
Contributions of the Human Operator to

Supernumerary Robotic Limbs

by

Jacob William Guggenheim

Submitted to the Department of Mechanical Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

@ Massachusetts Institute of Technology 2020. All rights reserved.

Author .......... Signature redacted
Department of Mechanical Engineering

Oct 11, 2019

Signature redacted
C ertified by ........................

H. 'Iarry Asada
Ford Professor of Engineering

Thesis Supervisor

Signature redacted

A ccep ted by ............................ ..............................
MASSACHUSET INSTIUTE Nicolas G. Hadjiconstantinou

Chairman, Department Committee on Graduate Theses

FEB 052020

LIBRARIES
Cl)



I
I



Contributions of the Human Operator to Supernumerary

Robotic Limbs

by

Jacob William Guggenheim

Submitted to the Department of Mechanical Engineering
on Oct 11, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

An expanding literature base has applied Supernumerary Robotic Limbs (Superlimbs)
to fields as diverse as heavy industry, robotic surgery, and assistive technology. While
the list of applications has grown, and the designs have become more diverse, the
research community has focused almost exclusively on the robotic system's role in
augmenting the human's capabilities. This represents only one side of the issue; little
research has explored the role of the human operator. This thesis represents the first
in-depth exploration of the human's contributions to the Superlimb-human system.

We began by examining the control strategy of Superlimbs by asking whether
fully manual control of the Superlimbs was viable when the human operator was
asked to perform simultaneous and independent tasks with both their robotic and
natural limbs. Although we found that the human operator was able to control
all four limbs-two robotic, two natural-simultaneously, we found that the human
operator performed worse with their natural limbs when controlling all four limbs
as compared to when the human operator was only controlling their natural limbs.
Thus, when designing Superlimbs for a taskset that requires the human and the robot
to perform simultaneous independent tasks, this study points to the need for reducing
the number of Superlimb degrees of freedom (DOFs) the human must manually control
either through design or control.

In order to achieve this reduction, we next exploited the high redundancy and
flexibility of the human body. First, we proposed a methodology for reduced-actuator
Superlimbs by exploiting the human operators' ability to manipulate the base of the
Superlimb. Based upon this methodology, we realized a lightweight Superlimb that
could assist a human operator by opening a door when the human operator's hands
are busy. Second, we proposed a novel control input methodology for communicating
a rich variety of commands to the Superlimbs while both hands are busy. Based
upon this methodology, and in combination with an intermittent control structure,
we controlled the reduced-actuator Superlimb described above with action primitives
to assist a human operator by opening a door when the human operator was holding
a large box.
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Finally, as the Superlimb's state changes, that change is reflected as a change
in the forces and torques felt by the human operator at the base of the Superlimb.
We found that this inherent haptic feedback allowed the operator to both perform
closed-loop manually control of the force output of a Superlimb and to supervise the
autonomous actions of a Superlimb.

In sum, this thesis explores how Superlimbs can be designed to exploit the benefits
while limiting the challenges of being attached to a human operator.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Engineering
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Chapter 1

Introduction

The first paper on Supernumerary Robotic Limbs, known as SRLs or Superlimbs

for short, was written in 2012. It introduced Superlimbs as a new type of wearable

co-robot that can perform tasks in close coordination with the human operator and

demonstrated the Superlimb helping a human perform a drilling task after learning

through observation [271.

Llorens et al. argued that Superlimbs could extend the range of available skills

and manipulation possibilities beyond what is currently possible with other wearable

robotic systems [27]. This is because Superlimbs differ fundamentally from other

wearable robotic systems like exoskeletons and prosthetics. Active prosthetics func-

tion in series with the existing human body to compensate for lost limb function.

Exoskeletons function in parallel with the existing human body to increase joint

torques and muscle strength with external actuators or support a load with an elastic

structure that stores energy and/or redistributes the load across the body 171 [161.

Importantly, neither of these two wearable robotic systems add additional degrees of

freedom to the human body.

Rather than mimicking the structure and kinematics of the human body, Super-

limbs are a type of wearable robot that extend the human users' capabilities with

extra robotic limbs attached to the human. Because they neither operate in series

nor in parallel with the human's natural limbs, Superlimbs have the potential to

broaden the functions a single human user can achieve [361156].
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Figure 1-1: Examples of Superlimbs: Over the years, the Superlimb research commu-

nity has explored different designs and placements. Images for the figure taken from

[37] [8] [56] [25] [31] [331

Since the initial publication in 2012, significant progress has been made both on

the design and control front as shown in Fig. 1-1. In 2013, Parietti et al. argued

that control performance of Superlimbs could be hindered by unpredictable motions

of the human operator. Thus, they used dynamic analysis and state estimation to

reject the disturbances caused by the human [37]. In 2014 and 2015, Superlimbs

moved from being exclusively waist mounted to being mounted on other parts of the

body, including the shoulder [8] [50]. New potential applications of Superlimbs were

also identified, including having the Superlimb brace the body of a heavy industry

worker and having the Superlimb function as an assistant in domestic tasks [34] [38]

[51]. In 2016 through 2018, new control methodologies were applied to Superlimbs,

including using impedance control for body support, using myoelectric signals from

Auricularis muscles for the control of an extra robotic thumb, and using neural signals

from a non-invasive electroencephalogram (EEG) in combination with some on-board

autonomy to control an Superlimb [30] [25] [42]. Finally, 2018 and 2019 have seen the

20
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rehailittio space: extra-
rehabilitation vehicular actites

locomotion
asslocooiotnc fmanufacturing andr assistance for

disabled patients

elderly assistance construction and
maintenance

SRL

blind people tourist/excursion

assistance assistance

recreation/sports

Slide adapted from Federico Parletti's defense (2015)

Figure 1-2: Sampling of proposed applications for Superlimbs. Figure adapted from
Federico Parietti's defense, 2015.

introduction of soft Superlimbs, low cost 3D printed Superlimbs, and snake shaped

Superlimbs 112] [11] [3].

Fig. 1-2 shows a sampling of proposed applications for Superlimbs. This figure

highlights the scale of problems Superlimbs might be able to address. Parietti's Su-

perlimbs for balance augmentation targeted helping the elderly limit the risk of falling

by increasing the support polygon during walking; the 80+ years old population's risk

of death due to falls is 90 times higher than that for the below 60 year old population

[38]. Wu's Supernumerary Robotic fingers aimed to help the one in six Americans

who suffer from some form of limb mobility and dexterity problem by providing a

robotic system that allowed the operator to perform two-handed tasks-like taking

the cap off a bottle-with a single hand[55]. Kurek's Mantisbot sought to address a

portion of the 240,000 workplace injuries in the manufacturing and agriculture sectors

by providing a Superlimb capable of supporting the person during near ground work

[25]. Clearly, it is worth pursuing the improvement of Superlimbs.

Despite this significant progress and promise, one commonality among all this work

is that it focused on how to improve the robotic system, whether that be through

design or control. However, a fundamental property of Superlimbs is that they are
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mounted to a person. This begs the question; what are the contributions of the human

to the Superlimb-human system and should we care about these contributions?

It is important to note the dearth of research on this topic within the Superlimb

community is not indicative of the importance of the topic but rather represents a

common evolution of the thinking within a particular field. For example, the exoskele-

ton research community tracked a similar path. It has been argued that some of the

surprising failures within the exoskeleton research community-for example exoskeletal

aids that fail to reduce metabolic energy consumption-can be attributed to the failure

to account for the constraints of the human control system. For example, in 2003 van

den Bogert proposed a design using a single spring intended to reduce muscle forces

associated with body weight support, ankle push-off, and leg swing. However, when

implemented in 2011 by van Dijk et al., the exotendon design increased metabolic rate

despite reducing muscle forces. It is hypothesized this was due to, at least in part,

difficulties human users may have had in controlling it [131. As a result, more recent

work in the exoskeleton field has focused on addressing the human element of the

human-exoskeleton field both through mathematical modeling and empirical studies.

This has led to both passive and active devices that have successfully decreased the

metabolic cost of walking [13] [29].

This recent trend in exoskeleton research, and the resultant performance improve-

ments, are mirrored in the prosthetics community 120] and the collaborative robotics

community [4]. Given this, one could argue that in order to achieve the promise of

Superlimbs, the Superlimb research community must similarly focus on the contribu-

tions of the human.

There do exist a few works that explicitly address the human. In one study,

users were given control of either two virtual hands that mirrored the movements of

their natural hands or three virtual hands, two of which mirrored the movement of

the natural hands and the third which mirrored the movement of their foot. When

presented with three virtual falling objects, users preferred to use three virtual hands

to catch the objects as compared to two virtual hands. However, no significant

difference was found in success of catching the falling objects or in average effort
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during the tasks when comparing three virtual hands and two virtual hands [1]. While

this study does represent an important step toward recognizing the importance of the

human in the human-Superlimb system, it still treats the human as something that is

being acted upon by the robotic system rather than treating the human as a partner

within the system.

Building upon these initial works, and drawing inspiration where possible from

neighboring fields, this thesis focuses on the contributions of the human to the human-

Superlimb system to inform the control architecture of, design of, communication

with, and feedback from Superlimbs. In particular, the key contributions of this

thesis are:

" Quantifying the Feasibility of Fully Manual Control for Concurrent Tasks

• Exploiting the Human Operator's High Degrees of Freedom to Design and Con-

trol a Reduced-Actuator Supernumerary Robotic Limb

* Quantifying the Contributions of Inherent Haptic Feedback from Supernumer-

ary Robotic Limbs

Chapter 2 discusses an experiment designed at understanding which control ar-

chitectures are best suited for Superlimbs through human subject testing. In it, we

find that fully manual control leads to worse performance with the human operator's

natural limbs when asked to perform a task with two natural and two robotic limbs

as opposed to with just their natural limbs. This leads to a discussion on the ap-

propriate control architectures given a taskset. Chapter 3 provide two methodologies

that leverage the high redundancy and degrees of freedom in the human to address

some of the key challenges in the design and communication with Superlimbs. The

first methodology exploits the ability of the human operator to directly position the

Superlimb through movements of the human body to design a lightweight, reduced-

actuator Superlimb. The second methodology exploits a type of redundancy of force

at the fingertips in order to send command inputs to the Superlimb despite the hu-

man hand's being busy performing another task. Both methdologies in Chapter 3
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and Chapter 4 are used to design and control a lightweight, reduced-actuator Super-

limb that can assist a human operator by opening a door when one's hands are full.

Chapter 4 details two studies on the inherent haptic feedback from Superlimbs. As

the Superlimb's state changes, that state change is often reflected as change in forces

and torques at the base of the Superlimb that can be felt by the human operator. The

first study shows that this feedback, which we have termed inherent haptic feedback,

can be leveraged to allow the human operator to perform fully manual closed loop

control over the force ouptput of the Superlimb. The second study shows that the

human operator can use the inherent haptic feedback to supervise the autonomous

actions of a Superlimb. Finally, Chapter 5 provides a conclusion of the work done

for this thesis along with recommendations for future directions of work for the Su-

perlimb community based upon some incomplete work with unanticipated outcomes

done during the completion of this thesis. This work is discussed with an eye toward

future directions.

24



Chapter 2

Quantifying the Feasibility of Fully

Manual Control for Concurrent Tasks

Superlimbs have the potential to broaden the functions a single human user can

achieve by helping with holding, grasping, and manipulating objects as well as sup-

porting and bracing the human body [361, [56]. The Mantis-Bot Superlimbs, for

example, can brace the human body while the human is working on or near the floor

[25]. The human does not have to use one of the natural arms to support the body;

the Superlimbs support the body so that both human hands are available for a task.

The Superlimbs on the shoulder can hold an object above the head while the human

is fixing the object on the ceiling 181.
Many of these examples of initial work within Superlimbs have focused on tasks

that can be solved solely through measurements internal to the human-Superlimb sys-

tem and using a leader-follower paradigm; measurements of the human, the leader,

fully dictate the actions of the Superlimb, the follower. For example, the Supernu-

merary Robotic (SR) Fingers relied on measurement of the human's natural fingers to

dictate the position of the SR Fingers [56]. Similarly, the robot on the shoulder used

two IMUs to measure the actions of the human's wrists to dictate the robot's posi-

tion 18]. However, Superlimbs show theoretical promise for tasks requiring perception

external to the human-Superlimb system. Because of their portability, Superlimbs

could readily be integrated into household tasks such as adding seasoning during
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food preparation or opening a door when one's hands are full [32]. In fact, a recent

system named Soft Poly-Limbs (SPL) demonstrated their soft robotic wearable arm

operating a card swipe and opening a door for a user but relied on a secondary user

to control the SPL [33]. Within manufacturing and assembly, Superlimbs could be

used to help workers by operating secondary tools, grabbing parts from disparate

areas and bringing them together for assembly, changing the orientation of objects

during assembly, or holding cables out of the way during assembly. Broadly, bar-

ring a secondary operator to control the Superlimb, these tasks require concurrent,

simultaneous and independent, actions of the Superlimbs and the natural limbs and

perception of objects external to the human-Superlimb system.

Traditional robotics might solve these problems by increasing the manual control

of the robot. Placing the human in the loop leverages human's superior percep-

tion/planning abilities to solve challenging external perception problems [47]. How-

ever, Superlimbs differ from traditional tele-robotics in that ideally the user is able

to operate both their natural body and the Superlimb concurrently. This both limits

the choice for control inputs and increases the degrees of freedom (DOFs) the user

must control. Direct teleoperation of a high DOF robot with a low-dimension input

device can lead to high cognitive and physical load [2]. Raising similar questions for

Superlimbs, is there any limitation to exploiting extra wearable robotic limbs? Will

users be able to take advantage of the extra DOFs offered by Superlimbs when given

direct control over them?

Early related research into concurrent operation of Superlimbs and natural limbs

on independent tasks is promising. In one study, users were given control of either

two virtual hands that mirrored the movements of their natural hands or three virtual

hands, two of which mirrored the movement of the natural hands and the third which

mirrored the movement of their foot. When presented with three virtual falling

objects, users preferred to use three virtual hands to catch the objects as compared to

two virtual hands. However, no significant difference was found in success of catching

the falling objects or in average effort during the tasks when comparing three virtual

hands and two virtual hands [1].
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Looking at the example tasks detailed above, many of the tasks, such as adding

seasoning to food or operating secondary tools, are currently done sequentially in the

absence of Superlimbs. Thus, our goal is not simply to make an existing task easier

by adding Superlimbs as previously studied, but to increase the number of actions

that can be accomplished by the user concurrently.

In the current work, we aim to address whether a user can control both SRLs

and the natural arms concurrently; and how the user coordinates the tasks. To

this end, we present a human study designed to explore how humans perform tasks

that require concurrent actions, whether natural or robotic. We use simple, but real

physical Superlimbs attached to the subject's body. By designing the study to use a

pair of natural limbs and a pair of Superlimbs, we can investigate intra-robotic limb

coordination as well as intra-robotic-natural limb coordination. The study occurred

over multiple days to see if these results were stationary.

2.1 Experimental Setup and Control Signal

Figure 2-1: Experimental setup. (A) Subject showing the experimental setup and
the Superlimb prototype. (B) Stage 1, where the subject moves to the targets with
their natural limbs (NL). (C) Stage 2, where the subject moves to the targets with
the Superlimbs. (D) Stage 3, where the subject moves to the targets with both the
NLs and the Superlimbs.

We conducted human subject experiments based on the protocol approved by the

Massachusetts Institute of Technology Committee on the Use of Humans as Experi-
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mental Subjects (COUHES), 1604528486. All of the subjects (N = 11) were healthy,

male (required because of the control input choice), right-handed subjects, in good

physical shape (20 < BMI < 30) and between 23 and 37 years old. The participants

wore a prototype of the Supernumerary Robotic Limbs while standing in front of a set

of four targets. See Fig. 2-1A. The goal of the subjects was to minimize the position

error between the red disk-shaped targets and the position of the two robotic limbs

and the two natural arms as the targets moved from position to position. Each limb,

robotic and natural, was constrained to rotate about its base in the sagittal plane.

In the case of the natural arms, this motion corresponds to the flexion/extension of

the shoulder joint in a sagittal plane. Subjects were asked not to move their arms

outside of this plane, extending them and keeping their elbow and wrist joints fixed.

Shoulder angle was tracked with an Inertial Measurement Unit (IMU) held in the

hand of the subject.

The four targets were placed at the end of carbon fiber rods and moved with

servomotors. The targets moved to a new, randomly generated position and held it

for 15 seconds. The motions of the targets followed minimum-jerk trajectories [18]

and lasted for three of the 15 seconds. The four target trajectories, having diverse

step sizes and directions, are independent of each other. The experiment consisted

of three stages. In Stage 1, subjects did not wear the robot but simply followed the

motion of two targets with their two natural arms by pointing their fully extended

arms at the targets (Fig. 2-1B). In Stage 2, subjects wore the robot and followed the

motion of two targets with the two robotic limbs (Fig. 2-1C). They were instructed

to relax their natural arms. In Stage 3, subjects wore the robot and followed the

motion of the four targets using both natural and robotic limbs (Fig. 2-1D).

Each subject participated in two experimental sessions for Stage 1, three for Stage

2, and another three for Stage 3. Sessions consist of multiple trials of tracking, each

lasting 3 minutes. Stage 1 and Stage 3 sessions contained 3 trials each, while Stage

2 sessions consisted of 5 trials. Subjects could rest between trials, and could not

participate in more than one session per day. Thus, the experiment consisted of

eight days of data collection over a two to three week period. Prior to beginning
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data collection each day, the system was calibrated until the subject felt they could

readily control their natural and robotic limbs. This daily calibration never exceeded

10 minutes. The end point for the experiment was pre-determined based upon a

pilot experiment. In total, subjects spent roughly between 6-8 hours performing

the experiment and 4.5-6 hours with the Superlimb; this is less than the total time

required to perform the experiment as they did not control the Superlimbs during

Stage 1.

Within null space Within null space

of natural limbs of natural limbs

and torso and torso

rectus pectoralis
abdominis, R major, R

0 0

Figure 2-2: Control Architecture. The activation of the rectus abdominis on one side
of the body rotates the corresponding robotic limb in the downward direction. The
activation of the pectoralis major on the same side of the body rotates the corre-
sponding robotic limb in the upward direction. This is analogous to an antagonistic
arrangement of muscles.

While not the focus of this chapter, the control scheme has an impact on the

control experience of the subjects. For the purposes of this study, we sought a

control scheme that did not interfere with the movement of the natural limbs and

had previously demonstrated good performance on a task similar to Stage 2 of this

experiment-minimizing the position error between the Superlimb and a target. Given

these requirements, we chose to use a previously studied control architecture [35]. In

this previous work, the authors compared three different control strategies; position

control, velocity control, and one based upon a muscle model. All of these control

strategies used surface electromyography (sEMG) sensors placed on the pectoralis

major and rectus abdominis muscles to get the subject's control input. The authors
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asked their subjects to control two waist-mounted Superlimbs to minimize the error

between targets and the Superlimbs as the targets moved from position to position.

They found that the velocity control strategy lead to the highest control performance,

lowest user effort, and greatest independence from the natural limbs. Thus, while we

make no claims of optimality of this control architecture, it satisfies our conditions

as a control scheme.

The control architecture consisted of four sEMG sensors (make: Delsys, model:

Bagnoli) that were attached to the pectoralis major (left and right) and rectus ab-

dominis (left and right) muscles as shown in Fig. 2-2. The muscle activation signals

were acquired at a 250 Hz sampling rate, low-pass filtered (Butterworth filter, 2nd or-

der, 10 Hz cutoff frequency), normalized (with maximum voluntary contraction values

recorded at the beginning of every experimental session), rectified, clipped (between

0 and 1), and transformed into reference velocity commands for the robot's motors

according to the velocity PI control law with gravity compensation

T = k,(Oref - 0)+ kij (re5 - 9)du + g(O)

ref= kEMG(apos - aneg)

Here a1o, is generated by the pectoralis major and aneg is produced by the rectus

abdominis on the same side of the body as the robotic limb. The ratio of the gains is

S10, and their values have been chosen to yield peak time T ,= 0.5 . The control

scheme is applied to each robotic limb separately. Note that as this control strategy

re-purposes the torso muscles for the control of the Superlimb, it is fundamentally

a cannibalistic control strategy; it does not add degrees of freedom to the body.

However, as it operates in the null space of shoulder flexion and extension, it is not

functionally cannibalistic in this context.
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2.2 Results

2.2.1 Raw Data
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Figure 2-3: Individual Subject Sample Tracking. (A) Stage 1 trial: tracking of two
targets with the human arms alone, (B) Stage 2 trial: tracking of two targets with
the Superlimbs alone. (C) Stage 3 trial: concurrent tracking of four targets with the
human arms and the Superlimbs.
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All of the subjects completed the three stages of tracking experiments. A sample

of one subject's performance during one trial for each of the three stages is shown

in Fig. 2-3. Subjectively, the subject is able to quickly and accurately move their

natural and robotic limbs as the targets move to each new position.

2.2.2 Results on Performance

Typical performance metrics for a step responses are the absolute error at steady state

and the rise time and as such were applied here. The absolute error at steady state

was found for each target position as the absolute value of the difference between

the position of the limb and the position of the target at the 15 second mark. The

results of all subjects were aggregated together and are shown with the mean and

95% confidence interval in Fig. 2-4A. These results were also aggregated by trial and

are shown with the mean and 95% confidence interval in Fig. 2-4C and 2-4D for the

natural limbs and Superlimbs respectively. The rise time was calculated as 5% to 95%

of the subject's trajectory in response to each target position. The aggregated results

are shown with the mean and 95% confidence interval in Fig. 2-4B. These results were

also aggregated by trial and are shown with the mean and 95% confidence interval in

Fig. 2-4E and 2-4F for the natural limbs and Superlimbs respectively.

Unsurprisingly, the subjects achieved good performance in Stage 1-using only the

natural limbs-with a mean absolute error of 0.15 radians and a mean rise time of

2.78 seconds. During Stage 2-using only the Superlimbs-subjects achieved a mean

absolute error of 0.18 radians and a mean rise time of 4.20 seconds. During Stage

3-using both sets of limbs-the subjects achieved a mean absolute error of 0.16 radians

and a mean rise time of 3.79 seconds with their natural limbs and a mean absolute

error of 0.18 and a mean rise time of 4.79 seconds with the Superlimbs. We think

that the fairly wide confidence intervals shown in Fig. 2-4C-F, and thus the fairly

wide variability, is caused by variability in the task difficulty. Because the target's

motions were random, it is likely that some sets of motions were easier than others.

For example, if during Stage 3 a subject was asked to move all four limbs up slightly,

that would represent a relatively easy set of motions. In contrast, a set of motions
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Aggregate Absolute Errors
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Figure 2-4: Performance. (A) and (B) Aggregate results. Both panels include the
four bars which represent the natural limb (NL) stage 1, Superlimb stage 2, NL stage
3, and Superlimb stage 3 performance respectively. The error bars show the 5-95%
confidence intervals. (C), (D), (E), and (F) NL absolute error, Superlimb absolute
error, NL rise time, and Superlimb rise time respectively. Each panel is divided into 8
sections by the vertical lines, each representing a new session on a different day. The
bolded vertical lines also split each panel into 3 sections, each representing a different
stage of the experiment.
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requiring two limbs to move up and two limbs to move down would be relatively

more difficult. Despite this variability, at the aggregated full stage level shown in Fig.

2-4A and B, the confidence interval bars become relatively narrow; this is due to the

large number of samples. This allows us to make meaningful statistical comparisons

between stages on the performance of the subjects.

Additionally, while these performance results are promising in that the subjects

performed well with the Superlimb, it is important to note that the purpose of this

study was not to demonstrate the effectiveness of the control architecture used but

rather to investigate performance when adding limbs. As such, the performance

shown here confirms the control architecture works well enough for our purposes; the

subjects can readily complete the tasks given to them.

With these data, we can assess both performance within stages-to see if subjects

improved over time, suggesting learning-and between stages-to see if adding addi-

tional limbs with their own required actions affected performance of the original limbs

on the original positioning task. First, to assess improvement within stages, we will

compare the slope of the means of the data over all the sessions within a stage, found

by linear regression, to a slope of zero. Our null hypothesis is that there is no differ-

ence between the slope and zero while the alternate hypothesis is that the slope is less

than zero. Using a one-sample, single-tailed t-test, we found that subjects showed no

evidence of improvement during Stage 1 for either end error or rise time(4 degrees of

freedom, p = 0.77 and 4 degrees of freedom, p = 0.96 respectively). During Stage 2,

subjects showed statistically significant improvement in terms of absolute error (13

degrees of freedom, p = 0.05) but not in terms of rise time (13 degrees of freedom, p =

0.09). Finally, during Stage 3, subjects showed statistically significant improvement

with the Superlimbs in terms of absolute error (7 degrees of freedom, p = 0.02) and

rise time (7 degrees of freedom, p < 0.01) but no statistically significant improvement

with the natural limbs (7 degrees of freedom, p = 0.09 and 7 degrees of freedom, p

0.56 respectively).

In aggregate, these results suggest that subjects' performance with their natural

limbs did not improve within either Stage 1 or Stage 3. This is expected; learning
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is unlikely to take place given the subjects' familiarity with positioning their natural

limbs. Modest improvements were shown in Stage 2, which again is to be expected;

subjects' performance improved, at least in terms of rise time, as they became more

familiar with the control scheme. Finally, subjects showed a fast rate of improvement

during Stage 3 with the Superlimbs, suggesting that, while not the purpose of this

study, a longer study would have shown even better performance with the Superlimbs

before plateauing.

It is important to note that if we apply the same statistical methodology with the

null hypothesis being that there is no difference between the slope and zero while the

alternate hypothesis is that the slope is greater than zero, we find that the subjects

showed statistically significantly worse performance with the natural limbs as judged

by rise time during Stage 1 (7 degrees of freedom, p = 0.04). Given that the subject

performed 3 trials per day with each trial lasting 3 minutes, we think that the reason

for the performance degradation for natural limb rise time during Stage 1 is a result

of vigilance decrement, which has been shown to slow reaction times and increase

error rates during tedious monitoring tasks and has been ascribed to under-arousal

caused by an insufficient workload 1401.

Next, we can assess how additional limbs affected performance. To do so, we will

compare the two performance metrics, absolute error and rise time, between Stage 1

and 3 for the natural limbs and between Stage 2 and 3 for the Superlimbs. To do so

we used a one-sided two-sample t-test where the null hypothesis is that there is no

difference in performance between the stages while the alternate hypothesis is that

subjects performed worse in Stage 3 as compared to Stage 1 for natural limbs and

Stage 2 for the Superlimbs. Subjects performed significantly worse with their natural

limbs in Stage 3 as compared to Stage 1 with respect to both performance metrics

(absolute error: DOF = 3628, p = 0.03, rise time: DOF = 3628, p < 0.01). Subjects

also performed significantly worse with the Superlimbs in Stage 3 as compared to

Stage 2 for rise time (DOF = 5806, p < 0.01) but not for absolute error (DOF

5806, p = 0.77).

On the surface, these results suggest that subjects performed worse when at-
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tempting to position all four limbs as compared to having to position only two limbs.

However, it seems likely that, had the experiment continued, the subjects' perfor-

mance in Stage 3 with the Superlimbs may have not degraded as compared to Stage

2 given the rapid improvement in Stage 3 with the Superlimbs. This is in contrast

to the subjects' performance with their natural limbs, which remained reasonably

constant across Stage 3. Thus, we can only safely conclude that adding additional

robotic limbs degraded the performance of the subjects with their natural limbs over

the course of the eight day experiment.

2.2.3 Results on Concurrency
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Figure 2-5: An individual subject's paired concurrency chart. Each pair of limbs'

trajectories plotted against each other. (A) and (B) show the two NLs and the two

SRLs, respectively. If motion of the two limbs is simultaneous, as it is in these

two plots, the path will be oblique. (C), (D), (E), and (F) show the four other
combinations of limbs. If the motion of these two limbs is not simultaneous, as it is

in these four plots, the paths will be either horizontal or vertical.

Looking closely at the trajectories from Stage 3 in Fig 2-3, it appears that there

is an offset between when the natural limbs begin to move and the Superlimbs begin

to move. To investigate this more closely, we plotted each pair of limbs against

one another for a single trial during Stage 3, shown in Fig. 2-5. Given the paired
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Figure 2-6: Motion periods. NL1 and NL2 serve to distinguish between the two
natural limbs while Superlimb1 and Superlimb2 serve to distinguish between the two
robotic limbs. Each limb has two lines associated with it. The earlier (lower) line
represents the average time that that limb reached 5% of its final position while
the later (higher) line represents the average time that limb first reached 95% of its
final position. The earlier line represents the beginning of the motion for each limb.
On average, the natural limbs were activated first and concurrently followed by the
Superlimbs being activated concurrently.

concurrency chart, if two limbs moved simultaneously, we would expect to see oblique

lines from point to point. This is in fact what we see in Fig. 2-5A and B. However, if

the two limbs were moved in series, we would expect to see either vertical or horizontal

lines, as we see in Fig. 2-5C, D, E, and F. Thus we can see that this representative

trial is consistent with our hypothesis that there is an offset between when the natural

limbs move and when the Superlimbs begin to move.

Fig. 2-6 shows an aggregated view of this data. In it, we plotted two lines for each

limb. The first and second line represent the mean time at which a limb reached 5%

and 95% of its final position respectively (Fig. 2-6). Roughly, the 5% line represents

when the subjects started a movement with a limb. However, the 95% line does not

necessarily represents when the subjects ended a movement as many movements had

a much longer settling time as shown by the sample trajectories in Fig. 2-4. Within

this figure, Superlimb1 and Superlimb2 serve to distinguish between the two robotic

limbs while NL1 and NL2 serve to distinguish between the two natural limbs. During

Stage 1, subjects' mean starting time with their natural limbs was 0.92 seconds for

natural limb 1 and 0.93 seconds for natural limb 2. During Stage 2, subject's mean
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starting time with the Superlimbs was 1.56 seconds for Superlimb1 and 1.49 seconds

for Superlimb2. Finally, during Stage 3, subjects' mean starting time for natural limb

1, natural limb 2, Superlimb1, and Superlimb2 was 0.86, 0.85, 2.08, and 1.91 seconds

respectively. Using the same statistical test as we used to assess improvement in

the performance metrics (one-sample, one-tailed t-test with the null hypothesis being

that there is no difference between the slope and zero while the alternate hypothesis

is that the slope is greater than zero), we found no evidence that the starting time for

any limb changed significantly over the course of a stage. However, using a one-sided

two-sample t-test, we did find evidence that the starting time of the Superlimbs was

later than the starting time of the natural limbs in Stage 3 (DOF = 4354, p < 0.01).

In aggregate, these results suggest that, on average, in Stage 1 and 2, subjects tended

to start the motion with their natural limbs and Superlimbs concurrently. In Stage

3, on average, subjects first moved their natural limbs together followed by moving

the Superlimbs together. Because we found no statistical evidence that the slope of

any of these starting times differed from 0, we can conclude that all of these results

were stationary (i.e. no learning occured).

Finally, Fig. 2-7 shows the fraction of the time that all the different limb groups

were moving concurrently during the first eight seconds of each new target position.

This cutoff was chosen as it, on average, captures the limbs' movements during the

time it takes to rise to 95% of the final settling value, as shown in Fig 2-6. During

Stage 1, the two natural limbs move concurrently 24% of the time, which is higher

than the percentage of time that either natural limb was moving by itself. During

Stage 2, the two Superlimbs move concurrently 26% of the time. This is also higher

than the percentage of time that either Superlimb was moving by itself. Finally,

during Stage 3, the two natural limbs move concurrently 20% of the time-accounting

for times when one of the Superlimbs may have been also moving concurrently-and

the two Superlimbs move concurrently 30% of the time, again accounting for times

when one of the natural limbs may have been also moving concurrently. Interestingly,

both the natural limb-natural limb grouping and the Superlimb-Superlimb grouping

are more common than any natural limb-Superlimb grouping. However, all together,
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Figure 2-7: Average limb group movement in each stage. Each color within the bars
represents a different group of limbs that were moving simultaneously.

at least one natural limb and one Superlimb were moving concurrently 34% of the

time. All four limbs were moved concurrently 4.3% of the time.

2.3 Discussion

While Supernumerary Robotic Limbs (Superlimbs) have been successfully applied

to tasks that only require perception internal the human-Superlimb system, such as

bracing or as an assistive technology for people with disabilities, Superlimbs show

theoretical promise in tasks that require perception external to the human-Superlimb

system such as adding seasoning while cooking or operating secondary tools on the

manufacturing floor. One attractive way to expand the task set that Superlimbs can

be applied to is to insert humans into the loop and allow them to manually direct the

Superlimb, thus leveraging the human's superior perception. However, limited effort

has been put forth to date to understanding the effect of adding additional limbs on

user performance. This study seeks to fill that gap by quantifying how subjects use

physical Superlimbs during multi-limb concurrent and independent tasks.

First, we found evidence that subjects' performance with their natural limbs de-

grades when subjects are asked to control all four limbs on concurrent, independent

tasks as compared to when the subject performed the task with only their natural

limbs. Further, this effect did not diminish over the course of the multiday experiment.

This is perhaps unsurprising; much work has suggested that multitasking leads to in-
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creased error and longer execution times [39]. In adding additional concurrent actions

required of the subjects, as was done during Stage 3, less of their focus can be directed

at the two natural limb targets. We might expect that, given sufficient practice, the

performance degradation shown here would dissipate; a singing piano player provides

evidence that humans can perform complicated manual control tasks concurrently

with other task. However, this requires year, and perhaps decades, of practice. Thus

it is significant that the performance degradation exists, and was stationary, given

the relative simplicity of the task-controlling four degree-of-freedoms-and length of

the eight-day experiment. We desire that Superlimbs offer immediate performance

improvements rather than performance improvements with significant practice. Thus

it appears that Superlimbs would benefit from strategies developed by the shared

control community to combat the difficulty of controlling many DOFs concurrently

by attempting to seamlessly assist the user in completing the desire action with less

control input.

It is unclear why the performance degradation that was found in the natural limbs

during Stage 3 was not also found in the Superlimbs. One hypothesis is that the

improvement from learning to operate the Superlimbs counteracted the performance

degradation typically associated with increasing the DOFs that had to be controlled,

thus disguising the effect. Future work could investigate this by lengthening the study

to reach a plateau in subject's performance with the Superlimbs.

Second, we found evidence that, at least within the context of this experiment,

subjects responded first and simultaneously with their natural limbs followed by mov-

ing their Superlimbs together. The reasoning for this is not a physical incapacity. As

demonstrated in previous work, the EMG-based agonist-antagonist control scheme

allows the subjects to operate the Superlimbs without causing motion of the natural

limbs [35]. Further, we found that subjects did move all four limbs concurrently-4.3%

of the time-during Stage 3.

The observation of how subjects chose to respond to four concurrent and inde-

pendent tasks can be leveraged in two ways. First, it can help inform the choice of

control scheme for the Superlimbs. Interestingly enough, as noted in the introduc-
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tion, many of the previous examples of Superlimbs have used a leader-follower control

paradigm 156], [25]. Placing the human as the leader in this control paradigm is a

natural application of this observation.

Beyond this though, it informs which principles from shared control may be most

successful for Superlimbs. In our experiment, we observed a time offset between when

motion was initiated with the natural limbs as compared to the Superlimbs. Thus one

naive control scheme may be to divide the control of the Superlimb up temporally by

initially attempting to automate the actions of the Superlimbs as the subjects move

their natural limbs. After a brief time, control of the Superlimbs could be transferred

to the human who could complete the fine positioning of the Superlimbs.

Second, this observation can help inform how to divide labor between the natu-

ral and robotic limbs during concurrent and independent tasks. While not a perfect

analogy, past work has shown that people tend to initiate movement with their dom-

inate hand when presented with concurrent tasks, especially when the hands are not

cooperating on the same object [17], [22]. Thus, in tasks that require concurrent

robotic-natural limb action, the more time sensitive task should be assigned to the

natural limbs.

Finally, we found evidence that while the natural limbs were privileged, moving

first and simultaneously followed by the robotic limbs, at least one natural limb and

Superlimb were moved concurrently 34% of the time during Stage 3. This suggests

that the subjects did not simply break the task down into two sequential tasks to be

operated on by each pair of limbs but rather partially combined the use of both the

natural and robotic limbs.

We note that all of the findings of this chapter must be taken within the context

of the controller choice. The particular muscles chosen here may not work well for

women. This certainly opens the door for other muscle choices; the frontalis muscle

on the forehead has been used to control a robotic sixth finger [44]. Further, the

choice of a velocity-controller is less bio-mimetic than other potential choices as our

limbs don't stop moving and hold position when our muscles stop firing. However, the

control architecture chosen here allowed the subjects to perform sufficiently well with
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the Superlimbs on this particular task to allow comparisons in performance during

multi-limb concurrent and independent tasks. Future studies could look at whether

the findings here hold true for alternate control schemes. Additionally, future studies

could investigate the effect of providing proprioceptive feedback to the subjects on the

state of the Superlimbs; proprioceptive feedback has shown value in the prosthetics

community [19].

2.4 Conclusion

In conclusion, we first found evidence that while subjects were able to move all four

limbs concurrently, within the context of this experiment, there is a limit to exploit-

ing wearable robotic limbs for additional concurrent tasks. Namely, we found that

the subjects' performance with their natural limbs degraded as additional robotic

limbs were added. While future work could investigate whether this performance

degredation dissipates with practice, we desire that Superlimbs offer immediate ben-

efits rather than requiring significant practice. This suggests that Superlimbs may

benefit from drawing on control strategies from the shared control or other communi-

ties. Second, we found evidence that, within the context of this experiment, subjects

generally moved their natural limbs prior to their robotic limbs. This suggests a

leader follower paradigm of control, where the Superlimb measures the actions of the

human and responds accordingly. Further, it informs how labor could be divided

between the natural and robotic limbs. Specifically, it suggests giving the primary,

more time-sensitive task to the natural limbs.
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Chapter 3

Exploiting the Human Operator's

High Degrees of Freedom to Design

and Control a Reduced-Actuator

Supernumerary Robotic Limb

A number of Supernumerary Robotic Limbs (SuperLimbs) attached to various por-

tions of a human body have been developed in the last several years. These include

SuperLimbs attached around the waist for assisting a worker in holding an object

[36], mounted on the shoulders of a worker for lifting an object while a worker is

affixing it onto the ceiling [8], supernumerary robotic fingers attached to a wrist for

grasping odd-shaped objects along with the five natural fingers of a wearer [561, and

ones attached to the back for a variety of tasks, including picking up objects, soldering

electric wires, or body support [45] 133] [25]. In these applications, the Superlimbs

play a supportive role; while the human performs the primary task, the SuperLimbs

assist the human by holding an object, fetching an object, or supporting the human

body.

While a human performs the primary task, the human can still move other parts

of the body without interfering with the execution of the primary task. A human
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body has an enormous number of degrees of freedom (DOFs). This flexibility and

redundancy of a human body has been used for controlling wearable robotic systems.

Prosthetic arms can be controlled with sensors detecting the patient's shrug and

shoulder movements 161 while Superlimbs have been controlled with foot switches

when the human operator is seated 145] and electromyograms (EMG) sensors attached

to abdominal and pectoral muscles for controlling two robotic arms 1351. These body

movements or signals utilized for controlling and communicating with SuperLimbs

and prosthetics are orthogonal to or separated from the body movements required

for executing the primary task. In this current work, we aim to exploit the high

redundancy and flexibility of the human body for solving some of the key challenges

in the design, communication with, and control of SuperLimbs.

One of the fundamental difficulties in designing SuperLimbs is that SuperLimbs

containing many active joints tend to be too heavy to wear for a long time. By

exploiting the high redundancy of a human body, this problem can be solved or al-

leviated. Since SuperLimbs are attached to a human body at their base, the limbs

can be controlled directly by moving the base with movements of the human body.

No active DOF are needed for the SuperLimbs in the direction of motion that can

be generated by the human body movements. The number of actuators can be re-

duced and thereby the weight of SuperLimbs can be reduced. This strategy, however,

requires quantitative analysis of body movements to examine whether a human can

comfortably or naturally generate the required movements while adhering to the con-

straints dictated by the primary task. A methodology for quantifying which active

DOFs the human can supply will be developed in this chapter.

The chapter is organized as follows. First, the design concept of reduced-actuator

SuperLimbs will be addressed. A methodology for quantifying the usable body move-

ments while performing the primary task is presented in order to examine which of

the SuperLimbs' active joints can be eliminated. Second, the communication from

the human to the SuperLimb using finger forces will be discussed. An algorithm will

be developed for quantifying the usable space of finger forces and generating patterns

of coded finger forces without interfering with the primary task. Finally, both meth-
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ods will be implementedon a proof-of-concept prototype, and a human subject will

demonstrate the usefulness of the methods.

3.1 Reduced-Actuator Design

Within a limited range and direction, a human can directly adjust the position and

orientation of SuperLimbs attached to the body simply by moving a particular part of

the body. Direct positioning is simple and intuitive as it does not require the human

to communicate their intent to the Superlimb to actuate the direct body-positioning

DOFs. Thus, reducing the number of actuators is not only effective for reducing

the weight of SuperLimbs, but can also make the control and communication task

simpler.

The question is which required DOFs can be replaced by direct human body

movements, and how to split the control space between direct human movements and

active SuperLimbs DOF. Here, we propose the following three steps.

" Task analysis: Given task specifications, determine both the attachment point

of the Superlimb on the body and the required DOFs for performing the task.

• Quantification of usable human body movements: Although a human has a high

degree of flexibility and redundancy, the body can hardly be moved in certain

directions at a particular posture. Namely, the movable range and direction of

a DOF may be reduced or affected if some part of the body is constrained. For

example, a human is engaged to execute a task using both arms, the arms must

not be disturbed by the movement of other part of the body. Given constraints

and conditions, the usable body movements that a human can naturally generate

must be quantified.

* Splitting the motion space: Based upon the task analysis and quantification

of usable human movements, the motion space is split such that the human

supplies the DOFs they can provide while the Superlimb provides all remaining
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DOFs required to perform the task. From this, the kinematic structure of the

Superlimb is determined.

The key step in the above design procedure is the quantification of usable human

body movements. One approach to determining this would be to look at hierarchical

models of human kinematics [5]. However, the human body has over 600 muscles,

200 DOFs, and complex joint structures. Further, in our application the human

body is subject to various constraints, which make the analytic modeling complex

and less accurate. Thus while human body models are available, we instead take an

experimental approach to quantifying available body movement when the human is

constrained.

3.1.1 Experimental Quantification: A Case Study

This chapter demonstrates the above methodology by designing a lightweight, reduced-

actuator Superlimb that can assist a human operator by opening a door when the

human operator's hands are busy carrying a large box. This task was chosen both be-

cause it represents a potential task set out in the Superlimb community and because

it represents a problem robots are often applied to in the broader robotics commu-

nity [32] [52]. Further, it represents a problem that is readily relatable and broadly

applicable. While in this particular instance we have chosen to have the user hold a

box, the box could be swapped out with groceries, furniture, or stock materials.

Many previous works within the human factors community have used the desired

task set to inform the design of the robotic system [481. For the Superlimb community,

the task set is also used to motivate the placement of the Superlimb on the human

body. For overhead tasks such as holding a panel in place, the Superlimb was placed

on the shoulder [8]. For body support during manufacturing tasks like welding, the

Superlimb was placed on the back [25]. For helping the human operator open a

bottle, the Superlimb was placed about the wrist [561. All of these works have chosen

to mount the Superlimb close to the eventual task space as it both reduces weight and

limits the Superlimbs ability to collide with the human. In our case, the chosen task
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Figure 3-1: Experimental Quantification of Human Body Pelvis Motion With Con-

straints: (A) Shows a subject wearing the Shadow motion capture system while hold-

ing a large box. (B) Motion capture rendering of the human operator rotating about

the pelvis while constrained by holding a box. (C) The movement of the pelvis about

the three rotational degrees of freedom. (D) The rotational DOFs of the pelvis' effect

on the position of the Superlimb gripper, derived through forward kinematics with the

offset between the pelvic coordinate frame and the gripper coordinate frame defined

as dx = 28 cm, dy = 55 cm, and dz = 0 cm.

occurs at roughly waist height. Given this, we can choose the waist as a mounting

point for the Superlimb.

Next we must assess the minimum required active DOFs in order to perform the

tasks. We will define our coordinates to be placed on the gripper, with y pointing

forward, parallel to the sagittal axis and z pointing up, parallel with the longitudinal

axis, as shown in Fig 3-1A. Further, we will define roll as rotation about the y axis,

pitch as rotation about the x axis, and yaw as rotation about the z axis. In order to

reach the door handle, the end effector on the Superlimb must be able to be positioned
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in x, y, and z. To turn the door, the end effector on the Superlimb must be able to

close and roll about the arm axis (which should be aligned with the door handle

axis). We will refer to the end effector actuation as a gripper DOF. Next, to open

the door, the Superlimb end effector must once again be able to be moved in x and y.

Finally, to release the door handle, the Superlimb end effector must roll and release

the gripper. Thus, for the door opening task, our required DOFs are x, y, z, and roll

with an additional DOF for the gripper.

We can next look at what DOFs the human is capable of supplying for these tasks

based upon the Superlimb being mounted on the waist. Fig. 3-1A shows a human

whose body is partially constrained (holding a large box) and is wearing the Shadow

motion capture system (Motion Workshop, Seattle, WA 98104, USA). The human

operator was asked to move slowly and to comfortable positions, thus limiting the

range to rotations the subject can achieve quasi-statically. From this, we can extract

the three rotations about the pelvis, in terms of rotation about the frontal, sagittal,

and longitudinal axes (Fig. 3-1B). Pelvic rotation about the sagittal axis represents

roll at the gripper. Note that while the rotations are shown overlapping in time, they

were collected during individual trials and thus don't overlap in time.

From this, we can see that the person can only contribute roughly +/- 16 degrees

of roll. This is not sufficient to open a door handle. Though the operator shows the

ability to contribute roughly +/- 60 degrees of yaw and roughly +/- 27 degrees of

pitch, we require neither of these DOFs. Finally, Fig. 3-iC shows the pelvic rotations

transformed to the Superlimb gripper position. This was achieved by assuming that

the Superlimb is mounted rigidly to the pelvis and using the yaw, pitch, roll rotation

matrix that has been augmented to include the translational offset between the pelvis

and the gripper, defined as T E R" [26]. We can find the translation of the gripper

due to the rotation of the pelvis with

Pgripper =T *[d, d, dz 1]T] (3.1)

Assuming the Superlimb is held straight out from the person, parallel to the
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ground, we used d_ = -28 cm, dy = 55 cm, and d, = 0 cm. Thus the rotation about

the pelvis can provide roughly 90 cm of travel in x, roughly 70 cm of travel in y, and

roughly 60 cm of travel in z, shown in Fig. 3-2 as a semi-transparent partial ellipsoid.

Because the person can also translate in x and y by walking, the reasonably large

magnitude of the x and y travel of the gripper due to pelvic rotation is redundant for

this particular task. The ability to translate the gripper in x, y, and z from pelvic

rotation will likely be useful as the human operator can then use pelvic rotation for

some fine positioning of the gripper at the door handle while using the ability to walk

to generate larger magnitude changes in x and y.

Clearly, the Superlimb must actuate the roll DOF as well as the gripper. How-

ever, as the human only has minimal comfortable control over the z height-neither

squatting nor rotating about the frontal axis at the pelvis for prolonged periods is

comfortable, especially with a large box-and because we want the Superlimb to be

able to move out of the way, we will additionally choose to actuate z. Thus the

Superlimb will have three DOFs; z, roll, and the gripper.

Importantly, the design methodology laid out here has taken a task that would

have previously required the Superlimb to have at least five active DOFs and limited

the Superlimb to needing only three active DOFs. This significantly decreases the

complexity and weight of the Superlimb. Fig 3-2 shows a CAD rendering of the

Superlimb prototype as designed through this methodology.

3.2 Control Concept

We next propose a novel control input methodology for communicating a rich variety

of commands to the Superlimbs while both hands are busy. This is achieved by

exploiting a type of redundancy in force at the fingertips. Namely, while the sum of

the forces on the fingertips must often satisfy a certain condition, the distribution of

forces on the fingers can vary. The fingers are an attractive means for communicating

with the Superlimb as they represent arguably our highest bandwidth channel. By

performing an analysis of natural behavior when performing a task, we can identify

49



Figure 3-2: CAD rendering of the Superlimb prototype: Based upon the design

methodology, the Superlimb only requires active degrees of freedom for the roll, z,
and gripper axes. The rotational of the pelvis' effect on the position of the Superlimb

gripper is shown as the transparent semi-ellipsoid.

commands that the human operator can generate but that also exist in the null space

of the task. To do so, we propose the following three steps.

" Task Analysis: Given a task, we can quantify normal task performance by mea-

suring the force on the fingertips as a human performs the task. Additionally,

we can quantify the available variations in force on the fingertips by asking the

human to explore different force combinations while still achieving the primary

task goal.

* Identify Command Input Subspace: In order to find a command subspace that is
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Figure 3-3: Force Sensing Resistors mounted to each of the person's fingertips.

both achievable given the constraints of the primary task and does not interfere

with the primary task, we can look for the intersection of the null space of the

task dataset and the the range space of the exploration dataset found in step 1.

e Parse Input Command To Superlimbs: Assuming we have identified the com-

mand subspace, we can manually place codes (i.e. particular force combina-

tions on the fingertips) within this subspace. Then, when a new measurement

is taken, we can project the new measurement into the command subspace and

compare it to the manually defined codes to determine if the human intended

to send a command to the Superlimbs.

Based upon this methodology, and in combination with an intermittent control

structure where the control authority is alternated at the human operators' discretion,

we controlled the reduced-actuator Superlimb described above.

The intermittent control architecture operates such that whenever the human

generates a non-zero command input, the command authority is completely handed

over to the human. However, when the human is not generating any command inputs,

the Superlimb is free to perform actions. We propose this structure first as it ensures
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safety; if the Superlimb behaves unpredictably, the human operator can take control

to change or stop the actions of the Superlimb. Second, allowing the human operator

to step in and explicitly direct the actions of the Superlimbs allows the Superlimb-

human system to handle challenging problems by leveraging the combined strengths

of the Superlimb-human system [471. This control structure falls under the supervisor

role in Human Robot Interaction literature [46].

Given this control structure, we propose to have the human operator have the

ability to issue four different commands to the Superlimb; move the Superlimb's

gripper up and level with the door handle, move the Superlimb's gripper down and

out of the way, grip and rotate the door handle, and release the door handle. These

four action primitives represent all that is required for the Superlimb to assist in

opening a door when the human operator's hands are full. By breaking the control

inputs into discrete action primitives, we allow the human to adopt a "move-and-

wait" strategy, where open loop command inputs to the robot are followed by a wait

of typically one loop delay time such that the human operator can get confirmation

and feedback. This "move-and-wait" control strategy has been shown to be effective

in the presence of large delay [49].

3.2.1 Input Via Redundant DOFs on the Human Hand: A

Case Study

We desire a command input mechanism that doesn't interfere with the human op-

erator's task and can be readily generated by the human operator. To identify this

mechanism, we must first take data on the person performing the task naturally. In

order to do this, we use the prototype shown in Fig. 3-3 to measure force at the fin-

gertips. We then ask them to hold the box naturally; this data serves as the baseline

for how one would normally perform the task. Fig. 3-4A shows three different trials

of the person holding the box. Next, we ask the person to explore different ways

of holding the box by varying the force distribution on the fingertips (shown in Fig.

3-4A in blue). Note that while the human operator wore all 10 sensors, only the data
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Figure 3-4: All data was obtained from a single subject. (A) Holding a box and
exploration datasets for the right thumb, index, and middle fingers. Despite being
constrained to hold a box aloft, the human operator shows that they can vary the
distribution of forces at the fingertips while still holding the box in the exploration
dataset. (B) Biplot showing the first three principal components of the combined
dataset. (C) The inner product of the range space of the combined dataset with each
point in the holding box dataset. From this, we can determine that the second through
sixth components are orthogonal to the holding box dataset and exist within the range
space of the combined dataset. Therefore, the second through sixth components span
the subspace where codes can be communicated. (D) Classification of the projected
combined dataset into three manually defined codes using Euclidean distance and a
maximum distance threshold.

from the two thumbs, index fingers, and middle fingers was used within this section

for ease of visualization.

With this data, we want to identify codes that won't be accidentally sent to the

Superlimb during normal task performance. To do this, we can place the commands

within the null space of the task; this ensures that when the human operator generates

the commands it does not interfere with the performance of the task. However, a

command input existing in the null space of the task does not guarantee that it is

achievable. For example, imagine if a command input required that a person remove
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the entire left hand from the box. This would certainly exist within the null space of

the normal task performance but it would also result in the person dropping the box.

Thus we require that the commands we choose also exist within the range space of

the combined exploration and task dataset (the exploration dataset is shown in Fig.

3-4A in blue). That is,

S=RnNt (3.2)

where S is subspace where we can place stored codes, R is the range space of the

combined exploration and task dataset, and Nt is the null space of the task dataset.

R can be found with Principal Component Analysis (PCA). Let fE R"l be the

force at the fingertips for a single timepoint during the holding box trial and feE Rnx

be the force for a single timepoint during the exploration trial. Given that we collect

Nb holding box datapoints and Ne exploration datapoints, we can concatenate the

data from the two trials to get the combined data matrix X R(Ne+Nb). Let f be

the mean of f' through fNeN, then the covariance matrix C E Rnx" is given by

1 Ne+Nb
C = Ne+ N i ~-) (3.3)

n=1

C can be decomposed using singular value decomposition (SVD) such that

C=VDVT (3.4)

D = diag A1. Ak Ak+1 ... An] (3.5)

V = [V ... V Vk+1 ... Vn ](3.6)

where D has the eigenvalues placed in descending order, V E R"x" holds the eigen-

vectors, and |Vi| = 1. The first eigenvectors are shown in the biplot in Fig. 3-4B. The

eigen decomposition can be truncated at k where Ak > c and Ak+1 < c, and epsilon

is some suitable value. Then we can find R and N, the null space of the combined

dataset, by
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R = V ... Vk] N = Vk+ ... V (3.7)

In this particular case, our smallest eigenvalue represented over 2% of the variance

of the data, so we set k = n = 6. This means our range space R is spanned by the first

through sixth principal components. A biplot of the first three principal components

is shown in Fig. 3-4B.

Next we must distinguish between force vectors intended to be commands to the

Superlimbs and force vectors generated during execution of the primary task. To

do so, we will determine in which subspace the vectors in the task data lie, where

fA represents the jh of N total force measurements during the performance of the

task. This can done by checking the orthogonality of every datapoint f to every

eigenvector V. That is, if

(V, fb) > 6 for 1 < j N (3.8)

then Vi exists within the range space of the task, Rt. Else, Vi exists within the null

space of the task, Nt. Let m, m < k, represent the cutoff such that V through Vm

exist within Rt and Vm+1 through Vk exist within Nt. Importantly, Vm+1 through Vk

also exist within R and thus

S = R n N = Vm ] V (3.9)

Fig. 3-4C shows a graphical representation of (8). Setting 6 appropriately, we

argue that Vi exists within Rt while V2 through V span S, the command subspace.

Any code placed within S will both not interfere with the performance of the primary

task as it exists within Nt and will be physically achievable as it exists within R.

Finally, assume that we have a new force measurement f*. In order to determine

if this measurement contains a command input for the Superlimb, we can project f*

into S by constructing a projection matrix Ps such that
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Ps * f= f (3.10)

Ps = SST (3.11)

where f; represents the new force measurement projected into S. Then, we can

compare it with any suitable distance metric to predetermined codes ci that exist

within the S to see if it matches one of them. This takes the form

d(ci)= f(cj- P*f*)(c - P*f*) (3.12)

arg mine d(ci) for d(ci) < dthresh (3.13)
no code for d(ci) > dthresh

where 2 is the identified command and dthresh is defined as the maximum distance a

code can be away for a point for that point to be classified to that code. The smaller

the dthresh, the fewer the points that will be classified as that signal. This allows us

to avoid accidental code triggers. In Fig. 3-4D, three codes have been defined and

the exploration dataset has been projected into S. The force measurements that are

sufficiently close to the manually defined codes have been classified as those codes

while the remainder of the force measurements have been classified as not containing

command inputs to the Superlimb.

Fig. 3-5 shows what happens when a new time sequence of force measurements

contains a code. Fig. 3-5A shows a green dataset that briefly leaves the range

space of the task and enters the null space of the task. Fig. 3-5B shows the green

dataset projected into the command input subspace S. The distance between all the

projected data and the manually defined code, shown as an "x", is then calculated

and compared to a distance threshold as discussed above. The projected data that is

close enough to the manually defined code is classified as containing a command to

the Superlimb.
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Figure 3-5: A force measurement dataset that contains a code. (A) A comparison
between the nominal holding box dataset. The green dataset, which contains the code,
briefly leaves the range space of the task data. (B) The green dataset projected into
S and then classified using a distance metric. The data that is close to the manually
defined code (the large x) is defined as containing a command to the Superlimb while
the remaining data is defined as not containing a code.

3.3 Prototype and Demonstration

We built a prototype of the Superlimb and used it to open a door for a human oper-

ator who had her hands full. The prototype has two 118RPM, 6.766 Nm Robotzone

planetary gear motors (Robotzone LLC, Winfield, Kansas, USA) to actuate the roll

and z DOFs. The gripper (Makeblock, Shenzhen, China) is placed at the end of the

Superlimb arm. The roll and z motors are driven using a Cytron MDD10A dual DC

Motor Driver (Cytron, Pulau Pinang, Malaysia) while the gripper is driven with a

Pololu Dual MC33926 Motor Driver (Polulu, Las Vegas, Nevada, USA). Finally, the

encoders on the roll and z motors are read with a Dual LS7366R Quadrature Encoder

Buffer (SuperDroid Robots Inc., Fuquay-Varina, North Carolina, USA). All signals

are routed to an Arduino Uno (Arduino, Ivrea, Italy) which operates PI position

controllers on the roll and z motors. The gripper is controlled through a velocity

controller. The Arduino Uno communicates with a high level controller written in

python through the Robotic Operating Systems (ROS) rosserial protocol. Addition-

ally, the force on the human operator's fingertips is measured using force sensing

resistors (Adafruit, New York City, New York, USA) as shown in Fig. 3-3.

For ease of implementation, we have chosen not to strictly follow the control

input methodology described above. The FSRs mounted to the fingertips do not
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Move SRL up

Grip and rotate the door handle

Move SRL down

Let go of the door handle

Figure 3-6: All the codes chosen to communicate the action primitives to the Super-
limb. Each sensor is thresholded such that it is either deemed on-black-or off-white.
Each code exists within S

Figure 3-7: Demonstration of the Superlimb. In the first image, the human operator

and Superlimb work together to position the end effector in x, y, and z. In the second

image, the human operator commands the Superlimb to grab and twist the door

handle with a single code. In the third image, the human operator backs up to open

the door. Finally, in the last image the human operator commands the Superlimb to

release the door handle. The human operator is then free to walk through the door.

sense force placed at other areas of the hand or fingers. Thus it is possible to hold

the box without registering any force on the fingertips. Further, the FSRs do not

provide robust signals as they respond to flexing of the sensor as well as force. Given

these limitations, we have chosen to threshold each FSR sensor to either on or off.
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We chose four codes, one for each action primitive outlined in the previous section.

Each code will specify whether each of the ten sensors on the fingertips is on or off.

The codes were found to exist within S. Classification of the command input is done

by requiring that the thresholded force sensor readings match the codes defined in

Fig. 3-6 for at least 0.25 seconds.

Fig. 3-7 shows the prototype in action. First the human operator commands

the Superlimb to raise its gripper toward the door. Next the human operator uses

direct body motion to position the gripper at the door handle. The human operator

then commands the Superlimb to grip and twist the door handle. Once the door

handle is turned, the human operator backs up to open up the door. Finally, the

human operator commands the Superlimb to release the door knob and drop back

down out of the way. The human operator is then free to walk through the door.

The human operator required less than fifteen minutes of training before being able

to perform the task, with the primary difficulty resulting from ensuring that the force

sensitive resistors on the human operator's fingers were picking up the codes the

human operator was attempting to communicate to the Superlimb.

3.4 Discussion

While this study applied both the design and control input methodologies to having

a Superlimb open a door when one's hands are full, these methodologies have broad

applicability.

Namely, the design methodology proposed here can be applied to any task where

the human operator and the Superlimb work collaboratively to perform some overall

task. For example, if the task was instead to have the Superlimb hold a nail while the

human hammers it in, we could once again take advantage of the human's ability to

position the end effector to reduce the number of actuated degree of freedoms on the

Superlimb. This holds true on tasks ranging from having the Superlimb add spices

during cooking to holding a component that the human is going to solder.

One potential downside of the design methodology proposed here is that it in-
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creases the workload on the user. Depending upon the task set, it might be best to

allow the human to focus on their task while having the Superlimb have all the actu-

ated DOFs it needs to perform its task without human collaboration. If an analysis

of the taskset concludes that the human operator is likely to be overworked if they

are asked to contribute active DOFs, then one should proceed toward a solution that

limits the human operators' involvement.

While the design methodology applicability may be narrowed by the taskset, the

control input methodology is not. Even in cases where it is determined that the

Superlimb should perform its task without any collaborative help from the human

operator, it is critical that the human operator still hold ultimate command authority.

As the Superlimb is mounted to a person, the person must be able to stop or alter

the actions of the Superlimb if they determine the Superlimb is acting unsafely. This

control input methodology could be used to supply the person with an emergency

stop command that does not interfere with the normal task operation.

There exist many avenues to improve upon the control input methodology pro-

posed here. First, while in this work the force was only measured on the fingertips,

the force could be readily taken from the whole hand or even other parts of the body.

This would yield a more complete picture of a person's interaction with the object,

likely leading to a larger null space and thus more room for command inputs. Second,

improvements could be made on the diversity of signals that can be communicated

to the robotic system. While we used discrete codes for the communication with the

Superlimb, the force on the fingertips can be varied continuously and thus could be

used to send continuous commands to the Superlimb. Third, improvements could be

made to the choice of commands to ensure that they are intuitive for the human op-

erator, perhaps by leveraging human factors research to understand which commands

are easier to generate.

Fundamentally, both methodologies introduced here exploit the human operator

to make the combined task of the Superlimb-human system easier. This points to a

clear direction forward for the Superlimb research community; in what ways can we

leverage the human operator? What are the limitations of mounting a robotic system
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on a person?

3.5 Conclusion

In this chapter we first introduced a new design methodology that combines a taskset

analysis with an analysis of the required degrees of freedom that the human operator

can actuate to reduce the number of actuated degrees of freedom the Superlimb

requires, thus reducing weight and complexity. Next, we introduced a novel control

input methodology that also relies on a task analysis to identify input commands

that do not interfere with the human operator's normal performance of the task and

are physically achievable by the human operator. Finally, we used both of these

methodologies, along with an intermittent control architecture, to build a Superlimb

prototype that can assist the human operator by opening a door when the human

operator's hands are full. Combined, these methodologies represent some of the first

attempts to leverage the human operator within Superlimb research.
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Chapter 4

Quantifying the Contributions of

Inherent Haptic Feedback from

Supernumerary Robotic Limbs

While still a relatively new field, Supernumerary Robotic Limbs (SuperLimbs) show

promise both as an assistive technology for people with disabilities [56], [23], [54] and

as an augmentation technology with applications ranging from body bracing during

fatiguing work on a floor ([25) to operating as an additional robotic helping hand

during surgery [1] or assisting humans in daily chores at home [32]. Potentially,

SuperLimbs allows a human to execute additional tasks on top of those ordinarily

done by the human, but the challenge is how to communicate with and control the

Superlimbs to perform the additional tasks.

Human-robot communication and control have been extensively studied in the

collaborative robotics community in the last decade [45], yet SuperLimbs pose unique

issues and challenges as well as opening up new opportunities. Since SuperLimbs

are physically attached to the human body, forces and moments acting on a Super-

Limb from the environment may be transmitted to the human body and, thereby,

the human can recognize contact with the environment. Fig. 4-1 shows a pair of

SuperLimbs sitting on the shoulders of a human who is working on the ceiling. As

the SuperLimbs contacts the ceiling panel and pushes it upward, the reaction forces
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Figure 4-1: A pair of Superlimbs sitting on the shoulder of a human operator. The

human operator feels the reaction force from the Superlimbs holding the ceiling panel
in place.

act on the shoulders of the human. The human can notice and confirm that the

SuperLimbs are holding the panel; this allows the human to remove his hands from

the ceiling panel in order to grab a screw and screwdriver to secure the panel. This

is a type of haptic feedback differs from haptic displays as no explicit detection of

physical contact between SuperLimbs and the environment is required. This haptic

feedback is inherent; the force is transmitted directly to the human. This inherent

haptic feedback can be exploited for human-SuperLimb coordination.

Prosthetics, which are also attached directly to humans, deliver a similar type of

haptic feedback to the human. Specifically, passive prostheses powered by body move-

ments are often preferred over active prostheses controlled with myoelectric signals
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despite the active devices being the most efficient in terms of dexterity and interface

intuitiveness. This is because body-powered prostheses have superior sensory feed-

back [14]. To illustrate one practical outcome of this superior feedback, one study

found that the force feedback provided from body-powered prostheses allowed sub-

jects to more accurately identify an object based upon stiffness as compared to visual

feedback [10].

These prior works on prosthetic devices provide useful examples of the utility of

inherent haptic feedback, which may also inform the importance of inherent haptic

feedback in designing SuperLimbs. However, there is a significant difference between

prosthetic devices and SuperLimbs. The former performs tasks in lieu of the lost

limb, while the latter can allow the human to multitask by executing an independent

or separate task in coordination with the natural arms and legs.

Based on this unique feature of SuperLimbs, we can envision three use cases of

SuperLimbs where the inherent haptic feedback is useful.

" Case 1: When vision is either occluded or unavailable, the inherent haptic

feedback from the Superlimb can fill the gap by allowing the human to sense

the state of the Superlimb. For example, while a human is visually focusing on

one task, the inherent haptics provides a separate, non-visual channel through

which the human can sense the state of SuperLimbs.

• Case 2: When vision is neither the appropriate nor dominant modality for

sensing a particular state, inherent haptic feedback may serve as an effective

means for detecting and controlling that state, be it the stiffness of an object or

the force output of the Superlimb. In the ceiling panel installation task shown

in Fig. 4-1, the human confirms whether the panel is securely held with the

SuperLimbs by detecting the reaction force, not the position of the SuperLimbs.

* Case 3: When vision is available and the dominant sensory modality, the in-

herent haptic feedback may still be useful to supplement visual observation.

Multi-sensor integration may improve performance and usability. According to

[24], the integration of haptic displays even in the presence of visual feedback
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Figure 4-2: Experimental Setup: Shows a staged version of a subject performing both

the visual and haptic task simultaneously. The subject uses an Xbox Controller to

respond to the tasks. The Superlimb is clamped to the table so that there is no

movement of the Superlimb. The visual task consists of a A series of yellow and

white letters that were displayed on a monitor in front of the subject. The subject

was asked to press aAIJAA on the Xbox controller every time they saw a white

letter.

will increase success rate and ease of use of a powered prosthesis but yield slower

motions.

In the following sections, experimental studies using human subjects wearing Su-

perLimbs are conducted for two specific use cases; one is manual closed-loop control

of force based on inherent haptic feedback and the other is supervision of SuperLimbs

operation via inherent haptics. Both experimental results provide insights into inher-

ent haptic feedback and argue for the importance of designing Superlimbs to exploit

the inherent haptic feedback.

41 Methods

The inherent haptic feedback from Superlimbs is critical in Case 2, where forces

and moments play the major role in performing a task. Thus, we aim to design

experiments that feature this. Further, in many use cases, natural human limbs

and SuperLimbs perform multiple tasks simultaneously. We aim to address whether
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Figure 4-3: A rendering of the Superlimb. As the Superlimb exerts a torque on the
table, an equal and opposite torque is applied to the subject, thus providing inherent
haptic feedback on the state of the Superlimb to the wearer.

SuperLimbs with inherent haptic feedback allows humans to perform two tasks simul-

taneously. Typically, the natural limbs execute the primary task, while SuperLimbs

perform secondary or supportive tasks. In such scenarios, vision is used mostly for

the demanding, primary task, and is not available for the secondary task performed

by SuperLimbs. This is, therefore, Case 1 where vision is not available.

4.1.1 Experimental Apparatus

Figure 4-2 shows a staged experimental setup, consisting of a prototype SuperLimb,

an Xbox game controller, and a display. With this apparatus, two tasks can be

executed simultaneously. One is detection and control of a force acting at the tip

of the SuperLimb, and the other is a demanding visual task (Fig. 4-2). The human

subject is prompted to respond to a series of images presented on the monitor display,

while controlling and/or monitoring the force acting on the SuperLimb. The Xbox

controller held in the subject's hand is used for executing both tasks.

- For the force detection and control task, we devised the apparatus so that posi-

tional information plays no significant role. The end effector of the Superlimb was

fixed to a table and only the force output of the Superlimb changes. This resulted in

a situation where haptic feedback is clearly the dominant form of feedback as vision

is incapable of assessing the force output of the end effector given no motion. This

allows us to highlight just the contributions of the inherent haptic feedback to sensing
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the state of the Superlimb.

We designed and conducted human subject experiments based on the protocol

approved by the Massachusetts Institute of Technology Committee on the Use of

Humans as Experimental Subjects (COUHES), 1903759075. All of the subjects (N

= 9) were healthy, right-handed subjects in good physical shape (20 < BMI < 30)

and between 23 and 37 years old. Experiments were performed in a single session not

lasting more than 1.5 hours.

The experiment participants wore the prototype SuperLimb around their waist

with a belt-like harness while standing in front of a desk. See Fig. 4-2. The robotic

arm is made of simple composite tubes and has only one actuated degree of freedom,

rotating in a plane parallel to the sagittal plane. The robot arm is actuated by a 12

rpm, 57 Nm stall torque brushed DC planetary gear motor (ServoCity, Winfield KS).

Attached to the end of the arm is an Optoforce 6 axis force torque sensor (ONROBOT,

Odense, Denmark).

As the SuperLimb's actuator generates a torque rct, its reaction torque -Tact acts

on the base of the harness. Furthermore, as the SuperLimb pushes down its endpoint

to the table, its reaction force -Ftabe acts on the harness base in the vertical direction.

The harness base is a 3d-printed solid frame that transmits the reaction force and

moment to a human subject's waist.

Using this apparatus, two human subject experiments were conducted.

4.1.2 Inherent Haptic Feedback for Low Autonomy Manual

Control of a Superlimb

First, we looked at low levels of autonomy; we asked the subjects to continuously

control the Superlimb to regulate the reaction force at a desired setpoint despite

disturbances. This is similar to how the Superlimb may be used to help a person,

perhaps elderly or recovering from injury, to transition from sitting to standing. As

the amount of assistance one person needs is likely different from the assistance desired

by other people and as an individual's desired assistance likely changes over time, it
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Figure 4-4: Block diagram of the manual force control system. The gray dotted line
demarks the boundary between the Superlimb controller and the human operator.
The human commands yank, the time derivative of force. A randomized disturbance
is superimposed on this commanded yank and the output is fed through a integrator
to generate a reference force for the Superlimb control system.
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Figure 4-5: Sample Low Autonomy Manual Control Superlimb Task: (A) The sub-
ject's goal was to maintain zero force exertion as measured by the force sensor on the
table. This figure shows a sample trial, including the actual force measurement (blue)
and the goal (black dotted line). (B) Shows the randomized disturbance (gray) and
the user command input that sought to cancel out the disturbance (green).

is difficult to pre-program a desired force trajectory for helping the person stand. A

solution is to place the person in the loop and let them directly control the force

output of the Superlimbs to regulate the amount of assistance they receive.

Figure 4-4 shows the block diagram of the manual force control system that in-

cludes a human in the feedback loop. The human detects the reaction force through

the haptic feedback loop, compares it against a desired setpoint, and generates a

control signal using a joystick of the Xbox controller. The human command is the

yank, the time derivative of force, which is fed to the integrator to generate a refer-

ence force for the SuperLimb control system. A random noise signal is superposed
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to examine how the human can regulate despite the disturbance. The output force

at the endpoint of the SuperLimb is measured with the force sensor for closing the

inner feedback loop so that the SuperLimb can follow the human command with high

fidelity.

The subjects performed the manual force control under three conditions. First,

the subjects were asked to perform only a visual task. The visual task consisted of

displaying a series of yellow and white letters on the monitor. The subjects were

asked to identify whenever they saw a white letter by pressing a button on the Xbox

controller. Each trial lasted 20 seconds and there were five trials. In the second

condition, the subjects were asked to reject randomized force disturbances applied to

SuperLimb such that the force in the vertical direction at the table was regulated at

0 Newtons. Each trial lasted 20 seconds and there were five trials. Finally, during

the third condition, the subjects were asked to reject randomized force disturbances

applied to the Superlimb and perform the visual task simultaneously. Once again,

each trial lasted 20 seconds and there were five trials. The order of the conditions

was randomized for each subject. Prior to each condition, the subjects were allowed

to familiarize themselves with the conditions and run a few practice trails.

4.1.3 Inherent Haptic Feedback for High Autonomy Supervi-

sion of a Superlimb

In the experiment of high autonomy supervision, the SuperLimb performs a pro-

grammed task automatically that generates a reaction force and moment acting on

the human. While the SuperLimb increases and decreases the force, as shown in

Fig.4-6, the human subject is asked to detect specific learned reaction force changes,

referred to here as features, by promptly pressing a different button on the Xbox

controller for each feature. These features, shown in Fig. 4-6, were taught to the

subjects prior to beginning the experiments. The accuracy and delay of the feature

detection were evaluated.

In practical applications, SuperLimbs may physically interact with the environ-
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Figure 4-6: Sample High Autonomy Supervision Superlimb Task: The subject's goal
was to supervise the state of the Superlimb and, when it performed a pre-described

action primitive, to indicate which action primitive it was by pressing a button on
the Xbox Controller. The figure on the left shows the Superlimb's force trajectory.

Five total features are shown and identified with a red square. They are-from left to

right-"start", "buzz", "up", "buzz", and "end". The start feature consists of the force

going from 0 to 5 Newtons. The buzz feature consists of the piezoelectric vibration
motors buzzing. The up feature consists of the force transitioning from 5 to 9 and

back to 5 Newtons. Finally, the end feature consists of the force going from 5 to 0
Newtons. The red circles represent when the subject responded and whether they

correctly identified the feature. It is important to note that the "buzz" feature is not

reflected in the force measurement but is artificially added here for the purposes of

illustration.

ment not only at the endpoint but also at other points along the arm link. SuperLimbs

may hit objects unexpectedly, or an external object may hit the SuperLimbs. It is

important that the wearer can notice such interactions with external objects in ad-

dition to the detection of the reaction force generated by the SuperLimbs. In order

to emulate this, the prototype SuperLimb was equipped with a piezoelectric vibrator

that emulates the physical interactions with external objects. Vibration forces are

generated in the direction perpendicular to the vertical plane where the SuperLimb-

generated reaction force acts. The strength of the vibration is small: lower than the

noise level of the force sensor. Nonetheless, it can be felt by the human through the

inherent haptic feedback. As indicated in Fig.4-6, these vibrations are applied to the

SuperLimb while the SuperLimb's goal force is not varying.

Experiments were conducted under three different conditions. During the first
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condition, the subjects were asked to perform only the visual task to detect while

letters displayed on the monitor-the same one used in the previous experiment. Each

trial now lasted 60 seconds, however, and there were five trials. In the second con-

dition, the subjects were asked to detect the haptic features. Each trial lasted 60

seconds and there were five trials. In the third condition, the subjects were asked to

simultaneously detect the haptic features while also performing the visual task. Each

trial lasted 60 seconds and there were five trials. The order of the conditions was

randomized for each subject and each subject was allowed to familiarize themselves

with the tasks prior to beginning data collection.

4.2 Results

4.2.1 Low Autonomy Manual Control Experiment

All subjects completed all parts of the experiment. Fig. 4-5 shows a subject's per-

formance during one trial of the third condition during which the subject performed

both the visual and haptic task simultaneously. Subjectively, it seems as if the subject

was able to control the force output of the Superlimb by closing the loop with direct

haptic feedback.

This is backed up by the aggregated data shown in Fig. 4-7A-C. The subject's

performance on the Superlimb low autonomy manual control task can be judged most

readily by the root mean square error (RMSE) between the measured value, shown

in blue in Fig. 4-5, and the goal, shown in black in Fig. 4-5, which stays steady at

zero. By this metric, th6 subjects had a mean RMSE of 1.96 Newtons during the

haptic only condition and a mean RMSE of 1.69 Newtons during the simultaneous

haptic and vision condition. These data are shown in the form of a violin plot in Fig.

4-7A. A violin plot shows the probability density of the data, as estimated by a kernel

density estimator, and thus is more informative than traditionally box plots.

Another way of judging a subjects' performance is to look at the command effort

exerted by the subject during the Superlimb task. This is roughly a measure of how
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Figure 4-7: Aggregated Experiment Performance: (A) Low Autonomy Manual Con-
trol: The root mean square error (RMSE) between the goal-zero force-and the mea-
sured force throughout the trial. (B) Low Autonomy Manual Control: The user's
command effort, as measured by the integral of all their command inputs. (C) Low
Autonomy Manual Control: The subject's percent correct on the visual task. The
error bars show the standard deviations. (D) High Autonomy Supervision: The re-
sponse time to features as measured by the difference in time between when a feature
begins and when the user presses a button on the Xbox controller. (E) High Au-
tonomy Supervision: The user's percent correct on the Superlimb supervision task, a
measure of accuracy. The error bars show standard deviation. (F) High Autonomy
Supervision: The subject's percent correct on the visual task. The error bars show
standard deviation.

hard a subject had to work in order to reject the disturbance. The command effort

can be calculated by taking the time integral of the subject's command inputs, thus

giving units of Newtons. The aggregated command efforts are shown in Fig. 4-7B.

During the haptic only condition, subjects' mean command effort was 74.0 Newtons

while during the haptic and visual task condition, subject's mean command effort

was 73.8 Newtons.

Finally, Fig. 4-7C shows the subjects' performance on the visual task. Perfor-

mance on the visual task was graded based upon the accuracy with which the iden-

tified each white letter. The data is displayed as a bar graph rather than as violin

plots as the probability density of the data estimated by the kernel density estimator
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resulted in probability densities that were impossible; for example, a percent correct

over 100%. During the visual task only condition, the subjects achieved a mean accu-

racy of 94.6% while during the haptic and visual task condition, the subjects achieved

a mean accuracy of 85.0%.

With these data, we can first assess whether the inherent haptic feedback provided

by the Superlimbs was sufficient to control the force output of the Superlimb. This can

be done subjectively; it appears as if subjects were able to respond the disturbance

and act to cancel it out, as shown in Fig. 4-5. Additionally, we can compare the

subjects aggregated RMSE to what their RMSE would have been had they taken no

action; this equates to the RMSE error generated by disturbances. Thus this can

be found by taking the cumulative time integral of the disturbance and then finding

the root mean square error of this trajectory. Using this, we find that the mean

RMSE would have been 114 Newtons if the subjects had taken no action during the

haptic only condition. Finally, we can test this using statistical analysis to ask there

is a statistically meaningful difference in performance between the no action case and

the subjects' performance as measured by RMSE. We used a two-sample t-test with

the first population coming from the RMSE errors generated by the disturbances

during the haptic only condition and the second population coming from the RMSE

errors actually achieved by the subjects during the haptic only condition. The null

hypothesis is that there is no difference between the means of these two populations

while the alternate hypothesis is that the mean RMSE errors generated by the subjects

was smaller. Applying this test, we found evidence (t(16)=7.71, p < 0.01) that the

subjects performed better than if they had taken no action during the haptic only

condition as measured by RMSE. This suggests that the subjects could successfully

close the loop and control the force output of the Superlimb.

Next we can assess whether the addition of a simultaneous visual task caused a

difference in performance on the haptic task. To do so, we can compare the perfor-

mance data on the haptic task from the haptic only condition-RMSE and command

effort-to the performance data on the haptic task from the haptic and vision con-

dition. We used a repeated-measures multi-variate ANOVA and found no evidence
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that the subjects performed differently on the haptic task as measured by RMSE and

command effort despite the addition of a vision task in the haptic and vision condition

(f(1,16) = 0.43, p = 0.52). It is important to note that this doesn't mean that we can

conclude that there was no effect on performance when performing both the visual

and haptic task simultaneously but simply that we found no statistical evidence of

there being a performance degradation within the context of this experiment.

Finally, we can assess whether the addition of a simultaneous haptic task caused

a difference in performance on the vision task as measured by visual task accuracy.

To do so, we compared the performance data on the vision task from the vision only

condition to the performance data on the vision task from the haptic and vision

condition. We used a matched-pair t-test with the null hypothesis being that the

means are equal and the alternate hypothesis being that the means are different. We

found that we could reject the null hypothesis (t(8) = -2.63, p = 0.03). In other

words, we found evidence that the subjects performed worse on the visual task when

they were asked to do both the visual and haptic task simultaneously as compared

to just doing the visual task. This follows our intuition; we expect it to be harder to

perform two tasks simultaneously versus performing a single task.

Interestingly, we find there was a slight, though non-statistically significant, im-

provement in performance as measured by RMSE from the haptic only condition

to the haptic and vision condition. This is counter-intuitive; we would expect per-

formance to either stay the same or decrease when adding additional tasks. It is

important to note that this performance decrease may not be operationally signifi-

cant. That is, the difference in the means between the two conditions is ultimately

0.27 Newtons. At the subject, this would be felt as a force difference of roughly 1.25

Newton. While quite a small magnitude change, the just noticeable difference (.IND)

for human force sensing has been found to be 7% change in force regardless of test

conditions [53]. The difference here is roughly a 15% change so it is likely a noticeable,

though perhaps not significant, difference in haptic feedback to the subject.
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4.2.2 High Autonomy Supervision Experiment

Once again, all subjects completed all parts of the experiment. Fig. 4-6 shows a

sample performance of one subject on the haptic task during the third condition,

performing both the haptic and vision task simultaneously. During this particular

example trial, the subject correctly identified each feature.

We can judge performance on this task by looking at the response time and accu-

racy with which the subjects identified each haptic feature. These results are shown

in Fig. 4-7D and Fig. 4-7E respectively. On average, subjects responded to a haptic

feature in 1.24 seconds during the haptic only condition and 1.24 seconds during the

simultaneous haptic and vision condition. Subjects displayed good accuracy as well,

achieving 96.3% accuracy in identifying the haptic features during the haptic only

condition and 93.1% accuracy during the simultaneous haptic and vision condition.

Fig. 4-7F shows the subjects' performance on the visual task as graded by accu-

racy. The subjects showed good accuracy in both the vision only condition and the

simultaneous haptic and vision task, achieving mean accuracies of 93.5% and 93.8%

accuracy respectively. Note that the same data was used for the vision only condition

accuracy on both the low autonomy manual control and high autonomy supervision

experiments as the task was identical in both cases.

Using these data, we can once again assess whether performance degraded when

the subjects were asked to perform both the visual and haptic tasks simultaneously.

Once again, because we are asking multiple questions with dependent data, we will

first use a repeated measures multi-variate ANOVA to see if there was any difference

in performance on the haptic task between the haptic only condition and the haptic

and vision condition. Applying this statistical test, we found no evidence that the

subjects performed differently on the haptic task as collectively measured by hap-

tic task accuracy or haptic task response time (f(1,16) = 0.13, p = 0.73). Second,

we can compare performance on the visual task during the vision only condition to

the performance on the visual task during the haptic and vision condition using a

matched-pair t-test. The null hypothesis is that there is no difference between the
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Table 4.1: Aggregated performance on the supervision task by feature

Feature fAccuracy ResponseTime

"Start" 96% 1.23 sec

"Up" 97% 1.17 sec

"Buzz" 97% 0.98 sec

"End" 89% 1.61 sec

performance in the haptic only and haptic and vision conditions and the alternate

hypothesis is there is a difference in the means of the visual accuracy between the two

conditions. Using this statistical test, we found no evidence that subjects performed

differently when performing both the vision and haptic task as compared to just the

vision task as measured by accuracy on the vision task (t(8) = 0.13, p = 0.90).

Finally, Table 1 breaks down the performance metrics on the haptic task during

the high autonomy supervision task by feature. The results are aggregated across

both the haptic only condition and the haptic and visual condition.

4.3 Discussion

Simply by wearing and operating a Superlimb, the wearer is given inherent haptic

feedback on the current state of the Superlimb. We sought to demonstrate that this

inherent haptic feedback was sufficient both for placing the wearer in the loop to

control the force output of the Superlimb-a low Superlimb autonomy task-and for

supervising the actions of an Superlimb-a high Superlimb autonomy task.

Within the low autonomy manual control experiment, which is similar to how

the Superlimb would be used during standing assistance tasks, the haptic task only

condition demonstrated that, when given manual control of the force output of the

Superlimbs, the subjects were successfully able to control it. This suggests that

Superlimbs may be a good fit for standing assistance or similar tasks.

Interestingly, adding a simultaneous visual task led to a small increase in perfor-

mance on the haptic task as measured by RMSE on the haptic task. However, the
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subjects showed a correspondingly large decrease in performance on the visual task

when adding a simultaneous haptic task as measured by accuracy on the visual task.

We think that this result supports the visuospatial sketchpad model of short-term

memory proposed by Baddeley and Hitch. Namely, the visuospatial sketchpad is

thought to incorporate both visual and tactile inputs [431 and has a limited amount

of resources to incorporate new sensory information [28]. During the simultaneous

visual and spatial task condition, we think that the subjects were overloaded with

sensory input and thus their performance degraded [431. For some tasks that do not

have strict time or space constraints, such as body bracing during heavy industry

work, the performance degradation may be acceptable. However, for time or space

constrained tasks such as acting as a helping hand during robotic surgery, it points to

either the need for additional forms of feedback on the actions of the Superlimb or an

increase in the autonomy of the Superlimb. Future work could investigate whether

this performance degradation disappears with additional practice with the Superlimbs

and whether it was in fact due to overload in the first place.

During the high autonomy supervision experiment, we found no statistical ev-

idence of a performance degradation on either the haptic or visual task when the

subjects were asked to perform both tasks simultaneously. However, we did see a

non-statistically significant decrease in supervision accuracy on the haptic task. Given

these data, the results suggest that the inherent haptic feedback from Superlimbs is

sufficient to supervise the autonomous actions of the Superlimb. This is important as

it helps the wearer during normal operating conditions, such as helping the wearer to

collaborate with the Superlimb were it acting autonomously to open a door, and dur-

ing abnormal operating conditions, such as informing the user of Superlimb failures,

thus allowing the wearer to take actions to ensure their and the Superlimb's safety.

Further, these results agree with the results from the low autonomy manual control

experiment; by increasing the autonomy of the Superlimb we were able to minimize

the performance degradation associated with multitasking.

Diving a little deeper, Table 4.1 allows us to draw two conclusions. First, subjects

seemingly performed roughly equivalently on the "start", "up", and "buzz" features

78



but performed worse on the "end" feature. It is unclear why this is the case and

is perhaps an area of future work to understand which feature types subjects are

better able to identify. Second, subjects identified the "buzz" feature both with a

high accuracy and quick response time. This is despite the fact that the Superlimb

was not explicitly measuring this state; the Superlimbs force measurement, the only

sensor on the system, did not meaningfully pick up the buzz feature. While it is

certainly not surprising that the subjects achieved good performance on the "buzz"

feature as vibratory motors are often used in haptic displays, it does nicely illustrate

a difference between the inherent haptic feedback from Superlimbs and traditional

haptic displays. Because the Superlimb does not need to be explicitly aware of a

state for the wearer to get haptic feedback on it, we can argue that the inherent

haptic feedback from Superlimbs is more robust than traditional haptic displays to

failure. Additionally, even during normal operation, the inherent haptic feedback from

Superlimbs allows the wearer to get information on states that the system designer

may not have recognized as important to functioning; when using an Superlimb to

open a door, the ability to haptically sense that the Superlimb's end effector has made

contact with the door handle can be useful feedback for the wearer.

Despite these advantages, it is important to note the disadvantages of inherent

haptic feedback. Namely, given that the communication is purely through forces and

torques about the base of the Superlimb, different inputs may result in the same

haptic feedback; a change in position of the end effector versus a change in force at

the end effector could yield identical feedback to the operator.

It is important to note that these results represent performance from subjects with

very little experience using the Superlimb system. Between both experiments, the

subjects wore the Superlimb for roughly 1.25-1.5 hours. We expect that performance

would increase with further practice. However, as performance is also dictated by the

task and haptic feedback setup, we chose not to seek a plateau in performance as this

would only represent the performance plateau within this individual context rather

than a global performance plateau. Thus, we chose to limit the study to one session.

While this study has introduced the concept of inherent haptic feedback and
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argued for its usefulness during both low and high autonomy operations, there remains

much work to be done. Beyond the future works already suggested, there is no doubt

room to optimize the design of the Superlimb system for delivering inherent haptic

feedback to the wearer. One could imagine a design process that takes into account

the desired taskset the Superlimb will perform to inform the amount and type of

contact points the Superlimb makes with the human body. In the current waist

mounted system, all of the feedback was delivered to this one area of the body, thus

making it difficult to resolve Superlimb state changes that resulted in identical forces

and torques being reflected on the body. A design with more contact points, perhaps

similar to the design of the Superlimb for overhead assembly, may allow the wearer

to resolve these states [9]. Finally, these contact points could be tuned to the deliver

forces that are tuned to the sensitivity and range of a particular body part, drawing

on works from literature [53].

4.4 Conclusion

This paper offers the first investigation into the inherent haptic feedback provided

by Superlimbs to the wearer of the system. We explore the value of haptic feedback

under both low autonomy situations-where the wearer is manually controlling the

actions of the Superlimb-and under high autonomy situations-where the wearer is

supervising the actions of the Superlimb. First we show that, within the context

of this experiment, the subjects were successfully able to manually control the force

output of the Superlimb with haptic feedback alone. This suggests that the Superlimb

could be applied to tasks like assisting the elderly or injured transitioning from sitting

to standing as this task lends itself to manual control of the force output of the

Superlimbs. Secondly, we show that the inherent haptic feedback from Superlimbs was

sufficient for the subjects to supervise the autonomous actions of the Superlimb, even

in the presence of a simultaneous visual task. This suggests that the inherent haptic

feedback can be used by the wearer to track abnormal activities by the Superlimb

and step in when necessary to ensure the safety of the wearer. While these results
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demonstrate clearly the value of the inherent haptic feedback from Superlimbs, they

also suggest further studies on how to design Superlimbs to optimally communicate

the inherent haptic feedback to the wearer.
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Chapter 5

Conclusion and Future Work

5.1 Additional Incomplete Studies or Unanticipated

Outcomes

In addition to the work performed in completion of this thesis, and in an effort for

full transparency, the following section presents some incomplete studies or studies

with unanticipated outcomes to offer directions forward.

5.1.1 Inherent Haptic Feedback for Spatial Information

Vision is generally offers superior accuracy as compared to the somatosensory system

to determine the spatial position of the natural limbs [15]. Similarly, we can hypoth-

esize that vision is generally better at assessing the spatial position of Superlimbs as

compared to haptic feedback. This is backed up by a wealth of haptic feedback for

prosthetics research. However, similar to this wealth of research, spatial haptic feed-

back still can prove useful for Superlimbs when vision is otherwise occupied. Thus,

in this experiment, we set up a situation where the person had two tasks, one that

could only be accomplished with vision and the other that could be accomplished with

both vision and haptic feedback. This would serve to naturally "occupy" the vision of

the subject, thus incentivizing them to use haptic feedback to solve the second task.

We varied the position of the haptic feedback task such that in some conditions the
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person could rapidly visually assess both tasks while in other conditions the person

was rate-limited by the need to turn their head, thus adjusting their field of view, in

order to visually assess the haptic task.

We conducted human subject experiments based on the protocol approved by the

Massachusetts Institute of Technology Committee on the Use of Human as Experi-

mental Subjects (COUHES), number 1805387660. The subjects (N = 9) were healthy,

right-handed, and in good physical shape (20 < BMI < 30).

Experimental Setup

Waiter must
balance the tray

Waiter's visual Color recognition task
attention is elsewhere

BBE
Balancing task

Figure 5-1: Experimental Inspiration: Drawing inspiration from a waiter, the subject
is asked to perform two tasks. The Color Recognition Task asks the subject to
identify when they see a white letter during a Rapid Serial Visual Presentation. The
Balancing Task asks the subject to maintain the balance of a weight on the linear
slide while small, computer-generated disturbances are applied to the weight that,
without human intervention, would cause the weight to move toward the ends of the
linear slide, thus unbalancing the Superlimb.

In this study we sought to determine the effectiveness of haptic feedback in com-

municating spatial information about the Superlimb. We provided the subjects with

two tasks. The first task is the Color Recognition Task (CRT). In the color recogni-

tion task, the subject is shown a Rapid Serial Visual Presentation (RSVP). During

the RSVP, the subject is presented with a series of rapidly changing yellow and white

letters. The subject is asked to detect the white letter by pressing a button on an
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Xbox gaming controller. By varying the ratio of white and yellow letters, as well the

time for which each letter is presented, we can vary the difficulty level of the CRT.

The second task is the Balancing Task (BT). We designed and built a Superlimb

that consisted of a weight mounted on a linear slide (Fig. 5-2A). We tasked the

subject with keeping the weight balanced in the center of the linear slide. We provided

randomized, computer-generated small disturbances to the weight that, if no action

was taking by the user, would cause the weight the reach the end of the linear slide,

thus unbalancing the Superlimb. These disturbances are shaped like Gaussian bells.

The subject was given control of the velocity of the weight through the joystick on

the Xbox gaming controller. The commanded velocity of the weight was the average

of the randomized small disturbances and the subject's commands via the joystick.

This gives the subject the ability to cancel out the disturbance and keep the weight

centered on the linear slide. The difficulty of the BT can be varied by varying the

amplitude and duration of the randomized small disturbances.

* C)
Haptic pads

Rto a on

Weight Rotatio

Belt driven

No alforceLazy susan

Figure 5-2: The balancing task mechanism. (A) A user wearing just the Superlimb

without the haptic feedback system. (B) A CAD model of the balancing mechanism.
The weight is driven along the linear slide with by a belt drive. (C) The haptic

feedback setup. As the weight from (B) translates along the linear slide, the entire
Superlimb rotates, as shown in (A). The haptic feedback setup turns the rotation of
the Superlimb into a pair of normal forces applied to the subjects back via the haptic
pads. The subject can determine the rotation of the Superlimb by the differential of
the force between the two haptic pads on their back.

Fig. 5-2B shows a closer look at the Superlimb. The weight is mounted on a belt

between two pulleys and the entire belt system is driven by a motor located at the

base of the Superlimb (Fig. 5-2B). This entire setup is mounted to the subject via a

3D printed base. A lazy susan is placed between between the base of the Superlimb
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and the rest of the Superlimb. The result of this is that as the weight moves along

the linear slide, the entire Superlimb rotates about the lazy susan, thus simulating

the tray becoming unbalanced.

We harnessed the rotation about the lazy susan to deliver haptic feedback to

the subject on the rotation of the Superlimb. Fig. 5-2C shows the haptic feedback

device. Through this device, the rotation of the Superlimb about the lazy susan is

translated to a translation of two haptic pads placed on the subjects back. As the

lazy susan rotates, the force differential between the two haptic pads changes, thus

giving the subject haptic feedback on the rotation of the Superlimb. The haptic pads

are spring-loaded into the user to provide constant feedback.

Figure 5-3: The Color Recognition Task is placed on a large monitor in front the user.

The Color Recognition Task is shown in Fig. 5-3. A large monitor is placed in

front of the subject. A rapid series of yellow and white letters are shown on the

monitor. The subject is asked to identify when they see a white letter by pressing a

button on an Xbox gaming controller.

In order to demonstrate that haptic feedback can compensate for a limited field of

view, we must test the subjects on five distinct conditions as illustrated in Fig. 5-4.

During the first condition, the subject will perform only the Color Recognition

Task (CRT). This condition is designated the color recognition only condition (CRO)
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A) B) C) D) E)

CRO BO -HFV -H +H

Figure 5-4: A pictorial representation of the five experimental conditions. The black
outlined semi-circle represents the subjects field of view. In D) and E) the subject
cannot see both tasks within the same field of view.

(Fig. 5-4A). During the second condition, the subject will perform only the Balancing

Task (BT). This condition is designated the Balancing Only (BO) condition (Fig. 5-

4B). During the third condition, the subject will perform both the CRT and the

Balancing Task (BT) while not wearing the robot. The CRT and BT will be placed

such that they are both in the subject's field of view (that is, the subject can see

both tasks without moving their head). This condition is designated the field of view

but no haptic feedback condition (-HFV) (Fig. 5-4C). During the fourth condition,

the subject will perform both the CRT and BT without wearing the robot but the

tasks will be placed such that the tasks are not both simultaneously in the subject's

field of view. This is known as the no haptic feedback condition (-H) (Fig. 5-4D).

Finally, during the fifth condition the subject will perform both the CRT and BT

which are placed such that the tasks are not both simultaneously in the subject's

field of view. However, during this final condition, the subject wears the robot and

therefore receives haptic feedback on the position of the weight on the linear slide.

This condition is designated the haptic feedback condition (+H) (Fig. 5-4E).

Results

An example trial from one subject is shown in Fig. 5-5. The figure shows the perfor-

mance from the subject on both the Color Recognition Task and the Balancing Task

for -H and +H conditions.

The subjects were graded along a number of different metrics for each condition.
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Figure 5-5: Example trial for both the no haptic (-H) and haptic (+H) conditions from
the spatial feedback experiment. A) shows the encoder reading for both conditions.
B) shows the disturbances associated with these trials. C) shows the color recognition
task. The dots on the bottom show when a white letter was displayed. The middle
represent when a white letter was correctly identified while the top line shows when
there were errant button presses.

For the Color Recognition Task, errors were counted when the subject failed to press

the button when there was a white letter or when the subject pressed the button

when there was no white letter (Fig. 5-6E). For the Balancing Task, errors were

counted whenever the weight reached either end of the linear slide, as determined

by limit switches placed at the ends of the linear slide (Fig. 5-6B). This is denoted

"dropping the tray". Additionally, we determined the sum of the absolute error from

the center point for the balancing task (Fig. 5-6A), the user command effort on the

balancing task (Fig. 5-6C), and the user response time to each disturbance on the

balancing task (Fig. 5-6E). All of these results are shown in Fig. 5-6 using violin

88

AM

0

-- H
-+H

C)

20

20

A)
A)

B) Example Disturbance Input

I 0



A) Encoder Absolute Error

-M n
-M ian

BO -HFV -H +H
Condition

User Command Effort

BO -HFV
Condition

E)

1.2

1

0.8

0.6
a.

0.4

W 0.2

0

-0.2

-0.4.

6

4

20

0

-2

D)

12000

10000

8000

6000

4000

2000

0

C)

120

100

-H

I

1-
CRO

BO -HFV -H
Condition

User Response Time

-Mean
-Median

I+

O -HFV -H
Condition

-M n
- ian

-HFV -H
Condition

Figure 5-6: All results from the spatial feedback experiment. (A-D) show metrics
taken from the balancing task while (E) shows metrics taken from the color recognition
task.

plots. Violin plots are similar to box plots but they include a rotate kernel density

plot on each side, thus showing an estimation of the probability density function. This

shows significantly more information than a box plot, which often only include the
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mean and standard deviation. However, because the probability density function is

estimated, it may show impossible values, such as a negative number of errors for the

balancing task. For each condition, the same difficulty parameters were swept. This

allows us to compare errors in both the CRT and BT across the different conditions.

While there are many different pieces of data that we can highlight, we will focus

on a few results. For all of the results that use p-values, we have applied a matched-

pair, one-tailed, t-test.

Firstly, we can look at Fig. 5-6E to assess the subjects' performance on the

Color Recognition Task. From the figure, its clear that users perform best when only

performing the vision task, followed by when they had both tasks within their field

of view, followed by the two conditions where the balancing task was placed out of

their field of view. This pattern holds true for both the dropping tray metric and the

absolute error metric on the balancing task. This suggests that, when vision is readily

available, the subjects performed best (testing all of these hypotheses individually,

they are all statistically significant with p < 0.01).

Next we can compare the performance specifically between the -H and +H con-

ditions. First looking at the performance on the Color Recognition Task. In this

we see when subjects had haptic feedback on the spatial position of the weight, they

outperformed those who did not have haptic feedback (p < 0.01). However, subjects

performed roughly equivalently on the balancing task when measured by number of

times they "dropped the tray" and actually performed worse when measured by the

sum of absolute encoder error (p < 0.01).

This is, on the surface, a counter intuitive result. Despite the additional infor-

mation provided on the balancing task, the subjects performed better on the vision

task. Further, they did not perform better on the balancing task. In fact, according

to at least one metric, they performed worse. I hypothesize that these results stem

from the strategy that the subjects adopted when given access to the haptic feedback.

When the subjects did not have haptic feedback during the -H condition, the subjects

rapidly moved their heads back and forth between the two tasks. By changing their

field of view, the subject was able to get visual feedback on both tasks intermittently.
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While this intermittent vision was enough to respond to the disturbances on the bal-

ancing task (which occurred over a couple seconds), it was not enough to keep errors

low on the vision task (where the white letters only appeared for a fraction of a sec-

ond). However, when the subjects were provided haptic feedback on the BT (+H),

the subjects were able to direct their visual attention almost solely on the CRT. This

decreased the errors on the CRT. But, as the subjects were relying almost solely on

the haptic feedback to perform the BT, and as haptic feedback is far more coarse

than visual feedback, the subjects performed either similarly or worse on the BT as

compared to the no haptic feedback condition.

One final observation can be drawn from this experiment. Looking at Fig. 5-6D,

we can see that, on average, subjects responded more slowly in the +H condition

as compared to the -H and -HFV conditions (p > 0.01). This likely stems from an

experimental design problem. The haptic feedback was delivered via the haptic pads

on the subjects back shown in Fig. 5-2C. The mapping between the position of the

weight on the linear slide and the force delivered by the haptic pads is sinusoidal.

Thus as the weight moves toward the end of the linear slide, the sensitivity (the

change in force per change in position) increases. Given this, and given the relative

coarseness of the haptic feedback, it is advantageous for the subject to wait till the

weight has moved significantly in one direction or another before responding. This

hypothesis is supported by the fact that, on the first day of the experiment (and prior

to subjects developing this strategy), subjects showed a significantly faster response

time in the +H condition as compared to the -H condition. This suggests that haptic

feedback may be useful for delivering temporal feedback.

In summary, while haptic feedback statistically significantly improves subjects'

performance on the vision task and at best shows no improvement on the balancing

task, it is not operationally significant. That is, within the context of this experiment,

it does not improve performance across both tasks enough to make it a reasonable

solution for someone to use. Interesting, and perhaps dishearteningly, while there exist

works, including those highlighted here, that show promising results for delivering

spatial information haptically for Superlimbs or prosthetics, to our knowledge no
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study has ever expanded this to multiple degrees of freedom. This may be because,

qualitatively, mapping the haptic feedback into spatial information required a good

deal of attention for a single DOF. In the end though, haptic feedback for spatial

information does not seem to be a promising direction, at least as presented here.

However, haptic feedback does show promise for temporal feedback. When vision

is intermittent, as is the case in the -H case, the variance on the user response times

is very large. Thus if it is critical that someone respond consistently on time, inter-

mittent vision is not an acceptable solution. Haptic feedback can guarantee that the

user will respond more consistently.

5.1.2 Gaze Tracking for Communication with Superlimbs

Direct teleopoeration of a high degree of freedom robot with a low dimension input

device can lead to high cognitive and physical loads. Shared control will often be

introduced to allow users to complete their desired action with less control input. As

the robot does not know a priori the goal of the human, shared control requires a

prediction of the user's goals. While many techniques have been applied to develop

a prediction of the user's goals, one promising direction is eye gaze tracking 121. It

has been found that eye gaze during a task is rarely directed outside of the objects

required for the task and that hand movements are delayed until the eye is available

for guiding the movement [2111411.

Given this, we proposed an architecture that relies on gaze tracking to determine

when to switch control authority of the Superlimbs between the human and an au-

tonomous algorithm (Fig. 5-7. This is built on an intermittent control architecture

where the human has ultimate control authority. However, rather than simply hav-

ing control authority whenever the human issues a non-zero input command to the

Superlimb, the human only has control authority when they direct their gaze at the

Superlimb.

In order to demonstrate this concept, we set up a situation where the Superlimb

was assisting the human by moving parts from a side table, shown in Fig. 5-8, to the

front table where the person was working. However, the Superlimb does not know
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Figure 5-7: The Superlimb (Superlimb) will use open source software to track the
gaze of the user. When the user turn their gaze toward the Superlimb, the high level
control of the Superlimb will be turned over to the user. Otherwise, the Superlimb
will act autonomously.

1))
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Figure 5-8: Gaze tracking for switching control authority: The red circle represents
the location of the gaze of the human operator. When the human operator directs
their gaze at the Superlimb, the human operator takes control of the Superlimb and
can direct its actions.

which part the human operator needs next. Thus, it must seek input from the human

operator on which part to grab next. When the Superlimb needs direction, it cues

the human with a haptic signal and then waits for the human operator's input, as

shown in Fig. 5-8.

For ease of implementation we used an Xbox controller to send commands to the

Superlimb when the human operator had control authority and April tags for tracking
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Figure 5-9: State machine controller for the Superlimb (SRL). The control authority
is alternated between the human operator and the state machine controller at the

human operator's discretion.

the position of the Superlimb position. We built a state machine controller for the

Superlimb (Fig. 5-9). During State 1, the Superlimb moves to the side table. During

State 2, the Superlimb cues the human operator with haptic feedback and then waits

for the human operator to give a command input. In practice, this required that the

human operator take command authority of the Superlimb for a minimum period of

time. State 3 returns the Superlimb the front table. Finally, State 4 opens the gripper

of the Superlimb to deliver any object it may have.

By using gaze tracking to switch control authority, the human operator can nat-

urally take control of the Superlimb at their discretion. This allows the human to

maintain their safety; if the Superlimb is acting incorrectly, the human can either al-

ter or stop the Superlimb's actions. Further, it allows the Superlimb to get direction

from the human operator during challenging portions of the task while limiting the

distraction to the human operator during easy portions of the task.

While this direction appears promising, it is at best only a portion of the solution

to intuitive communication with Superlimbs. First, because gaze tracking was used

only as a switch to determine who has control authority of the Superlimb, it does

not fundamentally solve how those commands get sent to the Superlimb. One could
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imagine once again using gaze tracking to determine the human's desired action for

the Superlimb; if the human operator looks first at the Superlimb and then at the

red block, the Superlimb should go grab the red block. However, this potentially

restricts the human operator's gaze unnaturally-what happens if they accidentally

look at the orange block-and leaves the Superlimb to navigate picking up the red

block with minimal help from the human. Second, in this implementation we used a

distance threshold between the location of the gaze in the image and the location of

the April tag in the image to determine who had control authority. This is obviously

not robust to movements of the gaze around the image. Ideally, we would want the

human operator to be able to maintain control authority of the Superlimb while they

look at the red block just prior to commanding the Superlimb to go grab it rather

than immediately handing control authority back over to the Superlimb's autonomous

controller. Thus, a pure spatial threshold is not a satisfactory solution. Despite these

limitations, gaze tracking as a means of dictating control authority seems to be worth

pursuing.

5.2 Conclusion

Supernumerary Robotic Limbs, or Superlimbs for short, show great promise for aug-

menting the human operators capabilities by helping with holding, grasping, and

manipulating objects as well as supporting or bracing the huma body. In the seven

years since their invention, the Superlimb research community developed Superlimbs

that are mounted to the upper back, lower back, wrist, shoulder, waist, and upper

arm. Superlimbs have been built from traditional materials, 3D printed parts, or

using soft robotic systems. Superlimbs have been controlled with foot motion, EMG

signals from various muscles, and inertial measurement units or stretch sensors that

measure the current state of the human operator. These advances have demonstrated

clearly the promise and challenges associated with developing Superlimbs.

However, to date, little work has considered the human operator and their influ-

ence on the Superlimb-human system. And yet, as we have seen from other neigh-
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boring fields including the exoskeleton, prosthetic, and collaborative robotics research

communities, the human operator must be considered in order for Superlimbs to reach

their potential. The work within this thesis, therefore, represents one of the first at-

tempts to understand and, where possible, exploit the contributions of the human

operator to the Superlimb-human system.

In Chapter 2, we explored whether fully manual control of the Superlimbs was

a viable control strategy. We found evidence that when asked to perform four si-

multaneous and independent tasks, two with the natural limbs and two with the

robotic limbs, the human operator performed worse as compared to when they were

only asked to perform two simultaneous and independent tasks with their natural

limbs. This is relatively unsurprising and yet impactful; given a demanding task,

such as the one presented here, Superlimbs would benefit from increased autonomy.

We also found evidence that the human operator preferentially moved their natural

limbs before moving their robotic limbs. First, this suggests a leader-follower control

paradigm where the Superlimb autonomy watches the human's actions to determine

its own actions. Second, this suggests that the primary, more time-sensitive sub-task

should be given to the natural limbs. Future work could explore whether fully manual

control is viable for other types of tasks or with other command input mechanisms.

In Chapter 3, we introduced two new methodologies that leveraged the high degree

of redundancy and flexibility of the human body to address key challenges in the

design and communication with Superlimbs. First, we detailed a design methodology

for Superlimbs that relied on a taskset analysis and empirical measurement of the

human operator to split the control space such that the human operator provides the

degrees of freedom that they can while the Superlimb actuates the remaining degrees

of freedom required to perform the task(s). This results in a lightweight, reduced-

actuator Superlimb. Second, we outlined a control input methodology that once again

relied on empirical measurements from the human operator performing the task to

identify a subspace that can be used to communicate the human operator's intent

to the Superlimb without interfering with the human operator's primary task. Using

these two methodologies, we realized a Superlimb prototype that assisted the human
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operator by opening a door when the human operator's hands were full. Combined

these methodologies show the potential for exploiting the human operator to allow

Superlimbs to reach their potential as an assistive technology. Future work could

explore additional ways to leverage the human operator or could expand upon the

intermittent control structure used here, perhaps by leveraging work from the shared

control community.

In Chapter 4, we offered the first exploration of the inherent haptic feedback pro-

vided by Superlimbs. As the state of the Superlimb changes, that change is often

reflected as a change in force or torque about the base of the Superlimb. Thus the

human operator receives haptic feedback on the state of the Superlimb. We first

showed that this feedback was sufficient to allow the human operator to manually

close the loop and control the force output of the Superlimb. This could be use-

ful in applications like standing assistance for the elderly or injured as the desired

amount of help in the form of supplemental force is not known and therefore should

be manually controlled by the human operator. Second, we showed that the inherent

haptic feedback allowed the human operator to supervise the autonomous actions of

the Superlimb even when performing a separate visual task. This could be useful in

many different applications as it allows the human operator to track the actions of

the Superlimb and monitor for failures. This in turn helps keep the operator safe;

given the detection of failure, the human operator can step in and alter the actions

of or stop the Superlimb. Together, these two studies argue for the importance of

inherent haptic feedback from Superlimbs. Further, they suggest future work on how

to design Superlimbs that optimally communicate the inherent haptic feedback to the

human operator.

This thesis represents one clear direction forward for the Superlimb community.

In order to reach the potential of the Superlimbs, we must consider the contributions

of the human operators.
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