflected by the surface of the earth. The ability to acquire data with
the precision offered by HIRIS will improve our ability to make a whole host of mea-
surements that are not currently possible with the current generation of broadband
space-based sensors. Examples are the surface mapping of geological deposits based
upon the spectral signature of constituent minerals and soils, and the characterization
of vegetation, coastal and inland waters, and alpine snow and ice.

HIRIS represents the finest scale of measurements that are to be made among
the suite of instruments envisioned for the Earth Observing System. That, however,
plat.:es it in an intermediate position in a comprehensive data collection scheme be-
tween in situ measurements made by a person on the ground and those made by
moderate and broad band sensors that map the surface of the globe every few days.
HIRIS will be complemented by several instruments in the Eos program, such as the
Moderate-Resolution Imaging Spectrometer (MODIS) in the visible, near-infrared,
and thermal infrared wavelengths, as well as by the passive microwave instruments
that compose the High-Resolution Multi-frequency Microwave Radiometer (HMMR).
There are other instruments whose high-resolution measurements will add to those
made by HIRIS in the visible and near-infrared wavelengths. They include a Synthetic
Aperture Radar (SAR) in the active microwave and a Thermal Infrared Multispectral

Scanner (TIMS). Such instruments permit analysis and interpretation of data from
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specific regions covered by broader swath instruments.

A.2 Heritage of HIRIS

Previous instruments provide the scientific and engineering experience necessary to
develop an instrument such as HIRIS with an acceptable degree of technical risk.
These instruments fall into two categories: previous spaceborne sensors with high
spatial resolution but low spectral resolution, and airborne imaging spectrometers
that possess both high spatial and spectral resolution characteristics.

As discussed earlier, the Landsat Thematic Mapper (TM), which was first fielded
in 1982, has relatively high spatial resolution in seven spectral bands. It has been
of considerable scientific benefit, primarily in the areas of cloud studies, snow-cloud
discrimination in mountainous areas, detection of stress in vegetation due to dehy-
dration, and the identification of some minerals whose reflection characteristics fall
within the spectral bands of the TM. The High Resolution Visible Instrument on the
French satellite SPOT has 20 meter spatial resolution in three spectral bands, and 10
meter resolution in one panchromatic band. It is capable of being pointed cross-track
up to 27°, which allows for multiple views within a single orbital revisit cycle.

There are two sets of airborne instruments, the first of which is the Airborne
Imaging Spectrometers (AIS-1 and AIS-2) [109] that were used from 1983 to 1987.
They had 10 meter spectral resolution in 128 spectral bands for images that were
32 and 64 pixels wide. Their principal use was for the testing of area-array infrared
detectors, but some scientific results in geology and vegetation were provided. The
successor to the AIS program is the Airborne Visible and Infrared Imaging Spectrom-
eter (AVIRIS) [110], which has been in use since 1987. It covers the same spectral
range as is proposed for HIRIS, with spatial resolution of 20 meters. Testing with
AVIRIS will establish tke potential benefits of HIRIS.

Potential scan sequencing strategies for the airborne imaging spectrometers are
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much broader than they are for space-borne sensors. Fewer mechanical restrictions
due to sensor maneuvering are imposed on the selection and ordering of images, and
there are no time windows with which to be concerned. It also isn’t necessary to
point the sensor cross-track for multiple views, since all that is needed is to fly back
over the desired area. A space-based sensor is much more highly constrained in terms
of its movements and the timing of its images. It is likely that future generations of
space-based sensors will incorporate more flexibility as technology permits; thus the
strategies that we consider encompass a wider spectrum of sequencing optiohs than

are strictly permitted for HIRIS.

A.3 Science Objectives

Imaging spectrometry measures the solar radiation that is reflected from the surface
of the earth. With high spectral resolution, it is possible to characterize a variety of
earth phenomena, several of which we will describe [36], {53], (89].

A.3.1 Mineral Mapping

Over 1000 minerals have unique spectral signatures in the range .25-4.0 pm. As a
result, imaging spectrometry can be used to identify and map these minerals in surface
rocks and soils. This permits the location of nonrenewable resources, and provides
for a better understanding of the processes that have produced these landforms.
The cumulative properties of the combination of minerals, organic material, and
water contained in soil permit it, too, to be characterized by its reflectance. The
spectral signature will often contain components due to both mineral and vegetation,

which it may be possible to separate.
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A.3.2 Oceans and Inland Waters

HIRIS has better spectral resolution than do other existing instruments that have
been used to study coastal zones and inland waters. It should be possible to sepa-
rate the different components of near-surface waters. In addition, the near-infrared
bands can be used to compensate for atmospheric effects that occur over water with
high levels of sedimentation and in nearby land scenes. It may also be possible to
study near-shore waters which contain material unrelated to chlorophyll pigments.
Increased spatial resolution will aid in the examination of inland waters, which have
several distinctive characteristics: relatively small size; long and complex boundaries
with land; widely varying optical conditions; and strong horizontal and vertical gra-

dients in their geological, chemical, and physical conditions.

A.3.3 Vegetation

Analysis of vegetation reflectance focusses on a variety of biogecchemcial processes,
to include water content of leaves, photosynthetic activity, productivity, and transpi-
ration. Stress associated with excesses or deficiencies in soils that lead to shifts in
the chlorophyll absorption spectrum can be measured. On a large scale, the health
of regions of vegetation can be related to such parameters as total leaf area or total
foliar nitrogen. This is an area where the measurements benefit from HIRIS's abil-
_ ity to point cross-track. Off-nadir viewing provides better information on :he total

reflectance characteristics of vegetation.

A.3.4 Atmosphere and Snow & Ice

HIRIS is intended primarily for use in observing the surface, however, it can also col-
lect information on both the atmosphere and alpine snow and ice conditions. In the
atmosphere this instrument can measure such features as aerosol loading and com-

position, which is of research use both directly and for correcting images taken over
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nearby land masses. Snow reflectance is a function of its grain size and absorbing im-
purities, attributes that can be estimated by HIRIS measurements. Off-nadir viewing
and selected spectral bands will be used to evaluate these characteristics, which are

necessary for calculating the surface radiation balance.

A.4 Instrument Design

The design characteristics of HIRIS will reflect the science requirements established
in the last section. Because the instrument is intended for targeting rather than for
continuous data acquisition, it will obtain data at specific times and places. From
earlier experience with the Landsat Thematic Mapper, a spatial resolution of 30
meters was chosen. This will permit study of vegetation systems where changes can
occur due to gaps created by tree death, windfall, and land use changes. While even
greater resolution for use in mineral mapping is desirable, the disadvantage of an even
higher data rate rules it out.

Spectral coverage is determined by science objectives and technological capabili-
ties. The bandwidth selected contains almost all the diagnostic information that can
be gleaned from sensing reflected solar energy. Spectral resolution is determined pri-
marily by the needs of water and vegetation studies in the visible and near-infrared
bands and mineral mapping in the short-wave infrared. Most minerals, for instance,
can be detected by 10 nanometer sampling whereas 20 nanometer sampling would
significantly corrupt the ability to identify certain materials.

The frequency with which any given region can be imaged is driven by the charac-
ter of the phenomena being considered. Water studies call for the greatest frequency
of observation and geological studies the least; vegetation studies fall in the middle.
All observations, however, require favorable conditions, to include appropriate light-
ing and the desired presence or absence of vegetation cover. The pointing capabilities

of HIRIS, +45° cross-track and +60°/—30° along-track will allow for the re-targeting
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of any point on the globe in no more than two days. If the site is located at 40° north
or south latitude it could be imaged eight or more times within the 16-day orbital re-
peat cycle. In addition to permitting more frequent observation, measurements made
by off-track pointing are used to correct for atmospheric attenuation and to estimate
other reflectance characteristics.

HIRIS’s potential raw internal data rate is massive:

. -1
« 800 2IXels (4.49 - ) — 410 Mbys/image

image

192 .bands 12 bits/pixel
image band image

Twelve bits per pixel was selected based on the dynamic range and smallest reflectance
interval to be observed. Snow is one of the Lrightest natural substances, so large
dynamic range is necessary. It is also desirable to be able to distinguish between very
small differences in reflectance, so fine quantization is needed. The signal processing
needed for water studies also calls for 12-bit encoding.

The cuzrrent HIRIS design plan can be summarized in table A.1 (adapted from [53,
p. 139]). A more detailed discussion of relevant scan related technical parameters is

provided in section 3.1.

A.5 Summary

HIRIS is an environmental sensor that has been developed for high spatial and spec-
tral resolution. Its use will enable the collection of data that cannot currently be
gathered using present sensors. It will be a complement to moderate and low res-
olution sensors by sampling at specific sites within the regions they cover. HIRIS
will capture transient processes in the context of a global, multistage remote sensing

strategy.
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Orbit altitude

705 kilometers

Swatb width

24 kilorneters

Ground instantaneous | 30 meters
field-of-view
Spectral Coverage 0.4-2.5 pm, 192 bands
Sampling Interval
0.4-1.0um 9.4 nanometers
1.0-2.5pum 11.7 nanometers
Pointing

Along-track
Cross-track

+60°/ — 30°
+45°

Encoding 12 bits/pixel
Data Rate
Internal 410 Mbps
Instrument to 100 Mbps
Platform
Long term 3 Mbps

Table A.1: HIRIS Instrument Design.
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Appendix B

Figures of Starting Heuristics

To provide a general sense of how the different starting heuristics produce feasible
tours (from which we then extract the shortest path), we show figures that display
each of the six different combinations of path forming and local optimization heuris-

tics. Table 3.3 is reproduced here to recapitulate the heuristics used.

Nearest Neighbor, followed by 2-Opt
Nearest Neighbor, followed by 2H-Opt
Nearest Neighbor, with no Local Optimization
Multiple Fragment, followed by 2-Opt
Multiple Fragment, followed by 2H-Opt

I Multiple Fragment, with no Local Optimization I

Table B.1: Combinations of path-forming and local optimization heuristics that pro-
vide initial feasible solutions whose length can be used in the subgradient optimization
step of the tree relaxation with Lagrangian objective function.

Figure B-1 shows the nearest neighbor heuristic followed by 2-Opt; Figure B-2
nearest neighbor followed by 2H-Opt; Figure B-3 nearest neighbor followed by no local
optimization; Figure B-4 multiple fragment followed by 2-Opt; Figure B-5 multiple
fragment followed by 2H-Opt; and Figure B-6 multiple fragment followed by no local

optimization.
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Figure B-1: Tour formed by nearest neighbor heuristic followed by 2-Opt.
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Figure B-2: Tour formed by nearest neighbor heuristic followed by 2H-Opt.
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Figure B-3: Tour formed by nearest neighbor heuristic with no local optimization.
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Figure B-4: Tour formed by multiple fragment heuristic followed by 2-Opt.
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Figure B-5: Tour formed by multiple fr. yment heuuistic followed by 2H. Cnt.
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Tigure B-6: Tour formed by multiple fragment heuristic with no local optimization.
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