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ABSTRACT

During the last 30 years, a great effort has been taken in develop-
ing models that adequately represent the behavior of the neuron cell
membrane, when an action potential occurs as a link in the transmission-
of-information process. The best known of these models is the approxima-
tion of the membrane by a lumped parameter transmission line. The model
proposed herein will permit a broader comprehension of the relation
between the bioelectric properties of the membrane and the ionic and
active transport processes. The membrane generates a voltage pulse as
-a function of the ionic concentration gradients between the solutions
bathing its surfaces, and restores these gradients after an excitation

has occurred.

THESIS SUPERVISOR: Timothy L. Johnson

TITLE: Assistant Professor of Electrical Engineering



ACKNOWLEDGEMENT

I would like to thank Professor Tim Johnson for his patience and
understanding during the preparation of this thesis. His suggestions
and encouragements were unvaluable for the completion of this work.

I would also like to thank Professor Leonard Gould for his help-
ful comments and discussions on some aspects of "applied partial aif-
ferential equations" which were considered in this thesis.

Professor Bill Raymond of the Biology Department, helped me to
understand the basic concepts of cellular neurophysiology through his
graduate seminar.

The advise of A.A. Lopez-Toledo a good friend and a fellow student
who proof read the final draft of this report and made many useful
suggestions, is deeply appreciated. He also introduced me to the
"sanctuary" of scientific homesty.

Last but not least, I would like to thank Mrs. Mercedes Lopei-Toledo
who typed the preliminary and final versions of this report from really
unorganized scrawl with high proficiency.

The work done in this thesis was supported by the Universidad

Nacional de Colombia, Bogota through fellowship 3888.



TO MY PARENTS,

SALOMON

AND

HILDA



CONTENTS

Abstractoouo'oocooonooooooocooooo

Acknowledgement L ] L L] L] L L] L 4 L * L ] L] - L L J L] L L] L L ] L] L d

ChapterI Introduction ® @ 6 o o o o & o o o o & o o o o
1.1Inttoduction...............o..
1.2 Summary of the Background of the Problem . . . .
1.3 Brief Description of the Axon Membrane o« « « «

Chapter II Analysis of the Hodgkin and Huxley Model .
Introduction « « o o o o o o o o o o o o o o
Basic Assumptions and Experimental Procedure
The Hodgkin and Huxley Model o« ¢ o ¢ o o o o«
Analysis of the Hodgkin and Huxley Model . .

NINONN
SN
e o o o o
e o o o o

L d

Chapter III Ionic Transport Model .« ¢ o ¢ o o o o o o o
3.1IntrOduction...................
3.2 Definition of Variables and Parameters .

thheMOdeloo-o.ooooooooo.o-o

3.3 Physical ASSumptions « « « o o ¢ o o o o o ¢ o o

3.4 Derivation of the Equations of the Model . . . .
3.5 Physical Considerations About the Variables

OftheModeloo‘ooooooooooooooo

6 System Analysis of the Model o ¢« ¢ o« ¢ o o « o

700nclusions..o.............

Chapter IV Simulation of the Ionic Transport Model .
1 Introduction « o« o« o ¢ o ¢ 0 o« o ¢ o o o o o

2IO“icMObilities..o.oooo-oo.oo

3 Membrane Potential Time CoursSe « o« o« o o o o &«
4 Electric Field Intensity in the Membrane . . . .
5
6

* o @

Current Density and Concentration Distributions
Oscillatory Behavior of the Hyperpolarized

Membrane.............o....-.
o7 Conclusions « o o o o o o o o o o o ¢ ¢ o o o o

Chapter V Active Transport Model . ¢ ¢« ¢ ¢ « o ¢ o ¢ o o
5.1IntrOductiono.-oooo.ooooo.oo-o
5.2 Physical Description of the Active Transport
Process and Definition of Variables . ¢« ¢« « o &«

5.3 Derivation of the Equations of the Model . . . .

5.4 Qualitative Analysis of the Process in Terms

OftheModel...............-..

505 ConclusionS =« « o « ¢ o o 0 s o s o o s s o o &

L] - . . * .

[ ] L] L [ ] [ . L] [ ] L]

Page

11
14

21
21
23
29
33

53
53

54
57
60

74
75
91

92
92
93
99
101
103

107
108

110
110

111
124

144
147



Page

ChapterVI Conclusions ¢« o ¢ o ¢ o« o o o o o o o ¢ o o o o o 148

6.11ntr0duC.tion.............-..... 148

6.2 Review of the Main Conclusions in Each

Chapter (] ® L ] ® L L] L] L ] L ] L] L] [ ] L] . L ] * * L3 L[] L] L] * 148

6.3 Some Suggestions for Future Research . « « ¢« +» « & 151
Appendix A Discretization Scheme for the Dynamics

of the Ionic Transport Model . ¢ &« ¢ ¢ o o o o o 153

Bibliographyooo.oooobooooooooo.oooo. 165



Fig,
Fig.
Fig.

Fig,

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.,

Fig.

Fige.

Fig,.

Fig,

1.1
1.2
1.3

2.1

2.2

2.3
2.4
2.5

4.1
4.2
4.3

bob
4.5
4.6

4.7

FIGURE INDEX

The Neuron
Dannielli Model for the Membrane Cell Structure
The Action Potential on a Clamped Membrane

Arrangement of Internal and External Electrodes
in the Axon

Voltage Clamp Experiment - Equivalent Diagram

Hodgkin and Huxley Model of the Clamped Axon
Membrane = Block Diagram

Changes in the Action Potential Spike Caused
by Perturbations of the Vector Parameter p

Lumped~Parameter Approximation of the Axon
Membrane, Basic Unit

Sodium and Potassium Mobilities
Calcium and Chloride Mobilities
Time Course of the Excited Clamped Axon Membrane

Electric Field Intensity Distribution in the
Axon Membrane

Sodium and Potassium Current Densities in the
Membrane

Sodium and Potassium Concentration Distributions
in the Membrane

Membrane Potential Oscillatory Behavior

Page

17
19

20

27

28

44

50

52
97
98

100

102

105

106

109



CHAPTER 1I

1.1 Introduction

The purpose of this thesis is to study by means of a mathematical
model some of the physiological and functional aspects of a glant squid
axon membrane excited by an electrical pulse. The study is directed to
the case where a portion of the membrane is clamped, i.e., no potential
gradient exists in the longitudinal direction of the axon. The reason for
this limitation is to analyze the interrelationships of the excitatory event
with the chemical characteristics of the system formed by the membrane and
the surrounding solutions. We thus avoid the propagation of the excitation, which
is a phenomena that depends solely on the electrical porperties of the mem—
brane. Moreover, no study of the propagation phenomenon is possible with-

out a careful analysis of the mechanisms involved in the generation of the

electric pulse (spike), which occurs when the membrane is excited over a
certain threshold. These mechanisms determine the physical characteristics
of the propagation, therefore an analysis of the latter cannot be carried

out without a previous careful study of the former.

The purpose in deriving a mathematical model is two fold: first, to
study the characteristics of the action potential as a function of the trans-
port of sodium and pptassium ions across the membrane due to their electro-
chemical gradients; and second, to analyze some of the main dynamic charac~
teristics of a possible mechanism by which these ions are transported. The
first process will be referred to herein as the ionic transport process

and the second, the active transport process.



| -Both tﬁe ionic transport process and the active transport proceSs
have been the eubject of intensive research for the lest 30 years [1].
In particular, the observed time course of the clamped axon membrane
-'potential and its dependence on the flow of sodium, potassium and chlo~
ride ions have been modeled by a second order partial differential
equation relating the ionic flow and the membrane potential, coupled with
two empirically derived linear differential equations for the parameters
of the flow equation. This model is known as the Hodgkin and Huxley model
[Zj, [3], [4], [5] after A. L. Hodgkin and A. F. Huxley who derived it.
This model is analyzed in Chapter II of the thesis, Since its appearance,
many studies have been carried out in order to justify in a physical con-
text the functional expressions for the ionic conductances that appear in [6].
To this author's knowledge, this effort has not been completely successful.
This fact constituted the main motivation for developing a mathematical
model for the ionic transport process based on physical principles governing
the diffusion of ions across an osmotic barrier (such as the axon membrane)
and its interrelations with the resulting time course of diffusion between the
inner and outer surfaces of the membrane, The derivation of this model which is
carried out in Chapter III, is analogous to the one followed by Goldman [7]
for describing the dynamics of a system of two ionic solutions of different
concentrations separated by a permeable artifitial membrane. The main dif-
ference between the model considered in this thesis and the Goldman model,
resides in the role that the membrane plays in the process; in Goldman's
model it is a passive barrier, in the model developed here, the membrane
is assumed to present a structure that actively participates in the transport

process, mainly as a regulating an ion-selecting agent.
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Neuron meﬁbranes, in common with most biological cells, possess a
highly complex but not completely known, built—in mechanism that enables
the cell to transport sodium and potassium ions against their electro-
chemical gradient with the consumption of metabolic energy. This mechanism
is known as the sodium pump and is synonymous with the active transport
process. In most cells, the sodium pump is involved in the transport of
food stuffs from the extracellular fluid to the inside of the cell. 1In
neurons, the sodium pump is also responsible for maintaining the concentra-
tion gradients of sodium and potassium ions so that the ionic transport
develops a voltage pulse when the membrane is excited. Experimental evidence
"strongly supports the hypothesis that ATP hydrolysis is the source of energy
of the sodium pump. In Chapter V, a model for the active transport process
is derived. 1In this model, the equation representing the process gives
qualitative rather than quantitative characteristics of it. The objective
of developing such a model is to study the dynamics of the process and to
obtain a formal description that can help in future studies to elucidate
the mechanisms that govern its behavior, to test the hypotheses that hawve
been proposed about its structure (Engelman [8]) and also to establish the
possible coupling mechanism between this process and the ionic transport
process,

In order to test the validity of the ionic transport model, and to get
some insight about the physical properties of the axon membrane system, a
simulation of its describing equations was carried out. The results and

conclusion of this simulation are given in Chapter IV.
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This chapter is divided into 3 sections: 1.1 Introduction, 1.2 Histor-
ical Account of the Research in the Field, and 1.3 Brief Description of the

Axon Membrane.

1.2 Summary of the Background of the Problem

The first attempt to model the neuron cell membrane based on its
selective permeability to potassium and sodium ions was made by Bernstein
[9].in 1902. Based on experimental evidence, using sciatic nerves of
Hungarian frogs, he concluded that the resting potential that is present
across the cell membrane is due to its selective permeability
.potassium ions. He also suggested that the action potential is brought
about by a breakdown of this selectivity. 1In 1926, Adrian and Zotterman
[10] studying sensory nerve endings, gave thermodynamic arguments to justify
the action potential that was measured in nerve sensory fibers when excited
by an electrical pulse., However the first to provide convincing evidence
that membrane potential changes are causal agents in nervous activify was
Hodgkin [11] in 1937; he developed a model baséd on transmission line theory
for the propagation of a pulse along the axon. In 1938 Hodgkin [12] establish-
ed a coherent theory for the behavior of nerve fibers for subthreshold poten~
tials; in his paper he also established a relation between subthreshold poten—
tials and the "all or nothing" law for the action potential, described by
Katz [13], a year before.

The sodium theory of the action potential was established by Hodgkin

and Katz [6] in 1949, They discovered that the membrane potential "overshoots"

the zero level during the action potential, so that the inside becomes positive,
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This fact suggeste& that the process was a rapid and specifié increase in
the permeability of the membrane to sodium ions. The model for the membrane
potential resulting from this discovery was a lumped parameter distributed
electrical circuit. In 1945 Hodgkin and Rushton [7] carried out measure-
ments on crustacean nerve fibers in order to determine the parameters of
the membrane circuit model during the action potential. A general model
that considered subthreshold behavior and action potential for aquid axon
membranes was developed in 1952 by Hodgkin and Huxley [8]. This model
interprets the properties of the axon potential in terms of a conceptual
model, an electrical circuit composed of four branches in parallel: Three
for representing the movement of sodium ions, potassium ions and chloride
ions across the membrane, and the fourth for representing the equivalent
capacitance of ihe ﬁembrane. The ionic branches are each composed of a
battery whose electrometive force is given by the Nernst equation for -
that ion, and a variable conductance. These conductances represent the
ease with which ions can pass through the membrane; they are very complex
functions of the permeability coefficients of those ions and their mobility
through the membrane. Two important factors that have been extensively studied
using this model are the "sodium theory" of the action potential and the
ionic movements during activity.

The sodium theory was proved by Hodgkin and Katz in 1949 [6]. They
suggested that the action potential is a process characterized basically
by a rapid and specific increase in the permeability of the membrane to
sodium ions; in terms of the circuit model, this implies that the conductance
representing the sodium permeability becomes, during the action potential,

relatively bigger than those corresponding to potassium and chloride ions.



Their theory is an aftempt to explain.the interrelationship between the
movemént of sodium, potassium and chloride ions through the membranes
The magnitude and speed of propagation of the action potential from the
experimental evidence can be approximated by the Hodgkin and Huxley model
by considering the axon membrane as a cascade of elementary circuits such
as the one described above, using resistances in series to represent the
attenuation of the pulse as it travels down the axon.

Parallel to the lumped parameter model development for cell mem—
branes (axon) during subthreshold and action potential activity, researchers
in the field have tried to find models based on the biochemical reactions
and the thermodynamic events that take place during the action
potential. Perhaps the first results following this line were published
in 1930 Tasaki [10], and later in Tasaki and Takeuchi [11] in 1941 and
1942 [12]. The basic idea is to consider the axon membrane together with
the ionic solutions on both sides of the membrane as a thermodynamic closed
system, and to establish a set of energy relationships between the ionic
movements and the electrical, chemical and thermodynamic gradients (potentials)
present in the membrane. The main parameters of this model are the different
ion concentrations, ion mobility, water flow, non ionic process etc. The
potential gradients responsible for these movements are the concentration gra-
dient, the electric gradient (the two former potentials are defined for each
ion type), the temperature gradient and the osmotic pressure gradient.
Several researchers have considered this approach: Kinsey [13] in 1970,
describing a generalized theory of ion movements in biological tissues;
Dick [14] in 1971, on water movement in cells; Tasaki [15] in 1969, in

electric transport of ions; Bittar [16] in regulation of ion transport by
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hormbnes, aﬁd Gingell {17] 1971 in using cell membrane surface potenﬁial
:as a transducer.

‘ While previous authors have considered particular cause-effect
sequences for modeling cell membrane behavior, no attempt has been made
to treat the interaction of these processes. This is the main goal of
this thesis. 1In the next section some general anatomical characteristics
of the axon membrane are described. They will be required in the deriva-

tion of the model ia Chapters III and V.

1.3 Brief Description of the Axon Membrane

Nervous Systems of multicellular organisms are composed of ensembles
of highly specialized cells called neurons. The neurons are arranged in
complex networks; their main function is to carry information in the form
of electrical pulses. While there are important differences in the general
organization of nervous systems of different organisms, the neurons of a
wide variety of animals present common features both in structure and
function which permit a generic study of their physical characteristics.

Anatomical studies suggest that the neuron itself is a system in which
4 main components can be recognized: dendrites, the cell body or soma,
the axon, and the terminal region (Fig. 1.1).

The cell body is the main part of living matter of the cell and con-
sists of a highly organized system called the cytoplasm, which is concerned
with the biological activity of the cell; in particular, with the metabolic
process. The dendrites' main function is to serve as input channels for
the intercommunication between cells. The axon and terminal region are

concerned mainly with the transmission process.
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The ﬁeuron, in common with other types of cells, is surrounded by a
complex plasma membrane whose thickness has been experimentally determined,
and ranges between 50 and 150 Z; Using high resolution electron microscopy
on sections of nerve ceils, it has been shown that the celi membrane appears
as two dense lines separated by a clear space; this observation agrees well
with a model for the structure of the membrane developed by Davson and
Dannielli [1], based on observations made by Gorter and Grendel [2]. The
Dannielli model assumes that the cell membrane is a chain of phospholipoid
molecules arranged in a layer two molecules thick and stabilized by a thin
layer of protein molecules on each side of the lipid layer as shown in Fig.
1.2. In Dannielli's model, it is assumed that the membrane presents
perforations or activation sites at regular intervals. This hypothesis is
known as the "pore theory" and is a rather fundamental assumption in the
development of the models considered in this thesis. Unfortunately, the
pore theory has not been proved by direct observations, but rather by measur-
ing the rate of entry of water per unit of concentration gradient, using an
osmotic method. Paganelli and Solomon [3], observed that individual water
molecules can pass through the membrane more easily when there is a net flow
of water from one side to the other that when their movement is dependent
only upon diffusion. More recently Bar et al [4], using modern methods for
complete lipid extraction and accurate measurements of the membrane surface
area, concluded that the lipid layer that forms the membrane is stable for
ratios of layer thickness to surface cell area ranging from 2,2:1 to 1,2:1,
meaning that other arrangements for the lipid layer than the one considered
above are possible. Owing to the uncertainty of the molecular arrangement

of the cell membrane, most of the models describing the electrical behavior
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of excitable cells are based on the establishment of relationships that
approximate the physical Interactions between the surfaces of the cell
membrane and the thermodynamic systems on both sides of it. Also, the
experimental data available is based on measurements at the boundaries

of the membrane, Therefore all the models for the membrane electrical
behavior have as a starting assumption the characteristics of the activity
inside the membrane, and in most of the cases, this is a completely arbi-
trary assumption.

The most important part of the neuron for the purposes of transmission
is the axon (Fig. l.1). Usually compared with the body cell, the axon is an
enormously elongated process. In this work, all the models analyzed refer
to the system formed by the axoplasm (i.e., the composite mixture of chemical
elements in the axon), the plasmalema or membrane whose composition is
assumed to be completely different from those on either side of it, and
the external solution.

The transmission process is accomplished by the propagation of an
electrical pulse of very specific characteristics, called the action potential,
along the axon toward the terminal region (Fig. 1.1). This voltage is
measured as the potential difference between the outer and the inner surfaces
of the axon membrane, and in general, is a function of time (interval elapsed
since excitation) and distance (along the axon, from the excitation point).

The neurons are excitable cells: this property is described as follows:
when the cell and in particular the axon is in resting condition the axon
membrane is polarized with constant voltage negative at the inner surface;
when an electrical pulse positive at the outside surface is applied to the

axon membrane, it propagates in a form analogous to the propagation of
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electrical puises in metallic wires. If the magnitude of the excitation
pulse is increaéed to a certain value, the cell "fires", i.e., an action
potential is developed. (The general form of it is shown in Fig. 1.3).

‘The size of the pulse which starts the action potential is called the
threshold potential and isvalmost constant for every type of neuron» The
propagation characteristics of pulses below the threshold level are passive
and are described as‘subthreshold phenomena., The activated cell membrane
potential is dividéd, for purposes of analysis, in two parts: The first
is determined by the depolarization of the cell when the membrane potential
reverses its sign (rising phase in Fig. 1.3), and the second by the recovery
of the cell membrane toward the equilibrium (resting) potential (falling and
subsequent phases in Fig. 1.3). The equilibrium membrane potential is known
as the resting potential.

The membrane potential difference described above is caused by a complex
interaction of the different ions and molecules that form part of the solu-
tions on both sides of the membrane and the diffusion of these ions and
molecules through the membrane. The purpose of this thesis is to develop

two models for the cell membrane in passive and active states , and to

explore the mechanism by which they regulate the propagation of an action
potential along the axon.

The experimental evidence on which these models are based was obtained
by Hodgkin and Katz [5], Hodgkin, Huxley and Katz [6] and Hodgkin and Huxley

{71, (81, 191, [10], [11], [12], for the giant axon of the squid Loligo.
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CHAPTER II

-~ ANALYSIS OF THE HODGKIN AND HUXLEY MODEL

2.1 Introduction

Although previous attempts were made to establish a model for the
electric behavior of neuron cell membranes, (i.e. Hodgkin [ 1] 1937),
the first relatively complete mathematical model of a nerve membrane,

that of the squid giant axon, was developed by Hodgkin and Huxley [5 ]

in 1952.

This model was obtained from the analysis of a series of experi-
ments in which the axon membrane was excited by pair of electrodes with
a pulse of magnitude and duration sufficient to trigger an action poten-
tial. The physical phenomena involved in the action potential include
two coupled processes: membrane depolarization and disturbance propaga-
tion.

The first is determined by the complex interdependence between the mem=-
brane potential, the active transport of ions across it, and the geome-~
tric structure of the membrane in the direction normal to its surfaces;
the second depends on the mechanism that makes the pulse travel along
the axon, producing sequentially the depolarization of the membrane along
the axon towards the terminal region (Fig 1.1). These processes are very
difficult to observe in a coupled form, because they must be measured at
points on the coordinate axis coinciding with the axis of the axon, (assum-

ing that the axon is a perfect uniform cilinder), and at each instant of
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time after the action potential starts. For this reason, Hodgkin and
Huxley implemented their experimental measurements of the action poten-
tial using a technique known as "voltage clamp", developed by Cole in
1938, in which the squid axon membrane is subjected to step changes in
electric'potential using‘a paif of electrodes inside and outside the
axon. These are In contact with a finite length of membrane and there-
fore prevent propagation to adjacent regions. Hence the potential is
essentiélly constant for all the points of the membrane in contact with
the electrodes. This fact allowed Hodgkin and Huxley to study the mem-
brane depolarization uncoupled from the propagation phenomena.

In this chapter a re-evaluation of the experiments mentioned above
(as well as.the model developed from them) will be carried out. This
forms the basis for the new model for the axon membrane behavior under clamped
conditions to be developed in chapter 3. In section 2.2 the basic assump-
tions of the model are stated and a critical analysis of their validity is
pursued. Théir underlying physical principles are examined. In section
2.3 the dynamic equations relating the membrane state variables are stated;
their predictions are correlated with the experimental evidence. In section
2.4 some modifications of the equations are proposed in order to consider
aspects of the action potential and‘events occurring after it (refractory
period), not covered by the original model. Finally in section 2.5 some
general conclusions resulting from the analysis of the Hodgkin and Huxley

model are given,
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2.2 Basic Assumptions and Experimental Procedure

The basic assumptions on which the Hodgkin and Huxley model is

based are the following:

a) In the absence of external stimulus, the clamped portion of

b)

c)

the membrane maintains a constant potential, the resting poten-
tial. This assumption implies that there is no way to trigger

an action potential by manipulating the state variables (concen-
trations of the ionic solutions on both sides of the membrane) of

a clamped portion of the axon. This assumption is strongly support-
ed by the available experimental evidence

The current that flows across the membrane during an action poten-
tial has a direction normal to the membrane surfaces. This assump-
tion is supported by the fact that the axon is clamped and there-
fore no gradient is present in the longitudinal direction

The electrochemical force driving the transport of each ion species
is produced by the difference of concentration of this ion species
on the two sides of the membrane. This assumption is hardly justi-
fiable from a phyéical point of view because it rules out the effect
on the flow of one ion species caused by the presence of other ions
in the transport process. This presence of ions of equal valence
(sodium, potassium) and similar chemical activity in the solution

on both sides of the membrane implies that a strong iteraction of
the forces and fluxes will exist between those ions in the proximity
of the membrane. In their model, Hodgkin and Huxley justify this
assumption by considering that the membrane possesses specialized

channels for each ion species; therefore once an ion has reached



d)

e)

£)
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a channel which corresponds to its species, it is transported
by its own concentration gradient independently of the other
ion species present. Since the membrane structure is basic-
ally unknown, this hypothesis has not been tested experiment-
ally. 1In chapter 5, a possible justification of this hypo-
thesis is analyzed in the context of carrier transﬁortvtheory
The membrane behaves as a nonlinear passive element during the

action potential

The driving force of each ion species, j, is represented in the
model by an emf equal to the Donnan equilibrium potential
V. =, - _ KT 1, “jinput (2-1)
hj jinput joutput F joutput
j=12,...
where ¥ (V) are the values of the electric poten-

jinput’ "joutput

tial distribution, due to the concentration gradient of ion
species j, at the inner and outer surfaces respectively; Vj is
the equivalent emf in (V), R is the universal gas constant, T is
the absolute temperature in °K, F is the Faraday constant, and
Cjinput’ Cjoutput are the chemical concentrations at the input
and output concentrations respectively

The current across the membrane can be modeled as the sum of a
capacitive current and an ionic current. The capacitive current

represents the dynamic relative variation of the charges near the

surfaces of the membrane and the ionic current is the sum of the
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h)
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currents produced by the transport of ions. This assumption

is justifiable in terms of the Gauss' Law and will be analyzed

in section 2.3

Three different ion species are considered in the model:

‘sodium ions, potassium ions (which participate in the active
transport mechanism), and ''leakage" ions (which include

chloride and perhaps calcium ions, and are assumed to be trans-
ported in a purely diffusive manner). In ligﬁt of the experi-
mental evidence, there is little doubt that the nervous activity
(and the active transport of molecules across any cell membrane)
is strongly dependent on the mechanism of transport of sodium and
potassium ions. However, the role of the leakage ions in the
Hodgkin and Huxley model is obscure; the authors included them in
the model mainly as parameters that allowed a better fit of the
equations of the model to the experimental data

In the model, the complete system is assumed to be in isothermal
equilibrium. The experimental data used by Hodgkin and Huxley was
obtained, as stated before, using a voltage clamp technique. In
Fig 2.1 a diagram ilustrates the characteristicsvof this technique.,
The squid axon is immersed in a bathing solution of known concen-
tration. The axon is divided into 3 compartiments. In the middle
compartment, 2 cylindrical electrodes are located at a determined
distance from each other (electrodes c and d in the figure). The
axon is penetrated by two thin silver wires (a,b). Wire (a) is

driven by a current source (not shown in the figure) that is con-
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ifrolled by the voltage difference across the membrane: ‘this
voltage is measured between electrodes b and c. The other ter-
minal of the current source is connected to ground (electrode e).
VA very important feature of the voltage clamp technique can be
better visualized with the block diagram shown in Fig 2.2. The
measurement system is a proportional control feedback system.
The idea is to maintain the membrane potential constant at a
given value Vref and to measure the resultant current at each
instant of time. Since the capacitive current 1is proportional

to the first derivative of the membrane potential, the former
will vanish if the membrane potential is constant. This is

very desirable since the current measured will be produced only
by the transport of ions. Hodgkin and Huxley obtained a series
of current measurements (as functions of time) for different mem-
brane potentials. They also varied the external concentration of
potassium and sodium ions. These data, together with the assump-~
tions discussed above, were the basis for the identification of
the parameters of their model, and also for checking its validity
for different output concentrations.

Finally, the use of giant squid axons for testing this model is
justifiable from the practical point of view, since these axons
have a 500-700 microns diameter (which is large enough for the
size of the electrodes available), and also they are comparative-
ly long (25-30mm), so their dissection can be carried without

damaging the axon.



Voltage wire (b)a » Current wire (a)
~ 4

N o
LI
Vo
D
(|
"'t {Axon
Pt
[ .
! ‘*,9"5“ <A
| '3~5 mm
——— 1 -
r == e == < A
N ; N
. ' )
e d cl Ib} Ja] Jc 1 7mm.|d Palie B
I , .
‘ M
| '
! 135 mm. .
' i N Cen
! !
' '
! *Vaseline seal 1
! e t
i N .
L -

Accon 3" mcLV\"f Os In'\&.\"ﬁo..\ Q__“A

Extecnol Electre des

F\3 2-|



- 28 =~

- Refocrenca
uo\kagm

d=VN-Nrcraf
J Voltage | v | |corrent
Hleasucins Sovcca
” deNica.
T
Hembecana Coccand
> HMea svcdrnent
Vollaqe davica
\Y

vk rd—&d.?dﬂ(:d_ VO\'\’CL 36_

Tt
Mot

\’o\‘\qaa—o C‘Qme Q_x?a,fﬂ‘f\¢v\\'
q,%uwa_\u\* D\CL%(Q.W)

Fir¢ 2.2



-29-

2.3 The Hodgkin and Huxley Model

As stated before, Hodgkin and Huxley considers the current den-
sity across thelmembrane to be composed of 2 current densitiés: the
ionic current density and the capacitive current density.

Remark:

Since all the experiments were carrled out in a definite segment
of axon, all the parameters of the model are referred to a definite sur-
face area.

The total current density J across the membrane, is given by the

following expression:

av
J Cdt + Ji (2-2)

where J is the total current density (at the outer surface) flowing
across the membrane in mamp/cmz, Ji is the total ionic current density

in mamp/cmz, V is the membrane potential in mV and C is the equivalent

membrane capacitance in uF/cmz. This capacitance was determined by ex-
citing the axon membrane with a short current pulse (duration 8 usec)
using a clamped voltage arrangement, but eleminating the feedback loop,
(Fig 2.2), thus allowing the membrane potential to vary with time.

After the excitation current pulse has died away, the total current den-

sity function J in eq (2-2) is equal to zero and therefore

dv
Cdt = - Ji (2-3)

Using this relationship, the value of C can be determined. It was
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found that C is essentially constant with time and more 6r less propor-
tional to the axon dlameter. The avérage value of C for all the expe-
riments they carried out is 0.91 uF/cmz. For the low-temperature model
(6°C) to be discussed below, Hodgkin and Huxley chose a value of l_uF/cmz.
According to the assumptions given below, the flow of each ion
species is only dependent on its own potential gradient, hence the follow-

ing equations for the current density of each ion species:

INa = 8ya(V-Vya) (2-4)
I = g (V-V) (2-5)
I = gl(V—Vl) (2-6)

where JNa’ Jk,-Jl are the ionic density currents of sodium, potassium
and leakage ions respectively, in mamp/cmz. V is the membrane potential

displacement from the resting level in (mV) 1i.e.,

V= winput - lpout:put - Vr (2-7)

Vr is the resting membrane potential with the inside taken as positive
(Hodgkin and Huxley considered the inside negative based on the direction
of deflection of a D.C. voltmeter connected to electrodes b, c, Fig 2.1).
In order to be consistent with the convention adopted in the ion transport

model discussed in chapter 3,

Voo V

Na’® Vi are the relative sodium and potassium equilibrium

potentials respectively in mV. 1i.e.,

vV, =V. -V ' (2-8)
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e =V - % (2-9)

where 7'3, 7£ are computed with expression (2-1).

V1 is the relative leakage potential in mV. As will be discussed
later, this variable is chosen in the model to yield V=0 when the mem-
brane is in its resting state,

BNa® & are variables that govern the flow of sodium and potassium
ions at the surfaces of the membrane. They have the dimensions of conduc-
tance per unit area in mho/cmz. Their dynamic behavior constitutes the
basis of the Hodgkin and Huxley model,

8y is a constant of proportionality between the leakage driving
potential and the leakage current density, given in mmho/cmz.

The variables BNa® Bk 2Te given by the following set of heuristic

equations:

BNa = Bya T P (2-10)
B = B o2 (2-11)
where
n=am(V) (1-m) - Bn(V) m (2-12)
h = ah(V) (1-h) - Bh(V) h (2-13)
n = an(v) (1-n) - Bn(V) n (2-14)

where m, n, h are continuous non-dimensioned bounded variables i.e.,

0<m<1 (2-15)
0<nx<l1 (2-16)
0<h<1 (2-17)




- 32 -

and am, Pfm, ah, Bh, on, Bfn are continuous functions (almost everywhere)

of the relative membrane potential, V:

0.1(25-V)

(V) = (0. 1(25-W)-1

Bm(V) = 4exp(-V/18)

ah(V) = 0.07exp(~V/20)

Bh(V) = 1/(exp(0.1(30-V))+1)
~0.01(10-V)

an(V) = S 00.1010-v) )-1

Bn(V) = 0.125exp(~V/80)

these variables have the dimensions of 1/sec.

The constants in expressions (2-18) to (2-23) were determined by
Hodgkin and Huxley by a trial an error procedure, in order to fit the
experimental measurements made on several squid giant axons placed in

solutions of different ionic concentrations, keeping the temperature of

these solutions at 279K.

Schwan [18 ] gives an empirical factor by which the right hand sides
of equations (2-12) to (2-14) have to be multiplied if it is desired to

obtain the model'equations at higher temperatures; this factor is given

by the following expression:

(2-18)

- (2-19)

(2-20)

(2-21)

(2-22)

(2-23)
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_ 5(1-279)/10

A (2-24)

Remark:

The model equations given above are valid for a voltage clamped
axon.

The total ionic current density I is the algebraic sum of the

ionic current densities of sodium, potassium and leakage ions. 1i.e.,

= =25
Ji JNa + Jk + Jl (2-25)

Then, from (2-25) and 24 to (2-6) in (2-2)

dv
J = Cyptey, (V-Vy, ) +g (V-9 )+g, (V-V;) (2~26)

Equation (2-26) and equations (2-10) to (2-23) constitute the
Hodgkin and Huxley model for a clamped axon. In the next section an

analysis of these equations is carried out in the light of the experi-

mental evidence available{;

2.4 Analysis of the Hodgkin and Huxley Model

This section is divided in two parts: 1In the first, the model
will be represented as a dynamical system, and some considerations
regarding the interrelationship between the state variables are given
without any attempt to interpret their physical meaning. In the
second a correlative analysis between the observed dynamical behavior
of the clamped membrane and the sodium theory is carried out.

For purposes of analysis of the Hodgkin and Huxley model, the

following properties will be checked
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1) Global stability
2) Identifiability from the output
3) Parameter sensitivity

4) Propagation Model

This systematic analysis of a model that is known to fit the
experimental data reasonably well, gives some insight on the dynamic
characteristics of the membrane during the action potential. More-
over, some of the conclusions derived here will be applied to the
model developed in the next chapter.

The Hodgkin and Huxley equations for the clamped axon given in
the previous section can be written in the following vector notation.

From equation (2-26)

g{-=-%<5, _e_v-yp>+:é- (2-27)
where
BNa !
g = gk €R3 e = 1
&1 1
!b = VNa
Vk €R3
V1
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and <. , .> is the standard inner product in R3.

Let

_ then eqs (2-10), (2-11) can be written as follows:

g=1I() (2-28)
where T is a mapping X + Y where X, Y are subsets of R3:
x= (xR | [x;] <1, |x,| <1, [x;] <1} (2-29)

and the characteristics of the set Y are to be determined from the

analysis and

T(S) = g, n (2-29)

From equation (2-12), (2-13), (2-14) the following vector equation

is obtained:

S = - $(V)S + U(V) (2-30)
where
+op, (V46 (V) 0 0
(V) = 0 +o (V4R (V) 0 (2-31)

0 0 04 (V+8, (V)
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and
o (V)
uW) = (o (V) (2-32)
9, (V) |

Equations (2?27), (2-28), (2-30) can be represented by a block
diagram as indicéted in Fig 2.3. The diagram has been constructed in
such a way as to indicate the functional parts that comprise the model:
the ionic system that represents the dynamic interrelationéhips between
the ionic flows and their corresponding driving forces, and the membrane
control system that represents the dynamics of the control action exer-
cised by the membrane on the ionic flow.

The dotted blocks and lines represent the external control used
in the clamped experiments. |

The diagram in Fig 2.3 shows the dependence of the ionic flow on
the membrane voltage via two feedback loops: the first is represented in
the diagram by the signal flowing between points a and b. The magnitude
of this feedback signal is controlled by the flow regulator and the driv-
ing emf vector Vi. The secénd, represented by the signal flowing between
points a and d, controls the membrane dynamics.

The inputs to the system are: the emf vector yé which depends on
the difference of concentration between the solutions on both sides of
the membrane, and the current density J; in the absence of voltage clamp-

ing, this current comes from an adjacent excited region of the axon.
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The analysis of the 5 dynamic properties mentioned above will

~be carried out next, on the basis of Figure 2.3.
1. Stability

To analyze the stability properties of the Hodgkin and Huxley
model, the system will be split in two parts as indicated in Fig.
2.3. First, the stability conditions of the membrane control system
are determined, and then (considering g as an input), the stability
properties of the ionic system are analyzed. In the first case mem-
brane potential is considered as a time varying parameter and the re-
sultant quasilinear system stability is checked. For the second case
the stability of the system about a particular membrane potential ob-
tained by Hodgkin and Huxley [ 5 ] will be analyzed.

In equation (2-30) ¢(V) is a positive definite matrix for every
value of V between 0 and 110 mV (the range of variation of the spike

in the action potential; therefore the autonomous system
$ = -o(NS (2-33)

is asymptotically stable (Hsu and Meyer [37]).

Then assuming that V(t) is bounded everywhere for all t>Q, (this
assumption is justified below), notice that in (2-30),
(V) = ¢(V(r)) = éﬂt) and U(V) = U(V(t)) = i(t), therefore the solution

of equation (2-30) is of the form

t
s(t) = Y(£,0)8(0) + | Y(t,0)u(0)do ' (2-34)
0
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where P(t,0) is the transition matrix corresponding to equation (2-33),

with V = v(t).

Since S(t; S(0)), the solution of (2-33), is asymptotically stable .

for all S(0) finite and t>0 the matrix Y(t,0) is bounded (Desoer [381).
Therefofe, in (2—34) the first term in the right hand side is bounded
for all t. If the second term in the r.h.s. of (2-34) is bounded for
all t>0, the trajectory S(t) will be bounded for all t>0 and the system
(2-30) is said to be bounded input bounded output stable (BIBO).

From the definition of U(V) in (2-32) it can be seen. that

]IU(V)'I_S M (M finite) for all V finite since
1
o] = (O‘i + “:21 + aﬁ) & (2-35)

and o s Oos O defined in (2-18), (2-20) and (2-22) respectively, are
bounded for all V>0.

The denominators of am(V) and an(V) are zero at V = 25 mV and
V = 10 mV respectively. To prove that for these values of V, o and
o, are bounded the limits of o when V »25 mV and oy when V +10 mV are
required.

Applying L'Hopital's rule:

. 0.1(25-V) . 0.1x
o (25) = 1i = lim
m( ) V':;S exp(0.1(25-v))-1 >0 exp (0.1x)-1
- am 0.1

=1
=0 0.lexp(0.1x)
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Similarly,
0.01(10-V) 0.01x
o_(10) = lim = 1dm 22X
n v>10 exp(0.1(10-V))-1 %0 exp(0.1x)-1
0.01
= lim : = 0.1
%0 0.lexp(0.1x)

therefore o , o are bounded for all V>0 finite and [[u(o) ]| <M(V*)

where M(V*) = sup ||U(V)||. In (2-34) the following inequality is

valid
t ft ‘
N J ¥(t,0) U(oydo|]| < [[p(t,0) U(0)||do (2-36)
0 0
where || ]l is a suitable norm defined for a linear operator in the space

(‘3(1:0, tl, R3->R3).

By the Cauchy Swchartz inequality,

t t
I [ [¥(t,0) P_(G>Hd0iJ [y, [|u@]]do
0 0
(t
=, [ye, 0) 9, o] [[u@]]do
f t
< Hue, 0] [lwo, o) |lu@]]do
JO

Therefore the second term in the rhs of (2-34) is bounded and S(t)

is BIBO.

The discussion above allows one to conclude that if the initial

conditions S(0) are bounded S(t) will be bounded for all t>0 and for
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all V(t) such that 0 < V(t) < 110 m (the range of variation of the spike
of the action potential. For negative values of V, a similar analysis
as the one conducted above shows that S(t) remains bounded if

V(t) > -25 mV ; this condition is fullfilled by the action potential
function V(t).

The membrane control system output g is obtained from.the mapping
g = T(8) with T(.) as defined in (2-29). Since g; is a real finite value,
S is bounded and g will be bounded.

Now, the stability of the ionic system will be considered. The
ionic system as indicated in Fig 2.3 is driven by 3 inputs: g, yb and
J. Therefore the stability (or instability) of the system has to be
determined by showing that bounded inputs vield a bounded output, V(t).

The ionic system is described by equation (2-27), which is a
quasilinear affine form in which g, jé and J are the inputs and V is the
state.

For stability purposes, the membrane current density J, which is
considered as the output of an adjacent excited membrane section, is
assumed constant (the clamping loop is not operating).

In Fig 2.3, it can be seen that the sign of the rate of variation
of the voltage,-%%, depends on the feedback signal flowing between a>b;
given that J=0 if the signal is negative (positive feedback) %% increases,
and it decreases if this signal is positive (negative feedback).

The initial value (resting state) of the voltage V is 0 and the

bias vector yb has the following constant values;
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VNa 115
V = 1V = -12 in mV
-p k

V1 +10.613

the vector g varies with V(t) as indicated above but it is known (and
will be showﬁ 1@ter) that the relaxation time of 8ha (defined as the
time required to attain its maximum) is about 10 times smaller than
that of &5 also gﬁa = 4 gg and 81 << Bna® B1 << 8o With this semi-
quantitative information, the behavior of the feedback loop in the
ionic model can be determined.

It was shown above, that if V is finite g>0 will be bounded;
therefore, during an action potential, when the voltage is near 0, and

t < .5 msec, the inner product
E(V) = <g, eV - _Yp> (2-37)

is negative (according to the previous analysis) therefore the feed-

back loop signal is positive; this implies that the voltage rate (con-
sequently the voltage) increases in this region, i.e. ({0<t<0.5msec)).
Notice that in this region, the increase in potential is controlled
mainly by the ionic sodium flow. The potassium flow goes in the opposite
direction and therefore tends to decrease the potential rate; however
since its relaxation time is much slower than that of the sodium, its
effect (in the interval [0<t<0.5 msec] does not overcome that of the
sodium, and (3V/dt) increases. The question is whether this growth

is bounded. The solution of the following maximization problem yields

the answer:
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max =-max <g eV - V >
& x <g eV - ¥,
\Y v

subject to
g = T(8) (2-38)
and

S = ¢(V)S + u(W 8(0) given

A numerical solution of problem (2-38) gave that a maximum is
attained at V¥ = 72 mV and t* = 0.82 msec.

With a constant current density J = 0.8 mA/cmz, this maximum is
attained at 0.6 msec.

Next, it has to be proven that the membrane voltage V is bounded;
this can be done by solving the Hodgkin and Huxley equations numerically
or by checking if £ =-§% reaches a 0 value for a finite time and the sign
of £ after that time: from the expression for dV/dt (2-26), the problem
can be formulated as follows

<g, eV - ¥p> = 0

subject to
g = T() (2-39)
S = 6(MS + U(V)

The approximative solution of this problem with J=O1 gave V = 109 mV,
t* = 1,2 msec; for t larger than t*, £<0 (up to t = 3.5 msec for t>3.5 msec

the voltage V is less than 5 mV in absolute value and decreases with time)

Al See next page
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Moreover, for a sufficiently large gain k, V remains bounded for all t

during the action potenﬁial; this condition along with the fact that £ is

bougded imply that the ionic system is BIBO, It is important to note that
the previous analysis gives only a sufficient condition for stability.
2, Identifybility from the Output

This characteristic 1s probably the most critical one in a system-
atic study of the Hodgkin and Huxley model since the objective of the
model is to determine (based on experimental measurements) the structure

of the mechanism involved in the action potential. It will be seen in

‘this section that with the available measurements, the internal parameters

of the Hodgkin and Huxley model (S) are unidentifiable from the output and
therefore equations (2-28) and (2-30) are not only empirical (this fact
will be discussed later) but also they cannot be uniquely determined from

observations of the output variables (V and J, as indicated in Fig 2.3).

i
Let Y(t) be the observation vector V(t)>0 (during the action potential)

(Fig 2.1).
v(t)

i.e., () = (2-40)

J(t)
it is assumed that the observations are perfect, i.e., they are not
corrupted by ambient noise.
Remark:
The observability of the system has to be tested with the clamping
loop active since all the measurements were carried out with the membrane
potential clamped.

The equations of the system then become:

1 J=0 is the worst case condition for a depolarizing current since it
subtract in (2-26) making dV/dt the biggest attainable value with
respect to J (J>0)
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J

' o
{g, ev - yb> + G + K(V - Vr) - (2-41)

awm

g
(]

O

where K is a known constant (dependent on the characteristics of the
current source). The objective of this arrangement is to maintain the
membrane voltage more or less constant in time. A check of the graphical
records obtained by Hodgkin and Huxley shows that this purpose was achieved.

Therefore equation (2-41) can be simplified by the following approximationsi

dav
(@) at = O
(b) V = Vr (2-42)
(c) J = Jo
and
(d) <g, eV, - V> = -J,

then, given J =»J0, and since Vr and Vp are known, the algebraic equation
(2-42d) can be solved for g for each instant of time. Up to this point,
the identification procedure has made use of experimental measurements
and equation (2-41), which can be justified by physical arguments (Agin
[19]). But no additional information is provided for determining the

dynamic structure of the membrane control system; therefore any dynamical

system of equations driven by'Vr+V(t), the relative membrane potential, such
that its output vector equals the value assumed by the vector function g at
each instant of time, will be equally valid, from the systems point of view,
as a realization of the function g(V(t)). Of course, there is an infinite
number of such systems so that, without additional physical information about

the membrane structure, it is not possible to determine from the feasible
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realizations of g(V(t)) which one corresponds to the membrane éystem.

3. Parameter Sensitivity

Since the appearance of the Hodgkin and Huxley model, considerable
(unsuccessful) research has been conducted in order to justify physically
the functional expression T(S); for this reason, a numerical analysis
has been conducted in order to determine how critical is the dependence
of the potential function when the exponents of m, n, h vary around
their nominal values.

Let

be the exponents of m, n, h respectively in T(S); the nominal values
are p, = 3, P, = 4 and Py = 1.

Then, g can be written as a mapping of R3 X R3 > R3 as follows

g=1G, p) (2-43)

perturbing the values of p in (2-43), and expanding the resulting ex-
pression in a Taylor series neglecting variatioms higher than first
order, the following expression for the resulting perturbation in g

can be obtained:

6g = 5= (5%, p) op (2-44)
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where .
e m*3h* % 0 o m*3h*2n(h*)
8Na 20 (m*) . Byg
—% = 0 EKE*"zn(m*) 0 (2-45)
0 0 0
and
m*
S* = |n%
h*

denotes the perturbed membrane control system state.
Next, using equation (2-27), an equation for the resultant pertur-

bation in the membrane potential can be obtained:

[

. . 1
V4V =-Z<g+ 63, e(V+sv) - _\_7P> + (2-46)

Neglecting increment products in (2-45), the following approximate
expression for 8V is obtained;

.

1 1
SV = - i <g, §6V> - <<S-g- s eV - yp> (2-47)

Finally, the perturbed membrane control state is given by the
following expressions:
8% =5 + 688

8S = - o(V)6S - —g—% (V)SSV + %1 (V) &v (2-48)
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with the initial conditions

§v(0) = 0 8s(0) = 0 Gp = 62(0) =,§BO given constant

where
Ja aB
m
EAMEYE 0 0
a0, a8
99 _ n__n
WV 0 T + 3V ¢} ' (2-49)
o . ooy | 2y
v v V= Vn(t)
and
Vn(t) = nominal membrane voltage function
and
aozm(V)
v
Ban(V)
u(V) - T (2-50)
Vv
aa, (V)
—ig-v-— V= (D

For testing the sensitivity of the membrane potential to variations

in the parameter vector p around its nominal values,

3

2n=4
1
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a computer program was written to solve numefically equations (2-44),
(2-47) and (2-48), assuming constant perturbations. The results are
sumarized in Fig. 2.4 below.

Surprisingly; the time course of the action potential was relatively
insensitive to variations in the parameter vector p. As shown in the
Fig. 2.4, with a 20% variation in p, the change in membrane voltage is
less than 5%, on the average. For larger perturbations, the incremental
model should include second order terms in the Taylor expansion.

Notice that a positive perturbation increases the rising phase of
the action potential and decreases the falling phase; this fact agrees
with the experimental observation that an increase of sodium concentrationl
(on the outside) increases the magnitude of the action potential while an
increase in potassium concentration (on the outside) decreases it.

The important conclusion of this sensitivity analysis is that the
exponents of the elements of the vector S in T(S) do not correspond to
a physical (unknown) factor but rather they are more or less arbitrary
and at least to a first order approximation of the perturbed model, there
is an entire set of these exponents that can approximate the experiment-

al results equally well.
4. Propagation Model

Hodgkin and Huxley assumed that the ionic transport mechanism res-
ponsible for the action potential was uniformly distributed along the
axon membrane (x). Therefore they represented the membrane by a lumped
parameter model of a transmission line, in which the shunt branch of

the elementary circuit of the model is formed by 4 elements in parallel

1l Notice that an increase in sodium concentration implies an increase
in conductance Bya S€€ ed. (3-17) in [6].
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and two series resistorg, as indicated in Fig. 2.5.

The series resistors represent the ohmic characteristic of the sur-
faces of the membrane and are assumed to be linear elements.

Applying ohm's law to the circuit of Fig. 2.5 the following relation-

ships are obtained

AV = (rl + r2) JAX 2ma (2-51)
AT = AJC + AJna + AJK + AJl (2-52)
a3, = =AY ax oma (2-53)
8dy, = g (V-AV=V_ ) AX 27a (2-54)
YAIK = g (V-AV-V,) AX27a (2-55)
AI1 = gl(VFAV-VK) AX27a (2-56)

The product AXAV < |AX] for AX, AV small and therefore all second
order products can be neglected; then the incremental equation for the

current AI(X, t) becomes

L, AV _ -
AT = (ng + gNa(V-VNa) + gK(V—VK) + gl(V Vl))ZWaAX (2-57)

applying Kirchoff's current law.

Dividing both sides of (2-52) by AX and taking the limit as AX>0:

1 a1 v
712 3% - @ 3t T Bna(VVna) t o8 (VY + B (VYD (2-58)

In (2-51), dividing boths sides by AX and taking the limit as

AX>0:
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e e = (rl + 1,)1 (2-59)

In (2-59) taking the derivative with respect to X

2
1 937V oI .
X
From (2-58) in (2-60)

32

X

<

= (r; + 1,) |cm g‘% + g (V-V,) + g (V-V,) + gl(V—Vl)I

|

N

Equation (2-61) describes the propagated action potential. It is
nonlinear partial differential equation and no closed form solution can
be obtained. Numerical solutions of this equation have been obtained

and they show good agreement with the experimental observations.

P Ve, t)
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CHAPTER III

IONIC TRANSPORT MODEL

3.1 Introduction

The Hodgkin and Huxley model for grant squid axon membranes, dis-
cussed in Chapter II, shows a dynamic structure that is typical of sys-
tems involving interrelations between a potential and/or osmotic barrier
(membranes in particular) and the flow of particles across it: this
structure can be described by a>two-subsystem model, one representing
the flow of particles across the barrier and the other, the control
exercised by the barrier on this flow.

In the Hodgkin and Huxley model, as stated in Chapter II, the
equatione describing the first subsystem can be justified by the laws
of field theory, but those describing the second are completely empiri-
cal. This fact motivated the development herein of a model strictly
based on well established physical laws governing the flow of charged
particles though a membrane. The model equations satisfying the former
requirement must also show a reasonable agreement wifh‘ﬁhe observed ex~-
perimental behavior of the squid axon membrane. It will be shown in
this and the next chapter, that the ionic transport model to be des-
cribed in this chapter partially satisfies those requirements.

Fundamentally, the ionic transport model for axon membranes is

based on the determination of the relationships between the flows across

the membrane of the different ion species present in the solutions of

the system and the forces driving them, with the constraints imposed by
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the assumed membrane structure (Danielli's model, see Chapter I).

The ionic transport model will be derived in two steps: In the
first, a portion of the axon membrane will be assumed to be voltage
clamped (see Fig. 2.1) and the relations between ion f1§ws, driving
forces, membrane parameters and membrane potential are derived.in the
second. A mechanism of propagation of the action potential is proposed.

The chabter has been organized as follows: Section 3.2 Definition
of variables and parameters of the model; 3.3 Physical assumptions; 3.4
Derivation of the equations of the model; 3.5 Physical considerations
about the variables of the model; 3.6 System Analysis of the model; 3.7

Conclusions,

3.2 Definition of Variables and Parameters of the Model

All the physical vafiables of the model are functions of 3 inde-
pendent variables: the spatial variable x in the direction normal to
the axon axis, bounded by the membrane surface (x = 0 inner éurface,

x = § outer surface), the spatial variable z parallel to the axon axis,
where the axon 1s assumed to have a constant radius (cylindrical shape)
along the axis and a time variable t (t = 0, starting instant of the
action potential). For sections 3.3 to 3.6 the model of the clamped
axon 1is considered; therefore, the functional dependence on zrof the
physical variables is ignored in the definition of the variables given
in this section. In section 3.7 this dependence will be indicated pre-
cisely. The following set is the domain of the functional variables of

the models
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Q= {(,00er? | 0<x< 8, €20} G-

sad any variable of the model is a mapping that can be generically

represented as
£: 8 >R (3-2)

If additional properties of a particular variable are required, such
as continuity and/or differentiability, they will be stated explicitly;
otherwise, the variable is implicitly assumed to be defined as in (3-2).

The variables defining the ion transport model are:

uj, Electrochemical potential in J/mole defined for each of the ion
species j = 1,...N involved in the transport process.

Yj’ Activity coefficient of the ilon species j; indicates the
affinity of a particular ion to follow a change in its che-
mical potential.

Cj’ Chemical concentration of the ion species j in the membrane,
in mole/cm3.

zj, Valence (with sign) of the ion species j.

v, Electric potential distribution across the membrane in volts.

This function 1s assumed to be continuous for every (x,t) in

I, once continuously (first order) differentiable in time,

and twice continously differentiable in x. Thése mathematical
properties arise from the physical characteristics of the po=~
tential distribution across the membrane, and will be justified

in Section 3.2,
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Electric potential difference between the inner and the outer
surfaces of the membrane in volts. This variable is indepen-
dent of x.

Hydrostatic pressure in Newton/cmz.

= oV .
Partial molar volume of the ion species j; Vj e

i Iny 1=1,...N
i#]

where nj is the mole number function of ion species j in
cm3/mole.

Chemical activity of ion species j in mole/cm3.

Driving force of ion species j in volt/em.

Velocity of transport of ion species j in the x direction in
cm/sec.

Flux 6f ion species j across the membrane in ions/cm2 sec.
This variable is continuous in x and t.

Electric field intensity distribution across the membrane in
volts/em. This variable is continuous and continuously diffe-
rentiable in x, and t for each (x,t)ef.

Current density distribution of ion species j in amp/cmz.
This function is continuous in x, and t for every (x,t)efl.
Driving current density in amp/cmz. This variable 1s a func-

tion only of t and is piecewise continuous in t. (i.e., applied

at x = §).

The parameters considered in the ion transport model which

express the interrelation between the membrane structure and the iomic

flow in the axon membrane are:
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4uj, Mobility of the ilon-species j in cmz/volt sec. 'This parame-
ter, along with other variables such as temperature, depends
strongly on the structure of the membrane, especially at its
surfaces, and plays a very important role in the ion transport

model to be derived in Section 3.4, In the model, u (3=1,...N)

o ]
is a function of V and t but not of x.
€y Electric permittivity of the membrane in F/cm. This parameter

is assumed to be constant for every (x,t)e2. (The membrane is

assumed to be isotropic in the x direction).

Finally, some constants that appear in the model equations are de-

fined:

R, Universal gas constant (8.314 Joule/mole °K)

F, _ Faraday constant (96450 Coul/mole)

T, Ambient temperature: assumed constant and equal to 279°K.

This temperature was chosen in order to compare the potential
obtained with the ion transport model (to be computed in Chapter
IV), with the one measured experimentally by Hodgkin and Katz

at this temperature, Hodgkin and Katz [4 ].‘

3.3 Physical Assumptions

The membrane is assumed to have a structure such as the one des-
cribed in Chapter I (Danielli's model). Except for the thin protein
1 ayer that exists at both surfaces of the membrane, it is considered

that the membrane structure i1s passive and does not influence the
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ionic flow; (in other words, the ionic flow is regulated by the protein
layers on both sides of the membrane), And as will be seen later, this
regulat ... is represented in the model by the variations of the ion mo-
bilities of each ion species.

The flow of ions, even for the unclamped membrane, is always nor-
mal to the axon axis. This assumption is supported by thevstructure of
Dannielli's model, in which the two layers of phospolipoids have
oriented their polarlterminations toward the ingide of the membrane in
a direction normal to the axon axis (Fig. 1.2), forming rigid channels
that prevent the diffusion of the ions inside the membrane in a direc-
tion parallel to the axon axis (z coordinate).

The molecules or atoms involved in the transport process are
ionized particles and the membrane potential is fully determined by them.
Notice that this assumption does not exclude the possibility of diffusion
of non charged molecules across the membrane but it establishes the
condition that those molecules do not influence the action fotential.
In particular, water molecules will flow because of the presence of an
osmotic gradient between the solutions on both sides of the membrane.
This flow tends to maintain more or less constant the concentration of
the different ion species involved in the action potential in the solu-
tions on both sides of the membrane. This fact allows one to consider

the concentration of each ion speciles constant in these solutions, i.e.

cj(o, t) = C0

3
C (8, t) = C (3-3)1
3 683
j= l,.oO,N
1 See Chapter V for a discussion about the meaning of these boundary

concentrations.,



Each ion species j, flows across the membrane driven only by its own
force Xj and there 18 not any interaction force generated among ions of
different species inside the membrane during the action potential.

This assumption is very critical and requires further analysis, If

it 1is asaumed that the axon membrane presents holes at regular inter-

vals, (pore theory) and all the ion species are transported across

the membrane using these pores, then the hypothes;s that each ion
species flow is caused by its own gradient force is erroneous since
the size of the pore, which has to be large enough to allow the ion
spacies involved in the ion transport to cross the membréne, has to

be sufficiently small to keep other molecules such as glucose (present
in the surrounding solutions) from crossing the membrane, because the
axon structure is not adapted to process them (for metabolic purposes).
With this restriction in mind researchers have concluded that the pore
radius has to be about 42 (Solomon [12]). But this size implies that
the distance between any two ions in the membrane is of the order of
the molecular size of the ions and therefore strong forces of repulsion
or attraction would be present between lon species in the mémbrane;
therefore, the pore theory is not consistent with the hyﬁothesis of
independence of dynamic behavior among ion species.

Another hypothesis about membrane structure, that agrees with the
assumption of independence, 1s the one that postulates that the membrane
structure presents at regular intervals, specialized "activation sites"
for each ion species. Each of these activation sites allows the trans-
port of the ion species (j) that is affine to it, and no other type of

ion (i, i#j) can be transported using this activation site, i.e., there
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exists an exclusive one-to-one correspondence between ion species and
activation sites.
The paysical characteristics of activation sites will be studied

in Chapter V. 1In this chapter, their existence will be assumed and

the model equations derived accordingly.

3.4 Derivation of the Equations of the Model

In 1929, based on statistical mechanical considerations Guggenheim
[13] derived an expression for the electrochemical potential distribu-~
tion of an ion species j in a medium subject to composite forces; this

potential, uj is given by

uj - uj + RT In chj + z,Fy + P 3

3
(3-4)

j = l,z,...,N

The thermodynamic principles on which expression (3-4) is based
can be found in almost any book of thermodynamics; in particular,
Katchalsky and Curran [14] and Spanner [15] have a comprehensive de-
velopment.

In (3-4) the product chj gives the chemical activity of ion

species j

8y = V4G4
(3-5)
J=1,2,...,N
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The activity coefficient Yj in (3-5), has not been studied in
detail in the context of biological membranes although some experij
mental results are available forlipoid membranes sepafating
solutions of low concentration, (as found in the solutions on béth
sides of the axon membrane) and it has been found that this coeffi-
cient does not depend on the membrane structure, but rather, on the
external concentration of ions (Na+ and Cl—), Plonsey [8 ]. The
values of Yy for sodium for concentrations ranging from 0.01M to 0.1M
vary between 0.5 and 0.75. Therefore, since the model will be derived
considering a constant concentration of the solutions on both sides of
the axon membrane; the activity coefficients Yj j=1,...,N will be
assumed to be constant.

The force driving ions of species j, X,, can be computed as

3

follows:

X, = -Vuj
(3-6)
- l’z’OOO,N ‘

Since the flow of ions is normal to the axon axis the forces
causing it are also normal to the axon axis; therefore (3-6) may be
written as

S
X, = -z

3 %
(3-7)

3 =1,2,...,N

where x is the distance from the internal surface of the membrane,
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o
which 18 considered to be of constant thickness (6 = 150A).
The velocity by which ions of species j are transported in the

x direction, v*j, is given by the following expression

x3 = 4%y

(3-8)
= 1,2,...,N

The latter is the key relationship in the representation of the
restriction exercised by the membrane on the ionic flow.

It has been observed experimentally (using a radio-active isotope
of potassium in the outer solution), Keynes et al [16], that when the
membrane is in resting state, ions cross the membrane in a natural
diffusion process due to the concentration gradient between the two
gsolutions. When the membrane 1s excited, and an action potential is
developed, this flow increases in magnitude for each of the ion species
present but with widely different time constants. In particular, the
experimental evidence available, (Hodgkin and Katz [3 ]), shows that
during the action potential, there is an increase of the rate by which
sodium ions are extruded from the inner solution and an increase in the
rate by which potassium ions are transported from the outer solution.
Indeed, the time constant of the sodium transport is roughly 4 times
smaller than that of the potassium transport.

The discussion in the preceding paragraph indicates that during
the action potential, there is an increase in the speed by which ions
are transported; this increase, according to equation (3-8) may be due

to the increase of the force X,, driving each ion species j to the in-
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crease of the mobility, u,, or both. Additionally, after the action

h|
potential has occurred the membrane variables recover their resting
conditicn values, so the velocity of each ion species j after the

action potential will be (almost) equal to the initial value, i.e.,

(x, 0) = lim vxj(x, t)

v
x3 £

(3-9)
i =1,2,...,N

Remark:

For practical purposes, ij(x’ 0) = ij(x’ 4msec)
3 = 1,2,...,N (s8ee Chapter IV.)

The physical analysis carried out above, of the time behavior of
the ion velocities is based on the experimental observation of the ion |
transport process in axon membranes (Hodgkin and Katz [3 1) and the con-
clusions obtained will be used later for justifying the functional ex-
prgesions for the ion mobilities uj. j=1,...,N which will be derived
for the model.

The flux, ¢j’ of ions of species j, across the membrane, is given

by the following expression:

5 = V1%

j = 1,2,...,N

(3-10)

Then from (3-7) and (3-8) in (3-10),

(3-11)
3 =1,2,...,N
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And from (3-4) in (3-11),

5 3 . 9p =
0y = =uy (RTg (In v C)) + sz5¥-+ 5§-Vj>cj

(3-12)
§=1,2,...,N

Applying the law of conservation of charge to each ion species j,

the following relationship is obtained

oC -1

e

j - 1,2,...,N

(3-13)

Finally, the electric potential distribution inside the membrane
is related to the concentrations of the different ion species by

Poisson's equation

N

G -
. 151 2,C, (3-14)

9
sz _

Equations (3-12), (3-13), (3-14) give the relationships among
the different variables that characterize the ionic model.

This model can be considered as a generalization of the widely
ugsed model for the mechanism of ion transport across membrahes derived
by Goldman in 1943. Goldman [7 ]. In his model, Goldman assumed that
the electric field intensity E is constant across the membrane. This
agssumption 1is arbitrary from the physical point of view; moreover, as
pointed out by Hodgkin and Huxley [4 ], it does not fit the experiment-

al time course of the squid axon membrane ionic flows during the action

potential. (In fact, the values found by using the Goldman model for
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computing the fiow of each ion species j are always lower than the cor-
reapondiﬁg eiperimentél flows).

In .ne present model the electric field intensity E will be con-
sidered as a time varying distributed variable (across the membrane)
and its relationship with the variables of the model is established by
two partial differential equations based on general principles of field
theory that are applicable 1in this case.

The electric field intensity is defined by the following expression:

.2 ‘
EE - -Bixb- (3-15)

Since there is no magnetic fieid present in the membrane, Gauss'

law applied to the membrane system becomes,
N

6 (x=8)J(t) - jfl Jj + € %%.- 0 (3-16)

Remark:

No flow of charges is assumed to be generated inside the membrane,

oJ
‘5‘;‘0.

The current density of fon species j is related to the correspond-

ing flow ¢j, by the following expression:

J, = z ,F¢

3 33

(3~17)
3 =1,2,...,N

Now, some analysis of equations (3-12) will be carried out in or-

der to simplify the expressions describing the model.
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As nqted befofe, Yj is dependent primarily on the concentration
of ion species j in the solutions bathing the membrane, therefore in
(3-12) It can be treated as a constant. Also, the partial volume V&
is very small for the concentrations present in the axon system
(= 10“9 cmS/mbl), therefore, even with a pressure difference of 10 atm
the contribution of the third member of (3-12) to the total flow ¢j
is less than .1% of the total, so this term can be neglected. Finally

the ion mobility u, is a function of the surface structure of the mem-

3
brane, the potential difference between surfaces of the membrane, and
temperature, 80 uj is not an explicit function of x and can be treat=
ed as a constant in (3-12).

With the former considerations equations (3-12) become,

aC

. 1 p
8 = -uj(RTE;ﬁi+ 2Pk C,)
_ (3-18)
4= 1,2,...,N
Then, from (3-18) in (3-13)
gil 52¢ o %y 32
T .uj(RT__lZ + sz-B; pe + sz > Cj)
9x ox (3-19)
j=1,2,...,N
From (3-15) in (3-19)
3y C 8%, ac -
ge = Uy (RT—5= = 2, FBee= - 2,F509
9% (3-20)

3 =1,2,...,N
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And from (3-15) in (3-14),

N
g«g--‘é’- Iz, (3-21)
3=1
Finally, froﬁv(3—16)
1, N |
= (jzl Jj - J(t)) (3-22)

The set of equations (3-20) - (3-22) is the basis of the fonic
model for the axon membrane. Moreover, the model has been derived in
general form and therefore is applicable to any membrane system separat-
ing ionic solutions provided that the conditions on which the activation
site hypothesis is based are fulfilled by the system.

The last part of this section is devoted to determining a functional
expression for the fon mobilities uj 4=1,...,N and for the initial

anb boundary conditions for equations (3-20) - (3-22).

The first observation regarding the determination of uj is that ac-
cording to the assumed structure of the membrane, the mobility is a varia-
ble determined by surface membrane characteristics. Therefore, it is not
explicitly dependent on x. Moreover, from the quantum mechanics point of
view, uj is a phenomenological coefficient relating the velocity of an ele-
ment of charge j to the force that is driving it, provided that the energy
(potential plus kinetic energy) contained in that element is equal to the
average (in the statistical sense) energy required for the transportation
of elements of charge of the type 3 across the membrane and the total ener-

gy has a probability density function of the Boltzman type. Vander Ziel

171.
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The discussion in the preceding paragraph requires the definition

of what is meant by an element of‘electric charge in the context of thé
ionic membrane system. Since it has been assumed that the concentrations
of each ion species j on the solutions on both sides of thé membrane ére
constant (Eqs. 3-3) for all t > 0 on the average, an element of charge

qj (coulombs) for ion species j is defined by the following expression:

qy = sz(Czj.— Coj) Y
(3-23)
J=1,2,...,N

where( is the volume of clamped membrane in cm.
The time course of the average velocity of the element of charge

qy can be computed with the following expression:
8

. ;;j(t) = %- vxj(x,t)dx
° (3-24)

i =1,2,...,N

From (3-8) in (3-24)

§
;;j(t) - %- quj(x,t)dx
° (3-25)
j=1,2,...,N
Since uj j=1,2,...,N does not depend explicitly on x, (3-25)

can be written as follows
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8
- 1
vxj(t) - ujég Xj(x,t)dx)
° (3-26)

4 =1,2,...,N

In (3~26), the term in brackets in the right hand side is the average

driving force of lon species j at each instant of time. Then (3-26) becomes:

D ]

vxj(t) - quj(t)
(3-27)
4 =1,2,...,N
or
vxj(t) = quj(t)
(3-28)

4 =1,2,...,N

Since it was assumed that the only force acting on each ion species
j during the action potential was its own driving force, the total average
energy W&(t), of an element of charge ay crossing the membrane at some time

t during the action potential is given by the following expression:

1 =2 py

i=1,2,...,n

where mj* s is the equivalent mass of the element of charge qj and is deter-
mined by the net interaction between this element and the membrane structure
during the transport process (frictional forces).

The transport process is assumed to be at constant temperature and

the membrane system is thermodynamically (in the ionic model) a closed
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system; therefore, the total average energy

tant for all t > 0, {i.e., wj(t) constant,

time der.vative on both sides of (3-29),

lo

m,*v .u *

O= mi__§l_i_i.+ q3236

J = 1,2,000,N

>4

or

j - 1,2,.:;,N

From (3-10) in (3~24), another expression of v

¢
Ei-dx
k|
o
3 =1,2,...,N

—— ‘_]-_‘
vxj §

And from (3-18) in (3-32),

6 aC

u
CERE (RT‘El:‘j‘ Lt

3

(o]
3 =1,2,...,N

of each ion species j 1s cons-

j=1,2,...,N, Then taking the

(3-30)

(3-31)

can be computed:

x3

(3-32)

éibdx

F 9xX

(3-33)

Performing the integration in the right handside of (3-33),

. u
Vg (B) = - <L 1n€yy lc ) + 2

i

i =1,2,...,N

FW(&) - v
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but

V(t) = v(&) - v(0) - (3-35)

the membrane potential difference. Then (3-34) becomes:

- oY
_ vxj(:) 5 (T 1“(013'Coj) + szV(tD

1= 1,2,...,N

(3-36)

From (3-36) in (3-31), the following expression for u, is obtained:

3

q 52 1/,

uy = GRT 1n(cj IREERIO)L
h| 13" "o] 3

§=1,2,...,N

or ' (3-37)

/63 6

3
(mj*(RT ln(clj/Coj) + z

ij(t))l/2

1= 1,2,...,N

From (3-23) in (3-37),

1
2,F(Cpy = C ) g /2

u, = )] $
3 (mj*(RT 1n(C1j/Coj) + szV(t)

(3-38)
3 =1,2,...,N

Remark:

The volume 7 is given by the following expression:

W = (162 + 2ma8)X  cmd
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since the axon is assumed to have a regular cylindrical shape.
Now, the boundary conditions for equations (3-20) - (3-22) will
be discussed.
For equationg (3-20), the boundary conditions are given by the con-
centrations of the solutions on each side of the membrane, eqs. (3-3).
Now it has to be shown that those conditions define also the bound-
ary conditions for equatioms (3-21), (3-22) for the electric field inten-
sity: since equétion (3-21) has to be satisfied for all x, the boundary

conditions for E can be computed as follows:

F N
(O t) = z,C (0;3t) (3-39)
j j h|
or from (3-3) in (3-39)
3E p N
% (0,t) = = 151 szOj (3-40)
Similarly,
F N
(6 t) = L z,C0,(8,t) (3-41)
j-l J h|
or from (3-3) in (3-41)
N
F 1
(6 t) = z (3-42)
j =1 j 13
Since Coj’ C1j are constant with time, 3 0,t), 3 (6 t) are

also constant.

1 This boundary condition is not needed for the integration but
is used for checking the integration routine in the next chapter.
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Finally; the initial conditions for eqs. (3-20) - (3-22) are de-
termined.,

At cesting conditions, the time variation of the conéentrations
of ions in the membrane, vanishes; therefore, the concentration of ion
specles j, C'j, which is a function only of x, has to satisfy the

following differential equation:

2
d“c! dc!
Sy L o4, pdE L,
RT 3 szE = sz ix C 3 0

dx (3-43)

j = 1,2,00.’N

where E' = E'(x) is the electric field intensity distribution across

the membrane at resting conditions and satisfies equation (3-21):

' N .
J=1

Applying the continuity equation for the system at resting condi-

tions, (J = 0),

N
I J',(x)=0 (3-45)
=1

where J'j(x) j=1,2,...,N are the current density distributions at
resting conditions.

The boundary conditions for the system of equations (3-43) - (3-45)

are given by conditions (3-3) i.e.,

C j(0) = Coj

§=1,2,...,N (3-46)

C'j(G) = C1j
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Then, the initial conditions for the dynamic system, equations

(3-20) - (3-22) are,

Cj (x,0) = C'j(x)
(3-47)
j=1,2,...,N

E(x,0) = E'(x) (3-48)

which are the solutions of the system of equations (3-43) - (3-45).

3.5 Some Properties of the Variables of the Model

In this section some additional properties that the variables of
the model must satisfy are considered, in particular, those condifions
that these variables must satisfy in order to be consistent with the
physical entities they represent,

The concentration Cj(x,t), of each ion species j, is a continuous
function on x and t. This condition arises from the fact that the mass
is assumed to be continuously distributed for the membrane system; there-
fore the density p, of each ion species j is a well defined continuous

3

function for each point in {2

'Cj(x,t) >0
(3-46)
j = 1’2,...’N
since a negative concentration has no physical meaning.
The electric potential distribution ¥ 1s a continuous function for

every point in . Moreover, it has continuous first and second order

derivatives in x and first derivative in t for every (x,t)efl. The phy-
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sical basis of this condition arises from the fact that § is a phenome-
nological variable whose gradient is a "force" proportional to the ionic
flow, and since this flow cannot be discontinuous (by the continuity law
of matter), %% has to be continuous; moreover by Poisson's Law the second
derivative of w with respect to x is proportional to the dynamic volume-
tric charge distribution in the membrane which is continuous (by the con-
tinuity law of charge distribution in the context of field theory).

The three conditions mentioned above have to be satisfied by the
solution of eqa; (3-20) - (3-22) and their associated.boundary conditions
(eqs. 3-3) iﬁ order to ensure consistency with their physical meaning.

Asguming that Cj j =1,2,...,N and § are continuougly differenti-
able in x from equation (3~18) it may be concluded that the flow ¢j of
each ion species j is continuous (almost everywhere) in x and t, and

consequently, the current density functions J, j = 1,2,...,N are also

h|
continuous (Eqs. 3-17).

The conditions of continuity on Cj and Jj (in ) imply by observa-
tion of equations (3-21) and (3-22) that g% are continuous functions and

2 , .
since §-¥~- - g%-this implies that the second derivative of the potential
ox

distribution is continuous, as was stated above.

3.6 System Analysis of the Model

The model ié defined by 3 kinds of variables from the system

point of view: the state variables Cj j=1,2,...,N, the output varia-
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N .
bles, E, I Jj’ Y, V and the control variables u

i=1,2,...,n and
i=1 ' ”

3

J(t).

The dynamic equations of the system are:

3C
— uLy (E,C,)
(3~49)
3= 1,2,...,N
where ' 2
» a°c aC 3E
Lj(E,Cj) = RT;;il - szEg;i-— szsz-Cj
(3-50)

j=1,2,...,N

is a nonlinear differential operator. Notice that the system model
possesses an inherent output feedback law, since E is an output variable
and the state depends on it. Later, in this section, an analysis of the
characteristics of the operators Lj(-,-) 4 =1,2,...,N will be carried
out.

The output equations of the system are:

N
3E _F
il X zjcj (eq. 3-21)

J=1
From Eqs. (3-17) in Eq. (3-22) the following expression is ob-

tained:

Q
tx

.N 1
E z ¢j - J(t) (3-51)

j=1 3

=
(24

0
™ |

From Eqs. (3-18) 1in Eq. (3-51),
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2 N N aC
JE _F _E _J _1 -
Yl (151 ujszj)E - jzl ujsz.Tax -2 J(t) . (3-52)

Assuming that the functional form of the state Cj(x,t) 3 =1,2,...,N
and the control uj j=1,2,...,N, and j(t) (inputs) are known it has to
be proven that Equations (3-51) and (3-52) are sufficient to determine

v N
the output variables, E, I Jj, Y, V.
j=1

If E is an exact differential, (physically the electric field in-
tensity is an exact differential, dE, it has to be proven that in the

equations of the model E is an exact differential) the knowledge of

3E 3E '

% 5t together with the initial condition E'(x) is sufficient to de-
termine E; i‘e,,,if‘dE can be expressed as follows

dE = M(x,t)dt + N(x,t)dx (3-53)

with M, N satisfying the following condition

M _ 3N
3x ot | (3-54)
= 9E . _3E _
where M = EE-and N === (3-55)

then, dE is an exact differential.

Assuming that (3-55) holds it has to be proven that (3-54) holds:

From (3-52)
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' 2 N ac, P2
M- F i
own w ~ (¥ u,z,+~)E + (X u )
A 1195
2
., N a3 ¢C
+§- T u,z 'zT——i (3-56)
j =1 7y
From (3-21)
N ac
3N F o
- Z z (3“‘57)
3¢ € jup J8E
From (3-20) in (3-57),
AN F N j ‘
- jzl z,u (R‘I‘a -z FEr—-ia 2y 'a (3-58)

Then comparing (3-56) with (3-58) it is seen that (3-54) holds;
therefore, dE is an exact differential and E can be expressed by the
following integral equation

t X X

t
E(x,t) = [ M(x,T)dT + J N(Eyt)dE - J f %%-(n,r)drdn (3-59)
)

(o} o (o}

where M, and N are defined by equations (3-55).
Since E can be determined if Cj(x,t) j=1,...,N are known for

every (x,t)efl, it remains to be seen if the rest of the output variables

are also determined:

V(t) is obtained by the following expression:
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V() = - | EGx) 4V, (3-60)

(o}

where Vr i3 the membrane resting potential.

Y(x,t), the potential distribution can be obtained by integrating

eq. (3-15):

X
V(x,t) = ~ | E(x,t)dx + V(t) (3-61)
)
N
finally from expression (3-22), I Jj(x,t) can be computed:
=1
N SE
I J, = ex + J(t) (3-62)
ju1 3 ot

Remark:

The choice of which variables of the model are output variables is
largely motivated by the fact that these variables are measurable by
standard labdratory procedures, as indicated in section 2.2,

The controi variables uj, j=l,2,..,,N determine a mﬁltiplicative
output feedback as can be seen by observing eqs. (3-38) and (3-52). It
is important to stress that “j 3 =1,2,,..4N are the mathematical
representation of the interaction of the membrane on the ionic flow;
in particular, m*j j=1,2,...,n, the effective masses of the ion
species, are determined by the membrane structure (assumed), as will be
shown in Chapter IV. Notice also, that uj is a well defined real number

for each value of V(t), only if the expression inside the parenthesis

in (3-38), is positive and m*j(RT 1n(Clj/C ) + szV(t))¢0. In Chapter

o]

IV it will be shown that for the squid axon membrane, those conditions
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are always met. J(t) is the inpﬁt variable; it directly ;ontrols the
ionic flow by regulating the electric field intensity, (eq. (3-22)).
J(i, is assumed to be the output current density of an adjacent
portion of membrane to the clamped region under study, it provides
the system with energy enough to trigger an action potential. 1In
Chépter IV, a correlation analysis between the membrane response (volt-
age) and the cﬁrrent density excitation is carried but; in particular,
it will be seen that a short pulse of enough magnitude (about 51 msec of
duration), triggers an action potential, but if the pulse duration is
increased as to be comparable with the aétion potential spike duration,
(about 3 msec) a train of spikes is produced; this fact agrees with the
experimental observations reported by Katz, [3 ].
The questions that must be answered by the analysis of the system
are the follbwing:
a) Are the equations developed in section 3.5 together with the
restrictions on the variables of the model established in sec-
‘tion 3.6 sufficient for ensure the existence of a solution?
b) Is this solution unique?
¢) Is the system stable?
d) Is the sjstem observable from the output?
e) Does the control action excercised by the membrane on the ionic
flow (qj 3 =1,...,N) drive the system in such a way as to

satisfy conditions 3-9

a) This question is intimately related with the characteristics of the
operator equation (3-49). By the existence of a solution to the

system of equations (3-49) is meant to find the mappings,
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Lj: Q-+ Zj

j = l,z,oto,N

and (3-63)

E:  » R

where Z, j = 1,2,...,n are bounded subsets of the real positive line;

3

such that Cj(x,t) j=1,2,...,N and E satisfy the following conditions:

1) cjecz(sz)
i =1,2,...4n
11) stc(ﬁUaﬂ)
2
111) E eC @)
1v) E  eC(QUIR)
v) Eqs. (3-49) and Eq. (3-59) are satisfied by Cj and E for

every (x,t)e
vi) Eqs. (3-43) - (3-45) are satisfied by Cj(x,o) j=1,2,...,n,
E(x,0) for every x,e (0,8) Lieberstein [20].
where 02(9 ) 1s the space of the continuous function square integrable
for every (x,t)e and C(QQUIR) is the space of the continuous functions
in every (x,t)eQudR (3Q = Q-) and CZ(Q) and C(UoN) are the space of
continuous functions once integrable for (x,t) in Q and its boundaries,
respectively.
Remark:
Notice that in the interest of finding a solution, thé conditions
on Cj(x,t) j=1,2,...,N and E(x,t), have been weakened, i.e., instead
of asking that Cj(x,t) be twice differentiable in x and once differenti-

able in t (§ = 1,2,...,N), and E(x,t) be once differentiable in x, t
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1t'iawaskedlthat_cj(x,t) j=1,2,...,N be aquare{integréble in Q and
continuous on its boundary, and E(x,t) be once integrabie. It happens
that those conditions are enough for proving existence of a solution,
Lieberstein [20], i.e., the physical restrictions on the variables of
thé modél,are sttogger than the mathematical restrictions.

To prove that the solution of (3-49) satisfies con&itions 1 - vi
the follo&ing procedure will be followed: Assuming iii, iv are satisfied
v, vi will be checked; then their validity will be used to show'that condi-
tions 1, il are satisfied, then it will be proved that if those condition

are fulfilled, iii and iv are satisfied closing the implication chain.

Notice that (3-50) can be rewritten in the following form:

3¢
3
Ly(E,Cy) = 55 (RT-g-xj- - 2,FEC)

Jm1,2,...,N

(3-64)

And from (3-18), the terms in brackets are equal to = El-, then
’ N

9C o)
Rrﬁl- szECj = - -‘-1-1 :
3 (3-65)

j ‘ 1,2,.."N

The floﬁ, ¢j of each ion species is bounded because otherwise a
consumption qf infinite energy by the system, would be implied; this
is not physically feasible. uj is different from zero for almost all
teQl as long as the concentration of ion species j at the outer solution
is different from the concentration at the inner solution; therefore the

term in the right hand side of (3-65) is bounded (almost everywhere).



. The solutions of equations (3-65) can be written'explicitly:

( 2.F X - )
le(x,t) = exp(—ﬁ“—[ EE,t)E) Cj(O.t)
[o]

X (o}
o S '
" J exp(RT' [ EE,t)dE) ¢j(o,t)dc (3-66)
(o]

j = 1,2,‘..’N
X
Since by assumption J |ECE,t) |dE <>  x,teR
)

the term

z,¥ (¥ _
exp(z- | EG,0)dE)

)
is bounded, for every j, Cj(O,t) j =1,2,...,N are bounded by definition.

The second term in (3-66), can be considered as a Linear operator

T: C@) +c®) i.e.,

I,(x,t) = T, (9,)

3 3

X z F e}
where Tj(rbj) = - ;];-j- [ Exp (i%— J E(E,t)d£)¢j (o,t)do
. [} o

(3-67)

j = 1’2,'."N

since the inner integral in (3-67) is bounded, and since the following

inequality holds (Douglas [39]),

A

2yt < Nyl Hoglle | (3-68)

3=1,2,...,N
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where |1 ‘IC is the usual norm in C(Q) the space of ﬁiecewise.continuous
functions on  and II |IC* is the norm in its dual space. Therefore,
since ¢j and Tj’ 3 =1,2,...,N are bounded, by (3-68) Ij’ j=1,2,...n
will be bounded and by (3-66), CyGx,t) § = 1,2,...,N is bounded, there-

fore

x
J Cj(x,t)dx < o xeld
ro (3-69)

§=1,2,...,N

In (3-66), the first term is bounded for all t > O and so is the
second term by the previous argument; moreover by conditions (3-9), the
second term goes to zero as t goes to infinity, so

.t
lin C,(x,t)dt < = xe (0,8)
R J
° (3-70)

3 =1,2,...,N

Combining (3-69) and (3-70), the following conditions for Cj(x,t)

j=1,2,...,N are obtained

ch (x,t) |2 < =
0 ) (3-71)

= 1,2,...,N

and since C 0 x,tefd (3-71)

32

can be strengthened to



(3-66), satisfy condition v) and vi) for C
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J Ic, (x,£) %40 < ,
h|

Q (3-72)

j = 1,2,...,N

Therefore,'conditions 1), 11) are satisfied and the solutions

j'
The former condition implies that equation (3-59) for E(x,t) holds

and therefore conditions iii), iv), v) and vi) hold for E(i,t).

Therefore, the existence of a solution to the equation of the

model is guaranteed.

b)

The uniqueness of the solution can be established by the observa-

tion of (3-64): the expression in brackets which equals

¢
- El is a linear differential operation and therefore, if two so~

3

lutions exist, the sum of them will be also a solution and the re-

II

sultant flow (¢Ij~¢ 5

) operated on by the linear operator

- ujgg-( ) will equal the sum of the derivatives of the concentra-

tions CIj and CIIj

eqs. (3-49) are satisfied. Additionally, the two solutions must sa-

corresponding to the two solutions, and therefore

tisfy the boundary conditions (eqs. 3-3) then, from (3-3) in (3-66),

for CIj(G,t) and CII

(8,t) the following expressions are obtained

3

5
z F
¢y = exp (- J e, o) oy
o]

(o,t)do

s 2 F [°
-—i—[ exp (- J E'E, )0,
(o] (o]
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. 6 :
- exp(—if j EII(E,t)dg)C;j~
) 2 T o :
S S l exp (= J el ,t)dg)qb”j (0,t)do (3-73)
(o] (o]

§=1,2,...,N

The two solutions and their differences must satisfy eq. (3-21), i.e.

i.e.,
I N
el _F
% € jfl 2,07
(3-74)
S SN &
T
and
1 _II N
B(EB—E ). E 3 Loty
x € y=1 373 b/

In particular, for x=0 and x=§: CIj = CIIj; therefore

&g I__II
2 gi 0,t) = éigﬁg%“)’(s,t) = 0 for every t > 0 then

EI(O,t) = EII(O,t) . EI(G,t) = EII(G,t) and by the continuity of the
electric field this property can be extended to all xe(0,98). This'im—
plies in.turn that qu = uIIj (since uI, uII are functions only of VI
and VII respectively which in turn are functions only of ! and EII res-

pectively. See Egqs. (3-38) and (3-60)). Then in (3-73) substracting

the two equations and combining the integral term, it can be concluded
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11 or the solution to the equations of the model is unique.

that ¢I ; ¢
Remark:

The procedure foll&wed to prove uniqueness gives only a sufficient
condition for the solution of the model to be unique. The necessity can
be proven using the techniques of 'test" functions applied to the linear-

ized equations of the model and showing that the solution of this system

satigfles the condition

el < wflel]

where Y = (Cl’ Cz,...,CN,E)l, 0 1is the vector test function and k is a

positive constant. The norm here is the standard Lp norm. Lieberstein

[20].

c) For the ionic model, the stability question can be answered by
showing that the solution to the system of equations (3-43) -
(3-45) is an equilibrium point and that this equilibrium point is

stable. 1.e.,

Lj(E’Cj) = 0
y=1,2,...,8 | E = E"
c,= cjl §=1,...,N
with
N
oE F
== I z,C
9 e 1 L (3-75)
=F
1
Cj=cj j=1, W N
and N
J
g 3| =0
J,=J 1
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and a '"small" perturbation of the control variable J; &J drives the sys-

" "

tem to a neighboripg solution C 3 3=12,...,n , E and uj“ j =1,2,...
such that
1
c", »C st
M B
" 1
E" + E (3-76)
u1 +u," 1 =1,2,...,N
] h|

Provided that the perturbation in J is small enough as to prevent
the gystem to develop an action potential. As a first step, the solution
of (3-75) is characterized:

From (3-64) in (3-75):

FElcty)] = 0

1
3¢
1 1.1 3 .1
ol L (BNt = o (BT ~5;4-~ 2y

3 3
(3-76)

Therefore the term in brackets in (3-76) is constant in x; and

from (3-18), this term is equal to —¢1j i =1,2,...,N d.e., (¢1j(x)5¢lj

constant)
ot (RTEEii-— 2, FECl ) = ~ot
j ox j j j (3_77)
§=1,2,...,N

Multiplying both sides of (3-77) by sz; and adding all the equa-

tions of the form of (3-77) the following expression results
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1 ' .
N aC N ) ) N .
. 1 o2 1.2 1, .1 1 N
PR? jX u y j ™ F (jfl u jz jC j) E F jfl j¢ ] (3-78)

By (3~17) in the right hand side of (3-78) and from the last equa-

tion in (3-75), (3-78) becomes

1
N 3c ,
FRT I ul,z —§~3 - P2 (zul, 22 c1 )E! = 0 (3-79)
RREE 13
then, from (3-79);
1
ol N, 8¢ Doy g1

E-=(RT Z u j j e )/F Zl u jz jC j (3-80)
J=1 i=

Notice that as in the dynamic case, the knowledge of the concentra-
tion distribution of each ion species, in resting conditions, fully speci-
fies the electric field intensity El.

The equilibrium point is specified by Clj(x), El(x) for 0 < x < §,

and ulj - ulj(-j Eldx) = constant (see (3-38)) j = 1,2,...,N.
)

‘Remark:

The conditions given by eqs. (3-9) imply that after an action poten-
tial occurs, the system returns asymptotically to the resting state, there-
fore, if this resting state is stable in the small, the ionic transport
model for the axon membrane, is globally stable.

In order to check stability in the small, the output control varia-

ble J is disturbed from its resting value (JlEO) by an amount &J, this
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‘disturbance causes disturbances in Clj j=1,2,...,N and in gt of mag-
nitude GCj< i = 1,2,..;,n and OE respectively. The dynamic equations of
these increments are given below:

Let

- + = » 9t
cMymcl i dae, g =128
gl - gl 4 sE (3-81)
llj - ulj +8u 3= 1,200

The disturbances are produced by a small current pulse, 8J. Assum-
ing that the disturbance 8J is small and due to the continuity of Cj
j=1,2,...,N and E and their derivatives, products of incrementé are

neglected, then the approximate dynamic equations for the perturbations

are:
asc, ., %8¢ 1360 .l
*Sgl = u j(RT—;;Ei - szE ~5;i-— szﬁ;fGCj)
- ot ( FE:-li SE + z,FCT 9—‘5—&) (3-82)
u 3 zj 9x zj j 9%
j = 1,2’...’N
N
98E F .
—= - ¥ 8C 3-83
x "€ j-lzj 3 ( )
g
8E _ 1 _ _
= = e(jilagj 8J3) (3-84)
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Equations (3-82) represent a second order linear system that can

" be written in functional form as follows

1 36C
-——-‘1- ze : = N -
Y Qj(GCj(x,t)) + fj(x,t) 3 l,Zf...fN (3-85)

and the boundary conditions:

ch (o,t) - ch(a,t) = 0 j = 1,2,-..,N (3"86)
where
- 2
3°8C 98C 1
- 11 _ 1 _ OE (x _
Q (6, (x,t)) = u j(RT—-——-——iaxz 2, FE —t sz-——é;(—lGCj) (3-87)

1
act (x)
£y (x,t) = —u“j (t) (sz-—--é-xL—-ﬁE(x,t) + szclj (x)g—;“% (x,t))

4= 1,2,...,N

Since in (3-87) Qj and tj are bounded functions, it implies that (3-85)

is a stable (in the small) system.

3.7 Conclusions

A model for the ionic transport in the clamped axon membrane was
derived. The model was developed using well known laws of field theory
and irreversible thermodynamics. Some assumptions about the structure_of
the membrane were made and analysis towards their physical justification

was carried out,
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CHAPTER IV

SIMULATION OF THE IONIC TRANSPORT MODEL

4,1 Introduction

In Chapter'III, a model for the ionic transport model was derived.
The model is based on a theoretical analysis of the physical processes
involved in the transport of ions across a clamped axon membrane and the
effect of this transport on the elec;ric potential of the membrane. The
equations of the model were obtained by applying well known laws of field
theory and 1rre§ersible thermodynamics. Several assumptions about the
structure of the membrane and its role in the regulation and control of
the flow were made in the derivation. 1In this chapter a simulation of
the model is carried out in order to test the validity.of the equations
and the underlying assumptions against the experimental evidence available
in the literature, Hodgkin and Huxley {6], Hodgkin and Katz [5]. Additionally,
some interesting.aspecta of the physical behavior of the axon membrane that
have not received too much attention such as oscillatory behavior and
calcium excitatory regulation are analyzed in a numerical context.

The simulatién was carriednout using a computer program in which
equations (3-20) = (3-22) are integrated by discritizing them according to
a Crank-Nicholson implicit scheme that is derived on appendix Al. Tﬁe
initial conditions are found by integrating the steady state equations (3-43)-—
(3~45) using the same scheme. The program was written in Fortran IV; the
matrix operations in the discretized model were carried out using the IBM

Scientific Library package (SL-Math).
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The chapter is divided into 7 sections as follows: 4.2 Computation

~ of ionic mobilities and analysis of their behavior, 4.3 Membrane potential

time-courwc, 4.4 Electric field intensity in the membrane, 4.5 Current
density and cqncéntration distributions, 4.6 Oscillatory behavior of the

hyperpolarized membrane, and 4.7 Conclusions,

4,2 Ionic Mobilities

As discussed extensively in Chapter IiI, the time varying coefficients
that relate the force driving each ion species with its ensemble average
velocity of transport during excitation (Eqs. (3-8) are the mobility func-
tions. The mobility functions constitute the mechanism of regulation by
which the membrane controls the flow of ions; notice that this mechanism
is active only when the axon membrane is excited, therefore in this section
it will be assumed that the membrane is excited and time t=0 is taken as
the instant of o§er—threshold excitation,

Before discussing the numerical results obtained for the different
ion species mobilities the procedure followed for the calculation of their
equivalent‘masses will be analyzed, and some of the geometric properties
of the sample axon membrane considered in the simulation will be stated.

Strictly speaking, the ionic transport process is a discrete phenomena
since it involves the flow of particles of definite volume and mass; but
in applying field theory for modeling the process it has been implicitly
assumed that mass eiements for each ion species crossing the membrane are
differentiable; this assumption is validated by physical analysis, if the

clamped region has a surface exposure to the surrounding solutions much
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bigger than éhe surface exposure of any activation sige;' This condi—
tion is fulfilled in the case of squid axon membranes.in particular and
for cell membranes in general. |

The'former argument Suggests that in order to justify the applica-
tion of ordinary laws of mechanics to the particles (ions) involved in
the'fransport process, (see Eqs. (3-29) and (3-31)) an effective mass
for’each of these pérticles‘in the membrane hae to be considered, so that it
accounfs fo; the forces to which they are subjecﬁed and for the fact that
the modeling has been carried out considering average particles rather
than individual ions.

In this thesis the former considerations led to definition of the
concept of equivalent mass, which has been extensively studied in other
transport systems such as p-n junction, Vander Ziel [25]. In essence
the equivalent mass concept is based on as#igning a probability distribu~
tion to the event of finding a particular ion species at the respective
surface-located Qctivation-site. Since in the membrane, the ions are
aubjec; to a varying potential, a Boltzman~type«of distribution is amsigmed
to them and the equivalent mass of each ion species j is given by the
ensemble average mass corresponding to this ion,

Then the equivalent mass of ion species j in the axon membrane is

given by

SR St e

where v is the ensemble average membrane potential of the excited membrane

potential and K is the Boltzman constant,
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With expressions (4-1) the equivalent masses of the ion species
involved in the ionic transport process can be computed. This and other

numerica. ..formation about the membrane parameters utilized in the simu~-

- lation, are summarized in table 4-1 below; this data was obtained from

Hodgkin and Katz [3].

Table 4-1

Membrane thickness & = 150 3

Temperature T = 290 K

Sodium parameters (j=1)

External (Bulk solutiom) concentration Cg, = 288mM/cm’
Internal concentration C_, = 72mM/ cm®

Equivalent mass ml* = 17.8g/mole

Potassium parameters (j=2)

External concentration Cso = 540mM/ cm?

Internal concentration C_, = 203mM/cm®

Equivalent mass m,* = 35.1g/mole
Chloride parameters (j=3)

External concentration Cg, = 104mM/ cm®
Internal concentration C03 = 61lmM/cm®

Equivalent mass m.,* = 39,5g/mole

3
Calcium parameters (j=4)
External concentration Cg, = 30mM/cm?

Internal concentration Cop = 45mM/cm®

Equivalent mass m* = 20,.4g/mole
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With'the parameters listed in table 4~1, and using the program de-
scribed in the appendix, tﬁe mobility functions of sodium, potassium, chlo-

ride and calcium ions were computed. They are shown in graphs 4-1 and 4-2

below.

In~tﬁis author's opinion, the most important results towards the elu-
cidation of £ﬁe physiological characteristics of the ;bnic transport pro-
cess are established in the so called sodium~theory of the action poten-
tial proposéd by Hodgkin and Katz in 1949 (see Chapter Ii). It is interest-
ing to note that the characteristics of the mobility functions shown in
Figs. 4~1, 4=2 confirm the basic conclusions obtained by Hodgkin and Katz
from an experimental analysis:

a) When the axon membrane is excited, it becomes initially highly perme-
able to the influx of sodium ions; this is represented by the high value
of the initial sodium mobility with respect to the mobilities of the other
ions, Fig. 4~1.

b) Roughly lmsec. after the spike starts, the sodium mobility (i.e., the
membrane permeability to sodium ions) becomes smaller than that of the
potassiumﬂ This condition agrees with the physiological roles assigned

to sodium and potassium in the fonic transport process; namely, the rising
phase of the spike is produced mainly by influx of sodium ions and the
falling phqse i8 produced mainly by efflux of potassium ions,

c) Notice that calcium ions exhibit a mobility function that initially
is only slightly less than that of sodium ions but after lmsec it decays
at much faster rate than sodium or potassium mobilities. This behavior

is explained by the wvalence of calcium ions, which is tWiCé as big as that

of sodium (or potassium) ions with roughly the same equivalent charge.

[
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This ébsetvatioh shows that the role of calcium ions has to do more with
the excitatory event than with the ionic transport.

d) Finally, notice that the chloride mobility has a very slow variation
during the s#ike—time which agrees with the conclusion of its secondary

role in'the ionic transport.

4,3 Membrane Potential Time-Course

In.Fig. 4-3, the time course of the excited clamped axon membrane
potentiél referred to its resting potential is shown. Also, the experi-
mental points found by Hodgkin and Huxley (corrected to the temperature
of the simulation) for the sample axon considered in this simulation are
included. ' Additionally, in an effort to elucidate the role of calcium,
in the excited membrane, two runs were carried out: one without including
in the model the flow of calcium ions, and the other including its flow,

The'most interesting result with respect to the simulation of the
membrane potential, is its agreement with the experimental measurements,
as can be seen in Fig, 4~3. The maximum deviation of the computed voltage
with réspect to the corresponding measurement, is of the order of 8%.
Since the ionic transport modei was derived on purely theoretical bases,
this result backs up partially the assumptions made in its derivation and
simultaneously gives an independent proof of the validity'of the sodium
theory.

Additionally, some conclusions can be drawn about the role of
calcium in the membrane potential time course. As can be inferred from
Fig. 4-3, the calcium flow increases the potential during the rising

phase of the spike; this increase is of the order 107 at most.
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This observation might be interpreted as fo;lows:v the calcium ion
flow, because of its relatively low equivalent mass and relatively high
average charge, plays the role of starting the action potential when a pulse
over threshold has excited the axon membrane and subsequently, assisting
the sodium ions in building-up the depolarizing potential during the
rising phase. Moreover, the threshold itself 1s probably a function of
the calcium concentration. |

In the falling phase the flow of calcium ions induces a decrease in
the rate of repolarization carried out mainly through the efflux of potas-

gium ions,

4,4 Electric Field Intensity in the Membrane

In this author's opinion, the characteristics of the electric field
intensit} in the membrane is one of the most important aspects of the
ionic transport model developed in Chapter III.

Most of the models developed so far consider (especially in the
steady state analysis) the electric field intensity to be constant as a
function of the spatial variable; this assumption is completely arbitrary.
In the model developed in Chapter III this assumption was not made. The
electric field intensity dynamics were found to be a function of the ion
concentraﬁtion distributions (as should be expected). In the simulation
these dfnamic equations were integrated simultaneougly with the distribution
equations, as shown in appendix A.

A sample of the spatial distribution of the electric field in the
axon membrane is shown in Fig., 4~4, As discussed before, the electric

field intensity 1s far from being constant. During the spike (t=1.25,
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: t-3'mSec) the electric field distribution becomes positive in»fhe inside
region and negative invﬁhe outside region. For t=1.25 msec which.correspdnds
to the time when the membrane potential is a maximum, the sodium inflow is
high as compared with the potassium efflux; this fact justifies the form of
the diatriﬁutiou of the electric field at this time i.e.; highly positive
towards the outside region., At time t=3 msec the sodium flow is mﬁch
smaller than the potassium flow and consequently, the electric field
distribution becomes less positive towards the outside region as can be
seen in Fig. 4.4,

Finally, notice that the steady state electric field distribution
(t=0) 4is not constant. This fact suggests that at equilibrium condi~
tions, ions are trapped inside the membrane due to the existence of at

least one point of zero net driving force.

4.5 Current Density and Concentration Distributions

In the moﬂel developed in Chapter III, the excitation mechanism by
which the axon membrane develops a voltage spike was assumed to be a
current mechanism. The considerations behind this assumption were discus-
sed in Chapter III.

In the simulation, it was found that an action potential occurs
in the axon membrane when it is excited with a constant current density
pulse of 445uA/cmz which 18 of the same order of magnitude as the one
appiied by Hodgkin and Huxley to the sample axon considered in this simu~
lation (Axon # 17 in [6]). The duration of the pulse necessary for

activation of the axon was found to be .15 msec. In the next section
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the béhi?ior of-the axon membrane Qhen the duration of the pu;se is
1ncreased‘to 1. msec, (a condition of hyperpolarization) will be de-
scribed.

In Fig. 4-5 the sodium current density at the iﬁner membrane surface
is shown. The time duration of the simulation is 4 msec. Also in Fig.

4-5, the potassium current density at the outer membrane surfacevvs. time
is plotted. The objéctive of considering sodium and potassium current
densities at the boundaries is to compare the resultant graphs with those
given by Hodgkin and Keynes [21]. Although no quantitative comparison
can be carried out because these researchers utilized DNP as an inhibitor
for potassium flow, qualitatively, the shape of the sodium and potassium
current density are found to be similar; moreover the order of magnitude
of the sodium current density found by them is similar to the maximum
value (250 uA/cm?®) computed in the simulation of Hodgkin and Keynes vs,
310 pA/cm? in the present simulation. Notice the sharp decrease in sodium
current in the falling phase, a fact that agrees with the sodium theory.

In Fig., 4-6 the concentration distributions of sodium and potassium
ions in the membrane are shown. As discussed before, even at equilibrium
conditions, a distribution of sodium and potassium ions is present in the
membrane space, This fact should be taken into account in any study of sub~
threshol& phenomena. Recall from the analysis in Chapter III that the ionic
distributions determine the electric behavior of the membrane dqring excitation.

In Fig. 4-6 the'following observations about the dynamic course of
sodium aﬁd potassium concentration distributions can be made:

a) The variation of concentration distribution of sodium ions during the

excitation period is greater than the corresponding variation of potassium
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concentration this condition is caused by the higher mobility of sodium
ions. See Section 4-2,
b) Notice that the time constant of potassium ionffldw is about 1.4 times

larger than that of the sodium, where by time constant is meant the time
after excitation :equired‘to recuperate 80% of the equilibrium distribu~

tion.

4,6 Oscillatory Behavior of the Hyperpolarized Membrane

During the simulation, when the duration excitation current density
pulse was increased above 1, msec the membrane potential exhibited a kind
of damped oscillatory behavior with a finite number of cycleés before re-
turning to an equilibrium condition of higher resting potential than
normal. The number of cycles of oscillations was found to be dependent
on the duration of the current excitation pulse: for durations of 1. msec
or less only one cycle was developed, for durations greater than 1 msec
but less than 1,5 msec, 2 cycles; and for durations of 1.8 msec or more
4 cycles developed. This behavior of the axon membrane is rather
interesting since it implies, that considering the neuron as an
information module of the nervous system, the output signal i.e., the
axon membrane potential, depends not only on the algebraic sum of input
excitation pulses at the dendrites (see Chapter I), but also, on the
duration of these excitation pulses. This condition seems to be in
conflict with the "all or nothing law" of neuron excitation (Aidley [22])
in the sense that the axon membrane as an information module exhibits a
non-binary behavior. Indeed, depending of the duration of the excitation

(for an overthreshold excitation) 4 different dynamical responses can be
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obtained, Thereforé the information processiﬂg capabilities of the neu-
ron are more complex than those of electronic modules. A deeper discussion
of this .nformation capability of the neuron is clearly beyond the

scope of this thesis but this author considers that it should be fully
iexplorgd in an.infbrmation model of a nervous system. In Fig. 4-7 the

membrane potential corresponding to a 2. msec excitation is shown.

4,7 Conclusions

A simulation of the ionic transport was carried out for a particular
squid axon membrane (Loligo). The results of the simulation generally
show good agreement with the experimental data. The simulation showed.
among other features, two very important characteristics: namely, the
control action of the ionic mobilities on the transport of ions, the dis-
tribution characteristic of the electric field and the oscillatory behaviorv

of the overexcitgd membrane.
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CHAPTER V

ACTIVE TRANSPORT MODEL

5.1 Introduction

In Chapters III and IV a model for the electrical behavior of the
clamped axon membrane was developed. In particular, the events of exci-
tation and membrané‘potential were modeled as physically dependent pro-
cesses with transport of ions across the membrane driven by their
electrochemical gradients. In order for the axon to be an autonomous
biological unit, it must be equipped with an active mechanism that re-
stores the concentration gradients at the membrane surfaces after an
action potential has occurred. This mechanism is known as The Sodium
Pump. The reasons for this terminology will be clear later. The
predominant characteristic of the sodfum pump is the built-in capability
for the active transport of ions against their electrochemical gradient
across the membrane, with expenditure of metabolic energy. In what
follows, "active transport“ and "sodium pump" will be considered synonymous

terms for the process sketched above.

The sodium pump mechanism has thus the essential function of build-
ing up the concentration differences on which ionic transport and there-
fore the conduction of electrical impulses depends.

In Chapter III, the concentrations of each of the ion species in-
volved in the ionic transport model, were assumed to be constant in the
solutions on both sides of membrane (Egqs. (3-3)). This assumption is

Justifiable only 1if a festoring process exists., Experimental evidence
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.carrieré and surface reactions instead of the irreversible thermodynaﬁics
formalizm used by Katchalsky and Spangler. This formulation allows a
better qualitative and perhaps quantitative interpretation of the physical

phenomena,

The chapter has been divided into the following sections: 5.2 Physical
description of the active transport process, 5.3 Derivation of the equations
of the model, 5.4 Qualitative analysis of the process in terms of the model,

5.5 Conclusions.

5.2 Physical Description of the Active Transport Process and Definition

of the Variables of the Model

As discussed in the introduction many of the structural characteristics
of the active transport process are not known. Therefore, in order to model
the process, researchers in the field have established a great number of
"educated hypotheses" about its structure, each of them based on the experi-
mental study of a particular cell membrane. These hypotheses have several
experimental facts in common, as listed below.

Fact 1

Almost all living cells are rich in potassium (primary cation) and
poor in‘sodium (sécondary cation) in their intercellular fluid. The reverse
situation is true for the extracellular fluid.

Fact 2

The excitatory event depends upon differences in concentrations and

activities of sodium as well as potassium and to lesser extent on other

ion activities and concentration differences on both sides of the membrane
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supports such a mechanism in most biological cell membranes. Further—i
more,rin particular for the squid axon membrane, constant concentrations
of the ions on both sides of the membrane have been observed experimental-
ly by Hodgkin and Keynes [21]. |

Although the existence of the active transport mechanism is supported
by an ample'variety of experiments, its structural and dynamic character-
istics are not known. Therefore, a model for this process has to be
developed by a deductive analysis based on some purely theoretical assump-
tions (e.g., fundamental physical principles) and nonconclusive observa-
tions of the process., A model that satisfies the thermodynamic principles
of open systems»(such as the one composed of the membrane and surrounding
solutions) and agrees partially with the experimental data is the carrier~
transport model proposed by Dannielli in 1954 [23]. In this model an ion
combines with a specific protein present on the appropriate membrane sur-
face, forming aﬁ electrically neutral carrier complex which flows to the
opposite surface of the membrane (due to its concentration gradient) where
the ion is released. This process implies chemical synthesis reactions
with absorbtion of chemical energy; therefore, these reéctions must be
coupled with:emergy~releasing reactions ("down-hill" reactions) which provide
the energy for the completion of the synthesis., This process 1s catalyzed
by highly specific enzymes located in the external layers of the membrane
(see Chapter I).

In this chaptef, a particular model for the active transport process
sketched above willvbe derived. The model is a generalization of the one
proposed by Katchalsky and Spangler [25]. The generalization consists in

formulating the model considering field theoretic laws for the flow of
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The resting‘potentiAl and the spike are functions of the gradient-
controlled difussion of these ions across the membrane.
Remark:

Fact 2 was used as a hypothesis for the development of the ionic
transport model 1n Chapter III.
Fact 3

The rising phase of the action potential is due to a sudden increase

in permeability (i.e., ion-mobility) of the membrane to the flow of sodium
ions in the direction of its concentration gradient (from the outside of

the membrane towards the inside of the membrane)., The repolarization is

primarily dependent upon the diffusion of potassium ions in the direction

of thelr concentration gradient., The recovery phase involves primarily the

movement of the two monovalent cations against their concentration and

electrical gradients, with the expenditure of energy from cellular

metabolism; this is called active transport.

Remark:

The rising and repolarization phase behavior is observed in the
simulation of the ionic transport model in Chapter IV. Notice that this
behavior is a consequence of the flow of sodium ions and potassium ions

in opposite directions, and their ion mobility time behavior differences.

Fact 4

In 1living cells in general, and in the squid nerve fiber cell in
particular, there are several enzymes coated to the internal surface of
the membrane which are activated by potassium ions and inhibited by sodium
ions,

The previous facts about the mechanisms characterizing the membrane
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system and the aﬁple experimental data basis for nervous cell-membrane

structﬁr; suggests the following definition for the sodium pump.

Definition
The term sodium pump is used to designate the biological system,

resident in the membrane, responsible for the energy-requiring efflux of

sodium (usually coupled to the influx of potassium) across the membrane.

The only energy source of the pump is an ATP hydrolysis mechanism.,

The previous definition involves 3 basic assumptions which have noﬁ
been fully proved in practice but that agree with the experimental evidence
and the theoretical analysis of the sodium pumpl. These assumptions are:
1. The sodium pump 1s contained within or is part of the membrane.

2. The energy source of the pump is ATP.

3. The Active transport process is identified with the Na+ - K+ ATPase
enzyme system,

The problem of modeling the sodium pump defined above has been ap-
proached in essentially 3 ways:

1. Define sodium, potassium and ATP sites on both sides of the membrane
in order to elucidate the kinetic mechanisms of the coupled reactions
catalyzed by the system.

2. Define the sequence, i.e., the intermediate steps that participate
in the reaction leading to ATP hydrolysis.

3. Define the mechanism by which cardiac glycosides, specific inhibitors

1 The analysis of the experimental basis for this definition is carried
out by Schwartz et al [25]
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of both the Na+ and K+ APTase, interact with the system,

The previous 3 approaches or combinations of them, have been used
to derive __actional models for the sodium pump. None of them can
explain completely the behavior of the sodium pump, although an analysis
of them has clarified to some extent the nature of the pump and has
suggested the role of the experimentally observed mechanisms that character-
1zés it. The model considered in this chapter is based almost entirely
on the first appréach, the reason for this being the fact that the author's
interest in the active transport process 1is centered on its physiological
role as a "reset" of initial concentrations in the solutions on both sides
of the neuron membrane, and not as a mechanism of the metabolic process, .
where approaches 2 and 3 have proven to be more useful for the analysis of
the underlying phenomena.

Now, some of the features that characterize the active transport of
monovalent cations (i.e., Na+, K+) will be described; they constitute the
basis for the model that will be derived in the next section.

The active transport of sodium out of and potassium into the axon
is coupled to the hydrolysis of ATP, according to the following scheme
Skou [27].

The stoichiometry of the pump is 3Na+:2K+:1ATP. These stoichiometric
ratios have been observed to follow in many cells (i.e., ghost cells,
Baker [28], Baker and Shaw [30]), although Keynes [29] found that such
ratios vary with the conditions of the experiment, e.g., PH of the
external solution., It is assumed for purposes of the model that PH in
the solutions is maintained constant due to the flow of water across the

membrane, driven by the osmotic pressure gradient,
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Remark:

In the Skou scheme for the sodium pump, described above, since the
hydrolysi. of ATP 1is electrically neutral, the total reaction is electro-
genic'because one net positive charge leaves the axon. Therefore, the

pump contributes to the membrane potential. This condition can explain

the resting potential of the axon membrane (negative inside),

The Na+, K+ - ATPase transport system described above is oriented
within the mgmbrane and has an apparent molecular weight estimated between
190000 and 5000000 Robertson [31]. This estimate suggests that assuming
that the sodium pump is constituted by a single macromolecule with an
assumed density of 1.3 and a molecular weight of 250000 would correspond
to a spherical particle with a diameter of 85 ;, a dimension close to
that estimated for axon membranes (150 R).

It is evident from the assumed scheme for the active transport, that
parts of the Na+, K+ - ATPase mechanism must be exposed to the internal
and external membrane water surface. This condition seems to be in conflict
with the bilayer-unit membrane structure discussed in Chapter I. However,
the proposed configuration for Na+, K% - ATPase transport system can exist
at regular intervals adjacent to bilayered membrane structure and there-
fore does not really invalidate the Dannielli unit membrane hypothesis,

The assumed kinetic scheme for the pump and the data on concentrations
in the sdlutions on both sides of the membrane lead to the assumpt1on that

the pump is asymetrically oriented, so that it presents a sodium activation

site on the internal surface of the axon membrane and a potassium activation

site on the external surface of the membrane. The sodium activation site

presumably is constituted 0f a surface binding enzyme with the characteristic
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of high affinity for sodium and lqw (or idealistiéally none) affinity
for potassium., Similarly the potaésium activation site, located on the
external surface, has high affinity for potassium and low affinity for
sodium,

There are two coupled additional phenomena that have been observed
in axon membranes as well as in other biological membrane systems, these

are: Competitive behavior at the sodium activation site and non~ionic

potassium transport from the inside to the outside (Skou [27], Post et

al [32]). The first refers to the situafion in which the enzyme or
enzymes that form the sodium activation site might be "blocked" by potas~
aium ions, therefore preventing the sodium carrier from being loaded.
Thus the overall effect is a potassium~induced inhibition of catalysis
and transport of sodium ions. Although there is no direct evidence, the
equivalent process is likely to occur at the potassium activation site
namely, sodium competes with potassium at the potassium activation site
and 1f successful inhibits potassium catalysis and transport. The second
additional phenomena, non-ionic potassium transport from the inside to
the outside, 1is bélieved to act as a regulator of active sodium transport.
Its physiologicai function 1is not very clear but because of thg abundant
evidence for its existence, it has been included in most of the models of
active transport. In the model for the sodium pump considered below, these
two phenomena are incorporated by considering partial reversibility in the
chemical reactions leading to the formation of the carriers and by an ad-
ditional carrier flow, respectively.

With the previous considerations, an internal representation of the

basic unit of the sodium pump (Fig. 5-1) takes the following form:
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In Fis. 5-2, the arrows crossing the membrane indicate flows of
carriérs; 3 carfieré are considered, CPNa3 the sodium carrier, CPK2

the phosphrylated potassium carrier, and CKﬂ the unphosphorylated potas-

sium carrier. fn the diagram, the circles indicate the 4 chemical re~

actions that éharacterize the process; °1j #s the chemical reaction

that characterizes the sodium activation site, 33 is the reaction
occurring at the potassium activation site, ¢ 2j is the carrier phosphorila«
tion reaction; it;involveq the cyclic ATP hydrolysis with the release of
chemical energy; the ultimate (and only) energy source of the pump.

. Notice that olj hnd sz are coupled through tﬂe carrier (reactant-product
respectively), CPK2 providing thus a "path" for the transfer of energy to.

!
the carriers of the pump. G4j is8 the carrier dephosphorilation reaction

where inorganic phosphate 1is released to the e;ternal solution with the
production of a "1ight" potassium carrier CKZ‘ ' At the chemical reaction
sites, arrows entering the circles are reactants and arrows leaving them
are products for the forward reaction-direction of the pump. According
to the previous discussion, Ulj’ °2j are (parti&lly) reversible reactions,
their degree of reversibility models the competitive behavior of sodium
and potassium ions at thettr activation sites.

It is important to notice that the main active flow of potassium,
that is the flow that has the physiological purpose of building up the
potassium concentration at the axon membrane surfaces, is carried by

CK The dual role of CPK, can be explained with the aid of Fig. 5.2.

2° 2
The flow of carrier CPK2 represented as ¢2 in Fig. 5.2, provides a
mechanism of orthophosphate discharge in the outer solution and also a

mechanism for regulating the active flow of sodium ions via the ion-
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exchange reactions oy and 031’ but its main function is to serve as

3

chemical energy transfer agent between the exogenous OZj reaction of
ATP hydrolysis (in the model it is considered as an equivalent phos-
phate group transfer froﬁ ATP to the CK2 carrier with products ADP

and CPKZ) and the endogenous Gij reaction at the inner axon membrane.
surface in which a Na+ - K+ exchange takes place with the uptake of
chemical energy. The process just described, is the only energy supply
mechanism for the sodium pump., Although an analysis of the energetic
behavior of the pump is beyond the scope of this thesis, a brief physical
qualitative description of 1its characteristics in terms of the assumed
internal representation of the active transport process (Fig. 5.2) is given.
Katchalsky and S8pangler showed after a thermodynamical analysis using

this representation, that under a certain constant concentration ratio, a,
of sodium and potassium in the solutions on both gsides of the membrane,
(1.e., a = [Nalofxli/[Nali[K]O_' 220) which corresponds to the observed
resting state (see Chapter IV) of the axon membrane, the pump éxhibits

a steady state condition. When the axon membrane is fired and a spike

is produced the consequent induéed transport of sodium and potassium ions,
as discussed in Chapter I1I, implies that the ratio,o will vary from

its steady state value (220) to a new equilibrium value slightly smallér
(about 219), if several spikes are produced the concentration gradients

of sédium and potassium at the axon membrane will decrease‘further'and if
no mechanism is provided for a recovery the membrane would loose its exci=-
tatory ahility, therefore it seems logical that the sodium pump is activat-
ed by a decrease in the o factor or some function of it such as PH of the

internal solution. In the model of the sodium pump it is assumed that
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the enzyme (or enzymes) catalyzing reaction °2j is (are) activated by

1

an internal PH variation from the steady state (equilibrium) value

(about 7.5), increasing the production of CPK21 (1 stands for inside

surface) with expenditure of metabolic energy (ATP). The increase in

concentration of CPK2 in turn implies an increase in the production of

i
3

CPNa3 at the inner hembrane surface implies that the chemical gradient of

CPNa.” as indicated in Fig. 5.2. The increase in the concentration of

CPNa, between the membrane surfaces increases and consequently the flow

3

¢1 of this carrief increases, producing an excess concnetration of CPNa3°
(0 stants for 6uter surface) and as can be deducted from Fig. 5.2., this
implies an increase of the °3j reaction product concentration, hamely CPKZO.
This condition hasvtwo implications for the operation of the pump; first an
increase in the production of CKZo through reaction Uéj whigh implies an
increase in the chemical gradient ¢f this carrier with the consequent in-
crease in its flow ¢3, and second, a decrease in its flow ¢2 caused by a
decrease in its chemical gradient. The second consequence constitutes the
regulatory mechanism of the pump, since the decrease in flow ¢2 will imply
a decrease in the concentration of CPK2° which in turn will eventually pro-
duce a decrease in CK2°, and therefore a decrease in CK2 which 1nduce§ a-

restraint in activity of reaction ¢,, as can be seen in Fig. 5.2. This

2j
qualitative description of the pump will be shown to be reproduce by the
equétions of the model in the next section.

Finally, before closing this section, the chemical equations for the

4 reactions of the sodium pump are written down and followed by a discus-

sion of some of their chemical properties,
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: + il + : ' '
o,,t CPK, + 3Na <+« CPNa, + 2K (5-1)
914 2 3

s-1
E,
, S,
0py7 CK, + ATP ; . ADP + CPK, (5-2)
2
S3
O..: CPNa, + 2K + CPK, + 3Na® (5-3)
33 3 2
§=3
Ey
S, |
o‘.j: cz'x2 -; cx2 + Pi (5=4)
4

In (5-1) through (5-4) Si i=-3, -1, 1,...,4 are reaction constants
where the negative subindex indicates that the respective reaction operates
1 i=1,,.,.,4 stand for the enzyme-

complexes that catalyze each reaction,

also in the reverse direction and E

It is important to remark that in kinetic theory the l.h.s. of egs,

(5-1) - (5~4) 1is seen as the starting state and the rhs as the completion

state of a very complex set of sequential reactions involving the activation
of the respective enzyme, the formation of an enzyme-reactant complex, the
transformation of this complex into a enzyme-product complex, and the release
of the end products. This approach is beyond the scope of this thesis, rather
.reactions (5-1) through (5-4) are considered in their global form: starting -
completion state, and in this context the reaction r;tes {Si} are phenomeno~
logical functions that indicate the rate at which products are formed at

the expense of reactants. In (5-1) and (5-3) the components that appear on

both sides are considered as products and as reactants due to the assumed
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'revgrnibility of these reactions,

The consideration of the pump-reaction in the global sense indicated
abové requires the establishment of additional assumptions on the enzymatic
structure of the axon-membrane, namely, in order for the reaction constants
{Si} to make sense, the c¢oncentrations of enzymes {Ei} must remain constant.
This assumption is validated by the hypothesis of surface~membrane binding

of theae aenzymes (see Chapter I),

Notice that reactions Ulj’ °2j are chemically coupled, and similarly

reactions O but the two reaction systems are spatially separated

33° %y
and therefore uncoupled. Finally, recall that the reaction system is

restricted to occur in the membrane space and therefore the reactions are
carried out under constant volume, Furthermore, an energy balance of the

pump to be deﬁeloped in the next section will show that the pump operates

also at an almost constant temperature.

5.3 Derivation of the Equations of the Model

In this section, the equations describing the Active Transport pro-
cess dre deriﬁed. The mathematical model is based on the physical represen-
tation of the pump discussed in the last section and as for the ionic trans—
port process, its mechanisms of operation are determined by using first
order principles of field theory in the context of irreversible thermo-
dynamics. However, as opposed to the ionic transport process in which
the dynamic behavior of each species was described by a generic set of
equations and no direct interaction was allowed among the flow of each

species, in the model for the active transport process this simplification
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is not possible since the process is composed of mechanisms thaf ére
not uniformly distributed along the membrane space.

The wodel of the sodium pump as discussed before, is composed of 3 -
dynamical sysfems: The ion~exchange coupled to the carrier phosphoryla-
tion at the inner.axon-membrane surface, the carrier flow and ion-exchange
coupled to the carrier dephosphorylation at the outer membrane surface.

In short, the mafhematical model of the sodium pump éan be described as

a diffusion prdcess with time varying boundary conditions, where the

kinetics of the chemical reactions (5-1) - (5-4) constitute the dynamics
at the boundaries,

As a first step towards the development of the model, equationé for
the diffusion of carriers are derived. Recall from the last section that
the meaning assigned to ¢1’ ¢2, ¢3 is that of the effect of transport

which may or may not be caused by actual movement of molecules; with this

convention, the equations of continuity for the species CPNaB, CPK2 and
CK2 at any point inside the membrane are given by

8Cl 3¢1

W‘(x,t) - - -a—,-‘-(x,t) 0<x<3$¢ ' (5-5)
BCZ 8¢2 :

ET(X. t) Ll Ti‘(x’t) ] 0 _<_ X f_ o) (5-6)
and

aC, 3,
FE (% t) = = 5==(x,t) 0<x<$§ (5-7)
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where Cl(x,t) represents the concentration distribution of CPNa3 in
the membrane and C,(x,t), €,(x,t) represent the concentfation distribu-
tions of CPK2 and CK2 respectively.

For the purpose of simplification, it will be assumed that the re-
actions of the pump are restricted to occur at the boundaries i.,e., at
x=0 and x=8, This condition, of course, is not physically realizable.
Nevertheless, this éimplification approximates reality since each reaction
dynamics develops at a specialized activation site locgted at the intermal
or external protein layer of the membrane structure (see Chapter I), and
the thickness of these layers is much smaller than that of the membrane.
Now, the kinetic equations of reactions (5-1) - (5-4) are established.

The rate of production (or disappearance), oj, of species j measured

in moles/cm’-qec. is given by the following equation (Pfigogine [13]):

P dfnV :
oj(:) - 13.:1 uijri(t) - Cj(t)_?i?' I = 1,00e,sn (5-8)

. where p is the number of simultaneous reactions, aij 1= 1,0ee,Ps
J=1,...,n 18 the stoichiometric coefficient of species j in reaction i
(positive for products and negative for reactants), ri(t) is the reaction
rate of reaction 1, Cj(t) is the concentration in (moles/cm’-sec) of
species j and V is the "volume of reaction" i.e., the volume of the
region where the reactions occur; since for the axon membrane this volume
is constant, the second term in the r.h.s. of (5+%) vanishes,

In the sodium pump model, two separate groups of simultaneous reactions
are present: Reactions (5-1) and (5~2) at the inner surface and reactions

(5-3) and (5~4) at the outer surface.
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The reaction rate ri(t) is given by the following expression; E.M,

Eyring [26]):

L B n Y
Y (t) - S m Cj . S-i m Cj 13 1= 1,00e,p (5-9)
3-1 T metl

where Si’ S_i are respectively the forward and reverse reaction constants

of reaction 4, j = 1,...,% are the reactants and j = %+1,...,n are the

products and 8,, and Yij are phenomenological coefficients that must

i]
satisfy constraints imposed by the stoichiometry of the reaction, as
will be shown later on in this section.

The boundary conditions for equations (5-=5) through (5-7) are

obtained by a flow balance at the membrane surfaces as follows:

For (5-5)
Bc 3¢1
~——(0 t) = ——-(0 t) + oy °t) at x=0
(5-10)
acl ‘ 3¢1
5;—(6,t) 5——(6 t) - o (t) at x=§
For (5-16)
ac2 a¢ :
==(0,t) = = ———(0 t) - g,y (t) at x=0
(5-11)
aC 3¢

2 2
3 (8,t) = 5=2(8,0) + 0, at x=§
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And for (5~7)

,3C3 ‘5¢3 ' o
vg*E-—(O,t) = W{O,t) - 03 (t) at x=0
(5-12)
ac 3¢
ggl(é.t) -- §;§'+ 036(t) at x=§

where the 0's are ﬁhe chemical concentrations fates defined according to

the generic equation (5-8), the superscript 0 or § indicates the correspond-

ing group of simultaneous reactions to which the chemical concentration

rate 1s referred: 0 the group (5-1), (5-2) and § the group (5~3), (5-4).
Before deriving expressions for the flows ¢1, ¢2 and ¢3; the dynamic

equations for the component concentrations entering in reactions (5-1) =

(5~4) are established using equations (5-8) and (5-9).
Let Cao(t), Cso(t), CG(t) and C7(t) be the concentrations of the

species K+, Na+, ADP and ATP at the inside respectively; similarly, let
de(t)’ CSS(t) and Cs(t) be the concentrations of species Kf, Na+, and Pi
respectively (see Fig. 5.2); then from (5-8) and (5~9), the following

equations are obtained

dc B B Y Y

40 _ 15 12 _ 14 11 _

It 2 5,C5o T(B)C, T7(0,8) = 25 ,C,0 T(E)C; TT(0,t)  (5-13)
dc B B Y Y

50 _ 15 12 14 11

It 3 Slc50 (t)C2 0,t) + 3 S_1040 (t:)C1 (0,t) (5-14)

B B Y Y

0,0y o 15 12 - 14 11 -

0, (&) = 8,C5y "7(£)C, "7(0,1) S_1C4 = (B)C; TT(0,1) (5-15)
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Recall that reaction (5.1) was assuméd to be reversible . Similarly,

: B.. B.o . ;
) - o © 23 27 -
3,0 (1) o, (£) + 8,84 77(0,8)C, T (b) (5~16)
dc B B
6 23 27
T = 5,65 T (0,0)¢C, “T(e) | (5+17)
'dcs
Notice that T is not dependent on C6(t). This is due to the fact

that reaction (5-2) was assumed to be completely irreversible (see

section 5~2); this is an idealization because in the real world no re-
action is fully irreversible; nevertheless the contribution of the

irreversible part to the concentration rate is negligible (i.e.,

I5,1>>1s_, D).
dc 8 B
7 23 27
rra - - 32C3 (O,t:)C7 (t) ' | (5-18)
B By7

0,°(t) = - 5,C, 23(0,:)07 (t) (5-18a)

Equations (5-13) - (5-18a) describe the dynamiéé of each species
concentration at the inside surface of the axon membrane in the

sodium pump.

Similarly, for the species on the outer surface

B ] Y Yae
dChp o m 5« o 31 34 32 35
d:s 2 3301 (G’t)cas () + 2 S_3c2 (G,t)CSO () (5-19)
s B3y 8 Y35

, Y
20 = 3 5,0, H(8,00¢, 24 (0) - 3 s_c, 228, 00¢,) () (5-20)

de 371
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B B Y ; Y ‘
§ 31 34 32 35
o, () = = 55C, (G,t:)cl“s (t) +8_4C, (G,t)c50 (t)  (5-21)

8

dcg ,

To " = 5,6,(8,0) . (5-23)
§

03°(t) = §,C,(8,1) (5-24)

The flows ¢1(x,t), ¢2(x,t) and ¢3(x,t), and the concentrations
Cl(x,t), Cz(x,t); C3(x,t) are considered to be distributions across the
membrane; therefore, using the principles of field theory, differential
equations relating each flow distribution with its corresponding con-
centration distribution follow a derivation analogous to the one used
for this purpose in Chapter III. Notice that this is possible since no
interaction among the flow of carriers inside the membrane is allowed to
occure

Let u J = 1,2,3 be the chemical potential of carriers CPNa3, CPK

3 2

and CK2 respectively, then (see Chapter III)

o
My = w" + RT fn ¥yCy j=1,2,3 (5~25)

where wj is the (constant) chemical activity of carrier j in the membrane
and u ° is its chemical potential at ground state conditions.

]
The force xj driving carrier j is given by

ou
Xy =- il j=1,2,3 (5-26)
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and their velocities are given by

vy ug, | j=1,2,3 | | (5-27)

where u

3

ion species was found to be a function of the membrane potential; since

is the carrier j mobility. In Chapter III the mobility of each

the carriers are electrically neutral the carrier mobility as opposed
to the ionic mobility is only dependent on the:tempetature of the axon
membrane which is assumed to be constant, therefore the carrier mobili-
ties uj - jJ =1,2,3 are constant.

From (3-10) the flow of carrier j is given by

¢j(x)t) - vj(x!t)cj(xlt) j = 1’2’3 (5_28)
Then, from (5-25), (5-26), (5¢27) in (5-28)

a i
¢j - - uj(RT '5;(2“ chj(xst))cj(x't) j=12,3
or
ac
b4(X,t) = = u,RT 3;1 (x,t) j=1,2,3 (5-29)

Now, from (5-29) in (5-5), (5-6), (5*7), the dynamic equations for
the concentration distributions of carriers CPNa3, CPKZ, CK2 respectively

are obtained.

ac, 32c1

5t - WRT 2 (5-30)
X

ac, azc2

3t - 2R T3 (5-31)

ox
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(5-32)

Since the mobilities are constant, equations (5-30) = (5-32) are
usual linear diffusidn equations with the boundary cdnditions given by
equations (5-10) - (5-12). o

Before going further in the derivation of the model, an analysis
of the "well-posedness" of the system of equations (5-30) - (5432)
with the associated boundary conditions will be carried out.

Equations (5~10), (5~11) and (5~12) can be written solely in terms

of the respective concentration distributions by using (5-29):

2

ac, | a%c, .
§E~(O,C) - ulRI ;;5—(o,c) + oy (t)
(5-33)
ac, a%c, s
-é-t-:—-(G,t) - . ulk'r > 7 (S,t) - o (t)
x
ac, a%c, .
32—(0,t) - quT ;—E-(O,t) - 0, (t)
x
(5=34)
ac, 32c2 5 '
szn(ﬁ,t) = - uZRI ;;E—{ﬁ,t) -0, (t)
ac, 3203 .
5E~(O,t) - - u3RT ;—Eé(o,t) - 03 (t)
X
(5-35)
ac : 3¢

3 - 3 $
5-(8,t) = u,RT 5 * % (t)
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Recall that in order to have a physical meaning,

Sy(x,t) 20 j=1,2,3 (5-36)

Comparing eqs. (5-30) - (5-32) with eqs. (5-33) - (5-35) it can be
seen thaﬁ the 0 - functions constitute impulses in the spatial coordinate
at the boundaries; therefore, in a strong sense, the problem is not well
possed. Recall that the assumption c¢€ point - reaction led to the defini-
tion of the reaction flow 0. The previous analysis shows that this
constraint is too "hard". Furthermore, from a physical point of view,

a relaxed condition i.e., one that allows the reaction kinetics to occur

in a finite volume, which implies a finite distribution of reaction in the x
direction is reasonable, Let Ao be the length of reaction in the inner surface
and Al the respective length of reaction in the outer surface; where Ao,

Al << §., Physically these lengths of reactions are considered to be the

two thin protein layers coating the phospholipoid bilayer—axon membrane
according to Dannielli's model (see Chapter I).

The following scheme is proposed for approximating the boundary
equations (5-33) - (5-35) Kohn [33]:

a) Discretize the spatial-derivative terms of (5-33) - (5-35) according

to the following expressions:

32C1 1,
g;§~(o,c) = zri-(hi(Ao,t) - 2h,(8,/2,) + hy(0,t)) (5-37)
(o]

1=1,2,3

and
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9201 1 | Ay |

—=(8,t) = ~=(h,(§,t) = 2h (8 - ,t) + h (6-A,,t)) (5-38)
2 : 21 i 2 i 1

ax S Al .

where hi(.;t) i = 1,2,3 are the concentration-distribution approxima-

tions in the ins1de reaction region at the points 0, fg, Ao and at the
. ' 2
outside reaction points 6-A1, 6-A1/2, §. According to experimental

evidence (Robertson [31]), the size of Ao,'A is of the order of 1/50 of

1
the axon membrane thickness.

b) By the adjacent cell-method, (Angel and Bellman [34]) each equation
in (5-33) = (5-~35) 1is approximated by 3 ordinary differential equations

as follows:

dh1 uiRT Ao
'a"t""(opt) - _i.(hi(o’t) + hi(T’t))
. (Ao)
dhi uiRT o
EE—<A°/2.:) - zzr;i(hi(o,t) - Zhi(Ao/Z’t) + hi(Ao’t)) +0, (t) (5-39)
[o]
dh1 uiRI
Fe (8grt) = ——5(h, (A ,t) + hi(Ao/Z’t)) i=1,2,3
)
and '
dh
i u,RT A
Te OB ®) = = L (h (5-8,,) + 0 (8 = =5 t)
(4
dhi Al _ uiRT Al s
Fe(6gnt) = - :z—;i(hi(G-Al,t) + hy(8 & 5t) + b (8-8,,8)) - 0, °(t)
1
(5-40)
dh1 , uiRT
T = (6t) = - zz“;i(hi(ﬁ,t) + hi(G-Al/Z,t))
1l

i = 1,2’3
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c) For the system of equations (5-~13) - (5-19),
2, (0.8 = h (0,0) 1=1,2,3 (5=

Similarly, for the system of equations (5-20) - (5-24)

Ci(d,t) = hi(d,t) i=1,2,3 (5-42)
Notice that hi("t) i=1,2,3 are defined only at points O, -
A A
0 1
7 Ao, G-Al, § -5 S,

d) The approximate boundary conditions for the carrier-transport system,

eqs, (5~30) = (5-32) become

Ci(O,c) = hi(Ao,t)
i=1,2,3 (5-43)
Ci(‘s)t) = hi(G—Al’t) ‘

-The well poéednecs of the carrier diffusion problem with the
boundary conditions given by (5-51), can be proved by carrying out an
analysis similar to the one developed in Chapter III for the ionic
transport model,

The next issue towards the specification of the model for the
sodium pump, is the determination of initial conditions for the model
dynam1c~equacioh discussed above.

The initial conditions depend mainly on two factors, éteady-state
behavior of the carrier-reaction system inside the membfane and the
activation mechanisms of enzyme complexes (Ei i= l,...,é‘see section

5-2). The first factor determines the initial distribution of the
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é&rriér flows ¢1, ¢2, ¢3 and consequently thelr respective initial con-
centration distributions, and the second specifies the initial surface
concentrations of the species that conform to the reaction mechanisms
at the membrane surfaces.

Furthe¥more, the steady state equations of the model will be used
for identifying the reaction-parameters {Bij’ Yij} and the reaction
constants {S‘i,'Si} that under certain restrictions prevail for the pump
under dynamic operation.

Assuming that for small variations around the steady state,

Gibbs law holds for the system of reactions characterizing the pump,

N
dG = -~ SdT + vdP + I u,dN (5-44)
jup 34
where dN §=1,2,...,N 18 the amount in moles of ion species j in

]
the reacting system at equilibrium conditions dG = 0, and since the

reaction system of the sodium pump operates at isothermal isobaric con-
ditions, at equilibrium, (5-44) becomes:
N
b udej =0 (5-45)
i=1
Recall that the chemical potentials uj referred to in (5-45) are the
ones associated with the corresponding species in the reacting region,

for { = 1,...,p s8imultaneous reactions at equilibrium conditions the law

of conservation of mass can be expressed as

P
dN - Z a dz j = l,oc.,N (5"‘46)
B R

where dz, is the differential of the extent of reaction (moles) of the

i
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i~th reaction.

Then from (5-44) in (5-43) and since (5-43) must be true for any

arbitrary set of values of dzi 1= 1,.00e5P
N
z a, U, = 0 1 = 1,..-,? (5-47)
Jm1 1373

Condition (5~47) implies that at steady state the reacting system

satisfies Hess' law i.e.,
K = K /(RT)ai 1i=1,...oP (5-48)
ci i ! ’

where Kc {=1,...,p are defined by the following expressions:

i

K . (c 5 %43 1=1 (5-49)
- T + a ™ lyeeeyP =
Ci j-l jo i“l ij&i

{c o} is a set of equilibrium concentrations and Ei(mole/cms),

]
1= 1,..0,p are the volumetric extents of reaction of the simultaneous
reactions occurring in the system.

a is defined as

N
i st ij recee
and K, is the equilibrium constant of the i-th reaction and is defined

by the following expression

[+]
K, = e~06; /RT

i i = l,ooo,P (5—51)

where AGio 18 the Gibbs free energy of i-th reaction in the system at

standard conditions, and is defined by the following relationship
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= o’ - 18’ 1= 1,u0e,p o (5-52)

where Aﬂio'is the standard eathalpy of reaction 1 and ASi is the standard
entropy of reaction i. (5-52) might be written in the following form for

steady state conditions (not necessarily standard conditions)

K - Ki* exp(~AHi/RT) 1= 1,00e,p (5-53)

where AH1 is the difference of enthalpy between produéts and reactants
in the i~th reaction and Ki* is the constant of entropy production and
can be experimentally determined by a calorimetric procedure, (i.e.,
kx = e(85¢/R) 1=1,...,p).

Equations (5~57) should be 1nterpretéd‘in the following manner;
Given initial equilibrium concentrations Cjo J = 1l,.0.0,N the system
atains equilibrium at concentrations Cj J = 1,..4,N through p simulta-
neous reactions according to the following expressions

P _

CJ - Cjo + zflazjiz J = 1,0ee,N (5-54)

Hence, given‘the initial concentrations {cjo} and the set of equili-~
brium constants {Ki}’ the extents of reaction {EQ 2=1,.44,P} can be
determined using equations (5-49). It can be shown that the Jacobian
det(a(Kcl,...,ch)la(il,...Ek)) is positive for all £'s, so a unique
solution 18 obtained.

Now a procedure for determining the coefficients Bij’ Yij’ Si and
S«i in equations (5~9) will be discussed.

Recall from (5-9), that the reaction rate r, of the i-th reaction

i
is given by
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L Bi N

Y
ti"' Si I CJ j o S_i kil Cj ij i = 1,.--,1)
=1 J=2+1
At equiliorium, ry =0 1 Z1,...,p so the following relations are
obtained |
L B N Y
sy 7 ¢ s o oc Y 1= 1,e0e,p (5-55)
=1 J=2+1

Since by setting the exponent Bij or jij equal to zero one can make

the respective product in (5-63) independent of C, one might as well

k|
enlarge the range of products on both sides of (5-63) so that both pro-

ducts go from j = 1,...,N. Then, the following relations result:

N
T C

Yi4~B
W as s, 1= 1,00e,p (5-56)

which are the conditions of chemical equilibrium of the system, But from
(5-49) and (5-56) an independent expression of equilibrium can be obtained
i.e. ’

N o
K -

14 L m 1,000,p (5-57)
T oC
Ci 4w

From (5~56) and (5-57) a sufficient condition for consistency can

be obtained; i.e.,

- aij 1= lgooo,p, j - l’UOQ’N (5"'58)

and

KC d Si/S-'i i = 1,...,? (5"‘59)
i

In general, if the two sides of (5~56) were the same function of

the respective sides of (5-57) then the two expressions would still be
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consistent. Suppose Si/SQi -:Fi(Ké )  1i=1,,..,p, then
. { |
Y4B B

j ) i.- 1,~;o,P (5-60)

Now, this must be true for all values of Cj' So set

c, = W%, ¢ -

2 L CN = ], in the i-th equation of (5-68), then

n
Fi(v) - v'i

3

where n, = (Y11 - Bil)lail‘ Doing the same thing with j = 2,3,...,N

shows that n, has the common value,

Y.q = 8
n, = e B 5 | J m 1,u0e,N ' (5-61)
%43
i=1,.00opP

So, the 6nlz functional relation maintaining consistency between
the two expressions for chemical equilibrium is that one should be the

power of the other., But B,, and Yij are phenomenological constants and

i3

have no necessary connection with o, , except to satisfy the consistency

13

relation (5«61). The constants n i =1,..0,p are termed the

i’

dégreea of cooperativity of the reaction-system. It has been shown

experimentally in fragmented membrane preparations (Diion and Webb [35]),
using a Michaelis-Menten modél for the membrane reaction system,'that

these coefficienté (ni) are lower than unity for low sodium concentrations,
| about unity for medium physiological sodium concentration and about 1.5

for high sodium concentrations. (Twice the physiologiéal sodium concentra-
tion, see Chapter 1V). Therefore, for this sodium-pump model, it will be

assumed that n, = 1, 1= 1,0ees5Pe
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Recall that in the case where a particular reaction of the system

is assumed to be irreversible, condition (5-59) becomes,

Keg = 84 (5~62)
similarly (5-61) becomes,
Y] )
e S (5-63)

1]
with 1 in the subset of irreversible reactions of the system.
Notice also that in the case of reversible reactions (5-59) gives
only the ratio 51/5-1 80 in order to determine both reaction constants
one of them Gusuélly the forward reaction constant Si) has to be determined
by experimentation and then with relation (5-59), the other may be computed.
Next, the general derivation of the steady state conditions for simul-
taneous reactions derived Above will be specialized for the two groups of
reactions of the'sodium pump.
For the reaction group in the inner surface, (reactions (5~1) and

(5~2)) the initial conditions satisfy relations (5-48) so,

-1
K = K. /(RT) - RT
cl 1 K1 (5-64)

K, = K,/(RD)® = Ky
where Kl and K2 are computed using (5-59). The Gibbs-free enérgy of re-
actions (5-~1) and (5-2) is not known exactly; nevertheless, several experi-
mental measurements of this eﬁergy are available for reactions occurring
in fragmented membrane preparations,.which give at least boundg for the
values of the free energy for the inside reactions, as will be discussed
in the next section.

Similarly, for the group of reactions at the external surface ((5-3),
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(5"/‘) ) :.

“CB = K3/(RT)

(5-65)
KC& - K4/R$
The extent of reaction for reactions (5-1) - (5~4) can be computed

by solving 2 sets of decoupled simultaneous equations of the form of

(5-55):
o o o 2 '6 3
Kc1 = (Cg +E)(Cyy" = &y +EN(C," + 28,)7(Csy” = 3E)
(5~66)
o o 1 o 1 o
K, ™ a0 = 81+ 8P Gy = 57 (Cgp *+ 5)7(Ch0 = &)

where (Cloo i = 1,404,7) are any equilibrium concentrations for the
species reacting at the inside surface (reactions (5~1), (5-2)), El, £2
are the respective extents of reactions, and {Cio} can be found experi-
mentally (i.e., see the values for C40o and CSOo in table 4-~1) and then,
equations (5-66) are solved simultaneously for El’ EZ (recall that the
solution is unique). Next, using (5~54) the equilibrium concentrations
{Ci} may be computed.
Similarly, for reactions (5-3) = (5-4), which occur at the outer

membrane surface, the extents of reaction 63, 54 can be computed by solv~

ing the following simultaneous equations:

$ 8 5
¥e, ~ (C1o° = 830 (Cy * &3 = &P (Cyy

- 2% (cg + 387

(5-67)
5 8

K, = (0206 = by FEN(CyyT +5)(Cgy" + EY

4
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where (C1°§ i=1,2,...,8) are any equilibrium-concentrations for
the species reacting in the outside surface (reactions (5-~3) - (5-4)).
| Also, {Ciof can be determined experimentally so, knowiﬁg 53; Ea by
(5-62), {CIG} the equilibrium concentrations at the outer boundary of
the axon membrane may be found. |

Notice th#t by using (5-49), the reaction constants (Si 1 = =1,
=2,.0054) for the boundary conditions of the dynamic equations of the
model can be computed.

The development above indicates a procedure for computing the
equilibrium concentrations at the boundaries; in order to completely
specify the initial conditions, the steady state distributions of the
carrier concentratioas* Cll(x), Czl(x), C31(x) in the membrane must

be determined. First, notice that they must satisfy the boundary con- -

ditions
c,'® =¢c° , cr® =c°
c,t@ =¢, , ¢, ® =c,° (5-68)
¢l =¢c,° , ¢t - c35

Seaond, the carrier distributions, must satisfy the following
homogeneous equations:

a%c 1

._il_(x) = 0 0<x<$§ (5;69)
dx '

1

1 indicates a steady state distribution.

* The superscript 1 in C




, dzczl | :
5 (x) =0 0<x<3$§ (5-70)
dx
d2C31
—-—2—(2() = () 0<x<$§ (5-71)
dx

Equations (5-69), (5-70), (5-~71) are obtained by making the time
derivatives equal to zero in eqs. (5-30) - (5-32) a condition which
corresponds to a steady state, as discussed above.

Equations (5-69) - (5-71) can be integrated with the given boundary

conditions (5-74):

c, ~-¢C
1 1 1 o
C1 (%) ——gx + C1

¢.’-¢ |
Czl(x) - -—g-——g-—?'-—x + czd (5-72)
6 - C

C
Ly o3 5 §
C3 (x) —g + C3

(o]

With the latter, the model for the active transport process is now

complete.

5.4 Qualitative Analysis of the Process in Terms of the Model

The model derived in the last section, presents several interesting
mathematical characteristics that can be interpreted in physical terms
and therefore presents a tool that can be used for carrying out an analysis
of the operative characterigtics of the pump.

First, some aspects of the dynamics of the pump will be considered.

The activation of the pump is determined by two factors: the first
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is the ratio of Poﬁassium v8. Sodium concentration in the inner solutionm,
the second is the activation of enzyme complex Ez. As the ratio of potas-
sium vs, sodium decreases in the inside, reaction (5-2) product (carrier
CPNa3) increases., This condition can be verified to follow in the model,
by studying equation (5-15) corresponding to the chemical flow of CPN33
from reaction (5-1) (olo(t)): an increase in the ratio CSO(C)/CAO(t)

will imply an increase in olo(t) and consequently by equation (5-28), an
increase in the flow of this carrier, ¢1. But no increase of this ratio
will increase appfeciabky clo(t) if the concentration of CPKZ, the energy
carrier (Cz(O,t)), does not increase since it enters as & positive multi-
plicative factor in the forward term of (5-15).

The rate increase of the concentration of CPK2 in the inmer onndary
is proportional to Uzo(t) (eq. (5-16)), which is directly proportional to
the ATP concentration in the inner solution; therefore no activation is
possible 1f the ATP concéntration is below a certain threshold. 1{i.e.,

from (5-16), for a given concentration of carrier CK2 and a given chemical

flow olo, the copcentratibn of ATP C7, must satisfy the following 1neqﬁality
0, (t)
C7(t) > EZE;TET (5-79)
Cohsequently, the raie of flow of ATP from the organelies in the cell
body to the axon must be controlled by a mechanism (which is not included
in the formulation of the model) that is activated by the ATP concentra-
tion so that (5-79) is satisfied.
The form of equation (5-16) exhibits explicitly the regulation

mechanism described in section 5-2, Namely an increase in CPNa3 at the
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inner boundary implies an increase of‘clo(t) which in turn implies an-

increase of the flow rate of CPNa, across the meﬁbrane (Eq. (5-30))

3
and a der—ease in the production Gzo(t), since clo(t) enters as a sub-
tracting term in the equation defining 02°(t) (Eq. (5-16)).

Its important to noiice that the system dynamics depends heavily
on the initial condition fhat triggers the pump is not unique; this can
bé notice in the process by which this initial condition is computed.

Given any equilibrium concentration set {C Cjé} for the species of

jo?
the system, the initial condition for the pump will depend on the re~
action extents which in turn depend on the activity of the surface re-
5étions as measurgd by the reactioﬁs constants {Kci} (Eqs. (5-66) and
(5-67)). This non uniqueness of initial conditions has been corroborated
by experimental evidence Glynn; and shows the great flexibility of the
pump for restoring the ionic concentration gradients of sodium and potas-
sium. As discussed before, the pump will be activated by a given initial
condition only if enzyme E2~activation gite is active. Pressumably it is
activated by PH of the inside solution provided the concentration of ATP
in the inner solution satisfies (5-79).

Finally, notice that the ionic transport model and the active trans-
port model are coupled through the sodium and potassium boundary concentra-
tions. In Chapﬁer III, it was assumed that the ionic concentrations at the
axon membrane surfaces were constant; in this chapter, the boundary concen-
trations of these ions, namely C,q(t), Cso(t), Caa(t)’ C56(t) satisfy dif-
ferential equations (5~13), (5-14), (5~19),((5-20) and therefore will not

be constant in general; notice however, that the time constants for these
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equations are directly proportional to the carrier mobilities U Uy3
and they are constant values that depend on the masses of the carriers
which are much larger than the masses of the respective ions so that
the ion;time constants are considerably smaller that of the carriers

which implies that for practical purposes, the assumption of constant

concentrations at the membrane surface is reasonable.

5.5 Conclusions

In this chapter a model for the active process in clamped axon
membranes was dérived. The model provides a tool for analyzing the
physiological characteristics of the process and can be used also as
the means for identifying the identity of the carriers operating in it
and also, for determining the precise operation of the carrier mechanism
and the catalytic and kinetic structure for its formation at the membrane
boundaries. Also the model can be easily adapted for analyzing inhibition

processes such as the produced by the cardiac glycosides.
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" CHAPTER VI

CONCLUSIONS

6.1 Introduction

This chapter presents a general overview of the main topics con-
sidered in this thesis with an emphasis on the main conclusions reached
in the study. Also, several aspects of the dynamical operation of the
axon membrane that were not covered in this study are mentioned as well
as general suggestions about the possible ways by which the model de~

veloped in this thesis can be generalized or modified.

In short, the purpose of the study was to develop a mathematical
model of the dynamical behavior of the axon membrane when subject to
a voltage clamp in the longitudinal direction of the axoﬁ.

In the model, twb processes are considered; the ionic transport
process and the active transport process. The first is responsible for
the generation of aﬁ electric pulse when the axon membrane ié excited
over a threshold and the second is the mechanism that restores and
ﬁaintains operating conditions for the membrane i.e., lonic potentials.

The chapter is divided in 2 sections: 6-2 Review of the main con-
clusions in each of the chapters of the thesis and 6-3 Somevsuggestions

for future research.

6.2 Review of the Main Conclusions in Each Chapter
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a. Chapter I

Is an introauction to the subject of neuron cells in general, and
neuron ceil membranes in particular. It includes a short historical
‘account of the research in the field and an elementary anatomical des—
cription df the neuron cell and in particular of the axon, including
the bilayer uﬁit theory of the cell membrane formulated by Dannielli;

b. Chapter I1 |

Contains an analysis of the Hodgkin and Huxley model for the action
potential from a systems theoretic point of view. It is shown that the
model's dynamiCS'presents a structure that makes it unidentifiable from
input output data so that the model obtained, although it fits the experi-
mental data measured at the output i.e., membrane poténtial, ionic
current density, ete,, cannot be guaranteed to correspond to the actual
gtructure of the physical axon membrane system,

Also the control structure mechanism of the axon membrane on the
action potential was analyzed in the context of the model; it was shown
that the clamped membrane potential is the output of a dynamic system
multiplicatively controlled by a time varying vector function (ionic-
conductance vector) which is driven by a linear dynamical system. Al-
though this structure of the internal representation of the control
is completely empirical, it is shown in Chapter III that by physical
analysis of the ionic transport process a very similar control sﬁructure
is obtainéd.

Finally, a sensitivity analysis of the model shows that rather big
variations of its pérameters do not produce considerable changes in the

output so instead of the parameters originally derived by Hodgkin and




- 150 ~

Huxley, a family of parameters that agree with the experimentally measured

variables, was found.

Co Chapcter III

Is perhapq the most important chapter of the chésis, it describes
the derivation procedure in obtaining a model for the ioﬁig transport
process. The model is derived in the context of well proven laws of
field theory and-irfeversible thermodynamics, It is shown that the elec-
tric phenomena in the excited clamped axon membrane is a function of the
flow of ions écross the membrane due to their electrochemical gradients.
This flow 18 not just passive but rather it 1s regulated actively by
the membrane. The membrane ionic flow regulating mechanism is modelled
by a phenomenological membrane potential-dependent time vector function
denoted as ionic mobility (one entry for each ion species). An explicit
expression for this function was derived using statistical mechanics
arguments,

In the ionic transport model, each ion species has a concentration
distribution inside the membrane. These distributions determine the
electric field intensity distribution which in turn determines the time
course behavior of ;he excited axon membrane potential.

The well-posedness of the equations of the model as well as the
stability propefgies of the system were analyzed.

d. Chapter IV

Contains the main results obtained from a computer simulation of

the model derived in Chapter III. It is shown that the model exhibits

good agreement with the experimental data obtained by Hodgkin and Huxley.
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~ Some interesting aspects of the role of calcium ions in the ionic .
transpdrt process are analyzed.

The electric field intensity present across the membrane during
equilibrium and during excitation conditions 1s computed and the physical
implications of its dynamic course are analyzed,

Finally, the oscillatory phenomena observed in hyperpolaryzed mem—
branes is reproduced using the model and some of its functional and
physiological 1mplications are briefly analyzed.

e, Chapter V

A model for the active transport process is derived in the context
of field theory and irreversible thermodynamics. Some physiological as-
pects of th§ process are qualitatively studied using the model.

The model 15 developed by considering process as composed of 3
dynamical subprocess: ' 2 chemical mechanisms for combinétion of sodium
and potassium ions with neutral carriers that allow these ions to be
transported against their electrochemical gradients. These mechanisms
are assumed to be located at the membrane inner and outer surface. The
third subprocess is a diffusion of carriers across the membrane driven
by their chemical gradients.

The mechanisms of activation of this process and the energy process
which feeds it are studied in the context of the model.

Finally, the coupling mechanism between the ionic transport process

and the active tramsport process is analyzed.

6.3 Some Suggestions for Future Research

One of the important aspects of the operation of the axon membrane
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as a functional unit in the nervous information system, not covered in
this study, 1s the propagation of the electric spike along the axon
membrane. ‘The ilonic transport model, developed in Chapter III can be
generalized to study this phenomena by considering ah additional current
density convectivé term in equation (3-16). The coefficient of this
‘convective term, namely the axial velocity of pulse propagation is strong-
ly dependent on the membrane surface electric properties which in fhis
author's opinion are not well known. Therefore, in order to study the
propagation phenomena a prior study of the membrane surface should be
carried out,

In the active transport model some of the aspects of competitive
behavior among ions different than sodium and potassium (e.g., calcium
and magnessium ioﬁs) were not studied, although the complexity of the
model increases when this phenomenon is considered. This increase in
difficulty of the model is represented by the addition of equations to
simulate this phenomenon, not in the mathematical structure of the model.

Finally, a complete simulation study of the active transport model
should be carried out in order to determine how well it approximates the
behavior of the réal membrane system and also to obtain quantitative con-
clusions about the physical phenomena that characterize it.

A numerical evaluation of the parameters of the model develoéed in this
chapter requires a considerable amount of experimental measurements as dis-
cussed in section 5-3. In [36], a dynamical model of the process is develop=-
ed around an equilibrium state. This model permits the identification of
the flow parameters (mobilities Mis Hps u3) and the reaction constants Si’
(i = ~1,~2,400,4) and therefore can be used for computing the data basis

for the model developed in this chapter.
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| APPENDIX ‘I

Discretization Scheme for

the Dynamics Tonic Transport Model

Equations (3-33) - (3-36) that describe the dynamic behavior of ion
transport @odel for the axon membrane during the action potential, are
a set of nonlinear partial differential equations that cannot be solved
using analytical techniques; therefore, a discretization technique must
be used in order £o get an approximate solution. The disqretization
scheme used in this thesis is briefly described here and a short analysis

of some of the properties of the resultant difference equations is given.

General Description

‘The set of equations (3-33) - (3-36) is defined in a bounded region
CR2, whose boundary ' is determined by the thickness of the membrane,
§, and T, a finite time interval (roughly 2msec) over which the major

portion of the action potehtial takes place, therefore in set notation
Q = {(x,t)er? | 0<x<8 , o<t<r} A-1

The system of equations (3-33) - (3-36) may be expressed by the

following operator notation

%% = L(u) A-2
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where L(u) is a nonlinear partial differential operator and

C.l (xrt)

E(x't) = . A-3

Cs(x.t)

E(x't)

The problem is to find a vector function u(x,t) that satisfies A-2
at each point of Q with the boundary conditions;

Qogjx,t) - Eo(t)
x=0

ﬁdgjx,t) = ug(t)

x=8

where §o' §6 is the operator notation for equations (3-38).

The solution of this problem is attempted by finding a table of
approximate valueg of the vector u on a finite set of points ¥CQ,

The set Y: This table is called a grid and the individual points of Y
are called meshpoints.

In this thesis a rectangular grid is used and a particular mesh-
point of Y may be represented as (nAx, mAt) n = 1,2,...N , m = 1,2,...%
where Ax is the séatial stepsize and At is the time stepsize (assumed
constant).

N, & are defined as follows:

N = [§/Ax]
L = [T/At]
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- Thus , the number of points of the grid is equal to Nxl.
At each point of the grid a vector equation approximating A-2
is derived. The resultant discretized operator may be represented

by

R(y, (1dx, kAt)) = £(ilx, kAt)

i-l"o"l ’ kw1'2'$¢.'N

R (+) is a difference operator and _gh(iAx, kAt) is the approximate
value of g(iAx. kAt) .

Although tﬁe system of equations (3-33) - (3-36) is nonlinear, it
would be advantageous if the resultant discretized operator R is linear,
because the solution of equation A-6 reduces to a matrix inversion.
Also, it is desirable that R be of such a form that the values of v
at the point iAx, (k+1)At can be obtained by an equation which
expresses them as a function of the values of o at an adjacent mesh-
point say idx, kAt. This condition reduces the dimension of R(-) and
therefore the storage requirements for implementing A-6 in a digital
computer.

The boundary conditions A-4, are discretized over a set of points

2U T giving the following operator equations:

rogh(o, kAt) = go(kAt)
Q%&Ax, kAt) = _t_l_l(kAt) aA-7

k=1,2,...,N

where z, (), 56( ) are the discretized approximations of operators A-4.
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With the previous definitions the problem now is to find the
table of values #(iAx, kAt) i =1,...,1 , k=1,...,N such that A-6,
A-7 are satisfied.

It is assumed that the following limit holds:

14m l[gh(iAx, kAt)IlU = 0
Ax+0 ‘ A-8

At+0

where the norm is defined on a function vector space U formed by the
vector functions that satisfy A-2.

Moreover, it is assumed that for each point of the mesh Egs A-6,
A-7 have a unique solution provided that the initial conditions are
properly chosén. This assumption is based on an analysis of the
structure of equations (3-~33) -~ (3-36), which exhibit a limit cycle type of
dynamical behavior around the initial conditions (resting state). This
behavior has profound physical implications on the characteristics of
the subthreshold phenomena and will be analyzed to some extent in the

thesis.

Difference Representation of the

Differential Forms in (3-33) - (3-36)

The following set of equations give approximate éxPressions for
the differentials appearing in equations (3-33) - (3-36). Their degree of
approximation is studied for the model in the thesis. Here it is just

important to remark that for good approximations it is necessary that
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the spatial increment Ax and the time increment At have to be "small"
as compared with § and T respectively and also, for good convergence

of the cd.scretized equations (A-6, A-7) the following condition must

hold:
%ﬁ- <1 A-9
acC A
1
(=) = 3—(C.(i, k+l) - C, (i, k))
Rli'k Aty 3
ac
(o S - . -
a%c .
(—5—1) & —=—(C, (i+1, k) - 2C_(i, k) + C_(i-1, k))
x4k (a? 3 3 3
j = 1,2,...'5
3E 1
(=) = —3—(E(i+l, k) = E(i-1, k))
ox ik 2Ax
A-11
QD) = R, kD) - EG, K)
i'k :

where the subscripts i, k indicate the meshpoint iAx . , kAt.

Then, using A-10, A-11 for each meshpoint i, k, equation (3-33) can

be approximated by the following expression:
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u,RT FZ ., u
Loq, kel) mc, (441, k) | - 4— + AL w0l +
At "5 2 2Ax
. (Ax)
; | 29RT  u,FZ
Coli, k) |5+ + + E(i+l, k)| +
3 At (Ax)2 2Ax
u,RT u,FZ
¢ (i-1, 1| - b L+ gij E(i, k)
(Ax)

Equation (3-34), 1s approximated by the following difference

equation:
1 ' Foo
EK;-(E(1+1. k) - E{i-1, k)) = E-jil chj(i' k)
A-13
1= 0,1,2,0..,241 k=0,1,2,...,N
Equation (3-35) becomes:
Z . u, FRT
R 1 R - -
Jj(i, k) 5Ax (Cj(i+l, k) Cj(i 1, k)) +
2.2
u,z, FE(i, k) - -
j j ’ A 14
j-l,.;..,S i=0,...,1+1 k =0,1,...,N
Finally, Equation (3-36) becomes:
1 , oy 3 '
ZE‘(E(i, k+1) - E(i, k)) = E( L J.(i, k) - J(k))
je1 3
A~-15

jﬂl,...,s iBO'..-,l".'l k=o'1'~.-'N

A-12
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Equations-A;IZ, A-13, A-14, A-15 are valid for each meshpoint of
the grid. The meshpoints (0, k), and (£+1, k) correépond to the bound-
arf of ti.e region and the values of Cj' There are given by the boundary
conditions: 'equations (3-38).

For computing purposes the variables in egs A-~1l2 - A-15 are organ-

ized in vectorlform as follows:

cjfl, k)

gyl = ;j(i’ k) j=1ieeei5 - A-16
<::j(z, x)
E(1l, k)

E(k) = !:52(1, k) A-17
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"
Jj(l )
I k) = 3, K j=1,...,5 A-18
, k
Jj& )

With definitions A-16, A-17, A-18, Equations A~12 - A-15 can be

written as vector difference equations as follows:

C,(k+l) = AtA, (k, E(k)) C, (k) + AtB, (k) v, (k
“j( ) -ﬁ"——‘”w;” ."ﬂ()y_j() _
y=1,2,...,5 k =0,...,N
2 1
UE(k) = 121 24y (k) + S5 W (k)
- A~20
kK = 0,...,N
J. (k) = a,(k, E(k k) + 8.v.(k
_j( ) —«j( E(k)) gj( ) __Jy_j( ) -
j=1,...,5 k =0,...,N
At > 1
E(k+l) = E(k) + — I J, (k) - = MJI(k)
——— - € -l _..j £ -
] A-22
k = 0,...,N
where A j=1,...,5 are 2x% tridiagonal matrices with elements

.._.j

defined as follows:
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u,RT u,F2

aly g e Ay ey,

20x
(A) A-23
j=1,...,5 i=2,...,1 B
j ZujRT quZj
a i,i(k) Yol (Ax)z + o™ (E(i+1, k) - E(i-1, k))
A-24
j=1,...,5 i=]1,2,...,1
u,RT FZ u
j I | 33
i, i+1‘k’ a2 | 2% P w
A-25
j-lyc--'s i.l,Z,...,z-l
“ﬂ(k) is a £x2 matrix with all -but by, a by~ elements equal to
zZero and
u,RT u,FzZ
bl (k) = - e L g0, K A=26
11 2 2A8x
(Ax) ‘
RT F2Z .u
3 . 173
b 22(k’ A 2 ¥ ToAw E(%+1,k) .
(Ax) A-27
j- l,...,s
Xj(k) are the boundary conditions of Cj j=1,...,5;:
Cj(O, k)
v, (k) = , 8lven, constant
Cj (k-f-l, k) A-28
j=1,...,5 j=1,2,...,5

U is the following constant 2xf matrix:
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U = 55— A-29

and W is a 2¥ constant matrix with all its elements but w

11 @4 Wyp
equal to zero
w = ] .
11 A-30
Wog = -1
and
E(0, k)
V(k) = A-31
E(2+1, k)
gj(k, E(k)) 3 =1,...,5 are x{ tridiagonal matrices whose non

zero elements are given by the following expressions:

3 - 2.2 . " Ae

o i,i(k) uij F° E(i, k) A~-32
3 u,z, FRT

o i,i"’l(k) =~ 2Ax A-33

o) k) = - o3 (k) A-34
i"i‘.‘l ipi-l

= 1,0..,5




- 163 -

Qj y=1,...,5 are £x2 matrices with all their elements but
j - 3 |
6 ll'and 6 22 equal to zern
' Z.u_FRT
I s -
6 11 SAn A~-35

P |
8%, = - © .
L 1 A-36
j = 1,..4,5

From A-21 in A-22 the following equation for E(k+1l) is obtained:

5
, At
E(k+l) = E(k) + — I (a,(k, E(x)) C,(k 0 k) -
E(k+l) = E(k) < o (___j( ())—'j()+—j!j()
A~-37
1
E-gg(k)
where
0
lo
M= || , an? vector A-38
1
E(0), (0), v.(0) j=1,...,5, are given by the resting con-

gy
dition analysis of the system and J(k) is given for every k.

Finally, the value of the potential at the inner surface of the mem-
brane at each instant of time kAx k=0,...,N is computed by approximating
eq. (3-37) by a numerical integration procedure. Since the spatial interval
is "small" as compared with the membrane thickness (Ax = 6/20) a 1/3

Simpson rule is adequate; therefore the electric potential at the inner

membrane surface is given by
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. 2
Yk) = ~ L 28(i, k) + 4E(i+1, k)) + E(O, k)
i=1 A-39
+ E(1+1, k) [E
3 r

The ionic transport model has been approximated by a discretized
set of equations whose solution can be cbtained with a digital computer.
A brief description of the logical steps followed in the implementation

of the algorithm used in this thesis is given below

Step 1 Set k = 0
Step 2 Compute E(k+1l) using Eqs A-22
Compute V(k) using Egqs A-20
Step 3 Compute Y(k) using Eq A-39
Step 4 Set J = 1
Step 5 Compute gj(k+l) using Egs A-19
Step 6 J¢«J+1 if J>5 go to step 7 otherwise go to step 5
Step 7 k+k+1l if k>N; stop otherwise, go to step 2
The initial équations (3-43) = (3-45) are integrated using the same

program, by making Qj(k+1) = 0 in A-19.
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