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ABSTRACT

During the last 30 years, a great effort has been taken in develop-
ing models that adequately represent the behavior of the neuron cell
membrane, when an action potential occurs as a link in the transmission-
of-information process. The best known of these models is the approxima-
tion of the membrane by a lumped parameter transmission line. The model
proposed herein will permit a broader comprehension of the relation
between the bioelectric properties of the membrane and the ionic and
active transport processes. The membrane generates a voltage pulse as
a function of the ionic concentration gradients between the solutions
bathing its surfaces, and restores these gradients after an excitation
has occurred.
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CHAPTER I

1.1 Introduction

The purpose of this thesis is to study by means of a mathematical

model some of the physiological and functional aspects of a giant squid

axon membrane excited by an electrical pulse. The study is directed to

the case where a portion of the membrane is clamped, i.e., no potential

gradient exists in the longitudinal direction of the axon. The reason for

this limitation is to analyze the interrelationships of the excitatory event

with the chemical characteristics of the system formed by the membrane and

the surrounding solutions. We thus avoid the propagation of the excitation, which

is a phenomena that depends solely on the electrical porperties of the mem-

brane. Moreover, no study of the propagation phenomenon is possible with-

out a careful analysis of the mechanisms involved in the generation of the

electric pulse (spike), which occurs when the membrane is excited over a

certain threshold. These mechanisms determine the physical characteristics

of the propagation, therefore an analysis of the latter cannot be carried

out without a previous careful study of the former.

The purpose in deriving a mathematical model is two fold: first, to

study the characteristics of the action potential as a function of the trans-

port of sodium and potassium ions across the membrane due to their electro-

chemical gradients; and second, to analyze some of the main dynamic charac-

teristics of a possible mechanism by which these ions are transported. The

first process will be referred to herein as the ionic transport process

and the second, the active transport process.
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Both the ionic transport process and the active transport process

have been the subject of intensive research for the last 30 years [1].

In particular, the observed time course of the clamped axon membrane

potential and its dependence on the flow of sodium, potassium and chlo-

ride- ions have been modeled by a second order partial differential

equation relating the ionic flow and the membrane potential, coupled with

two empirically derived linear differential equations for the parameters

of the flow equation. This model is known as the Hodgkin and Huxley model

[2], [3], [4], [5] after A. L. Hodgkin and A. F. Huxley who derived it.

This model is analyzed in Chapter II of the thesis. Since its appearance,

many studies have been carried out in order to justify in a physical con-

text the functional expressions for the ionic conductances that appear in [6].

To this author's knowledge, this effort has not been completely successful.

This fact constituted the main motivation for developing a mathematical

model for the ionic transport process based on physical principles governing

the diffusion of ions across an osmotic barrier (such as the axon membrane)

and its interrelations with the resulting time course of diffusion between the

inner and outer surfaces of the membrane. The derivation of this model which is

carried out in Chapter III, is analogous to the one followed by Goldman [7]

for describing the dynamics of a system of two ionic solutions of different

concentrations separated by a permeable artifitial membrane. The main dif-

ference between the model considered in this thesis and the Goldman model,

resides in the role that the membrane plays in the process; in Goldman's

model it is a passive barrier, in the model developed here, the membrane

is assumed to present a structure that actively participates in the transport

process, mainly as a regulating an ion-selecting agent.
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Neuron membranes, in common with most biological cells, possess a

highly complex but not completely known, built-in mechanism that enables

the cell to transport sodium and potassium ions against their electro-

chemical gradient with the consumption of metabolic energy. This mechanism

is known as the sodium pump and is synonymous with the active transport

process. In most cells, the sodium pump is involved in the transport of

food stuffs from the extracellular fluid to the inside of the cell. In

neurons, the sodium pump is also responsible for maintaining the concentra-

tion gradients of sodium and potassium ions so that the ionic transport

develops a voltage pulse when the membrane is excited. Experimental evidence

strongly supports the hypothesis that ATP hydrolysis is the source of energy

of the sodium pump. In Chapter V, a model for the active transport process

is derived. In this model, the equation representing the process gives

qualitative rather than quantitative characteristics of it. The objective

of developing such a model is to study the dynamics of the process and to

obtain a formal description that can help in future studies to elucidate

the mechanisms that govern its behavior, to test the hypotheses that have

been proposed about its structure (Engelman [8]) and also to establish the

possible coupling mechanism between this process and the ionic transport

process.

In order to test the validity of the ionic transport model, and to get

some insight about the physical properties of the axon membrane system, a

simulation of its describing equations was carried out. The results and

conclusion of this simulation are given in Chapter IV.



This chapter is divided into 3 sections: 1.1 Introduction, 1.2 Histor-

ical Account of the Research in the Field, and 1.3 Brief Description of the

Axon Membrane.

1.2 Summary of the Background of the Problem

The first attempt to model the neuron cell membrane based on its

selective permeability to potassium and sodium ions was made by Bernstein

[9].in 1902. Based on experimental evidence, using sciatic nerves of

Hungarian frogs, he concluded that the resting potential that is present

across the cell membrane is due to its selective permeability

potassium ions. He also suggested that the action potential is brought

about by a breakdown of this selectivity. In 1926, Adrian and Zotterman

[10] studying sensory nerve endings, gave thermodynamic arguments to justify

the action potential that was measured in nerve sensory fibers when excited

by an electrical pulse. However the first to provide convincing evidence

that membrane potential changes are causal agents in nervous activity was

Hodgkin [11] in 1937; he developed a model based on transmission line theory

for the propagation of a pulse along the axon. In 1938 Hodgkin [12] establish-

ed a coherent theory for the behavior of nerve fibers for subthreshold poten-

tials; in his paper he also established a relation between subthreshold poten-

tials and the "all or nothing" law for the action potential, described by

Katz [13], a year before.

The sodium theory of the action potential was established by Hodgkin

and Katz [6] in 1949. They discovered that the membrane potential "overshoots"

the zero level during the action potential, so that the inside becomes positive.



- 12 -

This fact suggested that the process was a rapid and specific increase in

the permeability of the membrane to sodium ions. The model for the membrane

potential resulting from this discovery was a lumped parameter distributed

electrical circuit. In 1945 Hodgkin and Rushton [7] carried out measure-

ments on crustacean nerve fibers in order to determine the parameters of

the membrane circuit model during the action potential. A general model

that considered subthreshold behavior and action potential for squid axon

membranes was developed in 1952 by Hodgkin and Huxley [8]. This model

interprets the properties of the axon potential in terms of a conceptual

model, an electrical circuit composed of four branches in parallel: Three

for representing the movement of sodium ions, potassium ions and chloride

ions across the membrane, and the fourth for representing the equivalent

capacitance of the membrane. The ionic branches are each composed of a

battery whose electromotive force is given by the Nernst equation for

that ion, and a variable conductance. These conductances represent the

ease with which ions can pass through the membrane; they are very complex

functions of the permeability coefficients of those ions and their mobility

through the membrane. Two important factors that have been extensively studied

using this model are the "sodium theory" of the action potential and the

ionic movements during activity.

The sodium theory was proved by Hodgkin and Katz in 1949 [6]. They

suggested that the action potential is a process characterized basically

by a rapid and specific increase in the permeability of the membrane to

sodium ions; in terms of the circuit model, this implies that the conductance

representing the sodium permeability becomes, during the action potential,

relatively bigger than those corresponding to potassium and chloride ions.
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Their theory is an attempt to explain the interrelationship between the

movement of sodium, potassium and chloride ions through the membrane.

The magnitude and speed of propagation of the action potential from the

experimental evidence can be approximated by the Hodgkin and Huxley mode]

by considering the axon membrane as a cascade of elementary circuits such

as the one described above, using resistances in series to represent the

attenuation of the pulse as it travels down the axon.

Parallel to the lumped parameter model development for cell mem-

branes (axon) during subthreshold and action potential activity, researchers

in the field have tried to find models based on the biochemical reactions

and the thermodynamic events that take place during the action

potential. Perhaps the first results following this line were published

in 1930 Tasaki [10], and later in Tasaki and Takeuchi [11] in 1941 and

1942 [12]. The basic idea is to consider the axon membrane together with

the ionic solutions on both sides of the membrane as a thermodynamic closed

system, and to establish a set of energy relationships between the ionic

movements and the electrical, chemical and thermodynamic gradients (potentials)

present in the membrane. The main parameters of this model are the different

ion concentrations, ion mobility, water flow, non ionic process etc. The

potential gradients responsible for these movements are the concentration gra-

dient, the electric gradient (the two former potentials are defined for each

ion type), the temperature gradient and the osmotic pressure gradient.

Several researchers have considered this approach: Kinsey [13] in 1970,

describing a generalized theory of ion movements in biological tissues;

Dick [14] in 1971, on water movement in cells; Tasaki [15] in 1969, in

electric transport of ions; Bittar [16] in regulation of ion transport by
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hormones, and Gingell [17] 1971 in using cell membrane surface potential

as a transducer.

While previous authors have considered particular cause-effect

sequences for modeling cell membrane behavior, no attempt has been made

to treat the interaction of these processes. This is the main goal of

this thesis. In the next section some general anatomical characteristics

of the axon membrane are described. They will be required in the deriva-

tion of the model in Chapters III and V.

1.3 Brief Description of the Axon Membrane

Nervous Systems of multicellular organisms are composed of ensembles

of highly specialized cells called neurons. The neurons are arranged in

complex networks; their main function is to carry information in the form

of electrical pulses. While there are important differences in the general

organization of nervous systems of different organisms, the neurons of a

wide variety of animals present common features both in structure and

function which permit a generic study of their physical characteristics.

Anatomical studies suggest that the neuron itself is a system in which

4 main components can be recognized: dendrites, the cell body or soma,

the axon, and the terminal region (Fig. 1.1).

The cell body is the main part of living matter of the cell and con-

sists of a highly organized system called the cytoplasm, which is concerned

with the biological activity of the cell; in particular, with the metabolic

process. The dendrites' main function is to serve as input channels for

the intercommunication between cells. The axon and terminal region are

concerned mainly with the transmission process.
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The neuron, in common with other types of cells, is surrounded by a

complex plasma membrane whose thickness has been experimentally determined,

and ranges between 50 and 150 A. Using high resolution electron microscopy

on sections of nerve cells, it has been shown that the cell membrane appears

as two dense lines separated by a clear space; this observation agrees well

with a model for the structure of the membrane developed by Davson and

Dannielli [1], based on observations made by Gorter and Grendel [2]. The

Dannielli model assumes that the cell membrane is a chain of phospholipoid

molecules arranged in a layer two molecules thick and stabilized by a thin

layer of protein molecules on each side of the lipid layer as shown in Fig.

1.2. In Dannielli's model, it is assumed that the membrane presents

perforations or activation sites at regular intervals. This hypothesis is

known as the "pore theory" and is a rather fundamental assumption in the

development of the models considered in this thesis. Unfortunately, the

pore theory has not been proved by direct observations, but rather by measur-

ing the rate of entry of water per unit of concentration gradient, using an

osmotic method. Paganelli and Solomon [3], observed that individual water

molecules can pass through the membrane more easily when there is a net flow

of water from one side to the other that when their movement is dependent

only upon diffusion. More recently Bar et al [4], using modern methods for

complete lipid extraction and accurate measurements of the membrane surface

area, concluded that the lipid layer that forms the membrane is stable for

ratios of layer thickness to surface cell area ranging from 2.2:1 to 1.2:1,

meaning that other arrangements for the lipid layer than the one considered

above are possible. Owing to the uncertainty of the molecular arrangement

of the cell membrane, most of the models describing the electrical behavior
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of excitable cells are based on the establishment of relationships that

approximate the physical interactions between the surfaces of the cell

membrane and the thermodynamic systems on both sides of it. Also, the

experimental data available is based on measurements at the boundaries

of the membrane. Therefore all the models for the membrane electrical

behavior have as a starting assumption the characteristics of the activity

inside the membrane, and in most of the cases, this is a completely arbi-

trary assumption.

The most important part of the neuron for the purposes of transmission

is the axon (Fig. 1.1). Usually compared with the body cell, the axon is an

enormously elongated process. In this work, all the models analyzed refer

to the system formed by the axoplasm (i.e., the composite mixture of chemical

elements in the axon), the plasmalema or membrane whose composition is

assumed to be completely different from those on either side of it, and

the external solution.

The transmission process is accomplished by the propagation of an

electrical pulse of very specific characteristics, called the action potential,

along the axon toward the terminal region (Fig. 1.1). This voltage is

measured as the potential difference between the outer and the inner surfaces

of the axon membrane, and in general, is a function of time (interval elapsed

since excitation) and distance (along the axon, from the excitation point).

The neurons are excitable cells: this property is described as follows:

when the cell and in particular the axon is in resting condition the axon

membrane is polarized with constant voltage negative at the inner surface;

when an electrical pulse positive at the outside surface is applied to the

axon membrane, it propagates in a form analogous to the propagation of
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electrical pulses in metallic wires. If the magnitude of the excitation

pulse is increased to a certain value, the cell "fires", i.e., an action

potential is developed. (The general form of it is shown in Fig. 1.3).

The size of the pulse which starts the action potential is called the

threshold potential and is almost constant for every type of neuron. The

propagation characteristics of pulses below the threshold level are passive

and are described as subthreshold phenomena. The activated cell membrane

potential is divided, for purposes of analysis, in two parts: The first

is determined by the depolarization of the cell when the membrane potential

reverses its sign (rising phase in Fig. 1.3), and the second by the recovery

of the cell membrane toward the equilibrium (resting) potential (falling and

subsequent phases in Fig. 1.3). The equilibrium membrane potential is known

as the resting potential.

The membrane potential difference described above is caused by a complex

interaction of the different ions and molecules that form part of the solu-

tions on both sides of the membrane and the diffusion of these ions and

molecules through the membrane. The purpose of this thesis is to develop

two models for the cell membrane in passive and active states , and to

explore the mechanism by which they regulate the propagation of an action

potential along the axon.

The experimental evidence on which these models are based was obtained

by Hodgkin and Katz [5], Hodgkin, Huxley and Katz 16] and Hodgkin and Huxley

[7], [8], [9], [10], [11], [12], for the giant axon of the squid Loligo.
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CHAPTER II

ANALYSIS OF THE HODGKIN AND HUXLEY MODEL

2.1 Introduction

Although previous attempts were made to establish a model for the

electric behavior of neuron cell membranes, (i.e. Hodgkin [ 1] 1937),

the first relatively complete mathematical model of a nerve membrane,

that of the squid giant axon, was developed by Hodgkin and Huxley [5 ]

in 1952.

This model was obtained from the analysis of a series of experi-

ments in which the axon membrane was excited by pair of electrodes with

a pulse of magnitude and duration sufficient to trigger an action poten-

tial. The physical phenomena involved in the action potential include

two coupled processes: membrane depolarization and disturbance propaga-

tion.

The first is determined by the complex interdependence between the mem-

brane potential, the active transport of ions across it, and the geome-

tric structure of the membrane in the direction normal to its surfaces;

the second depends on the mechanism that makes the pulse travel along

the axon, producing sequentially the depolarization of the membrane along

the axon towards the terminal region (Fig 1.1). These processes are very

difficult to observe in a coupled form, because they must be measured at

points on the coordinate axis coinciding with the axis of the axon, (assum-

ing that the axon is a perfect uniform cilinder), and at each instant of
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time after the action potential starts. For this reason, Hodgkin and

Huxley implemented their experimental measurements of the action poten-

tial using a technique known as "voltage clamp", developed by Cole in

1938, in which the squid axon membrane is subjected to step changes in

electric potential using a pair of electrodes inside and outside the

axon. These are in contact with a finite length of membrane and there-

fore prevent propagation to adjacent regions. Hence the potential is

essentially constant for all the points of the membrane in contact with

the electrodes. This fact allowed Hodgkin and Huxley to study the mem-

brane depolarization uncoupled from the propagation phenomena.

In this chapter a re-evaluation of the experiments mentioned above

(as well as the model developed from them) will be carried out. This

forms the basis for the new model for the axon membrane behavior under clamped

conditions to be developed in chapter 3. In section 2.2 the basic assump-

tions of the model are stated and a critical analysis of their validity is

pursued. Their underlying physical principles are examined. In section

2.3 the dynamic equations relating the membrane state variables are stated;

their predictions are correlated with the experimental evidence. In section

2.4 some modifications of the equations are proposed in order to consider

aspects of the action potential and events occurring after it (refractory

period), not covered by the original model. Finally in section 2.5 some

general conclusions resulting from the analysis of the Hodgkin and Huxley

model are given.
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2.2 Basic Assumptions and Experimental Procedure

The basic assumptions on which the Hodgkin and Huxley model is

based are the following:

a) In the absence of external stimulus, the clamped portion of

the membrane maintains a constant potential, the resting poten-

tial. This assumption implies that there is no way to trigger

an action potential by manipulating the state variables (concen-

trations of the ionic solutions on both sides of the membrane) of

a clamped portion of the axon. This assumption is strongly support-

ed by the available experimental evidence

b) The current that flows across the membrane during an action poten-

tial has a direction normal to the membrane surfaces. This assump-

tion is supported by the fact that the axon is clamped and there-

fore no gradient is present in the longitudinal direction

c) The electrochemical force driving the transport of each ion species

is produced by the difference of concentration of this ion species

on the two sides of the membrane. This assumption is hardly justi-

fiable from a physical point of view because it rules out the effect

on the flow of one ion species caused by the presence of other ions

in the transport process. This presence of ions of equal valence

(sodium, potassium) and similar chemical activity in the solution

on both sides of the membrane implies that a strong iteraction of

the forces and fluxes will exist between those ions in the proximity

of the membrane. In their model, Hodgkin and Huxley justify this

assumption by considering that the membrane possesses specialized

channels for each ion species; therefore once an ion has reached
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a channel which corresponds to its species, it is transported

by its own concentration gradient independently of the other

ion species present. Since the membrane structure is basic-

ally unknown, this hypothesis has not been tested experiment-

ally. In chapter 5, a possible justification of this hypo-

thesis is analyzed in the context of carrier transport theory

d) The membrane behaves as a nonlinear passive element during the

action potential

e) The driving force of each ion species, j, is represented in the

model by an emf equal to the Donnan equilibrium potential

= ljinput--RT n jinput (2-1)
Vj = jinput - Jjoutput = F Cj21joutput

j = 1,2,...

where jinput' j output (V) are the values of the electric poten-

tial distribution, due to the concentration gradient of ion

species j, at the inner and outer surfaces respectively; Vj is

the equivalent emf in (V), R is the universal gas constant, T is

the absolute temperature in °K, F is the Faraday constant, and

Cjinput, Cjoutput are the chemical concentrations at the input

and output concentrations respectively

f) The current across the membrane can be modeled as the sum of a

capacitive current and an ionic current. The capacitive current

represents the dynamic relative variation of the charges near the

surfaces of the membrane and the ionic current is the sum of the
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currents produced by the transport of ions. This assumption

is justifiable in terms of the Gauss' Law and will be analyzed

in section 2.3

g) Three different ion species are considered in the model:

sodium ions, potassium ions (which participate in the active

transport mechanism), and "leakage" ions (which include

chloride and perhaps calcium ions, and are assumed to be trans-

ported in a purely diffusive manner). In light of the experi-

mental evidence, there is little doubt that the nervous activity

(and the active transport of molecules across any cell membrane)

is strongly dependent on the mechanism of transport of sodium and

potassium ions. However, the role of the leakage ions in the

Hodgkin and Huxley model is obscure; the authors included them in

the model mainly as parameters that allowed a better fit of the

equations of the model to the experimental data

h) In the model, the complete system is assumed to be in isothermal

equilibrium. The experimental data used by Hodgkin and Huxley was

obtained, as stated before, using a voltage clamp technique. In

Fig 2.1 a diagram ilustrates the characteristics of this technique.

The squid axon is immersed in a bathing solution of known concen-

tration. The axon is divided into 3 compartiments. In the middle

compartment, 2 cylindrical electrodes are located at a determined

distance from each other (electrodes c and d in the figure). The

axon is penetrated by two thin silver wires (a,b). Wire (a) is

driven by a current source (not shown in the figure) that is con-
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trolled by the voltage difference across the membrane: this

voltage is measured between electrodes b and c. The other ter-

minal of the current source is connected to ground (electrode e).

A very important feature of the voltage clamp technique can be

better visualized with the block diagram shown in Fig 2.2. The

measurement system is a proportional control feedback system.

The idea is to maintain the membrane potential constant at a

given value Vref and to measure the resultant current at each

instant of time. Since the capacitive current is proportional

to the first derivative of the membrane potential, the former

will vanish if the membrane potential is constant. This is

very desirable since the current measured will be produced only

by the transport of ions. Hodgkin and Huxley obtained a series

of current measurements (as functions of time) for different mem-

brane potentials. They also varied the external concentration of

potassium and sodium ions. These data, together with the assump-

tions discussed above, were the basis for the identification of

the parameters of their model, and also for checking its validity

for different output concentrations.

Finally, the use of giant squid axons for testing this model is

justifiable from the practical point of view, since these axons

have a 500-700 microns diameter (which is large enough for the

size of the electrodes available), and also they are comparative-

ly long (25-30mm), so their dissection can be carried without

damaging the axon.
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2.3 The Hodgkin and Huxley Model

As stated before, Hodgkin and Huxley considers the current den-

sity across the membrane to be composed of 2 current densities: the

ionic current density and the capacitive current density.

Remark:

Since all the experiments were carried out in a definite segment

of axon, all the parameters of the model are referred to a definite sur-

face area.

The total current density J across the membrane, is given by the

following expression:

J = C3d + J. (2-2)

where J is the total current density (at the outer surface) flowing

across the membrane in mamp/cm2, J. is the total ionic current density

in mamp/cm , V is the membrane potential in mV and C is the equivalent

membrane capacitance in PF/cm2. This capacitance was determined by ex-

citing the axon membrane with a short current pulse (duration 8 psec)

using a clamped voltage arrangement, but eleminating the feedback loop,

(Fig 2.2), thus allowing the membrane potential to vary with time.

After the excitation current pulse has died away, the total current den-

sity function J in eq (2-2) is equal to zero and therefore

dt - J (2-3)

Using this relationship, the value of C can be determinedt was
Using this relationship, the value of C can be determined. It was



- 30 -

found that C is essentially constant with time and more or less propor-

tional to the axon diameter. The average value of C for all the expe-

riments they carried out is 0.91 PF/cm . For the low-temperature model

(6°C) to be discussed below, Hodgkin and Huxley chose a value of 1 pF/cm2

According to the assumptions given below, the flow of each ion

species is only dependent on its own potential gradient, hence the follow-

ing equations for the current density of each ion species:

JNa =gNa(V-VNa) (2-4)

Jk = gk(V-Vk) (2-5)

J1 gl(V-V1) (2-6)

where JNa' Jk' 1 are the ionic density currents of sodium, potassium

and leakage ions respectively, in mamp/cm . V is the membrane potential

displacement from the resting level in (mV) i.e.,

V .= nt - - V (2-7)input output r

V is the resting membrane potential with the inside taken as positive
r

(Hodgkin and Huxley considered the inside negative based on the direction

of deflection of a D.C. voltmeter connected to electrodes b, c, Fig 2.1).

In order to be consistent with the convention adopted in the ion transport

model discussed in chapter 3,

VNa, Vk, are the relative sodium and potassium equilibrium

potentials respectively in mV. i.e.,

VNa = VNa - V (2-8)Na Na t
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V V - V (2-9)
k k r

where VN, Vk are computed with expression (2-1).

V1 is the relative leakage potential in mV. As will be discussed

later, this variable is chosen in the model to yield V=O when the mem-

brane is in its resting state.

gNa' gk' are variables that govern the flow of sodium and potassium

ions at the surfaces of the membrane. They have the dimensions of conduc-

tance per unit area in mho/cm2. Their dynamic behavior constitutes the

basis of the Hodgkin and Huxley model.

gl' is a constant of proportionality between the leakage driving

potential and the leakage current density, given in mmho/cm2

The variables gNa' gk are given by the following set of heuristic

equations:

-Na 3&a m h (2-10)

- 4
gk = gk n (2-11)

where

m = am(V) (l-m) - 8m(V) m (2-12)

h = ah(V) (l-h) - Sh(V) h (2-13)

n = an(V) (l-n) - 8n(V) n (2-14)

where m, n, h are continuous non-dimensioned bounded variables i.e.,

0 < m < 1 (2-15)

0 < n < 1 (2-16)

0 < h < 1 (2-17)



- 32 -

and acm, Bm, ah, 3h, an, Bn are continuous functions (almost everywhere)

of the relative membrane potential, V:

c(V) = 0.1(25-V) )- (2-18)
exp(0.1(25-V))-l

Wm(V) = 4exp(-V/18) (2-19)

ah(V) = 0.07exp(-V/20) (2-20)

Bh(V) = 1/(exp(0.1(30-V))+1) (2-21)

an(V) = 0.01(l0-V) (2-22)
exp(0.1(10-V))-1

Sn(V) = 0.125exp(-V/80) (2-23)

these variables have the dimensions of 1/sec.

The constants in expressions (2-18) to (2-23) were determined by

Hodgkin and Huxley by a trial an error procedure, in order to fit the

experimental measurements made on several squid giant axons placed in

solutions of different ionic concentrations, keeping the temperature of

these solutions at 279K.

Schwan [18] gives an empirical factor by which the right hand sides

of equations (2-12) to (2-14) have to be multiplied if it is desired to

obtain the model equations at higher temperatures; this factor is given

by the following expression:
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A - 3 (T-279)/0 (2-24)

Remark:

The model equations given above are valid for a voltage clamped

axon.

The total ionic current density Ji is the algebraic sum of the

ionic current densities of sodium, potassium and leakage ions. i.e.,

Ji Na + Jk + J1 (2-25)

Then, from (2-25) and 24 to (2-6) in (2-2)

dV
J C~+gNa(V-VNa)+gk (VVk)l+91()l) (2-26)

Equation (2-26) and equations (2-10) to (2-23) constitute the

Hodgkin and Huxley model for a clamped axon. In the next section an

analysis of these equations is carried out in the light of the experi-

mental evidence available.

2.4 Analysis of the Hodgkin and Huxle Model

This section is divided in two parts: In the first, the model

will be represented as a dynamical system, and some considerations

regarding the interrelationship between the state variables are given

without any attempt to interpret their physical meaning. In the

second a correlative analysis between the observed dynamical behavior

of the clamped membrane and the sodium theory is carried out.

For purposes of analysis of the Hodgkin and Huxley model, the

following properties will be checked
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1) Global stability

2) Identifiability from the output

3) Parameter sensitivity

4) Propagation Model

This systematic analysis of a model that is known to fit the

experimental data reasonably well, gives some insight on the dynamic

characteristics of the membrane during the action potential. More-

over, some of the conclusions derived here will be applied to the

model developed in the next chapter.

The Hodgkin and Huxley equations for the clamped axon given in

the previous section can be written in the following vector notation.

From equation (2-26)

dV 1 J
dt C < , eV - > + C (2-27)

where

gNa1

gkP I £R3 e 1

gl1

V = VNa
-p V Na

V ER 3

V1
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and <. , .> is the standard inner product in R3

Let

m

S = n

h

then eqs (2-10), (2-11) can be written as follows:

sg . T(S) (2-28)

where T is a mapping X + Y where X, Y are subsets of R3:

X - {xR 3 1 xll . 1, Ix2I < 1, jx3 < 1i} (2-29)

and the characteristics of the set Y are to be determined from the

analysis and

N.a m h

T(S) = gk n- (2-29)

91

From equation (2-12), (2-13), (2-14) the following vector equation

is obtained:

S = - J(V)S + U(V) (2-30)

where

+am (v)+$ (v) 0 0

W(V) - 0 +% n (V)+ (V) O (2-31)

0 0 + h (V)+~h (V)
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and

ct (V)

U(V) = a (v) (2-32)

i (V)

Equations (2-27), (2-28), (2-30) can be represented by a block

diagram as indicated in Fig 2.3. The diagram has been constructed in

such a way as to indicate the functional parts that comprise the model:

the ionic system that represents the dynamic interrelationships between

the ionic flows and their corresponding driving forces, and the membrane

control system that represents the dynamics of the control action exer-

cised by the membrane on the ionic flow.

The dotted blocks and lines represent the external control used

in the clamped experiments.

The diagram in Fig 2.3 shows the dependence of the ionic flow on

the membrane voltage via two feedback loops: the first is represented in

the diagram by the signal flowing between points a and b. The magnitude

of this feedback signal is controlled by the flow regulator and the driv-

ing emf vector Vr. The second, represented by the signal flowing between

points a and d, controls the membrane dynamics.

The inputs to the system are: the emf vector V which depends on
-p

the difference of concentration between the solutions on both sides of

the membrane, and the current density J; in the absence of voltage clamp-

ing, this current comes from an adjacent excited region of the axon.
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The analysis of the 5 dynamic properties mentioned above will

be carried out next, on the basis of Figure 2.3.

1. Stability

To analyze the stability properties of the Hodgkin and Huxley

model, the system will be split in two parts as indicated in Fig.

2.3. First, the stability conditions of the membrane control system

are determined, and then (considering . as an input), the stability

properties of the ionic system are analyzed. In the first case mem-

brane potential is considered as a time varying parameter and the re-

sultant quasilinear system stability is checked. For the second case

the stability of the system about a particular membrane potential ob-

tained by Hodgkin and Huxley [5 ] will be analyzed.

In equation (2-30) ¢(V) is a positive definite matrix for every

value of V between 0 and 110 mV (the range of variation of the spike

in the action potential; therefore the autonomous system

S = -g(V)S (2-33)

is asymptotically stable (Hsu and Meyer [37]).

Then assuming that V(t) is bounded everywhere for all t>Q, (this

assumption is justified below), notice that in (2-30),

¢(V) - _(V(t)) - ¢(t) and U(V) - U(V(t)) - U(t), therefore the solution

of equation (2-30) is of the form

S(t) = i(t,o)S(0) + | (t,o)U(a)do (2-34)

JO
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where i(t,0) is the transition matrix corresponding to equation (2-33),

with V = V(t).

Since S(t; S(0)), the solution of (2-33), is asymptotically stable

for all S(0) finite and t>O the matrix p(t,0) is bounded (Desoer [38]).

Therefore, in (2-34) the first term in the right hand side is bounded

for all t. If the second term in the r.h.s. of (2-34) is bounded for

all t>O, the trajectory S(t) will be bounded for all t>0 and the system

(2-30) is said to be bounded input bounded output stable (BIBO).

From the definition of U(V) in (2-32) it can be seen that

IIU(V) 1 < M (M finite) for all V finite since

2 2 2 '/2
U (V) = (a2 + ca2 + O)1/2 (2-35)

and am, an' Nh defined in (2-18), (2-20) and (2-22) respectively, are

bounded for all V>O.

Remark:

The denominators of a (V) and a (V) are zero at v = 25 mV andm n

V = 10 mV respectively. To prove that for these values of V, a and
m

a are bounded the limits of a when V +25 mV and a when V +10 mV aren m n

required.

Applying L'Hopital's rule:

a (25) = lim 0.1(25-V) Jim O.lx
am V+25 exp(0.1(25-V))-1 =xO exp(0.lx)-l

lim lexp (0. x)
xtO O.lexp(O.lx)
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Similarly,

n(10) li .01(10-V) = li 0. Olx
an(10) = lim exp(O.l(10-V))-l x 0o exp(0.lx)-l

= lim 0.01 = 0.1
xO O.lexp(O.lx)

therefore am an are bounded for all V>O finite and |I U(o) I I<M(V*)

where M(V*) = sup I IU(V) |. In (2-34) the following inequality is

valid

1 | (t,a) U(O)dcl < , I(t,oa) U(C)[jdo (2-36)

00 0

where jl II is a suitable norm defined for a linear operator in the space

C3(to tl, R3+R3).

By the Cauchy Swchartz inequality,

| Ip(t,a) U(a)Ilda < P(t,c) I | I (a) da

0 0

-= J I _I(t, 0) 4(o, )l) I |IU(o) I da
0

< |II_(t, o)11 I1(o, o)1t' IlU(a)lldo

Therefore the second term in the rhs of (2-34) is bounded and S(t)

is BIBO.

The discussion above allows one to conclude that if the initial

conditions S(O) are bounded S(t) will be bounded for all t>O and for
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all V(t) such that 0 < V(t) < 110 m (the range of variation of the spike

of the action potential. For negative values of V, a similar analysis

as the one conducted above shows that S(t) remains bounded if

V(t) > -25 mV ; this condition is fullfilled by the action potential

function V(t).

The membrane control system output g is obtained from the mapping

g-- T(S) with T(.) as defined in (2-29). Since gl is a real finite value,

S is bounded and g will be bounded.

Now, the stability of the ionic system will be considered. The

ionic system as indicated in Fig 2.3 is driven by 3 inputs: g, V and

J. Therefore the stability (or instability) of the system has to be

determined by showing that bounded inputs yield a bounded output, V(t).

The ionic system is described by equation (2-27), which is a

quasilinear affine form in which g, V and J are the inputs and V is the
-p

state.

For stability purposes, the membrane current density J, which is

considered as the output of an adjacent excited membrane section, is

assumed constant (the clamping loop is not operating).

In Fig 2.3, it can be seen that the sign of the rate of variation

dV
of the voltage, depends on the feedback signal flowing between a-+b;

' dt'
dV

given that J=O0 if the signal is negative (positive feedback) dt increases,

and it decreases if this signal is positive (negative feedback).

The initial value (resting state) of the voltage V is 0 and the

bias vector V has the following constant values;
-p
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VNa 115

-V Vk -12 in mV

V1 +10.613

the vector g varies with V(t) as indicated above but it is known (and

will be shown later) that the relaxation time of gna (defined as the

time required to attain its maximum) is about 10 times smaller than

that of gk; also gNa 4 gk and gl < < gNa' g1
< < gk' With this semi-

quantitative information, the behavior of the feedback loop in the

ionic model can be determined.

It was shown above, that if V is finite g>0 will be bounded;

therefore, during an action potential, when the voltage is near 0, and

t < .5 msec, the inner product

i(V) - <I, eV - V > (2-37)

is negative (according to tOe previous analysis) therefore the feed-

back loop signal is positive; this implies that the voltage rate (con-

sequently the voltage) increases in this region, i.e. ({0O<t<0.5msec}).

Notice that in this region, the increase in potential is controlled

mainly by the ionic sodium flow. The potassium flow goes in the opposite

direction and therefore tends to decrease the potential rate; however

since its relaxation time is much slower than that of the sodium, its

effect (in the interval [0O<t<0.5 msec] does not overcome that of the

sodium, and (aV/at) increases. The question is whether this growth

is bounded. The solution of the following maximization problem yields

the answer:



- 42 -

max 5 =-max <g eV - V >
-Ip

V V

subject to

s = T(S) (2-38)

and

S = M(V)S + UI(VI' S(0) given

A numerical solution of problem (2-38) gave that a maximum is

attained at V* = 72 mV and t* = 0.82 msec.

With a constant current density J = 0.8 mA/cm , this maximum is

attained at 0.6 msec.

Next, it has to be proven that the membrane voltage V is bounded;

this can be done by solving the Hodgkin and Huxley equations numerically

dV
or by checking if = dt reaches a 0 value for a finite time and the sign

of 5 after that time: from the expression for dV/dt (2-26), the problem

can be formulated as follows

<g, eV -v2p> - 0

subject to

= T(S) (2-39)

s = p(V)S + u(V)

The approximative solution of this problem rwith J=01 gave V = 109 mV,

t* = 1.2 msec; for t larger than t*, 6<0 (up to t = 3.5 msec for t>3.5 msec

the voltage V is less than 5 mV in absolute value and decreases with time)

1 See next page
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Moreover, for a sufficiently large gain k, V remains bounded for all t

during the action potential; this condition along with the fact that 5 is

bounded imply that the ionic system is BIBO. It is important to note that

the previous analysis gives only a sufficient condition for stability.

2. Identifybility from the Output

This characteristic is probably the most critical one in a system-

atic study of the Hodgkin and Huxley model since the objective of the

model is to determine (based on experimental measurements) the structure

of the mechanism involved in the action potential. It will be seen in

·this section that with the available measurements, the internal parameters

of the Hodgkin and Huxley model (S) are unidentifiable from the output and

therefore equations (2-28) and (2-30) are not only empirical (this fact

will be discussed later) but also they cannot be uniquely determined from

observations of the output variables (V and Ji as indicated in Fig 2.3).

Let Y(t) be the observation vector V(t)>O (during the action potential)

(Fig 2.1).
V(t)

i.e., Y(t) = (2-40)
J (t)

it is assumed that the observations are perfect, i.e., they are not

corrupted by ambient noise.

Remark:

The observability of the system has to be tested with the clamping

loop active since all the measurements were carried out with the membrane

potential clamped.

The equations of the system then become:

1 J=O is the worst case condition for a depolarizing current since it
subtract in (2-26) making dV/dt the biggest attainable value with
respect to J (JO)
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dV 1 J
dt = C <g' eV - V > + + K(V V (2-41)

where K is a known constant (dependent on the characteristics of the

current source). The objective of this arrangement is to maintain the

membrane voltage more or less constant in time. A check of the graphical

records obtained by Hodgkin and Huxley shows that this purpose was achieved.

Therefore equation (2-41) can be simplified by the following approximations:

dV
(a) d °

(b) V V (2-42)

(c) J J

and

(d) <, eV - V > --Jr -p o

then, given J =.Jo0 and since Vr and Vp are known, the algebraic equation

(2-42d) can be solved for g for each instant of time. Up to this point,

the identification procedure has made use of experimental measurements

and equation (2-41), which can be justified by physical arguments (Agin

[19]). But no additional information is provided for determining the

dynamic structure of the membrane control system; therefore any dynamical

system of equations driven by V -V(t), the relative membrane potential, such

that its output vector equals the value assumed by the vector function g at

each instant of time, will be equally valid, from the systems point of view,

as a realization of the function g(V(t)). Of course, there is an infinite

number of such systems so that, without additional physical information about

the membrane structure, it is not possible to determine from the feasible
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realizations of g(V(t)) which one corresponds to the membrane system.

3. Parameter Sensitivity

Since the appearance of the Hodgkin and Huxley model, considerable

(unsuccessful) research has been conducted in order to justify physically

the functional expression T(S); for this reason, a numerical analysis

has been conducted in order to determine how critical is the dependence

of the potential function when the exponents of m, n, h vary around

their nominal values.

Let

Pi

P2 =' P2

P3

be the exponents of m, n, h respectively in T(S); the nominal values

are Pl = 3, P2 = 4 and p3 = 1.

Then, g can be written as a mapping of R x R -3 R as follows

g = T(S, p) (2-43)

perturbing the values of p in (2-43), and expanding the resulting ex-

pression in a Taylor series neglecting variations higher than first

order, the following expression for the resulting perturbation in g

can be obtained:

g (=T (S * p) 6p (2-44)
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where

gNam* h*Ln(m*) 0 Nam* h*Rn(h*)

aT 4
0 | g~K* £n(m*) 0 (2-45)

0 0 0

and

m*

S* = n*

h*

denotes the perturbed membrane control system state.

Next, using equation (2-27), an equation for the resultant pertur-

bation in the membrane potential can be obtained:

V + 6V =- < g + 6 , e(V+6V) -V>+- (2-46)
- --p C

Neglecting increment products in (2-45), the following approximate

expression for 6V is obtained;

* 1 1
6V C<As eV>- <6 eV -V> (2-47)

c g -P

Finally, the perturbed membrane control state is given by the

following expressions:

S* S + 6S

s = - ) - (v)S6) - (V) 6V (2-48)
v- - av - v
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with the initial conditions

6V(O) = 0 6S(0) 0 6p 6 (0) = 6- given constant

where

3am m
- + 0 0av +av 

-0 = o -"r 0 (2-49)

+v V v Vn(t)

and

Vn(t) = nominal membrane voltage function

and

aam (V)

3V

a an (V)
au(v) (2-50)av

aa(V) v = (t)

For testing the sensitivity of the membrane potential to variations

in the parameter vector p around its nominal values,

3n 

1n= 



- 49 -

a computer program was written to solve numerically equations (2-44),

(2-47) and (2-48), assuming constant perturbations. The results are

sumarized in Fig. 2.4 below.

Surprisingly, the time course of the action potential was relatively

insensitive to variations in the parameter vector p. As shown in the

Fig. 2.4, with a 20% variation in p, the change in membrane voltage is

less than 5%, on the average. For larger perturbations, the incremental

model should include second order terms in the Taylor expansion.

Notice that a positive perturbation increases the rising phase of

the action potential and decreases the falling phase; this fact agrees

with the experimental observation that an increase of sodium concentration1

(on the outside) increases the magnitude of the action potential while an

increase in potassium concentration (on the outside) decreases it.

The important conclusion of this sensitivity analysis is that the

exponents of the elements of the vector S in T(S) do not correspond to

a physical (unknown) factor but rather they are more or less arbitrary

and at least to a first order approximation of the perturbed model, there

is an entire set of these exponents that can approximate the experiment-

al results equally well.

4. Propagation Model

Hodgkin and Huxley assumed that the ionic transport mechanism res-

ponsible for the action potential was uniformly distributed along the

axon membrane (x). Therefore they represented the membrane by a lumped

parameter model of a transmission line, in which the shunt branch of

the elementary circuit of the model is formed by 4 elements in parallel

1 Notice that an increase in sodium concentration implies an increase
in conductance gNa see eq. (3-17) in [6].
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and two series resistors, as indicated in Fig. 2.5.

The series resistors represent the ohmic characteristic of the sur-

faces of the membrane and are assumed to be linear elements.

Applying ohm's law to the circuit of Fig. 2.5 the following relation-

ships are obtained

AV = (r1 + r2) JAX 2ia (2-51)

AJ = + AJ + AJK + AJ1 (2-52)c na K 1

AJ = (V- AV) AX 2wa (2-53)
c at

AJNa = gna(V-V- Na) AX 2ra (2-54)

AIK = gK(V-AV-VK) AX2ra (2-55)

Ai1 = gl(V-AV-VK) &X21a (2-56)

The product AXAV < jAXI for AX, AV small and therefore all second

order products can be neglected; then the incremental equation for the

current AI(X, t) becomes

Ai = ( + + ga(V-VNa ) + gK(V-V 1 ))27TaAX (2-57)

applying Kirchoff's current law.

Dividing both sides of (2-52) by AX and taking the limit as AX+O:

1 ar av
2rra aX Cm at + gna(VVNa) + gk(V-Vk) + g1 (V-V1 ) (2-58)

In (2-51), dividing boths sides by AX and taking the limit as

AX+-O:
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1 av
2-a ax = (rl + r2 )I -59)

In (2-59) taking the derivative with respect to X

2 at
ax1 a 2 V (rl + r2) aX

From (2-58) in (2-60)

(r 1+ r V + gna(V-VNa) + gk (V-Vk) + g 1(V-V 1) 
a2 = (rl + r2) Cm + gna 1 1 (2-61

Equation (2-61) describes the propagated action potential. It is

nonlinear partial differential equation and no closed form solution can

be obtained. Numerical solutions of this equation have been obtained

and they show good agreement with the experimental observations.
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CHAPTER III

IONIC TRANSPORT MODEL

3.1 Introduction

The Hodgkin and Huxley model for grant squid axon membranes, dis-

cussed in Chapter II, shows a dynamic structure that is typical of sys-

tems involving interrelations between a potential and/or osmotic barrier

(membranes in particular) and the flow of particles across it: this

structure can be described by a two-subsystem model, one representing

the flow of particles across the barrier and the other, the control

exercised by the barrier on this flow.

In the Hodgkin and Huxley model, as stated in Chapter II, the

equations describing the first subsystem can be justified by the laws

of field theory, but those describing the second are completely empiri-

cal. This fact motivated the development herein of a model strictly

based on well established physical laws governing the flow of charged

particles though a membrane. The model equations satisfying the former

requirement must also show a reasonable agreement with the observed ex-

perimental behavior of the squid axon membrane. It will be shown in

this and the next chapter, that the ionic transport model to be des-

cribed in this chapter partially satisfies those requirements.

Fundamentally, the ionic transport model for axon membranes is

based on the determination of the relationships between the flows across

the membrane of the different ion species present in the solutions of

the system and the forces driving them, with the constraints imposed by
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the assumed membrane structure (Danielli's model, see Chapter I).

The ionic transport model will be derived in two steps: In the

first, a portion of the axon membrane will be assumed to be voltage

clamped (see Fig. 2.1) and the relations between ion flows, driving

forces, membrane parameters and membrane potential are derived.in the

second. A mechanism of propagation of the action potential is proposed.

The chapter has been organized as follows: Section 3.2 Definition

of variables and parameters of the model; 3.3 Physical assumptions; 3.4

Derivation of the equations of the model; 3.5 Physical considerations

about the variables of the model; 3.6 System Analysis of the model; 3.7

Conclusions.

3.2 Definition of Variables and Parameters of the Model

All the physical variables of the model are functions of 3 inde-

pendent variables: the spatial variable x in the direction normal to

the axon axis, bounded by the membrane surface (x = 0 inner surface,

x - 6 outer surface), the spatial variable z parallel to the axon axis,

where the axon is assumed to have a constant radius (cylindrical shape)

along the axis and a time variable t (t = 0, starting instant of the

action potential). For sections 3.3 to 3.6 the model of the clamped

axon is considered; therefore, the functional dependence on z of the

physical variables is ignored in the definition of the variables given

in this section. In section 3.7 this dependence will be indicated pre-

cisely. The following set is the domain of the functional variables of

the model:
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a"{(x,t)cR2 0 x < 6, t O} (3-1)

ai.d any variable of the model is a mapping that can be generically

represented as

f: + R (3-2)

If additional properties of a particular variable are required, such

as continuity and/or differentiability, they will be stated explicitly;

otherwise, the variable is implicitly assumed to be defined as in (3-2).

The variables defining the ion transport model are:

Electrochemical potential in J/mole defined for each of the ion

species j - 1,...N involved in the transport process.

YJ3, Activity coefficient of the ion species j; indicates the

affinity of a particular ion to follow a change in its che-

mical potential.

Ci, Chemical concentration of the ion species j in the membrane,

in mole/cm3

ZJI Valence (with sign) of the ion species j.

Electric potential distribution across the membrane in volts.

This function is assumed to be continuous for every (x,t) in

Q, once continuously (first order) differentiable in time,

and twice continously differentiable in x. These mathematical

properties arise from the physical characteristics of the po-

tential distribution across the membrane, and will be justified

in Section 3.2.



- 56 -

V, Electric potential difference between the inner and the outer

surfaces of the membrane in volts. This variable is indepen-

dent of x.

P, Hydrostatic pressure in Newton/cm 2

~j, Partial molar volume of the ion species j; Vj = n j
ni i=l,...N

isj

where nj is the mole number function of ion species j in

cm3/mole.

aj, Chemical activity of ion species j in mole/cm3 .

Xj, Driving force of ion species j in volt/cm.

Oxen Velocity of transport of ion species j in the x direction in

cm/sec.

I*, Flux of ion species j across the membrane in ions/cm2 sec.

This variable is continuous in x and t.

E, Electric field intensity distribution across the membrane in

volts/cm. This variable is continuous and continuously diffe-

rentiable in x, and t for each (x,t)EQ.

Jiv Current density distribution of ion species j in amp/cm2 .

This function is continuous in x, and t for every (x,t)cQ.

J, Driving current density in amp/cm . This variable is a func-

tion only of t and is piecewise continuous in t. (i.e., applied

at x = 6).

The parameters considered in the ion transport model which

express the interrelation between the membrane structure and the ionic

flow in the axon membrane are:
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.1, IfMobility of the ion-species j in cm2 /volt sec. This parame-

ter, along with other variables such as temperature, depends

strongly on the structure of the membrane, especially at its

surfaces, and plays a very important role in the ion transport

model to be derived in Section 3.4. In the model, uj(jil,..N)

is a function of V and t but not of x.

Electric permittivity of the membrane in F/cm. This parameter

is assumed to be constant for every (x,t)E2. (The membrane is

assumed to be isotropic in the x direction).

Finally, -some constants that appear in the model equations are de-

fined:

R, Universal gas constant (8.314 Joule/mole °K)

F, Faraday constant (96450 Coul/mole)

T, Ambient temperature: assumed constant and equal to 2790K.

This temperature was chosen in order to compare the potential

obtained with the ion transport model (to be computed in Chapter

IV), with the one measured experimentally by Hodgkin and Katz

at this temperature, Hodgkin and Katz [4 ].

3.3 Physical Assumptions

The membrane is assumed to have a structure such as the one des-

cribed in Chapter I (Danielli's model). Except for the thin protein

layer that exists at both surfaces of the membrane, it is considered

that the membrane structure is passive and does not influence the
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ionic flow; (in other words, the ionic flow is regulated by the protein

layers on both sides of the membrane). And as will be seen later, this

regulate is represented in the model by the variations of the ion mo-

bilities of each ion species.

The flow of ions, even for the unclamped membrane, is always nor-

mal to the axon axis. This assumption is supported by the structure of

Dannielli's model, in which the two layers of phospolipoids have

oriented their polar terminations toward the inside of the membrane in

a direction normal to the axon axis (Fig. 1.2), forming rigid channels

that prevent the diffusion of the ions inside the membrane in a direc-

tion parallel to the axon axis (z coordinate).

The molecules or atoms involved in the transport process are

ionized particles and the membrane potential is fully determined by them.

Notice that this assumption does not exclude the possibility of diffusion

of non charged molecules across the membrane but it establishes the

condition that those molecules do not influence the action potential.

In particular, water molecules will flow because of the presence of an

osmotic gradient between the solutions on both sides of the membrane.

This flow tends to maintain more or less constant the concentration of

the different ion species involved in the action potential in the solu-

tions on both sides of the membrane. This fact allows one to consider

the concentration of each ion species constant in these solutions, i.e.

C (0, t) Coj

C (6, t) Cg (3C3)1

J = 1,...,N

1 See Chapter V for a discussion about the meaning of these boundary
concentrations.
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Each ion species j, flows across the membrane driven only by its own

force Xj and there is not any interaction force generated among ions of

different species inside the membrane during the action potential.

This assumption is very critical and requires further analysis. If

it is assumed that the axon membrane presents holes at regular inter-

vals, (pore theory) and all the ion species are transported across

the membrane using these pores, then the hypothesis that each ion

species flow is caused by its own gradient force is erroneous since

the size of the pore, which has to be large enough to allow the ion

species involved in the ion transport to cross the membrane, has to

be sufficiently small to keep other molecules such as glucose (present

in the surrounding solutions) from crossing the membrane, because the

axon structure is not adapted to process them (for metabolic purposes).

With this restriction in mind researchers have concluded that the pore

radius has to be about 4A (Solomon [12]). But this size implies that

the distance between any two ions in the membrane is of the order of

the molecular size of the. ions and therefore strong forces of repulsion

or attraction would be present between ion species in the membrane;

therefore, the pore theory is not consistent with the hypothesis of

independence of dynamic behavior among ion species.

Another hypothesis about membrane structure, that agrees with the

assumption of independence, is the one that postulates that the membrane

structure presents at regular intervals, specialized "activation sites"

for each ion species. Each of these activation sites allows the trans-

port of the ion species (j) that is affine to it, and no other type of

ion (i, ipj) can be transported using this activation site, i.e., there
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exists an exclusive one-to-one correspondence between ion species and

activation sites.

Th pyhysical characteristics of activation sites will be studied

in Chapter V. In this chapter, their existence will be assumed and

the model equations derived accordingly.

3.4 Derivation of the Equations of the Model

In 1929, based on statistical mechanical considerations Guggenheim

[13] derived an expression for the electrochemical potential distribu-

tion of an ion species j in a medium subject to composite forces; this

potential, pj is given by

ij ' 1j + RT in yjCj + zjF' + PVj

(3-4)

J - 1,2,...,N

The thermodynamic principles on which expression (3-4) is based

can be found in almost any book of thermodynamics; in particular,

Katchalsky and Curran [14] and Spanner [15] have a comprehensive de-

velopment.

In (3-4) the product yjCj gives the chemical activity of ion

species j

aj =¥Yjcj
(3-5)

j = 1,2,...,N
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The activity coefficient yj in (3-5), has not been studied in

detail in the context of biological membranes although some experi-

mental results are available for lipoid membranes separating

solutions of low concentration, (as found in the solutions on both

sides of the axon membrane) and it has been found that this coeffi-

cient does not depend on the membrane structure, but rather, on the

external concentration of ions (Na+ and C1i), Plonsey [8 ]. The

values of y for sodium for concentrations ranging from 0.O1M to 0.1M

vary between 0.5 and 0.75. Therefore, since the model will be derived

considering a constant concentration of the solutions on both sides of

the axon membrane, the activity coefficients y J = 1,...,N will be

assumed to be constant.

The force driving ions of species j, Xj, can be computed as

follows:

Xj - -VaJ
(3-6)

j 1,2,...,N

Since the flow of ions is normal to the axon axis the forces

causing it are also normal to the axon axis; therefore (3-6) may be

written as

xj ax
(3-7)

the internal surface of the 1,2,...,N

where x is the distance from the internal surface of the membrane,
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which is considered to be of constant thickness (6 = 150A).

The velocity by which ions of species j are transported in the

x direction, v is given by the following expression

xi'

VxJ - ujXj
(3-8)

j ' 1,2,...,N

The latter is the key relationship in the representation of the

restriction exercised by the membrane on the ionic flow.

It has been observed experimentally (using a radio-active isotope

of potassium in the outer solution), Keynes et al [16], that when the

membrane is in resting state, ions cross the membrane in a natural

diffusion process due to the concentration gradient between the two

solutions. When the membrane is excited, and an action potential is

developed, this flow increases in magnitude for each of the ion species

present but with widely different time constants. In particular, the

experimental evidence available, (Hodgkin and Katz [3 ]), shows that

during the action potential, there is an increase of the rate by which

sodium ions are extruded from the inner solution and an increase in the

rate by which potassium ions are transported from the outer solution.

Indeed, the time constant of the sodium transport is roughly 4 times

smaller than that of the potassium transport.

The discussion in the preceding paragraph indicates that during

the action potential,.there is an increase in the speed by which ions

are transported; this increase, according to equation (3-8) may be due

to the increase of the force Xj, driving each ion species j to the in-
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crease of the mobility, uj, or both. Additionally, after the action

potential has occurred the membrane variables recover their resting

condition values, so the velocity of each ion species j after the

action potential will be (almost) equal to the initial value, i.e.,

Vxi (x, 0) = li Vx (x, t)

(3-9)

Remark:

For practical purposes, vx(x, 0) : v (x, 4msec)

j - 1,2,...,N (see Chapter IV.)

The physical analysis carried out above, of the time behavior of

the ion velocities is based on the experimental observation of the ion

transport process in axon membranes (Hodgkin and Katz [3 ]) and the con-

clusions obtained will be used later for Justifying the functional ex-

pressions for the ion mobilities uj, J - 1,...,N which will be derived

for the model.

The flux, Oj, of ions of species j, across the membrane, is given

by the following expression:

-V C
VxjC ji

(3-10)
J - 1,2,...,N

Then from (3-7) and (3-8) in (3-10),

au

j - uji- Cj
(3-11)

j 1,2,...,N
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And from (3-4) in (3-11),

_j - -uj(RTax (in zyF C + x v)Cj

(3-12)
j 1,2,...,N

Applying the law of conservation of charge to each ion species j,

the following relationship is obtained

(3-13)

j - 1,2,...,N

Finally, the electric potential distribution inside the membrane

is related to the concentrations of the different ion species by

Poisson's equation

N
2 E-- F z Z C (3-14)

Equations (3-12), (3-13), (3-14) give the relationships among

the different variables that characterize the ionic model.

This model can be considered as a generalization of the widely

used model for the mechanism of ion transport across membranes derived

by Goldman in 1943. Goldman [7 ]. In his model, Goldman assumed that

the electric field intensity E is constant across the membrane. This

assumption is arbitrary from the physical point of view; moreover, as

pointed out by Hodgkin and Huxley [4 ], it does not fit the experiment-

al time course of the squid axon membrane ionic flows during the action

potential. (In fact, the values found by using the Goldman model for
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computing the flow of each ion species J are always lower than the cor-

responding experimental flows).

In A-e present model the electric field intensity E will be con-

sidered as a time varying distributed variable (across the membrane)

and its relationship with the variables of the model is established by

two partial differential equations based on general principles of field

theory that are applicable in this case.

The electric field intensity is defined by the following expression:

E _1 <(3-15)ax

Since there is no magnetic field present in the membrane, Gauss'

law applied to the membrane system becomes,

N aE
6(x-)J(t) - J +0 (3-16)

Remark:

No flow of charges is assumed to be generated inside the membrane,

0

The current density of ion species j is related to the correspond-

ing flow %j, by the following expression:

Jj zjFj
(3-17)

j 1,2,...,N

Now, some analysis of equations (3-12) will be carried out in or-

der to simplify the expressions describing the model.
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As noted before, y is dependent primarily on the concentration

of ion species J in the solutions bathing the membrane, therefore in

(3-12) -t can be treated as a constant. Also, the partial volume V

is very small for the concentrations present in the axon system

-9 3
(I 10 9 cm /mol), therefore, even with a pressure difference of 10 atm

the contribution of the third member of (3-12) to the total flow Bj

is less than .1% of the total, so this term can be neglected. Finally

the ion mobility uj is a function of the surface structure of the mem-

brane, the potential difference between surfaces of the membrane, and

temperature, so uj is not an explicit function of x and can be treat-

ed as a constant in (3-12).

With the former considerations equations (3-12) become,

id ~-uJ(R x a + z. F Cj)

(3-18)

j = 1,2,...,N

Then, from (3-18) in (3-13)

ac a c ac 

= 1,2,...,N(320)
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And from (3-15) in (3-14),

N
3E F 

- E zjC (3-21)
JL1

Finally, from (3-16)

aE 1 -22)
_k , ( E Jj - J(t)) (3-22)

The set of equations (3-20) - (3-22) is the basis of the ionic

model for the axon membrane. Moreover, the model has been derived in

general form and therefore is applicable to any membrane system separat-

ing ionic solutions provided that the conditions on which the activation

site hypothesis is based are fulfilled by the system.

The last part of this section is devoted to determining a functional

expression for the ion mobilities uj j = 1,...,N and for the initial

anb boundary conditions for equations (3-20) - (3-22).

The first observation regarding the determination of uj is that ac-

cording to the assumed structure of the membrane, the mobility is a varia-

ble determined by surface membrane characteristics. Therefore, it is not

explicitly dependent on x. Moreover, from the quantum mechanics point of

view, uj is a phenomenological coefficient relating the velocity of an ele-

ment of charge j to the force that is driving it, provided that the energy

(potential plus kinetic energy) contained in that element is equal to the

average (in the statistical sense) energy required for the transportation

of elements of charge of the type j across the membrane and the total ener-

gy has a probability density function of the Boltzman type. Vander Ziel

[17 .
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The discussion in the preceding paragraph requires the definition

of what is meant by an element of electric charge in the context of the

ionic memnbrane system. Since it has been assumed that the concentrations

of each ion species j on the solutions on both sides of the membrane are

constant (Eqs. 3-3) for all t > 0 on the average, an element of charge

qj (coulombs) for ion species j is defined by the following expression:

qj ZjF(Cj - Co) )IY
(3-23)

j - 1,2.,N

whereLYis the volume of clamped membrane in cm3.

The time course of the average velocity of the element of charge

qj can be computed with the following expression:

vxJ(t) 1 vxj(x t)dx

(3-24)

j - 1,2,...,N

From (3-8) in (3-24)

Vxj(t) ujX(x,t)dx

(3-25)

j = 1,2,...,N

Since uj j = 1,2,...,N does not depend explicitly on x, (3-25)

can be written as follows
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vxj(t) X X(x, t)dx)

J o
(3-26)

j = 1,2,...,N

In (3-26), the term in brackets in the right hand side is the average

driving force of ion species j at each instant of time. Then (3-26) becomes:

v x(t) i UiX(t)
(3-27)

j - 1,2,..,N

or

Vxj(t) UjXj(t)

(3-28)
j c 1,2,...,N

Since it was assumed that the only force acting on each ion species

j during the action potential was its own driving force, the total average

energy W1 (t), of an element of charge qj crossing the membrane at some time

t during the action potential is given by the following expression:

Wj (t) ~ mj*V2xj + qjXj6 (3-29)

J G 1,2,...,n

where mj*, is the equivalent mass of the element of charge qj and is deter-

mined by the net interaction between this element and the membrane structure

during the transport process (frictional forces).

The transport process is assumed to be at constant temperature and

the membrane system is thermodynamically (in the ionic model) a closed



- 70 -

system; therefore, the total average energy of each ion species J is cons-

tant for all t > 0., i.e., W (t) S constant, j - 1,2,...,N. Then taking the

time de\v~ative on both sides of (3-29),

m *V u _

o- . .. x i i + qj (3-30)

j ' 1,2,...,N

or

2q1 6

j mjV xj

(3-31)

j - 1,2,...,N

From (3-10) in (3-24), another expression of vxj can be computed:

vx 6 C- dx

o (3-32)

j = 1,2,...,N

And from (3-18) in (3-32),

vx-(t) = (RT i+z F dx
(3-33)

j = 1,2... ,N

Performing the integration in the right handside of (3-33),

vx(t) -< (RT lnlj C o j) + zjF(i(6) - I(0)))
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but

V(t) 8 0(6) - t(0) (3-35)

the membrane potential difference. Then (3-34) becomes:

vxj(t) (RT ln(Clj Co) + zjFV(t)) (3-36)

J - 12,...,N

From (3-36) in (3-31), the following expression for uj is obtained:

q o2 1/2

j4 ' (m *(RT ln(Clj/Co ) + zjFV(t)) )

j = 1,2,..,N

or (3-37)

U "

J (mj*(RT ln(Clj/Co) + zjFV(t)) 

j = 1,2,...,N

From (3-23) in (3-37),

zjF(C1 _ Co) 9/ 1/2

uj = j*(RT ln(Cj /Coj) + FV(t))

(3-38)

J = 1,2,...,N

Remark:

The volume ; is given by the following expression:

9 = (2 + 27ra6)X cm3
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since the axon is assumed to have a regular cylindrical shape.

Now, the boundary conditions for equations (3-20) - (3-22) will

be discussed.

For equations (3-20), the boundary conditions are given by the con-

centrations of the solutions on each side of the membrane, eqs. (3-3).

Now it has to be shown that those conditions define also the bound-

ary conditions for equations (3-21), (3-22) for the electric field inten-

sity: since equation (3-21) has to be satisfied for all x, the boundary

conditions for E can be computed as follows:

N
aE (0Ot) Z jCj (0;t) (3-39)
ax ' Jul

or from (3-3) in (3-39)

aE 
DE (0,t) £ z C (3-40)

Similarly,

N
-x (6,t) - Z z1Cj (6,t) (3-41)

or from (3-3) in (3-41)

N
IRE Fd, £ Zl z C (3-42)l

E ( are
Since Coj, Clj are constant with time, a- (Q,t), ax (,t) are

also constant.

1 This boundary condition is not needed for the integration but
is used for checking the integration routine in the next chapter.
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Finally, the initial conditions for eqs. (3-20) - (3-22) are de-

termined.

At vesting conditions, the time variation of the concentrations

of ions in the membrane, vanishes; therefore, the concentration of ion

species j, C'j, which is a function only of x, has to satisfy the

following differential equation:

d2C' dC'
RT - zFEd C' = 0

(3-43)
j = 1,2,...,N

where E' E E'(x) is the electric field intensity distribution across

the membrane at resting conditions and satisfies equation (3-21):

H - zjCj (3-44)

Applying the continuity equation for the system at resting condi-

tions, (J - 0),

N
Z J'(x) = 0 (3-45)

j1=l

where J'V(x) j 1,2,...,N are the current density distributions at

resting conditions.

The boundary conditions for the system of equations (3-43) - (3-45)

are given by conditions (3-3) i.e.,

c'(0) - Coj

j = 1,2,...,N (3-46)

Ctj(6) Cij
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Then, the initial conditions for the dynamic system, equations

(3-20) - (3-22) are,

cj(x,o) = c' (x)
(3-47)

J = 1,2,...,N

E(x,o) = E'(x) (3-48)

which are the solutions of the system of equations (3-43) - (3-45).

3.5 Some Properties of the Variables of the Model

In this section some additional properties that the variables of

the model must satisfy are considered, in particular, those conditions

that these variables must satisfy in order to be consistent with the

physical entities they represent.

The concentration Cj(x,t), of each ion species j, is a continuous

function on x and t. This condition arises from the fact that the mass

is assumed to be continuously distributed for the membrane system; there-

fore the density pj of each ion species j is a well defined continuous

function for each point in Q

C (,t) > 0
(3-46)

j = 1,2,...,N

since a negative concentration has no physical meaning.

The electric potential distribution k is a continuous function for

every point in Q. Moreover, it has continuous first and second order

derivatives in x and first derivative in t for every (x,t)E£. The phy-



I
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sical basis of this condition arises from the fact -that P is a phenome-

nological variable whose gradient is a "force" proportional to the ionic

flow, and since this flow cannot be discontinuous (by the continuity law

of matter), a has to be continuous; moreover by Poisson's Law the second

derivative of i with respect to x is proportional to the dynamic volume-

tric charge distribution in the membrane which is continuous (by the con-

tinuity law of charge distribution in the context of field theory).

The three conditions mentioned above have to be satisfied by the

solution of eqs. (3-20) - (3-22) and their associated boundary conditions

(eqs. 3-3) in order to ensure consistency with their physical meaning.

Assuming that C j J 1,2,...,N and 4 are continuously differenti-

able in x from equation (3-18) it may be concluded that the flow Aj of

each ion species J is continuous (almost everywhere) in x and t, and

consequently, the current density functions J j - 1,2,...,N are also

continuous (Eqs. 3-17).

The conditions of continuity on Cj and Jj (in a) imply by observa-

DE
tion of equations (3-21) and (3-22) that - are continuous functions and

since 2 - A- this implies that the second derivative of the potential
ax

distribution is continuous, as was stated above.

3.6 System Analysis of the Model

The model is defined by 3 kinds of variables from the system

point of view: the state variables Cj = 1,2,...,N, the output varia-
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N
bles, E, Z J1, 9, V and the control variables uj = 1,2,... ,n and

The dynamic equations of the system are:

i - ujL (E,C)

(3-49)

j - 1,2,...,N

where

L'(E,Cj) = RT - zjFE- zjF C

(3-50)

j = 1,2,...,N

is a nonlinear differential operator. Notice that the system model

possesses an inherent output feedback law, since E is an output variable

and the state depends on it. Later, in this section, an analysis of the

characteristics of the operators L(,.) J = 1,2,...,N will be carried

out.

The output equations of the system are:

aE F N
j C1 zjCj (eq. 3-21)

From Eqs. (3-17) in Eq. (3-22) the following expression is ob-

tained:

N
M = F 1

F3r t Eq1 (j n Eq J((- ) (3-51)

From Eqs. (3-18) in Eq. (3-51),
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~E F2N N _ 1
= ( E uJz1 C)E - C 1 - j Z j -(t) (3-52)D~t C - i ( 3-52)E

Assuming that the functional form of the state Cj(x,t) j = 1,2,...,N

and the control uj j = 1,2,...,N, and J(t) (inputs) are known it has to

be proven that Equations (3-51) and (3-52) are sufficient to determine

N
the output variables, E, Z J , V

J=1

If E is an exact differential, (physically the electric field in-

tensity is an exact differential, dE, it has to be proven that in the

equations of the model E is an exact differential) the knowledge of

aE DE
E , A- together with the initial condition E'(x) is sufficient to de-

termine E; i.e., if dE can be expressed as follows

dE - M(x,t)dt + N(x,t)dx (3-53)

with M, N satisfying the following condition

aM aN
xM AtDN (3-54)Dx at

DE DE
where M a= and N -DX (3-55)

then, dE is an exact differential.

Assuming that (3-55) holds it has to be proven that (3-54) holds:

From (3-52)
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TM F2 N ac. F2

j=l j =l

i N a2c
- Z u jzjRT x (3-56)

From (3-21)

aN - j'~ (3-57)

From (3-20) in (3-57),

8a N F N 23N F N D ac ac~~aN F~ C~ F~~i;-- (3-58)
J.1 i -C ZjU RTIax 2 j ax j C (3-58)j

Then comparing (3-56) with (3-58) it is seen that (3-54) holds;

therefore, dE is an exact differential and E can be expressed by the

following integral equation

E(x,t) - J M(x,T)dT + N(,t)dE- I (q,t)dTdl (3-59)

where M, and N are defined by equations (3-55).

Since E can be determined if Cj(x,t) j = 1,...,N are known for

every (x,t)EQ, it remains to be seen if the rest of the output variables

are also determined:

V(t) is obtained by the following expression:
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V(t) - - E(x,t) + Vr (3-60)

o

where V is the membrane resting potential.

i(x,t), the potential distribution can be obtained by integrating

eq. (3-15):

P(x,t)- - E(x,t)dx + V(t) (3-61)

o

N
finally from expression (3-22), Z J (x,t) can be computed:

DE

j-i

Remark:

The choice of which variables of the model are output variables is

largely motivated by the fact that these variables are measurable by

standard laboratory procedures, as indicated in section 2.2.

The control variables uj, j=1,2,... ,N determine a multiplicative

output feedback as can be seen by observing eqs. (3-38) and (3-52). It

is important to stress that uj J - 1,2,...,N are the mathematical

representation of the interaction of the membrane on the ionic flow;

in particular, m*j j = 1,2,...,n, the effective masses of the ion

species, are determined by the membrane structure (assumed), as will be

shown in Chapter IV. Notice also, that uj is a well defined real number

for each value of V(t), only if the expression inside the parenthesis

in (3-38), is positive and m*j(RT ln(Clj/Coj) + zjFV(t))#0. In Chapter

IV it will be shown that for the squid axon membrane, those conditions
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are always met. J(t) is the input variable; it directly controls the

ionic flow by regulating the electric field intensity, (eq. (3-22)).

J(t> is assumed to be the output current density of an adjacent

portion of membrane to the clamped region under study, it provides

the system with energy enough to trigger an action potential. In

Chapter IV, a correlation analysis between the membrane response (volt-

age) and the current density excitation is carried but, in particular,

it will be seen that a short pulse of enough magnitude (about .1 msec of

duration), triggers an action potential, but if the pulse duration is

increased as to be comparable with the action potential spike duration,

(about 3 msec) a train of spikes is produced; this fact agrees with the

experimental observations reported by Katz, [3 ].

The questions that must be answered by the analysis of the system

are the following:

a) Are the equations developed in section 3.5 together with the

restrictions on the variables of the model established in sec-

tion 3.6 sufficient for ensure the existence of a solution?

b) Is this solution unique?

c) Is the system stable?

d) Is the system observable from the output?

e) Does the control action excercised by the membrane on the ionic

flow (uj j = 1,...,N) drive the system in such a way as to

satisfy conditions 3-9

a) This question is intimately related with the characteristics of the

operator equation (3-49). By the existence of a solution to the

system of equations (3-49) is meant to find the mappings,
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Cj a Ad = 1,2,...,N

and (3-63)

E: + R

where £ j 5 1,2,...,n are bounded subsets of the real positive line;

such that Cj(x,t) j = 1,2,...,N and E satisfy the following conditions:

i) C eC2(Q)

J = 1,2,...,n

ii) C Xc(sauan)

iii) E EC(a)

iv) E eC(2SUaI)

v) Eqs. (3-49) and Eq. (3-59) are satisfied by Cj and E for

every (x,t)Ei

vi) Eqs. (3-43) - (3-45) are satisfied by Cj(x,o) j = 1,2,...,n,

E(x,o) for every x,c (0,6) Lieberstein [20].

where C2(Q ) is the space of the continuous function square integrable

for every (x,t)Md and C(SUaB) is the space of the continuous functions

in every (x,t)UafU (Q- = R-{) and C2 (Q) and C(MUM3) are the space of

continuous functions once integrable for (x,t) in Q and its boundaries,

respectively.

Remark:

Notice that in the interest of finding a solution, the conditions

on Cj(x,t) j = 1,2,...,N and E(x,t), have been weakened, i.e., instead

of asking that Cj(x,t) be twice differentiable in x and once differenti-

able in t (j = 1,2,...,N), and E(x,t) be once differentiable in x, t
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it isMasked that Cj(x,t) j = 1,2,...,N be square,integrable in I and

continuous on its boundary, and E(x,t) be once integrable. It happens

that those conditions are enough for proving existence of a solution,

Lieberstein [20], i.e., the physical restrictions on the variables of

the model are stronger than the mathematical restrictions.

To prove that the solution of (3-49) satisfies conditions i - vi

the following procedure will be followed: Assuming iii, iv are satisfied

v, vi will be checked; then their validity will be used to show that condi-

tions i, ii are satisfied, then it will be proved that if those condition

are fulfilled, iii and iv are satisfied closing the implication chain.

Notice that (3-50) can be rewritten in the following form:

ac
L (E,C) = - (RT - - zjFECj)

(3-64)

j - 1,2,...,N

And from (3-18), the terms in brackets are equal to - - , then

ac -F
R FzFEC =- 

(3-65)

J - 1,2,...,Nj -

The flow, Aj of each ion species is bounded because otherwise a

consumption of infinite energy by the system, would be implied; this

is not physically feasible. uj is different from zero for almost all

te as long as the concentration of ion species j at the outer solution

is different from the concentration at the inner solution; therefore the

term in the right hand side of (3-65) is bounded (almost everywhere).
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The solutions of equations (3-65) can be written explicitly:

oz,F

exp( E(S,t)d&) %j(o,t)da (3-66)
uj o o

J , 1,2,...,N

Since by assumption J IE(&,t)td& <o x,tEQ

0

the term

exp (T |- E (, t)d)

is bounded, for every j, Cj(O,t) j - 1,2,...,N are bounded by definition.

The second term in (3-66), can be considered as a Linear operator

T: C() + C ) i.e.,

Ij(x,t) T(j)

ixJ
where Tj(4) - [ Exp (L E( 5 t)d) (t)dc

~ Jo Jo (3-67)

J - 1,2,...,N

since the inner integral in (3-67) is bounded, and since the following

inequality holds (Douglas [39]),

I I I' I ITj I IC* I j C (3-68)
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where I'I IC is the usual norm in C(a) the space of piecewise continuous

functions on Q and j I IC, is the norm in its dual space. Therefore,

since A and T, j = 1,2,...,N are bounded, by (3-68) Ij, j = 1,2,... ,n

will be bounded and by (3-66), Cj(x,t) j = 1,2,...,N is bounded, there-

fore

Jx

Cj(x,t)dx < X Xd

o (3-69)

J t 1,2,...,N

In (3-66), the first term is bounded for all t > 0 and so is the

second term by the previous argument; moreover by conditions (3-9), the

second term goes to zero as t goes to infinity, so

. Pt

lin | Cj(x,t)dt < X x£(0,6)

t4.o o (3-70)

j = 1,2,...,N

Combining (3-69) and (3-70), the following conditions for Cj(x,t)

j 1,2,...,N are obtained

I ICj (x,t) Id; <(-

JQ·~~···~i-·- (3-71)

j = 1,2,...,N

and since C > 0 x,taE& (3-71)

can be strengthened to
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J IC (x,t) 12 d < (Ja~~i·~~~~···'~ 2~ ~(3-72)

j - 1,2,.. ,N

Therefore, conditions i), ii) are satisfied and the solutions

(3-66), satisfy condition v) and vi) for Cj.

The former condition implies that equation (3-59) for E(x,t) holds

and therefore conditions iii), iv), a) and vi) hold for E(x,t).

Therefore, the existence of a solution to the equation of the

model is guaranteed.

b) The uniqueness of the solution can be established by the observa-

tion of (3-64): the expression in brackets which equals

-- U1is a linear differential operation and therefore, if two so-
uj

lutions exist, the sum of them will be also a solution and the re-

sultant flow ('I _-II) operated on by the linear operator

u ( ) will equal the sum of the derivatives of the concentra-

tions Cj and C corresponding to the two solutions, and therefore

eqs. (3-49) are satisfied. Additionally, the two solutions must sa-

tisfy the boundary conditions (eqs. 3-3) then, from (3-3) in (3-66),

for CI(6,t) and C I(6,t) the following expressions are obtained

z F
Clj exp(T I EI ,t)dS ) Coj

- 4 exp(RT t)d)

Uj'o o
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z F

1 exp( ) C1; RT exp (1g R To

1Ij I expI ( F EII",t)d) (II (a,t)da (3-73)
uIIj o

The two solutions and their differences must satisfy eq. (3-21), i.e.

i.e.,

EI F N
=-- zj J

(3-74)

II N
aEII F N II
ax £ z CE X FE 2j j

and

(I-EII) F N I II
ax F z zj(C I I )-ax Jl j j

In particular, for x0O and x=6: C C therefore
j ;

a(I-EIE I I I

a(EI-E ) (O0t) a ( -E ) (6,t) = 0 for every t > 0 then
ax ax

E (O,t) = EI(O,t) , EI(6,t) = EII (,t) and by the continuity of the

electric field this property can be extended to all x6(0, 6). This im-

I II I II
plies in turn that u uII (since uI, u are functions only of VI

and VI I respectively which in turn are functions only of EI and EII res-

pectively. See Eqs. (3-38) and (3-60)). Then in (3-73) substracting

the two equations and combining the integral term, it can be concluded
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that 4I . PII or the solution to the equations of the model is unique.

Remark:

The procedure followed to prove uniqueness gives only a sufficient

condition for the solution of the model to be unique. The necessity can

be proven using the techniques of "test" functions applied to the linear-

ized equations of the model and showing that the solution of this system

satisfies the condition

I I.. I <. k1 l1 ll

where i - (C1, C2,...CN,E) , e is the vector test function and k is a

positive constant. The norm here is the standard Lp norm. Lieberstein

[20].

c) For the ionic model, the stability question can be answered by

showing that the solution to the system of equations (3-43) -

(3-45) is an equilibrium point and that this equilibrium point is

stable. i.e.,

L (E,Cj) = 0

j = 1,2,...,N E = E

C = Cj1 j = 1,...,N
Cj- Cj 

with

aE F

E j=l 1 (3-75)
E=E1

C =C 1 j = 1,...,N

and N

Z Jj 

J JJ



- 88 -

and a "small" perturbation of the control variable J; 6J drives the sys-
*. .,

tem to a neighboring solution C j j = 1,2,...,n , E and uj J = 1,2,...

such that

C"j Cj. as t 00

E" + E1 (3-76)

1 "
u u j - 1,2,...,N

Provided that the perturbation in J is small enough as to prevent

the system to develop an action potential. As a first step, the solution

of (3-75) is characterized:

From (3-64) in (3-75):

acl
ujLj (E ,Cj) [u (RT - z FE1 clj)] = 0

(3-76)
J 1,2,...,N

Therefore the term in brackets in (3-76) is constant in x; and

from (3-18), this term is equal to _ = 12..N i.e., (J(x)

constant)

u (RT -z _ zjFE1c ) = 
(3-77)

J = 1,2,...,N

Multiplying both sides of (3-77) by Fzj; and adding all the equa-

tions of the form of (3-77) the following expression results
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N ac 2 N 2 1 1 N
FRT F, u z- _2-F( uzC c) = F z (3-78)

JJax1 J1 J J

By (3-17) in the right hand side of (3-78) and from the last equa-

tion in (3-75), (3-78) becomes

N 1 2 1 2 1 1
FRT Z u z F( C)E- _ 0 (3-79)

jj x J

then, from (3-79);

N 1 C n
E1 - (RT u JZ a )/F u z C (3-80)

Notice that as in the dynamic case, the knowledge of the concentra-

tion distribution of each ion species, in resting conditions, fully speci-

fies the electric field intensity E1.

The equilibrium point is specified by C1 (x), E1(x) for 0 < x < 6,

and u j - u (-i Eldx) - constant (see (3-38)) j = 1,2,...,N.
J J o

Remark:

The conditions given by eqs. (3-9) imply that after an action poten-

tial occurs, the system returns asymptotically to the resting state, there-

fore, if this resting state is stable in the small, the ionic transport

model for the axon membrane, is globally stable.

In order to check stability in the small, the output control varia-

ble J is disturbed from its resting value (J O0) by an amount 5J, this
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disturbance causes disturbances in C j = 1,2,... ,N and in E of mag-

nitude 6Cj J = 1,2,...,n and 6E respectively. The dynamic equations of

these increments are given below:

Let

L11lC:+d J 1,2. .. ,N
C l cj + 6Cj

El l ' E1 + 6E (3-81)

u j U + 6uj j 1,2, .. ,N

The disturbances are produced by a small current pulse, 6J. Assum-

ing that the disturbance 6J is small and due to the continuity of Cj

j - 1,2,...,N and E and their derivatives, products of increments are

neglected, then the approximate dynamic equations for the perturbations

are:

26C 1

u ll(RT- _ - z FEL- - z C

11i(J 1 36E
(z 6E + zjFC j-x ) (3-82)

J = 1,2, ... ,N

a6E F
_E F Z j-z 6Cj (3-83)

36E 1 
E 6J - 6J) (3-84)

at J=l 3
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Equations (3-82) represent a second order linear system that can

*be written in functional form as follows

It Qj(6Cj (x,t)) + fj(x,t) = 1,2,...,N (3-85)

and the boundary conditions:

6Cj(O,t) - 6cj(6,t) - 0 j =,2,...,N (3-86)

where

2
11 C1 1.... FE1W a9 W j) (3-87)Q(6C(x,t)) - uj (RT x- ) (3-87)

ac1 (x) E
f (xt) -ul (t)(zj eFx- -6 E(x,t) + zj FC j(x)- (x,t))

j = 1,2,...,N

Since in (3-87) Qj and tj are bounded functions, it implies that (3-85)

is a stable (in the small) system.

3.7 Conclusions

A model for the ionic transport in the clamped axon membrane was

derived. The model was developed using well known laws of field theory

and irreversible thermodynamics. Some assumptions about the structure of

the membrane were made and analysis towards their physical justification

was carried out.
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CHAPTER IV

SIMULATION OF THE IONIC TRANSPORT MODEL

4.1 Introduction

In Chapter III, a model for the ionic transport model was derived.

The model is based on a theoretical analysis of the physical processes

involved in the transport of ions across a clamped axon membrane and the

effect of this transport on the electric potential of the membrane. The

equations of the model were obtained by applying well known laws of field

theory and irreversible thermodynamics. Several assumptions about the

structure of the membrane and its role in the regulation and control of

the flow were made in the derivation. In this chapter a simulation of

the model is carried out in order to test the validity of the equations

and the underlying assumptions against the experimental evidence available

in the literature, Hodgkin and Huxley [6], Hodgkin and Katz [5]. Additionally,

some interesting aspects of the physical behavior of the axon membrane that

have not received too much attention such as oscillatory behavior and

calcium excitatory regulation are analyzed in a numerical context.

The simulation was carriedoout using a computer program in which

equations (3-20) - (3-22) are integrated by discritizing them according to

a Crank-Nicholson implicit scheme that is derived on appendix Al. The

initial conditions are found by integrating the steady state equations (3-43)-

(3-45) using the same scheme. The program was written in Fortran IV; the

matrix operations in the discretized model were carried out using the IBM

Scientific Library package (SL-Math).
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The chapter is divided into 7 sections as follows: 4.2 Computation

of ionic mobilities and analysis of their behavior, 4.3 Membrane potential

time-cou,,, 4.4 Electric field intensity in the membrane, 4.5 Current

density and concentration distributions, 4.6 Oscillatory behavior of the

hyperpolarized membrane, and 4.7 Conclusions.

4.2 Ionic Mobilities

As discussed extensively in Chapter III, the time varying coefficients

that relate the force driving each ion species with its ensemble average

velocity of transport during excitation (Eqs. (3-8) are the mobility func-

tions. The mobility functions constitute the mechanism of regulation by

which the membrane controls the flow of ions; notice that this mechanism

is active only when the axon membrane is excited, therefore in this section

it will be assumed that the membrane is excited and time t-0 is taken as

the instant of over-threshold excitation.

Before discussing the numerical results obtained for the different

ion species mobilities the procedure followed for the calculation of their

equivalent masses will be analyzed, and some of the geometric properties

of the sample axon membrane considered in the simulation will be stated.

Strictly speaking, the ionic transport process is a discrete phenomena

since it involves the flow of particles of definite volume and mass; but

in applying field theory for modeling the process it has been implicitly

assumed that mass elements for each ion species crossing the membrane are

differentiable; this assumption is validated by physical analysis, if the

clamped region has a surface exposure to the surrounding solutions much
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bigger than the surface exposure of any activation site. This condi-

tion is fulfilled in the case of squid axon membranes in particular and

for cell membranes in general.

The former argument suggests that in order to justify the applica-

tion of ordinary laws of mechanics to the particles (ions) involved in

the transport process, (see Eqs. (3-29) and (3-31)) an effective mass

for each of these particles in the membrane has to be considered, so that it

accounts for the forces to which they are subjected and for the fact that

the modeling has been carried out considering average particles rather

than individual ions.

In this thesis the former considerations led to definition of the

concept of equivalent mass, which has been extensively studied in other

transport systems such as p-n junction, Vander Ziel [25]. In essence

the equivalent mass concept is based on assigning a probability distribu-

tion to the event of finding a particular-ion species at the respective

surface-located activation-site. Since in the membrane, the ions are

subject to a varying potential, a Boltzman-type,-of distribution is a.sWgned

to them and the equivalent mass of each ion species j is given by the

ensemble average mass corresponding to this ion.

Then the equivalent mass of ion species j in the axon membrane is

given by

mj* - mje 'qjv/KT J - 1,...,N (4-1)m m e j · ~N (4-1)

where v is the ensemble average membrane potential of the excited membrane

potential and K is the Boltzman constant.
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With expressions (4-1) the equivalent masses of the ion species

involved in the ionic transport process can be computed. This and other

numericas .,.Jormation about the membrane parameters utilized in the simu-

lation, are summarized in table 4-1 below; this data was obtained from

Hodgkin and Katz [3].

Table 4-1

Membrane thickness 6 - 150 A

Temperature T m 290 K

Sodium parameters (j-l)

External (Bulk solution) concentration C61= 288mM/cm 3

Internal concentration Co1 = 72mM/cm3

Equivalent mass ml* = 17.8g/mole

Potassium parameters (Jw2)

External concentration C62 - 540mM/cm3

Internal concentration Co2 - 203mM/cm3

Equivalent mass m2* - 35.1g/mole

Chloride parameters (J-3)

External concentration C63 - 104mM/cm3

Internal concentration Co3 - 61mM/cms

Equivalent mass m3* - 39.5s/mole

Calcium parameters (j-4)

External concentration C64 - 30mM/cm3

Internal concentration Co4 - 45mM/cm3

Equivalent mass m4* - 20.4g/mole
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With the parameters listed in table 4-1, and using the program de-

scribed in the appendix, the mobility functions of sodium, potassium, chlo-

ride and calcium ions were computed. They are shown in graphs 4-1 and 4-2

below.

In this author's opinion, the most important results towards the elu-

cidation of the physiological characteristics of the ionic transport pro-

cess are established in the so called sodium-theory of the action poten-

tial proposed by Hodgkin and Katz in 1949 (see Chapter II). It is interest-

ing to note that the characteristics of the mobility functions shown in

Figs. 4-1, 4-2 confirm the basic conclusions obtained by Hodgkin and Katz

from an experimental analysis:

a) When the axon membrane is excited, it becomes initially highly perme-

able to the influx of sodium ions; this is represented by the high value

of the initial sodium mobility with respect to the mobilities of the other

ions, Fig. 4-1.

b) Roughly lmsec. after the spike starts, the sodium mobility (i.e., the

membrane permeability to sodium ions) becomes smaller than that of the

potassium. This condition agrees with the physiological roles assigned

to sodium and potassium in the ionic transport process; namely, the rising

phase of the spike is produced mainly by influx of sodium ions and the

falling phase is produced mainly by efflux of potassium ions.

c) Notice that Calcium ions exhibit a mobility function that initially

is only slightly less than that of sodium ions but after lmsec it decays

at much faster rate than sodium or potassium mobilities. This behavior

is explained by the valence of calcium ions, which is twice as big as that

of sodium (or potassium) ions with roughly the same equivalent charge.
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This observation shows that the role of calcium ions has to do more with

the excitatory event than with the ionic transport.

d) Finally, notice that the chloride mobility has a very slow variation

during the spike-time which agrees with the conclusion of its secondary

role in'the ionic transport.

4.3 Membrane Potential Time-Course

In Fig. 4-3, the time course of the excited clamped axon membrane

potential referred to its resting potential is shown. Also, the experi-

mental points found by Hodgkin and Huxley (corrected to the temperature

of the simulation) for the sample axon considered in this simulation are

included. Additionally, in an effort to elucidate the role of calcium,

in the excited membrane, two runs were carried out: one without including

in the model the flow of calcium ions, and the other including its flow.

The most interesting result with respect to the simulation of the

membrane potential, is its agreement with the experimental measurements,

as can be seen in Fig. 4-3. The maximum deviation of the computed voltage

with respect to the corresponding measurement, is of the order of 8%.

Since the ionic transport model was derived on purely theoretical bases,

this result backs up partially the assumptions made in its derivation and

simultaneously gives an independent.proof of the validity of the sodium

theory.

Additionally, some conclusions can be drawn about the role of

calcium in the membrane potential time course. As can be inferred from

Fig. 4-3, the calcium flow increases the potential during the rising

phase of the spike; this increase is of the order 10% at most.
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This observation might be interpreted as follows: the calcium ion

flow, because of its relatively low equivalent mass and relatively high

average charge, plays the role of starting the action potential when a pulse

over threshold has excited the axon membrane and subsequently, assisting

the sodium ions in building-up the depolarizing potential during the

rising phase. Moreover, the threshold itself is probably a function of

the calcium concentration.

In the falling phase the flow of calcium ions induces a decrease in

the rate of repolarization carried out mainly through the efflux of potas-

sium ions.

4.4 Electric Field Intensity in the Membrane

In this author's opinion, the characteristics of the electric field

intensity in the membrane is one of the most important aspects of the

ionic transport model developed in Chapter III.

Most of the models developed so far consider (especially in the

steady state analysis) the electric field intensity to be constant as a

function of the spatial variable; this assumption is completely arbitrary.

In the model developed in Chapter III this assumption was not made. The

electric field intensity dynamics were found to be a function of the ion

concentrantion distributions (as should be expected). In the simulation

these dynamic equations were integrated simultaneously with the distribution

equations, as shown in appendix A.

A sample of the spatial distribution of the electric field in the

axon membrane is shown in Fig. 4-4. As discussed before, the electric

field intensity is far from being constant. During the spike (t-1.25,
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t-3 msec) the electric field distribution becomes positive in the inside

region and negative in the outside region. For t=1.25 msec which corresponds

to the time when the membrane potential is a maximum, the sodium inflow is

high as compared with the potassium efflux; this fact justifies the form of

the distribution of the electric field at this time i.e., highly positive

towards the outside region. At time t=3 msec the sodium flow is much

smaller than the potassium flow and consequently, the electric field

distribution becomes less positive towards the outside region as can be

seen in Fig. 4.4.

Finally, notice that the steady state electric field distribution

(t-0) is not constant. This fact suggests that at equilibrium condi-

tions, ions are trapped inside the membrane due to the existence of at

least one point of zero net driving force.

4.5 Current Density and Concentration Distributions

In the model developed in Chapter III, the excitation mechanism by

which the axon membrane develops a voltage spike was assumed to be a

current mechanism. The considerations behind this assumption were discus-

sed in Chapter III.

In the simulation, it was found that an action potential occurs

in the axon membrane when it is excited with a constant current density

pulse of 445iA/cm2 which is of the same order of magnitude as the one

applied by Hodgkin and Huxley to the sample axon considered in this simu-

lation (Axon # 17 in [6]). The duration of the pulse necessary for

activation of the axon was found to be .15 msec. In the next section
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the behavior of the axon membrane when the duration of the pulse is

increased to 1. msec, (a condition of hyperpolarization) will be de-

scribed.

In Fig. 4-5 the sodium current density at the inner membrane surface

is shown. The time duration of the simulation is 4 msec. Also in Fig.

4-5, the potassium current density at the outer membrane surface vs. time

is plotted. The objective of considering sodium and potassium current

densities at the boundaries is to compare the resultant graphs with those

given by Hodgkin and Keynes [21]. Although no quantitative comparison

can be carried out because these researchers utilized DNP as an inhibitor

for potassium flow, qualitatively, the shape of the sodium and potassium

current density are found to be similar; moreover the order of magnitude

of the sodium current density found by them is similar to the maximum

value (250 PA/cm2) computed in the simulation of Hodgkin and Keynes vs.

310 pA/cm2 in the present simulation. Notice the sharp decrease in sodium

current in the falling phase, a fact that agrees with the sodium theory.

In Fig. 4-6 the concentration distributions of sodium and potassium

ions in the membrane are shown. As discussed before, even at equilibrium

conditions, a distribution of sodium and potassium ions is present in the

membrane space. This fact should be taken into account in any study of sub-

threshold phenomena. Recall from the analysis in Chapter III that the ionic

distributions determine the electric behavior of the membrane during excitation.

In Fig. 4-6 the following observations about the dynamic course of

sodium and potassium concentration distributions can be made:

a) The variation of concentration distribution of sodium ions during the

excitation period is greater than the corresponding variation of potassium
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concentration this condition is caused by the higher mobility of sodium

ions. See Section 4-2.

b) Notice that the time constant of potassium ion flow is about 1.4 times

larger than that of the sodium, where by time constant is meant the time

after excitation required to recuperate 80% of the equilibrium distribu-

tion.

4.6 Oscillatory Behavior of the Hyperpolarized Membrane

During the simulation, when the duration excitation current density

pulse was increased above 1. msec the membrane potential exhibited a kind

of damped oscillatory behavior with a finite number of cycles before re-

turning to an equilibrium condition of higher resting potential than

normal. The number of cycles of oscillations was found to be dependent

on the duration of the current excitation pulse: for durations of 1. msec

or less only one cycle was developed, for durations greater than 1 msec

but less than 1.5 msec, 2 cycles; and for durations of 1.8 msec or more

4 cycles developed. This behavior of the axon membrane is rather

interesting since it implies that considering the neuron as an

information module of the nervous system, the output signal i.e., the

axon membrane potential, depends not only on the algebraic sum of input

excitation pulses at the dendrites (see Chapter I), but also, on the

duration of these excitation pulses. This condition seems to be in

conflict with the "all or nothing law" of neuron excitation (Aidley (22])

in the sense that the axon membrane as an information module exhibits a

non-binary behavior. Indeed, depending of the duration of the excitation

(for an overthreshold excitation) 4 different dynamical responses can be
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obtained. Therefore the information processing capabilities of the neu-

ron are more complex than those of electronic modules. A deeper discussion

of this Anformation capability of the neuron is clearly beyond the

scope of this thesis-but this author considers that it should be fully

explored in an information model of a nervous system. In Fig. 4-7 the

membrane potential corresponding to a 2. msec excitation is shown.

4.7 Conclusions

A simulation of the ionic transport was carried out for a particular

squid axon membrane (Loligo). The results of the simulation generally

show good agreement with the experimental data. The simulation showed.

among other features, two very important characteristics: namely, the

control action of the ionic mobilities on the transport of ions, the dis-

tribution characteristic of the electric field and the oscillatory behavior

of the overexcited membrane.
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CHAPTER V

ACTIVE TRANSPORT MODEL

5.1 Introduction

In Chapters III and IV a model for the electrical behavior of the

clamped axon membrane was developed. In particular, the events of exci-

tation and membrane potential were modeled as physically dependent pro-

cesses with transport of ions across the membrane driven by their

electrochemical gradients. In order for the axon to be an autonomous

biological unit, it must be equipped with an active mechanism that re-

stores the concentration gradients at the membrane surfaces after an

action potential has occurred. This mechanism is known as The Sodium

Pump. The reasons for this terminology will be clear later. The

predominant characteristic of the sodium pump is the built-in capability

for the active transport of ions against their electrochemical gradient

across the membrane, with expenditure of metabolic energy. In what

follows, "active transport" and "sodium pump" will be considered synonymous

terms for the process sketched above.

The sodium pump mechanism has thus the essential function of build-

ing up the concentration differences on which ionic transport and there-

fore the conduction of electrical impulses depends.

In Chapter III, the concentrations of each of the ion species in-

volved in the ionic transport model, were assumed to be constant in the

solutions on both sides of membrane (Eqs. (3-3)). This assumption is

justifiable only if a restoring process exists. Experimental evidence



carriers and surface reactions instead of the irreversible thermodynamics

formnlism used by Katchalsky and Spangler. This formulation allows a

better qualitative and perhaps quantitative interpretation of the physical

phenomena.

The chapter has been divided into the following sections: 5.2 Physical

description of the active transport process, 5.3 Derivation of the equations

of the model, 5.4 Qualitative analysis of the process in terms of the model,

5.5 Conclusions.

5.2 Physical Description of the Active Transport Process and Definition

of the Variables of the Model

As discussed in the introduction many of the structural characteristics

of the active transport process are not known. Therefore, in order to model

the process, researchers in the field have established a great number of

"educated hypotheses" about its structure, each of them based on the experi-

mental study of a particular cell membrane. These hypotheses have several

experimental facts in common, as listed below.

Fact 1

Almost all living cells are rich in potassium (primary cation) and

poor in sodium (secondary cation) in their intercellular fluid. The reverse

situation is true for the extracellular fluid.

Fact 2

The excitatory event depends upon differences in concentrations and

activities of sodium as well as potassium and to lesser extent on other

ion activities and concentration differences on both sides of the membrane
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supports such a mechanism in most biological cell membranes. Further-

more, in particular for the squid axon membrane, constant concentrations

of the ions on both sides of the membrane have been observed experimental-

ly by Hodgkin and Keynes [21],.

Although the existence of the active transport mechanism is supported

by an ample variety of experiments, its structural and dynamic character-

istics are not known. Therefore, a model for this process has to be

developed by a deductive analysis based on some purely theoretical assump-

tions (e.g, fundamental physical principles) and nonconclusive observa-

tions of the process. A model that satisfies the thermodynamic principles

of open systems (such as the one composed of the membrane and surrounding

solutions) and agrees partially with the experimental data is the carrier-

transport model proposed by Dannielli in 1954 [23]. In this model an ion

combines with a specific protein present on the appropriate membrane sur-

face, forming an electrically neutral carrier complex which flows to the

opposite surface of the membrane (due to its concentration gradient) where

the ion is released. This process implies chemical synthesis reactions

with absorbtion of chemical energy; therefore, these reactions must be

coupled with.eaeergyxreleaasing reactions ("down-hill" reactions) which provide

the energy for the completion of the synthesis. This process is catalyzed

by highly specific enzymes located in the. external layers of the membrane

(see Chapter I).

In this Chapter, a particular model for the active transport process

sketched above will be derived. The model is a generalization of the one

proposed by Katchalsky and Spangler [25]. The generalization consists in

formulating the model considering field theoretic laws for the flow of
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The resting potential and the spike are functions of the gradient-

controlled difussion of these ions across the membrane.

Remark:

Fact 2 was used as a hypothesis for the development of the ionic

transport model in Chapter III.

Fact 3

The rising phase of the action potential is due to a sudden increase

in permeability (i.e., ion-mobility) of the membrane to the flow of sodium

ions in the direction of its concentration gradient (from the outside of

the membrane towards the inside of the membrane). The repolarization is

primarily dependent upon the diffusion of potassium ions in the direction

of their concentration gradient. The recovery phase involves primarily the

movement of the two monovalent cations against their concentration and

electrical gradients, with the expenditure of energy from cellular

metabolism; this is called active transport.

Remark:

The rising and repolarization phase behavior is observed in the

simulation of the ionic transport model in Chapter IV. Notice that this

behavior is a consequence of the flow of sodium ions and potassium ions

in opposite directions, and their ion mobility time behavior differences.

Fact 4

In living cells in general, and in the squid nerve fiber cell in

particular, there are several enzymes coated to the internal surface of

the membrane which are activated by potassium ions and inhibited by sodium

ions.

The previous facts about the mechanisms characterizing the membrane
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system and the ample experimental data basis for nervous cell-membrane

structure suggests the following definition for the sodium pump.

Definition

The term sodium pump is used to designate the biological system,

resident in the membrane, responsible for the energy-requiring efflux of

sodium (usually coupled to the influx of potassium) across the membrane.

The only energy source of the pump is an ATP hydrolysis mechanism.

The previous definition involves 3 basic assumptions which have not

been fully proved in practice but that agree with the experimental evidence

and the theoretical analysis of the sodium pump . These assumptions are:

1. The sodium pump is contained within or is part of the membrane.

2. The energy source of the pump is ATP.

3. The Active transport process is identified with the Na- K ATPase

enzyme system.

The problem of modeling the sodium pump defined above has been ap-

proached in essentially 3 ways:

1. Define sodium, potassium and ATP sites on both sides of the membrane

in order to elucidate the kinetic mechanisms of the coupled reactions

catalyzed by the system.

2. Define the sequence, i.e., the intermediate steps that participate

in the reaction leading to ATP hydrolysis.

3. Define the mechanism by which cardiac glycosides, specific inhibitors

1 The analysis of the experimental basis for this definition is carried
out by Schwartz et al [25]
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of both the Na+ and K APTase, interact with the system.

The previous 3 approaches or combinations of them, have been used

to derive functional models for the sodium pump. None of them can

explain completely the behavior of the sodium pump, although an analysis

of them-has clarified to some extent the nature of the pump and has

suggested the role of the experimentally observed mechanisms that character-

izes it. The model considered in this chapter is based almost entirely

on the first approach, the reason for this being the fact that the author's

interest in the active transport process is centered on its physiological

role as a "reset" of initial concentrations in the solutions on both sides

of the neuron membrane, and not as a mechanism of the metabolic process,

where approaches 2 and 3 have proven to be more useful for the analysis of

the underlying phenomena.

Now, some of the features that characterize the active transport of

monovalent cations (i.e., Na , K ) will be described; they constitute the

basis for the model that will be derived in the next section.

The active transport of sodium out of and potassium into the axon

is coupled to the hydrolysis of ATP, according to the following scheme

Skou [27].

The stoichiometry of the pump is 3Na+:2K :lATP. These stoichiometric

ratios have been observed to follow in many cells (i.e., ghost cells,

Baker [28], Baker and Shaw (30]), although Keynes [29] found that such

ratios vary with the conditions of the experiment, e.g., PH of the

external solution. It is assumed for purposes of the model that PH in

the solutions is maintained constant due to the flow of water across the

membrane, driven by the osmotic pressure gradient.



- 116 -

Remark:

In the Skou scheme for the sodium pump, described above, since the

hydrolysiz of ATP is electrically neutral, the total reaction is electro-

genic because one net positive charge leaves the axon. Therefore, the

pump contributes to the membrane potential. This condition can explain

the resting potential of the axon membrane (negative inside).

The Na+, K - ATPase transport system described above is oriented

within the membrane and has an apparent molecular weight estimated between

190000 and 5000000 Robertson [31]. This estimate suggests that assuming

that the sodium pump is constituted by a single macromolecule with an

assumed density of 1.3 and a molecular weight of 250000 would correspond

to a spherical particle with a diameter of 85 A, a dimension close to

that estimated for axon membranes (150 A).

It is evident from the assumed scheme for the active transport, that

parts of the Na+ , K+ - ATPase mechanism must be exposed to the internal

and external membrane water surface. This condition seems to be in conflict

with the bilayer-unit membrane structure discussed in Chapter I. However,

the proposed configuration for Na+, K+ - ATPase transport system can exist

at regular intervals adjacent to bilayered membrane structure and there-

fore does not really invalidate the Dannielli unit membrane hypothesis.

The assumed kinetic scheme for the pump and the data on concentrations

in the solutions on both sides of the membrane lead to the assumption that

the pump is asymetrically oriented, so that it presents a sodium activation

site on the internal surface of the axon membrane and a potassium activation

site on the external surface of the membrane. The sodium activation site

presumably is constituted of a surface binding enzyme with the characteristic
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of high affinity for sodium and low (or idealistically none) affinity

for potassium. Similarly the potassium activation site, located on the

external surface, has high affinity for potassium and low affinity for

sodium.

There are two coupled additional phenomena that have been observed

in axon membranes as well as in other biological membrane systems, these

are: Competitive behavior at the sodium activation site and non-ionic

potassium transport from the inside to the outside (Skou [27], Post et

al [32]). The first refers to the situation in which the enzyme or

enzymes that form the sodium activation site might be "blocked" by potas-

sium ions, therefore preventing the sodium carrier from being loaded.

Thus the overall effect is a potassium-induced inhibition of catalysis

and transport of sodium ions. Although there is no direct evidence, the

equivalent process is likely to occur at the potassium activation site

namely, sodium competes with potassium at the potassium activation site

and if successful inhibits potassium catalysis and transport. The second

additional phenomena, non-ionic potassium transport from the inside to

the outside, is believed to act as a regulator of active sodium transport.

Its physiological function is not very clear but because of the abundant

evidence for its existence, it has been included in most of the models of

active transport. In the model for the sodium pump considered below, these

two phenomena are incorporated by considering partial reversibility in the

chemical reactions leading to the formation of the carriers and by an ad-

ditional carrier flow, respectively.

With the previous considerations, an internal representation of the

basic unit of the sodium pump (Fig. 5-1) takes the following form:
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In Fig. 5-2, the arrows crossing the membrane indicate flows of

carriers; 3 carriers are considered, CPNa3 the sodium carrier, CPK2

the phosphrylated potassium carrier, and CK2\ the unphosphorylated potas-

sium carrier. in the diagram, the circles indicate the 4 chemical re-

actions that characterize the process; alj is the chemical reaction

that characterizes the sodium activation site, 3j is the reaction

occurring at the potassium activation site, (2j is the carrier phosphorila-

tion reaction; it involves the cyclic ATP hydrolysis with the release of

chemical energy; the ultimate (and only) energy source of the pump.

Notice that lj and a2j are coupled through the carrier (reactant-product

respectively), CPK2 providing thus a "path" for the transfer of energy to

the carriers of the pump. a4j is the carrier dephosphorilation reaction

where inorganic phosphate is released to the external solution with the

production of a "light" potassium carrier CK2. 'At the chemical reaction

sites, arrows entering the circles are reactants and arrows leaving them

are products for the forward reaction-direction of the pump. According

to the previous discussion, alj, a2j are (partially) reversible reactions,

their degree of reversibility models the competitive behavior of sodium

and potassium ions at theft activation sites.

It is important to notice that the main active flow of potassium,

that is the flow that has the physiological purpose of building up the

potassium concentration at the axon membrane surfaces, is carried by

CK2. The dual role of CPK 2 can be explained with the aid of Fig. 5.2.

The flow of carrier CPK2 represented as 2 in Fig. 5.2, provides a

mechanism of orthophosphate discharge in the outer solution and also a

mechanism for regulating the active flow of sodium ions via the ion-
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exchange reactions alj and a3j, but its main function is to serve as

chemical energy transfer agent between the exogenous o2j reaction of

ATP hydrolysis (in the model it is considered as an equivalent phos-

phate group transfer from ATP to the CK2 carrier with products ADP

and CPK2) and the endogenous aij reaction at the inner axon membrane

surface in which a Na - K exchange takes place with the uptake of

chemical energy. The process just described, is the only energy supply

mechanism for the sodium pump. Although an analysis of the energetic

behavior of the pump is beyond the scope of this thesis, a brief physical

qualitative description of its characteristics in terms of the assumed

internal representation of the active transport process (Fig. 5.2) is given.

Katchalsky and Spangler showed after a thermodynamical analysis using

this representation, that under a certain constant concentration ratio, a,

of sodium and potassium in the solutions on both sides of the membrane,

(i.e., a - tNa]o[K]i/[Na]i[K]o - 220) which corresponds to the observed

resting state (see Chapter IV) of the axon membrane, the pump exhibits

a steady state condition. When the axon membrane is fired and a spike

is produced the consequent induced transport of sodium and potassium ions,

as discussed in Chapter III, implies that the ratio,a will vary from

its steady state value (220) to a new equilibrium value slightly smaller

(about 219), if several spikes are produced the concentration gradients

of s6dium and potassium at the axon membrane will decrease further and if

no mechanism is provided for a recovery the membrane would loose its exci-

tatory ability, therefore it seems logical that the sodium pump is activat-

ed by a decrease in the a factor or some function of it such as PH of the

internal solution. In the model of the sodium pump it is assumed that
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the enzyme (or enzymes) catalyzing reaction o2j is (are) activated by

an internal PH variation from the steady state (equilibrium) value

(about 7.5), increasing the production of CPK2i (i stands for inside

surface) with expenditure of metabolic energy (ATP). The increase in

concentration of CPK2 in turn implies an increase in the production of

CPNa3i as indicated in Fig. 5.2. The increase in the concentration of

CPNa3 at the inner membrane surface implies that the chemical gradient of

CPNa3 between the membrane surfaces increases and consequently the flow

o1 of this carrier increases, producing an excess concnetration of CPNa3
°

(O stants for outer surface) and as can be deducted from Fig. 5.2., this

implies an increase of the a3j reaction product concentration, namely CPK2
°.

This condition has two implications for the operation of the pump; first an

increase in the production of CK2°0 through reaction o4j which implies an

increase in the chemical gradient of this carrier with the consequent in-

crease in its flow 3 , and second, a decrease in its flow $2 caused by a

decrease in its chemical gradient. The second consequence constitutes the

regulatory mechanism of the pump, since the decrease in flow 2 will imply

a decrease in the concentration of CPK2 ° which in turn will eventually pro-

duce a decrease in CK2° , and therefore a decrease in CK2 which induces a

restraint in activity of reaction a2j as can be seen in Fig. 5.2. This

qualitative description of the pump will be shown to be reproduce by the

equations of the model in the next section.

Finally, before closing this section, the chemical equations for the

4 reactions of the sodium pump are written down and followed by a discus-

sion of some of their chemical properties.
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- S

: CPK 2 + 3Na + CPNa3 + 2K (5-1)
S-1
E1

S2
o2j: CK2 + ATP ADP + CPKE (5-2)

H20

S3

o3j CPNa 3 + 2K CPK2 + 3Na (53)
S-3
E3

(5-4)4j: CPK 24 CK2 + Pi (5-4)
E4

In (5-1) through (5-4) Si i = -3, -1, 1,...,4 are reaction constants

where the negative subindex indicates that the respective reaction operates

also in the reverse direction and Ei i - 1,...,4 stand for the enzyme-

complexes that catalyze each reaction.

It is important to remark that in kinetic theory the l.h.s. of eqs.

(5-1) - (5-4) is seen as the starting state and the rhs as the completion

state of a very complex set of sequential reactions involving the activation

of the respective enzyme, the formation of an enzyme-reactant complex, the

transformation of this complex into a enzyme-product complex, and the release

of the end products. This approach is beyond the scope of this thesis, rather

reactions (5-1) through (5-4) are considered in their global form: starting +

completion state, and in this context the reaction rates {S i } are phenomeno-

logical functions that indicate the rate at which products are formed at

the expense of reactants. In (5-1) and (5-3) the components that appear on

both sides are considered as products and as reactants due to the assumed
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reversibility of these reactions.

The consideration of the pump-reaction in the global sense indicated

above requires the establishment of additional assumptions on the enzymatic

structure of the axon membrane, namely, in order for the reaction constants

(Si} to make sense, the concentrations of enzymes {Ei} must remain constant.

This assumption is validated by the hypothesis of surface-membrane binding

of these enzymes (see Chapter I).

Notice that reactions crj, are chemically coupled, and similarly

reactions a3j, a4 j but the two reaction systems are spatially separated

and therefore uncoupled. Finally, recall that the reaction system is

restricted to occur in the membrane space and therefore the reactions are

carried out under constant volume. Furthermore, an energy balance of the

pump to be developed in the next section will show that the pump operates

also at an almost constant temperature.

5.3 Derivation of the Equations of the Model

In this section, the equations describing the Active Transport pro-

cess are derived. The mathematical model is based on the physical represen-

tation of the pump discussed in the last section and as for the ionic trans-

port process, its mechanisms of operation are determined by using first

order principles of field theory in the context of irreversible thermo-

dynamics. However, as opposed to the ionic transport process in which

the dynamic behavior of each species was described by a generic set of

equations and no direct interaction was allowed among the flow of each

species, in the model for the active transport process this simplification
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is not possible since the process is composed of mechanisms that are

not uniformly distributed along the membrane space.

The wodel of the sodium pump as discussed before, is composed of 3

dynamical systems: The ion-exchange coupled to the carrier phosphoryla-

tion at the inner axon-membrane surface, the carrier flow and ion-exchange

coupled to the carrier dephosphorylation at the outer membrane surface.

In short, the mathematical model of the sodium pump can be described as

a diffusion process with time varying boundary conditions, where the

kinetics of the chemical reactions (5-1) - (5-4) constitute the dynamics

at the boundaries.

As a first step towards the development of the model, equations for

the diffusion of carriers are derived. Recall from the last section that

the meaning assigned to l' 02' 03 is that of the effect of transport

which may or may not be caused by actual movement of molecules; with this

convention, the equations of continuity for the species CPNa3, CPK2 and

CK2 at any point inside the membrane are given by

acl af1aCl
at (xt) -" a-xt) 0 < x < (5-5)

DC2
t (x,t) - - -(x,t) 0 < x < (5-6)

and

ac3 _06
at (xt) a - Xt) O0 < x < (5-7)

~----~----m-x -~----^-I-~------- · ~ --
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where Cl(x,t) represents the concentration distribution of CPNa3 in

the membrane and C2(x,t), C3(x,t) represent the concentration distribu-

tions of CPK2 and CK2 respectively.

For the purpose of simplification, it will be assumed that the re-

actions of the pump are restricted to occur at the boundaries i.e., at

x-O and x-6. This condition, of course, is not physically realizable.

Nevertheless, this simplification approximates reality since each reaction

dynamics develops at a specialized activation site located at the internal

or external protein layer of the membrane structure (see Chapter I), and

the thickness of these layers is much smaller than that of the membrane.

Now, the kinetic equations of reactions (5-1) - (5-4) are established.

The rate of production (or disappearance), oj, of species J measured

in moles/cmS-sec, is given by the following equation (Prigogine [13]):

P d~nV
aj(t) A ijri(t) - C( dt j l, ,n (5-8)

i-l

where p is the number of simultaneous reactions, aij i

j - l,...,n is the stoichiometric coefficient of species j in reaction i

(positive for products and negative for reactants), ri(t) is the reaction

rate of reaction i, Cj(t) is the concentration in (moles/cm3-sec) of

species J and V is the "volume of reaction" i.e., the volume of the

region where the reactions occur; since for the axon membrane this volume

is constant, the second term in the r.h.s. of (5-7) vanishes.

In the sodium pump model, two separate groups of simultaneous reactions

are present: Reactions (5-1) and (5-2) at the inner surface and reactions

(5-3) and (5-4) at the outer surface.
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The reaction rate ri(t) is given by the following expression; E.M.

Eyring [26]:

Q Sit n Yi
ri(t) -� i C - Si r C i l,...,p (5-9)

where Si, S i are respectively the forward and reverse reaction constants

of reaction i, J - 1,...,Z are the reactants and j - Z+l,...,n are the

products and Bij and yij are phenomenological coefficients that must

satisfy constraints imposed by the stoichiometry of the reaction, as

will be shown later on in this section.

The boundary conditions for equations (5-5) through (5-7) are

obtained by a flow balance at the membrane surfaces as follows:

For (5-5)

1, a 0(C ) at x0
('O,t) - - O,t) + l°(t)xO

(5-10)

6 -t) r-( 6,t) - a6 (t) at x6

For (5-16)

2 t) - (O,t) - a 2
0 (t) at xIO2-(O0) - - ~ -(Ot) - 02 ° at)at ax2

(5-11)

aC2 +2 ·6 a C
--t(6 t) - (6 t) + a2 at x26't ax '
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And for (5-7)

-t-(Ot) = - °,t) - 3 (t) at xO

(5-12)

ac3 a¢ 6

at 3-at=(6t) ' - - + C3 (t) atxm6

where the a's are the chemical concentrations rates defined according to

the generic equation (5-8), the superscript 0 or 6 indicates the correspond-

ing group of simultaneous reactions to which the chemical concentration

rate is referred: 0 the group (5-1), (5-2) and 6 the group (5-3), (5-4).

Before deriving expressions for the flows , 02 and 33, the dynamic

equations for the component concentrations entering in reactions (5-1) -

(5-4) are established using equations (5-8) and (5-9).

Let C40(t), C50 (t), C6 (t) and C7(t) be the concentrations of the

species K , Na+, ADP and ATP at the inside respectively; similarly, let

C46 (t), C5 6(t) and C8(t) be the concentrations of species K
+ , Na+, and Pi

respectively (see Fig. 5.2); then from (5-8) and (5-9), the following

equations are obtained

dC40 15 12
40 2 S 1C50 W(t)C2 (o,t) - 2 SC 40 (t)Cl (,t) (5-13)

15 012 Y14 Yll
-- *_3 S1C50 (t)C (0,t) + 3 S C40 (t)C (0,t) (5-14)dt 1 50 2 -1C40 (t)

0l°(t) s1C50 15 21t2 -t14 )11(t)C2 t 1 C4 0 (t)C1 (0,t) (5-15)
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Recall that reaction (5.1) was assumed to be reversible, Similarly,

02 () - o 1 (t) + s 2c 3 7J2°(t) ' - crl°(t) + S : 23(O,t)C 27(t) (5-16)

dC 8 8
6 S 23,t 7 (547)
at S 2 C3 (O,t)C7 (t)

dC
Notice that d is not dependent on C6 (t). This is due to the fact

that reaction (5-2) was assumed to be completely irreversible (see

section 5-2); this is an idealization because in the real world no re-

action is fully irreversible; nevertheless the contribution of the

irreversible part to the concentration rate is negligible (i.e.,

IS21>>!S_21).

dC 7 823 27
dt7 ' - S2C3 (O,t)C7

27 (t) (5-18)

o3 (t) -SC 23(O,t)C 27(t) (5-18a)

Equations (5-13) - (5-18a) describe the dynamics of each species

concentration at the inside surface of the axon membrane in the

sodium pump.

Similarly, for the species on the outer surface

dC46 - 2 S3C1 31(6,t)C46 3 4 (t) + 2 S 3C2 (6,t)C50
35(t) (5-19)

dt

dC56 831 a34 Y32 Y35
- 3 S3 C1 (6,t)c 46 (t) - 3 S 3C 2 tC 5 0 (5-20)
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16 = '331 34 32 735Cy (t) -S 3C 3 1 (6,t)c 46 (t) + S3C2 (6,t)C 5 0 (t) (5-21)

e 6 42o2 ~it m 1a (t) - S4C2 (6,t (5-22)

dC

dt S 4C2 (6,'t) (5-23)

a36(t) ' S4C2 (6,t) (5-24)

The flows 4l(x,t), *2(x,t) and *3 (x,t), and the concentrations

C1(x,t), C2(xt), C3(x,t) are considered to be distributions across the

membrane; therefore, using the principles of field theory, differential

equations relating each flow distribution with its corresponding con-

centration distribution follow a derivation analogous to the one used

for this purpose in Chapter III. Notice that this is possible since no

interaction among the flow of carriers inside the membrane is allowed to

occur·

Let Pj j 1,2,3 be the chemical potential of carriers CPNa3, CPK 2

and CK2 respectively, then (see Chapter III)

-; - p° + RT An * CI j a 1,2,3 (5-25)

where tj is the (constant) chemical activity of carrier j in the membrane

and pj is its chemical potential at ground state conditions.

The force xj driving carrier j is given by

j - j 1,2,3 (5-26)DX~~~~~~~~~~~~~~(-6



-131 -

and their velocities are given by

Vj " UXj- j L 1,2,3 (5-27)

where uj is the carrier J mobility. In Chapter III the mobility of each

ion species was found to be a function of the membrane potential; since

the carriers are electrically neutral the carrier mobility as opposed

to the ionic mobility is only dependent on the temperature of the axon

membrane which is assumed to be constant, therefore the carrier mobili-

ties uj j - 1,2,3 are constant.

From (3-10) the flow of carrier J is given by

}(X,t) - vj(xt)Cj(x,t) j - 1,2,3 (5-28)

Then, from (5-25), (5-26), (5v27) in (5-28)

j -- u(RT xjx (n Cj(x,t))Cj(x,t) j = 1,2,3

or
ac

j(x,t) = - ujRT a (x,t) j = 1,2,3 (5-29)

Now, from (5-29) in (5-5), (5-6), (547), the dynamic equations for

the concentration distributions of carriers CPNa3, CPK2, CK2 respectively

are obtained.

acl a2 c
at U1"uRT 2 (5-30)

ax

ac a2c2
at u2RT 2 (5-31)

ax
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ac a Ce
a t " u3RT- 2

3 (5-32)
ax2

Since the mobilities are constant, equations (5-30) - (5-32) are

usual linear diffusion equations with the boundary conditions given by

equations (5-10) - (5-12).

Before going further in the derivation of the model, an analysis

of the "well-posedness" of the system of equations (5-30) - (5-32)

with the associated boundary conditions will be carried out.

Equations (5-10), (5-11) and (5-12) can be written solely in terms

of the respective concentration distributions by using (5-29):

ac a 2c 1
at Ot) - + u1RT2 -(O,t) + l ( t)

(5-33)

ac1 a2c
t;.-(6,t) , - ulRT 2 (6,t) - ol (t)

ax

ac a 2c
at' O0t) = u2RT 2 -- (0t) - a20(t)

ax

(5-34)

ac 2 ac 2 6
at-(6,t) - - u2 RT -- (22,t) - 026(t)

ax

ac a 2c
at-(O,t) - u3RT -3(0,t) - o3 (t)

ax
(5-35)

ac ac 3 6
at 3 2 3

ax
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Recall that in order to have a physical meaning,

J(x,t) > 0 j = 1,2,3 (5-36)

Comparing eqs. (5-30) - (5-32) with eqs. (5-33) - (5-35) it can be

seen that the a - functions constitute impulses in the spatial coordinate

at the boundaries; therefore, in a strong sense, the problem is not well

possed. Recall that the assumption ef point - reaction led to the defini-

tion of the reaction flow a. The previous analysis shows that this

constraint is too "hard". Furthermore, from a physical point of view,

a relaxed condition i.e., one that allows the reaction kinetics to occur

in a finite volume, which implies a finite distribution of reaction in the x

direction is reasonable. Let A0 be the length of reaction in the inner surface

and A1 the respective length of reaction in the outer surface; where A ,

A1 << 6. Physically these lengths of reactions are considered to be the

two thin protein layers coating the phospholipoid bilayer-axon membrane

according to Dannielli's model (see Chapter I).

The following scheme is proposed for approximating the boundary

equations (5-33) - (5-35) Kohn [33]:

a) Discretize the spatial-derivative terms of (5-33) - (5-35) according

to the following expressions:

a2C
1

2 (O,t) - 2 (hi(Aot) - 2hi(Ao/2,t) + hi(O,t)) (5-37)ax A 
0 ii" 1,2,3

and
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ac 1 A1
- (6, t) ~ 2(hi(6,t) - 2hi(- ,t) + hi(6-A, (5-38)

ax

i - 1,2,3

where hi(.,t) i 1,2,3 are the concentration-distribution approxima-
A

tions in the inside reaction region at the points 0, 0, A and at the
2

outside reaction points 6-A1, 6-A1/2, 6. According to experimental

evidence (Robertson [31]), the size of Ao, A1 is of the order of 1/50 of

the axon membrane thickness.

b) By the adjacent cell-method, (Angel and Bellman [34]) each equation

in (5-33) - (5-35) is approximated by 3 ordinary differential equations

as follows:

dhi uiRT A
--i(°,t) - O(hi(0,t) + hi( ,t))

( 0)

dh uiRT
-di(A o/2,t) ( h(O,t) - 2hi(Ao/2,t) + hi(Ao,t)) + ai(t) (5-39)

dh i uiRT

dt(o,t) - )2(hi(Aot) + hi(Ao/2,t)) i - 1,2,3dt 0 (A 2ioio

and

dhi uRT A1t (6-A t) - uiRT 

(A1) 2 (hi(6-Ailt) + hi(6 - -t))

dh A1 u RT A
dt 2 (A i(6Al,t) + hi( t) + hi(6-lt) 

(5-40)
dh i uiRT

dt ' (6,t) -- (hi(6,t) + hi(6-A1/2,t))

(A1) i - 1,2,3
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c) For the system of equations (5-13) - (5-19),

%t(Ot) -hi(O,t) i - 1,2,3 (5-41)

Similarly, for the system of equations (5-20) - (5-24)

Ci(6,t) - h(d6,t) i - 1,2,3 (5-42)

Notice that hi(.,t) i - 1,2,3 are defined only at points 0,

A0 A

2' Ao' 6-A1, 6 - 2 6.

d) The approximate boundary conditions for the carrier-transport system,

eqs,. (5-30) - (5-32) become

Ci(O,t) hi(oAt)

i - 1,2,3 (5-43)

C(d6,t) - hi(6-Al,t)

The well posedness of the carrier diffusion problem with the

boundary conditions given by (5-51), can be proved by carrying out an

analysis similar to the one developed in Chapter III for the ionic

transport model.

The next issue towards the specification of the model for the

sodium pump, is the determination of initial conditions for the model

dynamic equation discussed above.

The initial conditions depend mainly on two factors, steady-state

behavior of the carrier-reaction system inside the membrane and the

activation mechanisms of enzyme complexes (Ei i = 1,....,4 see section

5-2). The first factor determines the initial distribution of the
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carrier flows ~1, 02' 03 and consequently their respective initial con-

centration distributions, and the second specifies the initial surface

concentrations of the species that conform to the reaction mechanisms

at the membrane surfaces.

Furthermore, the steady state equations of the model will be used

for identifying the reaction-parameters {bij, Yij} and the reaction

constants {S i, Si} that under certain restrictions prevail for the pump

under dynamic operation.

Assuming that for small variations around the steady state,

Gibbs law holds for the system of reactions characterizing the pump,

N
dG - SdT + vdP + Z dN (5-44)

where dNj J - 1,2,...,N is the amount in moles of ion species j in

the reacting system at equilibrium conditions dG - 0, and since the

reaction system of the sodium pump operates at isothermal isobaric con-

ditions, at equilibrium, (5-44) becomes:

N
E PjdNj -0 (5-45)
j-l

Recall that the chemical potentials pj referred to in (5-45) are the

ones associated with the corresponding species in the reacting region,

for i - 1,...,p simultaneous reactions at equilibrium conditions the law

of conservation of mass can be expressed as

p
dNj ' a ijdzi j 1,...,N (5-46)

wi- 

where dz is the differential of the extent of reaction (moles) of the
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i-th reaction.

Then from (5-44) in (5-43) and since (5-43) must be true for any

arbitrary set of values of dzi i - 1,..,p,

N
Z aij"j " 0 i - 1,...,p (5-47)

j-1

Condition (5-47) implies that at steady state the reacting system

satisfies Hess' law i.e.,

Kci ' Ki/(RT) i i i l,...,p (5-48)

where Kci i l,...,p are defined by the following expressions:

N P
Kcil jl °Jo i-l ija iJi i l,...p (5-49)

{Cjo} is a set of equilibrium concentrations and Si(mole/cm3),

i = l,..o,p are the volumetric extents of reaction of the simultaneous

reactions occurring in the system.

a is defined as

N
-ai J aii - l,...,p (5-50)
J-1

and Ki is the equilibrium constant of the i-th reaction and is defined

by the following expression

Ki eAG /R Ti = 1,...,p (5-51)

where AGiO is the Gibbs free energy of i-th reaction in the system at

standard conditions, and is defined by the following relationship
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AGi H - TASi i - 1,..,p (5-52)

where Al° is the standard enthalpy of reaction i and ASi is the standard

entropy of reaction i. (5-52) might be written in the following form for

steady state conditions (not necessarily standard conditions)

Ki - Ki* exp(-AHi/RT) i - 1,..*,p (5-53)

where AHi is the difference of enthalpy between products and reactants

in the i-th reaction and Ki* is the constant of entropy production and

can be experimentally determined by a calorimetric procedure, (i.e.,

K *- e(ASi/R) ' i

Equations (5-57) should be interpreted in the following manner;

Given initial equilibrium concentrations Cj - 1,...,N the systemjo

atains equilibrium at concentrations Cj j - 1,...,N through p simulta-

neous reactions according to the following expressions

P
C ft j+ E 01 j - l,...,N (5-54)

Hence, given the initial concentrations {Cjo} and the set of equili-

brium constants {Ki}, the extents of reaction {Ci X=l,...,p} can be

determined using equations (5-49). It can be shown that the Jacobian

det(a(KC ...OKC )/a(K1 ,...)) is positive for all i's, so a unique

solution is obtained.

Now a procedure for determining the coefficients Aij, Yij' Si and

S i in equations (5-9) will be discussed.

Recall from (5-9), that the reaction rate ri of the i-th reaction

is given by
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i-1 j' Ji j+

At equiliorium, ri 0 i - 1,...,p so the following relations are

obtained

N Y
S ' C -S X Ci i J l,...,p (5-55)
si -i 2+1

Since by setting the exponent Sij or Jij equal to zero one can make

the respective product in (5-63) independent of Cj one might as well

enlarge the range of products on both sides of (5-63) so that both pro-

ducts go from J - 1,...,N. Then, the following relations result:

N Yi -a
Ir Cj iJ . Si/S i i - l,...,p (5-56)

which are the conditions of chemical equilibrium of the system. But from

(5-49) and (5-56) an independent expression of equilibrium can be obtained

ie.,

K Nv j i - 1,... ,p (5-57)
KCi - CJ
i ji1

From (5-56) and (5-57) a sufficient condition for consistency can

be obtained; i.e.,

XYij ij -ij i - l,...,p, j - l,...,N (5-58)

and

KCi -Si/Si i a l,...,p (5-59)
KC Si/S i (5-59)

In general, if the two sides of (5-56) were the same function of

the respective sides of (5-57) then the two expressions would still be
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consistent. Suppose S/S F(KC) l...p, then
ai

CYij Fi(Cj ) i = l,...,p (5-60)

Now, this must be true for all values of Cj. So set

C1 V i 2 C C CN 1, in the i-th equation of (5-68), then

Fi (v) - v

where ni (Y¥l Bil)/ail ' Doing the same thing with j - 2,3,..,N

shows that ni has the common value,

t J - i,...,N (5-61)

i v 1,...,p

So, the only functional relation maintaining consistency between

the two expressions for chemical equilibrium is that one should be the

power of the other. But 8ij and Yij are phenomenological constants and

have no necessary connection with aij except to satisfy the consistency

relation (5-61). The constants ni, i - 1,...,p are termed the

degrees of cooperativity of the reaction-system. It has been shown

experimentally in fragmented membrane preparations (Dixon and Webb [35]),

using a Michaelis-Menten model for the membrane reaction system, that

these coefficients (ni) are lower than unity for low sodium concentrations,

about unity for medium physiological sodium concentration and about 1.5

for high sodium concentrations. (Twice the physiological sodium concentra-

tion, see Chapter IV). Therefore, for this sodium-pump model, it will be

assumed that ni = 1, i - l,...,p.
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Recall that in the case where a particular reaction of the system

is assumed to be irreversible, condition (5-59) becomes,

Kci a Si (5-62)

similarly (5-61) becomes,

ni a (5-63)
iij

with i in the subset of irreversible reactions of the system.

Notice also that in the case of reversible reactions (5-59) gives

only the ratio Si/Si so in order to determine both reaction constants

one of them (usually the forward reaction constant Si) has to be determined

by experimentation and then with relation (5-59), the other may be computed.

Next, the general derivation of the steady state conditions for simul-

taneous reactions derived above will be specialized for the two groups of

reactions of the sodium pump.

For the reaction group in the inner surface, (reactions (5-1) and

(5-2)) the initial conditions satisfy relations (5-48) so,

Kc - K1/(RT)- - K1RT (5-64)

Kc2 K2/(RT)
° - K2 1

where K1 and K2 are computed using (5-59). The Gibbs-free energy of re-

actions (5-1) and (5-2) is not known exactly; nevertheless, several experi-

mental measurements of this energy are available for reactions occurring

in fragmented membrane preparations,,which give at least bounds for the

values of the free energy for the inside reactions, as will be discussed

in the next section.

Similarly, for the group of reactions at the external surface ((5-3),
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(5-4')), 

CX 3 ~ / (RT)
(5-65)

Kc - K4 /RT

The extent of reaction for reactions (5-1) - (5-4) can be computed

by solving 2 sets of decoupled simultaneous equations of the form of

(5-55):

KC - (C 0o + )(c 0 - + 2)(C40 + 2E1)2(c50 31 )3

(5-66)

KC (C20 ( 1 + [2)(C 30 2)(C 60 + 2)(C 7 0 -2 )

where (C0lo i - 1,...,7) are any equilibrium concentrations for the

species reacting at the inside surface (reactions (5-1), (5-2)), 1' 52

are the respective extents of reactions, and {C o} can be found experi-

mentally (i.e., see the values for C40 and C50 in table 4-1) and then,

equations (5-66) are solved simultaneously for 1l' 52 (recall that the

solution is unique). Next, using (5-54) the equilibrium concentrations

{C i } may be computed.

Similarly, for reactions (5-3) - (5-4), which occur at the outer

membrane surface, the extents of reaction 53, 54 can be computed by solv-

ing the following simultaneous equations:

K C (C10
6

- 3)(C20 + 3 4)(C(C0 + 33)

(5-67)

K C (C 2 0 3 - + 4(C 30 + 64) (C8 0
6 + 4)
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where (C i - 1,2,...,8) are any equilibrium concentrations for
lo 

the species reacting in the outside surface (reactions (5-3) - (5-4)).

Also, {C io can be determined experimentally so, knowing 3,3 -4 by

(5-62), {Ci } the equilibrium concentrations at the outer boundary of

the axon membrane may be found.

Notice that by using (5-49), the reaction constants (Si i -1,

-2,...,4) for the boundary conditions of the dynamic equations of the

model can be computed.

The development above indicates a procedure for computing the

equilibrium concentrations at the boundaries; in order to completely

specify the initial conditions, the steady state distributions of the

carrier concentrations* C~ (x), C2 (x), C3 (x) in the membrane must

be determined. First, notice that they must satisfy the boundary con-

ditions

1 o 1 6
c2 (0) - c2 ° , c2 (6) - C2 (5-68)

C3(0 ) - C3° , C3 (6) - C 3

Second, the carrier distributions, must satisfy the following

homogeneous equations:

d2C 1

dx

* The superscript in C indicates a steady steady state distribution.
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21

dC.2'(x) 0 0 < x < (5-70)
dx

d 2 C 1

2 3 (x) " 0 0 x < x 6 (5-71)
dx

Equations (5-69), (5-70), (5-71) are obtained by making the time

derivatives equal to zero in eqs. (5-30) - (5-32) a condition which

corresponds to a steady state, as discussed above.

Equations (5-69) - (5-71) can be integrated with the given boundary

conditions (5-74):

Cf -Co
6 oCll(x) + Cl°

1 2 C 2 6
C2 (x) i + C2 (5-72)

6 oC

C 1(x) -C + 33 6 3

With the latter, the model for the active transport process is now

complete.

5.4 Qualitative Analysis of the Process in Terms of the Model

The model derived in the last section, presents several interesting

mathematical characteristics that can be interpreted in physical terms

and therefore presents a tool that can be used for carrying out an analysis

of the operative characteristics of the pump.

First, some aspects of the dynamics of the pump will be considered.

The activation of the pump is determined by two factors: the first
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is the ratio of Potassium vs. Sodium concentration in the inner solution,

the second is the activation of enzyme complex E2. As the ratio of potas-

sium vs. sodium decreases in the inside, reaction (5-2) product (carrier

CPNa3) increases. This condition can be verified to follow in the model,

by studying equation (5-15) corresponding to the chemical flow of CPNa3

from reaction (5-1) (al°(t)); an increase in the ratio C50(t)/C 40(t)

will imply an increase in a1 (t) and consequently by equation (5-28), an

increase in the flow of this carrier, .I' But no increase of this ratio

will increase appreciably al°(t) if the concentration of CPK2, the energy

carrier (C2(O,t)), does not increase since it enters as a positive multi-

plicative factor in the forward term of (5-15).

The rate increase of the concentration of CPK2 in the inner boundary

is proportional to a2°(t) (eq. (5-16)), which is directly proportional to

the ATP concentration in the inner solution; therefore no activation is

possible if the ATP concentration is below a certain threshold. i.e.,

from (5-16), for a given concentration of carrier CK2 and a given chemical

flow l°, the concentration of ATP C7, must satisfy the following inequality

C7 (t) > (t) (5-79)C(t)7(t

Consequently, the rate of flow of ATP from the organelles in the cell

body to the axon must be controlled by a mechanism (which is not included

in the formulation of the model) that is activated by the ATP concentra-

tion so that (5-79) is satisfied.

The form of equation (5-16) exhibits explicitly the regulation

mechanism described in section 5-2. Namely an increase in CPNa3 at the

------ ~ --- ------- "---~s""~"~l"~-s~~ l~-'------3
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inner boundary implies an increase of al°(t) which in turn implies an

increase of the flow rate of CPNa3 across the membrane (Eq. (5-30))

and a decrease in the production o20 (t), since al°(t) enters as a sub-

tracting term in the equation defining o2°(t) (Eq. (5-16)).

Its important to notice that the system dynamics depends heavily

on the initial condition that triggers the pump is not unique; this can

be notice in the process by which this initial condition is computed.

Given any equilibrium concentration set {Cjo, Caj} for the species of

the system, the initial condition for the pump will depend on the re-

action extents which in turn depend on the activity of the surface re-

Actions as measured by the reactions constants {Kc } (Eqs. (5-66) and

(5-67)). This non uniqueness of initial conditions has been corroborated

by experimental evidence Glynn; and shows the great flexibility of the

pump for restoring the ionic concentration gradients of sodium and potas-

sium. As discussed before, the pump will be activated by a given initial

condition only if enzyme E2-activation site is active. Pressumably it is

activated by PH of the inside solution provided the concentration of ATP

in the inner solution satisfies (5-79).

Finally, notice that the ionic transport model and the active trans-

port model are coupled through the sodium and potassium boundary concentra-

tions. In Chapter III, it was assumed that the ionic concentrations at the

axon membrane surfaces were constant; in this chapter, the boundary concen-

trations of these ions, namely C40 (t), C50(t), C46 (t), C56(t) satisfy dif-

ferential equations (5-13), (5-14), (5-19),((5-20) and therefore will not

be constant in general; notice however, that the time constants for these
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equations are directly proportional to the carrier mobilities ul, u2;

and they are constant values that depend on the masses of the carriers

which are much larger than the masses of the respective ions so that

the ion-time constants are considerably smaller that of the carriers

which implies that for practical purposes, the assumption of constant

concentrations at the membrane surface is reasonable.

5.5 Conclusions

In this chapter a model for the active process in clamped axon

membranes was derived. The model provides a tool for analyzing the

physiological characteristics of the process and can be used also as

the means for identifying the identity of the carriers operating in it

and also, for determining the precise operation of the carrier mechanism

and the catalytic and kinetic structure for its formation at the membrane

boundaries. Also the model can be easily adapted for analyzing inhibition

processes such as the produced by the cardiac glycosides.
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CHAPTER VI

CONCLUSIONS

6.1 Introduction

This chapter presents a general overview of the main topics con-

sidered in this thesis with an emphasis on the main conclusions reached

in the study. Also, several aspects of the dynamical operation of the

axon membrane that were not covered in this study are mentioned as well

as general suggestions about the possible ways by which the model de-

veloped in this thesis can be generalized or modified.

In short, the purpose of the study was to develop a mathematical

model of the dynamical behavior of the axon membrane when subject to

a voltage clamp in the longitudinal direction of the axon.

In the model, two processes are considered; the ionic transport

process and the active transport process. The first is responsible for

the generation of an electric pulse when the axon membrane is excited

over a threshold and the second is the mechanism that restores and

maintains operating conditions for the membrane i.e., ionic potentials.

The chapter is divided in 2 sections: 6-2 Review of the main con-

clusions in each of the chapters of the thesis and 6-3 Some suggestions

for future research.

6.2 Review of the Main Conclusions in Each Chapter

----------------------- ----- - --- - ----- ~ _~ ~~ _~_ ~ ~~,~., ,,;~. .. . .;. .. . - · · ---- - r---7--------·----
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a. Chapter I

Is an introduction to the subject of neuron cells in general, and

neuron cell membranes in particular. It includes a short historical

account of the research in the field and an elementary anatomical des-

cription of the neuron cell and in particular of the axon, including

the bilayer unit theory of the cell membrane formulated by Dannielli.

b. Chapter II

Contains an analysis of the Hodgkin and Huxley model for the action

potential from a systems theoretic point of view. It is shown that the

model's dynamics presents a structure that makes it unidentifiable from

input output data so that the model obtained, although it fits the experi-

mental data measured at the output i.e., membrane potential, ionic

current density, etcag cannot be guaranteed to correspond to the actual

structure of the physical axon membrane system.

Also the control structure mechanism of the axon membrane on the

action potential was analyzed in the context of the model; it was shown

that the clamped membrane potential is the output of a dynamic system

multiplicatively controlled by a time varying vector function (ionic-

conductance vector) which is driven by a linear dynamical system,. Al-

though this structure of the internal representation of the control

is completely empirical, it is shown in Chapter III that by physical

analysis of the ionic transport process a very similar control structure

is obtained.

Finally, a sensitivity analysis of the model shows that rather big

variations of its parameters do not produce considerable changes in the

output so instead of the parameters originally derived by Hodgkin and
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Huxley, a family of parameters that agree with the experimentally measured

variables, was found.

c. Chapter III

Is perhaps the most important chapter of the thesis, it describes

the derivation procedure in obtaining a model for the ionic transport

process. The model is derived in the context of well proven laws of

field theory and irreversible thermodynamics. It is shown that the elec-

tric phenomena in the excited clamped axon membrane is a function of the

flow of ions across the membrane due to their electrochemical gradients.

This flow is not Just passive but rather it is regulated actively by

the membrane. The membrane ionic flow regulating mechanism is modelled

by a phenomenological membrane potential-dependent time vector function

denoted as ionic mobility (one entry for each ion species). An explicit

expression for this function was derived using statistical mechanics

arguments.

In the ionic transport model, each ion species has a concentration

distribution inside the membrane. These distributions determine the

electric field intensity distribution which in turn determines the time

course behavior of the excited axon membrane potential.

The well-posedness of the equations of the model as well as the

stability properties of the system were analyzed.

d. Chapter IV

Contains the main results obtained from a computer simulation of

the model derived in Chapter III. It is shown that the model exhibits

good agreement with the experimental data obtained by Hodgkin and Huxley.
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Some interesting aspects of the role of calcium ions in the ionic

transport process are analyzed.

The electric field intensity present across the membrane during

equilibrium and during excitation conditions is computed and the physical

implications of its dynamic course are analyzed.

Finally, the oscillatory phenomena observed in hyperpolaryzed mem-

branes is reproduced using the model and some of its functional and

physiological implications are briefly analyzed.

e. Chapter V

A model for the active transport process is derived in the context

of field theory and irreversible thermodynamics. Some physiological as-

pects of the process are qualitatively studied using the model.

The model is developed by considering process as composed of 3

dynamical subprocess: 2 chemical mechanisms for combination of sodium

and potassium ions with neutral carriers that allow these ions to be

transported against their electrochemical gradients. These mechanisms

are assumed to be located at the membrane inner and outer surface. The

third subprocess is a diffusion of carriers across the membrane driven

by their chemical gradients.

The mechanisms of activation of this process and the energy process

which feeds it are studied in the context of the model.

Finally, the coupling mechanism between the ionic transport process

and the active transport process is analyzed.

6.3 Some Suggestions for Future Research

One of the important aspects of the operation of the axon membrane
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as a functional unit in the nervous information system, not covered in

this study, is the propagation of the electric spike along the axon

membrane. The ionic transport model, developed in Chapter III can be

generalized to study this phenomena by considering an additional current

density convective term in equation (3-16). The coefficient of this

convective term, namely the axial velocity of pulse propagation is strong-

ly dependent on the membrane surface electric properties which in this

author's opinion are not well known. Therefore, in order to study the

propagation phenomena a prior study of the membrane surface should be

carried out.

In the active transport model some of the aspects of competitive

behavior among ions different than sodium and potassium (e.g., calcium

and magnessium ions) were not studied, although the complexity of the

model increases when this phenomenon is considered. This increase in

difficulty of the model is represented by the addition of equations to

simulate this phenomenon, not in the mathematical structure of the model.

Finally, a complete simulation study of the active transport model

should be carried out in order to determine how well it approximates the

behavior of the real membrane system and also to obtain quantitative con-

clusions about the physical phenomena that characterize it.

A numerical evaluation of the parameters of the model developed in this

chapter requires a considerable amount of experimental measurements as dis-

cussed in section 5-3. In [36], a dynamical model of the process is develop-

ed around an equilibrium state. This model permits the identification of

the flow parameters (mobilities 1'l P 2, Pu3) and the reaction constants Si,

(i = -1,-2,...,4) and therefore can be used for computing the data basis

for the model developed in this chapter.
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, APPENDIX I

Discretization Scheme for

the Dynamics Ionic Transport Model

Equations (3-33) - (3-36) that describe the dynamic behavior of ion

transport model for the axon membrane during the action potential, are

a set of nonlinear partial differential equations that cannot be solved

using analytical techniques; therefore, a discretization technique must

be used in order to get an approximate solution. The discretization

scheme used in this thesis is briefly described here and a short analysis

of some of the properties of the resultant difference equations is given.

General Description

The set of equations (3-33) - (3-36) is defined in a bounded region

CR2 , whose boundary r is determined by the thickness of the membrane,

6, and T, a finite time interval (roughly 2msec) over which the major

portion of the action potential takes place, therefore in set notation

= . {(x,t)CR 2 I O<x<6 , O<t<T} A-1

The system of equations (3-33) - (3-36) may be expressed by the

following operator notation

au
- L(u) A-2
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where L(u) is a nonlinear partial differential operator and

C (x,t)

u(x,t) ' . A-3

C 5(x,t)

E(x,t)

The problem is to find a vector function u(x,t) that satisfies A-2

at each point of Sn with the boundary conditions;

0 I(x,t) - u (t)

A-4

u(x,t) = (t)

where -o, E is the operator notation for equations (3-38).

The solution of this problem is attempted by finding a table of

approximate values of the vector u on a finite set of points YCQ.

The set Y: This table is called a grid and the individual points of Y

are called meshpoints.

In this thesis a rectangular grid is used and a particular mesh-

point of Y may be represented as (nAx, mAt) n = 1,2,...N , m = 1,2,...

where Ax is the spatial stepsize and At is the time stepsize (assumed

constant).

N, Z are defined as follows:

N [6/Ax]
A-5

-' [T/At]
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Thus, the number of points of the grid is equal to Nxl.

At each point of the grid a vector equation approximating A-2

is derived. The resultant discretized operator may be represented

by

R(h(iAx, kAt)) - f(iAx, kAt)
A-6

i - 1,... ,1 k = 1,2,... ,N

R (-) is a difference operator and _%(iAx, kAt) is the approximate

value of u(iAx, kAt).

Although the system of equations (3-33) - (3-36) is nonlinear, it

would be advantageous if the resultant discretized operator R is linear,

because the solution of equation A-6 reduces to a matrix inversion.

Also, it is desirable that R be of such a form that the values of h

at the point iAx, (k+l)At can be obtained by an equation which

expresses them as a function of the values of 2h at an adjacent mesh-

point say iAx, kAt. This condition reduces the dimension of R(-) and

therefore the storage requirements for implementing A-6 in a digital

computer.

The boundary conditions A-4, are discretized over a set of points

z u r giving the following operator equations:

ro h (O0, kAt) - u (kAt)

where r ( ), ( ) are the discretized approximations of operators A-4
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With the previous definitions the problem now is to find the

table of values _%(iAx, kAt) i - 1,...,1 , k = 1,....,N such that A-6,

A-7 are satisfied.

It is assumed that the following limit holds:

lim I I%(iAx, kAt) lu - 0

Ax-+O A-8

At*O

where the norm is defined on a function vector space U formed by the

vector functions that satisfy A-2.

Moreover, it is assumed that for each point of the mesh Eqs A-6,

A-7 have a unique solution provided that the initial conditions are

properly chosen. This assumption is based on an analysis of the

structure of equations (3-33) - (3-36), which exhibit a limit cycle type of

dynamical behavior around the initial conditions (resting state). This

behavior has profound physical implications on the characteristics of

the subthreshold phenomena and will be analyzed to some extent in the

thesis.

Difference Representation of the

Differential Forms in (3-33) - (3-36)

The following set of equations give approximate expressions for

the differentials appearing in equations (3-33) - (3-36). Their degree of

approximation is studied for the model in the thesis. Here it is just

important to remark that for good approximations it is necessary that

........ ..;·· -;- ··- ·- ·- ·-·-- ·
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the spatial increment Ax and the time increment At have to be "small"

as compared with 6 and T respectively and also, for good convergence

of the ciscretized equations (A-6, A-7) the following condition must

hold:

AtIlt~~~~~~~~ ~A-9
-x <1 A-9

DC
(a) = At(C (i, k+l) - Cj(i, k))

i,k

ac
(ax =ik = 21xx(Cj(i+l, k) - C (i-1, k)) A-10

2

· !t 2 (C (i+l, k) - 2C (i, k) + Cj(i-1, k))
i,k (Ax) 

j - 1,2,... ,5

ax) (E(il, k) - E(i-, k))

i,k

A-11

(.t)i - t(E(i, k+l) - E(i, k))
i,k

where the subscripts i, k indicate the meshpoint iAx , kAt.

Then, using A-10, A-11 for each meshpoint i, k, equation (3-33) can

be approximated by the following expression:
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u RT FZ u
c (i, k+ll) Cj (i+l, k) (.x) 2 E (,.) +k+1) - - (Ax)2 2Ax

C.(, k 1 2ujRT+ E(i+l, k) + A-12
Cj (il k) A 2 + 2Ax

(Ax)

Cj(i-1, k) - 2 + ux EUi k)
(AX) 2 2A

Equation (3-34), is approximated by the following difference

equation:

i F
2Ax (E(i+l, k) - E(i-l, k)) £ C F(i, k)

A-13

i = 0,1,2,... ,+1 k = 0,1,2,...,N

Equation (3-35) becomes:

Z u FRT
J'(i, k) =_ (C(i+l, k) - C (i-1, k)) +

22
UJ Z F E(i, k) A-14

j = 1,...,5 i = 0,...,1+1 k 0,1,...,N

Finally, Equation (3-36) becomes:

(i k) - E(i, k) k) - J(k))
jAt

A-15

j 111···15 i " 0,,.,1+1 k 0 Ol,...,N



- 159 -

Equations A-12, A-13, A-14, A-15 are valid for each meshpoint of

the grid. The meshpoints (0, k), and (X+1, k) correspond to the bound-

ary of ti. region and the values of Cj. There are given by the boundary

conditions: equations (3-38).

For computing purposes the variables in eqs A-12 - A-15 are organ-

ized in vector form as follows:

Cj(1, k)

C (k) - C (i, k) 1,...,5 A-16

C (Q, k)

E(l, k)

E(k) , E(i, k) A-17

E(X, k)
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j(1, k)

J (k) = Jj(i, k)j = 1, ... ,5 A-18

Jj , k)

With definitions A-16, A-17, A-18, Equations A-12 - A-15 can be

written as vector difference equations as follows:

C (k+l) - AtA (k, E(k)) C(k) + At (k) v (k)
-I - A-19

j a 1,2, ... ,5 k m 0,...,N

1
UE(k) - ZjC (k)+ + (k)

A-20

k a 0,... ,N

J (k) - %(k, E(k)) C (k) + Q.v.(k)

A-21

j - 1,...,5 k = 0,...NN

At 1
F,(k+l) - E(k) + - J (k) -- MJ(k)

A-22

dk a O,..lN

where A j - 1,...,5 are Xxt tridiagonal matrices with elements

defined as follows:
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uRT uFZ
a (jWjk) - - + J E(i, k)i1,. , )2 2Ax 

A-23

1 2uRT uFZ
ai----+ (E(i+l, k) - E(i-, k))

i~i At (Ax) 2 2Ax ' 4

i,i+l (k) 2 + 2Ax E(i, k)
(Ax)

A-25

B (k) is a Qx2 matrix with all -but bll a bZ- elements equal to

zero and

bji (k) ,- - + - E(O, k) A-2611 (k) 2 _Fu

bQ 2 (k) - - + .E(E+l,(k)
,i( x 2 2Ax (Ax)

-j 3

v (k) |j, given, constant
-j vC (+1, k) 

A-28

U is the following constant sx2 matrix:-- ~----~zero and
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0 1 0 0 0 . . 0

-1 0 1 0 0

0-1 0 1 0

0 0-1 0 1

U-~ t2~ .A-29

-1 0 1

-1 0

and W is a 2xZ constant matrix with all its elements but w1 1 and w2 Z

equal to zero

wl -1
A-30

w2 -- 1

and

E(O, k)
V (k) = A-31

E (+1, k)

a (k, E(k)) j = 1,...,5 are QxQ tridiagonal matrices whose non

zero elements are given by the following expressions:

2 2
u ZF E(i,i k) A-32

u .Z FRT

i'i-l 2Ax

ai il(k) - - aJ ii (k) A-34

j =I 1,...1
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o j - 1,...,5 are Rx2 matrices with all their elements but

11 and 8 J2 equal to zero

Z u FRT
oj~ = _ Z_ A-35
11 2Ax

j -z2 11

From A-21 in A-22 the following equation for E(k+l) is obtained:

5
At

E(k+l) I- E(k) + - (a (k, E(k)) C (k) + 0 v (k) -

j"1 j
A-37

- MJ(k)

where

M - , an P vector A-38

E(O), (O), (O) j 1l...,5, are given by the resting con-

dition analysis of the system and J(k) is given for every k.

Finally, the value of the potential at the inner surface of the mem-

brane at each instant of time kAx k = 0,...,N is computed by approximating

eq. (3-37) by a numerical integration procedure. Since the spatial interval

is "small" as compared with the membrane thickness (Ax = 6/20) a 1/3

Simpson rule is adequate; therefore the electric potential at the inner

membrane surface is given by
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(k) - - 2E(i, k) + 4E(i+l, k)) + E(O, k)

A-39

+ E(1+1, k) t- + V
3 r

The ionic transport model has been approximated by a discretized

set of equations whose solution can be obtained with a digital computer.

A brief description of the logical steps followed in the implementation

of the algorithm used in this thesis is given below

Step 1 Set k - 0

Step 2 Compute E(k+l) using Eqs A-22

Compute V(k) using Eqs A-20

Step 3 Compute T(k) using Eq A-39

Step 4 Set J - 1

Step 5 Compute C. (k+l) using Eqs A-19

Step 6 J+-J+l if J>5 go to step 7 otherwise go to step 5

Step 7 k*-k+l if k>N; stop otherwise, go to step 2

The initial equations (3-43) - (3-45) are integrated using the same

program, by making C (k+l) O in A-19.
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