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A NEW BASIS FOR THE REPRESENTATION RING
OF A WEYL GROUP

G. LUSZTIG

ABSTRACT. Let W be a Weyl group. In this paper we define a new basis for
the Grothendieck group of representations of W. This basis contains on the
one hand the special representations of W and on the other hand the represen-
tations of W carried by the left cells of W. We show that the representations
in the new basis have a certain bipositivity property.

INTRODUCTION AND STATEMENT OF RESULTS

0.1. Let W be an irreducible Weyl group. Let Ry be the (abelian) category of finite
dimensional representations of W over Q and let Ky be the Grothendieck group of
Rw. Now Ky has a Z-basis Irry, consisting of the irreducible representations of W
up to isomorphism. (We often identify a representation of W with its isomorphism
class.)

Recall that Irry is partitioned into subsets called families, see [L2, §8], [L5l 4.2];
these are in 1-1 correspondence with the two-sided cells of W. For each family
¢ of W we denote by R. the (abelian) category of all E € Ry which are direct
sums of irreducible representations in c. Let I, be the Grothendieck group of R..
It has a Z-basis consisting of the irreducible representations in ¢. Thus we have
Kw = @, K. where c runs over the families of W. We now fix a family ¢ of W.

In [LI] we introduced a class of irreducible objects of Ry denoted by Sy (later
called special representations); exactly one of these irreducible objects, denoted by
FE., is contained in c.

In [L4] we introduced a class of (not necessarily irreducible) objects of R, called
“cells” (later these objects were called the constructible representations). In [L6] we
showed that the constructible representations in R are precisely the representations
of W carried by the various left cells of W contained in c.

In this paper we introduce a class B, of objects of R. which includes both E.
and the constructible representations in R, and which forms a Z-basis of the group
K.. The representations in B, are called new representations. (Taking disjoint
union over all families of W we obtain a new Z-basis of Ky .)

0.2. Let T be a finite group. As in [L2] we define M (T') to be the set of all pairs (z, p)
where z € T and p € Irr(Z(x)) where Z(z) is the centralizer of z in T’ and Irr(Z (X))
is the set of irreducible representations of Z(z) over C up to isomorphism; these
pairs are taken up to conjugacy by any element of I'. Let C[M (I")] be the C-vector
space with basis {(z, p); (z, p) € M(I')}.
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440 G. LUSZTIG

Let H be a subgroup of I'. For « € T" let (I'/H)” be the fixed point set of the left
translation action of  on I'/H and let C[(T'/H)*] be the C-vector space with basis
(T/H)*. Now Z(z) acts by left translation on (I'/H)® and this induces a linear
action of Z(x) on C[(I'/H)*]. If p € Irr(Z(x)), let Ng 14, be the multiplicity of
p in the Z(z)-module C[(T'/H)"]. Let

(a) Sum= @B Nowa,lz,p)eCMT).

(z,p)eM(T)

More generally, let H C H’ be subgroups of I' with H normal in H’. Then the
obvious surjective map I'/H — T'/H' restricts to a map (I'/H)* — (I'/H’)* and
this induces a linear map C[(T'/H)*] — C[(T'/H’)*] (compatible with Z(x) actions)
whose image is denoted by Z. Now Z is a Z(z)-submodule of C[(T'/H")*]. If
p € Irr(Z(x)), let Ny g+ 2, be the multiplicity of p in the Z(z)-module Z. Let

(b) SH,H’ = @ NH,H’,m,p(xap) € C[M(F)}
(z,p)eM(T)

For example,

Sapqy = dimp(1,p),

p€lrr(T")

S{l},F = (17 1)7

Srr = > (z,1).

z€I' up to conjugacy

0.3. As in L5l §4] we attach to ¢ a finite group G, and an imbedding ¢ — M (G,).
Let My(G.) be the image of this imbedding. For (z,p) € My(G.) let E, , be
the corresponding (irreducible) representation in c¢. For any £ € R. we define
£ € C[M(G.)] by € = Z(x,p)eMo(gc)(Ew,p : &)(x, p) where (E,, : £) € N is the
multiplicity of E, , in £. Note that £ — £ defined an imbedding K. — C[M (G.)].

As was pointed out in [L7], to any constructible representation E in R. one can
attach a subgroup Hg of G., well defined up to conjugacy, such that £ = Sy, m,;
see [0.2((a). Moreover,

(a) FE— Hg

is an injective map from the set of constructible representations in R. to the set
of subgroups of G. (up to conjugacy). Let F. be the set of subgroups of G. which
are conjugate to a subgroup in the image of the map (a). We have G. € §.. We say
that c is anomalous if {1} ¢ §.. If W is of classical-type, then ¢ is not anomalous.
If W is of exceptional-type, then ¢ is anomalous in exactly the following cases:

(b) the unique ¢ with |¢| = 2 with W of type Er;
(c) the two ¢ with |¢| = 2 with W of type Es;

(d) the unique ¢ with |¢| = 4 with W of type Ga;
(e) the unique ¢ with |c¢| = 11 with W of type Fy;

(f) the unique ¢ with |¢| = 17 with W of type Es.

Let §. be the set of subgroups of G. which are either {1} or are in F.. Let O.
be the set of all pairs (H H') where H € §eo, H' € §. and H is a normal subgroup
of H'. Now G. acts on O, by simultaneous conjugation. We now state our main
result.
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Theorem 0.4. There exists a Go-stable subset ©, of ©, such that the following
hold:

(i) For any H € §. we have (H,H) € O,.

(ii) We have (1,G.) € O,.

(iii) For any (H,H') € O, there is a unique object Eg g € R, such that Sg g =
Epy pr, seelL2(a). Let B be the set of isomorphism classes of objects of R.. of the
form Ey g for some (H,H') € O,.

(iv) The map (H,H') — Eg,m defines a bijection from the set of G.-orbits on
O, to B.. Moreover B, is a Z-basis of K..

The representations in B, are the new representations mentioned in LIl From
(i) we see that any constructible representation of R. is in B.. From (ii) we see
that the special representation E. is in B..

In the case where W is of type A the theorem is trivial; we have G, = {1} and
B, consists of the unique representation in ¢. The proof of the theorem for W of
type By, Cn, Dy, is given in 21 The proof of the theorem for W of exceptional-type
is given in §3l

0.5. In this paper we also define a canonical bijection ¢ = B, E E which has
the property that for any F € ¢, E appears with multiplicity one in E. For E, F
in ¢ let B’ : E be the multiplicity of E/ in E. Property (i) below will be proved in
a sequel to this paper. (For W of exceptional-type (i) is easily deduced from the
formulas in B:2H3.8])

(i) The matrix (E’ : E) indexed by ¢ x ¢ is upper triangular unipotent for a
suitable partial order on c.

0.6. In the setup of (2 we define (following [L2] §4]) a pairing {, } : M(I")x M (T") —
C by

{(z,p), (=", 0")}
=Z(2)|7H 2" > tr(g~tag, p)tr(gx’g™", p),

geTizga’ g~ l=ga’'g~1a

where ~is complex conjugation. We define the non-abelian Fourier transform A :
C[M ()] — C[M(I")] as the C-linear map such that

A(.’L‘,p) = Z {(x,p),(;v/,p')}(a:',p’)

(z,p")eM(T)
for any (x, p) € M(T). According to [L2], we have A% = 1. Let M(I')> be the set
of elements

ST caplap) € CM(D)]

(w,p)EM(I)
such that ¢, , € Rx¢ for any (z,p) € M(T).
An element f € C[M(T")] is said to be bipositive if f € M(I')>o and A(f) €

M(I')>o. We have the following result.

Theorem 0.7. Let H C H' be subgroups of I' with H normal in H'. Then Sy g €
C[M ()] is bipositive. Hence (by [04), if I = G, and £ is a new representation in
Re, then £ € C[M(T)] is bipositive.

The proof is given in §4l
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0.8. In a sequel to this paper we will extend the results of the paper by constructing
a new basis for C[M (G.)] consisting of bipositive elements; this provides a new Z-
basis for the Grothendieck group of unipotent representations of a split Chevalley
group over a finite field.

0.9. Notation. For a < b in N we write [a,b] = {z € N;a < z < b}. We set
[1,0] = 0. For a finite set Y we write |Y| for the cardinal of Y. For a,b in Z we
write a = bif a =b mod 2 and a #2 b if a #b mod 2. We write Z/2Z = F,.

1. THE SET Sp

1.1. Let D € N. A subset I of [1, D] is said to be an interval if I = [a,b] for some
a <bin [1,D]. Let Zp be the set of intervals of [1, D]. For I = [a,b],I' = [a/,¥'] in
Ip we write I < I’ whenever @’ < a < b < b'. We say that I,I’ are non-touching
(and we write I@8I") if o/ —b>2o0ra—V > 2. Let I), = {I € Ip;|I| = odd}.
Let R}, be the set whose elements are the subsets of Z},. Let () € R}, be the empty
subset of Z},.

When D > 2 and ¢ € [1,D] we define an (injective) map & : Zp_o — Ip as
follows:

&G(la V) =1[a +2,b' +2]ifi<d, &([d,V])=][d,b]ifi>b +2,
(a)  &([a V) =[d b +2]ifad <i<V +2.

We have &;(Z}_,) C Zh. Wedefinet; : RY, , — RL by B — {&,(I'); I’ € B'}U{i}.
We have |t;(B')| = |B'| 4+ 1.

1.2. We define a subset Sp of R}, by induction on D as follows. When D € {0, 1},
Sp consists of a single element, namely () € R},. When D > 2 we say that B € R},
is in Sp if either B = () or if

(i) there exists ¢ € [1,D] (if D is even) or i € [1,D — 1] (if D is odd) and
B’ € Sp_s such that B = t;,(B’).

If D is odd, we have Sp = Sp_1 (use induction on D).

Until the end of [[L8 we assume that D is even.

1.3. The set S),. Let B € RL,. We consider the following properties (FPp), (P;)
that B may or may not have.

(Py) If I € B, I € B, then either [ =1, or I&I, or I <1, orI <1.

(P1) If [a,b] € B and ¢ € N satisfies a < c < b, a —c =21 (hence b —c =5 1),
then there exists [a1,b1] € B such that a < a; < ¢ <b; <b.

From the definitions we see that if D > 2, i € [1,D], B € R, , and B =
t;(B’) € RL, the following holds:

(a) B’ satisfies (Py) if and only if B satisfies (Py); B’ satisfies (Py) if and only
if B satisfies (Py).

Let S, be the set of all B € R} which satisfy (P), (P1). In the setup of (a) we
have the following consequence of (a):

(b) We have B’ € ST,_, if and only if B € S},.

We show:

(C) SD = S/D

We argue by induction on D. If D = 0, S/, consists of the empty set hence (c)
holds in this case. Assume now that D > 2. Let B € Sp. We show that B € S7,.
If B = () this is clear. If B # ), then B = t;(B’) for some i, B’ € Sp_». By the
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induction hypothesis we have B’ € S}, _,. By (b) we have B € S7,. We see that
B e Sp = B e S}. Conversely, let B € S7,. We show that B € Sp. If B =10
this is obvious. Thus we can assume that B # (. Let [a, b] € B be such that b—a is
minimum. If a < 2 < b, 2 =9 a+1, then by (P;) we have z € [a, V'] with [¢/,b] € B,
b —a < b— a, contradicting the minimality of b — a. We see that no z as above
exists. Thus, [a,b] = {i} for some ¢ € [1, D]. Using (Py) and {i} € B, we see that
B does not contain any interval of the form [a,i] with a < ¢, or [i,b] with ¢ < b,
or [a,i — 1] with a < ¢ or [¢ + 1,b] with ¢ < b; hence any interval of B other than
{i} is of the form &;[a’, V'] where [@/,b'] € Z},_,. Thus we have B = t;(B’) for some
B' € Sp_3. From (b) we see that B’ € S,_,. Using the induction hypothesis we
deduce that B’ € Sp_s. By the definition of Sp, we have B € Sp. This completes
the proof of (c).

The following result has already been proved as a part of the proof of (c).

(d) Assume that D > 2,4 € [1,D]. Let B € Sp be such that {i} € B. Then
there exists B’ € Sp_o such that B = t;(B’).

1.4. For B € Sp, j € [1,D] we set B; = {I € B;j € I}. From the definitions we
deduce:

(a) Assume that D > 2, i € [1,D] and that B’ € Sp_2, B = t;(B’) € Sp. Then
forr € [1,D — 2] we have:

|B.)| = |By| if r <i—2, |By| = |Brya| if r =i,

|Bi—1| = |Biy1| = |Bi_,|, |Bi| = |Bj_y| + 1 if 1 <i < D,

|Bi-1| =01 i=D, [Biy1| =0 ifi=1.

1.5. Let B € Sp, B # 0. In this case we must have {j} € B for some j € [1, D];
we assume that j is as small as possible (then it is uniquely determined). As in the
proof of [L3|c) we have B = t;(B’) where B’ € Sp_». Let i be the smallest number
in J;epI. We have i < j. We show:

(a) For any h € [i,j], we have [h,h] € B for a unique h € [h, D]; moreover we
have j < h.

We argue by induction on D. When D = 0 the result is obvious. We now assume
that D > 2. Assume first that i = j. By (Fy), {j} € B implies that we cannot
have [j,b] € B with j < b; thus (a) holds in this case. In particular, (a) holds when
D = 2 (in this case we have i = j). We now assume that D > 4. We can assume
that ¢ < j. We have [i,b] € B for some b > i hence |B| > 2 so that |B’| > 1 and
B’ # 0. Then ¢, 7’ are defined in terms of B’ in the same way as i, j are defined in
terms of B. From (P;) we see that there exists j; such that ¢ < j; < b such that
{j1} € B. By the minimality of j we must have j < j;. Thus we have i < j < b.
We have [i,b] = &;[i,b — 2]] hence [i,b — 2] € B'. This implies that ¢ < i. We have
[i’,c] € B’ for some ¢ € [i’, D — 2], ¢ =5 ¢'; hence [i’, ¢'] € B for some ¢’ > i’ so that
i’ > 4. Thus we have i’ = i. By the induction hypothesis, the following holds:

(b) For any r € [i,j'], we have [r,r1] € B’ for a unique r1; moreover j' < ry.

If / <j—2, then {j'} = &({j’'}) € B. Hence j' > j by the minimality of j; this
is a contradiction. Thus we have 7/ > j — 1.

Let r € [i,j — 1]. Then we have also 7 € [4, j'] hence 71 is defined as in (b). We
have [r,r1] € B’ hence [r,r1 +2] € B (weuse that r < j < j'+1 <71 +1 <71 +2);
we have j < rq + 2. Assume now that [r, 73] € B with r < ro. Then r < ry (by the
minimality of j). If j = ro or j = ro + 1, then applying (Pp) to {j}, [r,r2] gives a
contradiction. Thus we must have either r < j <rgor j >ro+ 1. If j > ro + 1,
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then [r,r2] € B’ hence by (b), 72 = r1, hence j > r1 + 1 contradicting j < ry + 2.
Thus we have r < j < rg, so that [r,ro — 2] € B’ hence by (b), r2 — 2 = r1. Thus
we have r < j < rq so that [r,73 — 2] € B’ hence by (b), 1o — 2 = ry.

Next we assume that » = j. In this case we have {r} € B. Moreover, if
[r,7'] € B with r < ¢’ < D, then we cannot have r < ' (if » < 7/, then applying
(Py) to {r},[r,r'] gives a contradiction). This proves (a).

We show:

(c) Assume that j < D and that i < h < j. Then h in (a) satisfies h > j.

Assume that h = j, so that [h,j] € B. Since h < j, applying (FPy) to {j}, [k, J]
gives a contradiction. This proves (c).

(d) Assume that j < D and that r € [j + 1, D). We have [j +1,7] ¢ B.

Assume that [+ 1,7] € B. Applying (Fy) to {j},[j + 1,7] gives a contradiction.
This proves (d).

We show:

(e) For h € [i,j] we have |By| =h—1i+1. If j < D we have |Bj41| =j —i.

Let h € [i, j]. Then for any h' € [i, h], By, contains [i/, k'] (since h < h'); see (a).
Conversely, assume that [a,b] € By. We have a < h. By the definition of i we have
i < a. By the uniqueness statement in (a) we have b = a so that [a,b] is one of the
h —i+ 1 intervals [h/, h'] above. This proves the first assertion of (e). Assume now
that j < D. If b’ € [4,j], B’ < j, then [h’,ﬁ’] € Bji1, by (c). Conversely, assume
that [a,b] € Bj11. We have a < j+1 and by (d) we have a # j+1 so that a < j. If
a = j, then by the uniqueness in (a) we have b = j which contradicts j + 1 € [a, b].
Thus we have a < j — 1. We see that [a,b] is one of the j — i intervals [/, h'] with
h' € i, ], K < j. This proves (e).

1.6. For B € Sp, j € [1, D], we set

¢;(B) = |Bj|(|Bj| + 1)/2 € F3.

We have €;(B) = 1if |Bj| € (4Z+1)U(4Z+2), ¢;(B) = 01if |B;| € (4Z+3)U (4Z).
Assume now that B # 0. Let ¢ < j in [1, D] be as in[[L5l From [L.5e) we deduce:
(a) We have (|B;|,|Bi+1l,---,|1B;j]) =(1,2,3,...,i —4,j—i+1). If j <D, we

have |Bj1| =7 — 1.

From (a) we deduce:

(b)

(€i(B), €ir1(B), ..., €;(B))

=(1x2)/2,(2%x3)/2,3x4)/2,...,(—0)(F—i+1)/2,(—i+1)(j—i+2)/2);

(c)ifj <D, thenejp1(B)=(j—9)(j—i+1)/2.
For future reference we note:

(d) If c € Z, then c(c+1)/2 #2 (¢ + 2)(c+ 3)/2.

(e) If c € 2Z, then c(c+1)/2 #2 (c+ 1)(c +2)/2.

1.7. Let B € Sp, B € Sp be such that B # 0, B # () and en(B) = eh(é) for any
h € [1,D]. We show:

(a) We can find z € [1, D] such that {z} € B, {z} € B.

We associate i < j to B as in [L3 let 7 < j be the analogous number for
B. Assume first that j < j (so that j < D) and i < ¢. From for B we have
€i(B) = (1x2)/2 = 1. Since i < i we have ¢;(B) = 0. Hence 1 =, 0, a contradiction.
Thus we must have 7 > i.
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Next we asssume that j < j (so that j < D) and 7 < 4. From for B we have
e;(f?) (1 x 2)/2; moreover €;(B) = 0. Hence 1 =; 0, a contradiction. Thus when
§ < j we must have i = i. From [L6l(c) for B we have e;41(B) = (j —i)(j —i+1)/2
and from [LB(b) for B we have ej41(B) = (j —i 4 2)(j — i + 3)/2. It follows that

G=D—i+1)/2) =2 (j—i+2)(j—i+3)/2
contradicting [LE(d). We see that j < j leads to a contradiction. Similarly, j< J

leads to a contradiction. Thus we must have j = j, so that (a) holds with z = j = j.
This completes the proof of (a).

1.8. Let B € Sp, B € Sp.

(a) Assume that B = 0 and that e,(B) = e, (B) for any h € [1,D]. Then B = B.

The proof is similar to that of [[7)(a). Assume that B # ). Let ¢ < j be attached
to B as in

Using [ we see that e;(B) = (1 x 2)/2. On the other hand we have e;(B) = 0.
We get 1 =3 0, a contradiction. This proves (a).

1.9. We no longer assume that D is even. Let V be the Fa-vector space consisting
of all functions [1, D] — Fa. For any subset I of [1, D] let e; € V be the function
whose value at i is 1 if 4 € [ and is 0 if ¢ ¢ I. For i € [1,D] we set e; = eg;.
Now {e;;i € [1, D]} is a basis of V. We define a symplectic form (,): V x V — Fy
by (ej,e;) = 1if i —j = 1, (e;,e;) = 0if i — j # £1. This symplectic form
is non-degenerate if D is even while if D is odd it has a one dimensional radical
spanned by e; +e3 +e5+ -+ ep.

For any subset Z of V we set Z+ ={z € V;(z,2) =0 Vze€ Z}.

When D > 2 we denote by V' the Fa-vector space consisting of all functions
[1,D —2] — Fa. For any I' C [1,D — 2] let €}, € V' be the function whose value
at iis 1if i € I" and is 0 if ¢ ¢ I. For i € [L,D — 2] we set ej = €f;;. Now
{e};i € [1,D —2]} is a basis of V'. We define a symplectic form (,) : V! x V' — Fy
by (e}, ])—llf’L—]—:l:l (el,e ])—Olfz—]#:lzl

When D > 2, for any i € [1, D] there is a unique linear map T; : V! — V such
that the sequence T;(e}), T;(€b), ..., Ti(ep_5) is:

€1,€2,...,€i-2,€-1+ € +eiy1,€i12,€i43,...,ep (if 1 <i< D),
es,eq,...,ep (if i =1),
e1,€,...,ep_s (if i = D).

Note that T; is injective and (z,y) = (Ti(z), Ti(y)) for any z,y in V’. For any
I' € I},_, we have Tj(e},) = eg,(1y- Let V; be the image of T; : V! — V. From the
definitions we deduce:

(a) We have e;- = V; @ Fae;.

We now assume that D is even. For j € [1,D — 2] let e; : Sp_s — F5 be the
analogue of ¢; : Sp — Fy when D is replaced by D — 2.

For B € Sp, we define ¢(B) € V by i — ¢;(B). For B € Sp_o we define
€(B') € V' by j s €;(B'). We show:

(b) Assume that D > 2, i € [1,D]. Let B’ € Sp_2,B = t;(B’) € Sp. Then
e(B) = T;(€(B)) + ce; for some ¢ € Fy.

An equivalent statement is: for any j € [1, D] — {i} we have ¢;(B) = €},(B’) if
j € [1,D — 2] is such that j € &({j'}); and €;(B) = 0 if no such j" exists. It is
enough to show:

(B} = | Byl it h € [1,i — 2,
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Byl = Byl it h € [i +2, D),

|Bi—1| = |Bi+1| = |Bi_4|if 1 <i< D,

|Bi—1‘ S {0, —1} (hence ei—l(B) = O) ifi=D,

|Bi+1| € {O, —1} (hence 6i+1(B) = O) ifi =1.

This follows from [[.4[a).

For B € Sp let (B) be the subspace of V' generated by {e;;I € B}. For
B’ € Sp_s let {(B’) be the subspace of V' generated by {e’,; I’ € B'}. We show:

(c) Let B € Sp. We have €(B) € (B). If D > 2,i € [1,D], B’ € Sp_2,B =
t;(B') € Sp, then (B) = T;({B')) & Fae;.

To prove the first assertion of (c) we argue by induction on D. For D = 0 there
is nothing to prove. Assume that D > 2. Let ¢, B’ be as in (b). By the induction
hypothesis we have ¢ (B’) € (B’) C V'. Using (b) we see that it is enough to
show that T;((B’)) C (B). (Since {i} € B, we have ¢; € (B).) Using the equality
Ti(e}) = e¢, (1) for any I’ € B’ it remains to note that &;(I') € B for I' € B'. This
proves the first assertion of (c). The same proof shows the second assertion of (c).

1.10. Let B € SD,B € Sp. We show:

(a) If e(B) = €(B), then B = B.

We argue by induction on D. If D = 0, there is nothing to prove. Assume that
D > 2. If B =0, (a) follows from [[8(a). Similarly, (a) holds if B = (). Thus, we
can assume that B # (), B # 0. By [[7(a) we can find i € [1, D] such that {i} € B,
{i} € B. By[L3(d) we then have B = t;(B’), B = t;(B’) with B’ € Sp_,, B’ €
Sp_o. Using our assumption and [C(b) we see that Ti(¢(B)) = Ti(¢'(B')) + ce;
for some ¢ € Fy. Using [LI(a) we see that ¢ = 0 so that T;(¢/(B’)) = Ti(¢'(B)).
Since T} is injective, we deduce ¢ (B') = ¢ (B'). By the induction hypothesis we
have B’ = B’ hence B = B. This proves (a).

1.11. Any x € V can be written uniquely in the form
T = €lay,by] T €lazbo] T F €L, n,)

where [a,,b.] € Ip are such that any two of them are non-touching and r > 0,
1<a; <b<a; <by<---<a, <b. <D. Following [L3| 3.3] we set

(a) wu(w)=|{s€e[l,r];as =20,bs =2 1}| — [{s € [1,7];as =2 1,bs =2 0}| € Z.

This defines a function u : V. — Z. When D > 2 we denote by v’ : V' — Z the
analogous function with D replaced by D — 2. We show:

(b) Assume that D > 2,i € [1,D]. Let v' € V' and let v = T;(v') + ce; € V
where ¢ € Fy. We have u(v) = u/(v').

We write v/ = efa’l,b’l] + e{a,%bé] 4ot e’[a%b;ﬂ] where r > 0, [a},bl] € Zp_s for all
s and any two of [al, V)] are non-touching. For each s, we have Ti(e/[ag,bg]) = €[, ,by]
where [as,bs] = &]al,b.] so that a, =5 a,, by =5 b/, and the various [as, bs] which
appear are still non-touching with each other. Hence u(T;(v")) = v/(v"). We have
v="T)orv="T)+e. Ifv=T(), wehave u(v) = v (v'), as desired.
Assume now that v = T;(v') + ¢;. From the definition of & we see that either

(i) [¢,4] is non-touching with any [as, bs], or

(ii) [¢,4] is not non-touching with some [a,b] = [as, bs] which is uniquely deter-
mined and we have a <7 < b.
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If (i) holds, then e; does not contribute to u(v) and u(v) = u(T;(v')) = w' (V).
We now assume that (ii) holds. Then €la,p] T €i = €[qi—1] T €[i+1,5]- We consider
six cases.

(1) a is even b is odd, i is even; then |[i + 1, b]| is odd so that the contribution of
€la,i—1] + €i+1,4) to u(v) is 14 0; this equals the contribution of ef, 3 to u(T;(v'))
which is 1.

(2) ais even, b is odd, i is odd; then |[a,i — 1]| is odd so that the contribution of
€[a,i—1] + €i+1,4) to u(v) is 0 4 1; this equals the contribution of ef, 3 to u(Ti(v'))
which is 1.

(3) a is odd, b is even, i is even; then |[i + 1,b]| is odd so that the contribution
of e[q,i—1] + €[it1,5) t0 u(v) is 0 —1; this equals the contribution of e[, 4 to u(T3(v"))
which is —1.

(4) a is odd, b is even, i is odd; then |[a,i — 1]| is odd so that the contribution of
€[a,i—1] + €[i+1,4) t0 u(v) is —1 4 0; this equals the contribution of e, p) to u(Ti(v'))
which is —1.

(5) a =2 b =5 i+1; then |[a,i—1]| is odd, |[i+1, b]| is odd so that the contribution
of €[4,i—1] + €[it1,5) t0 u(v) is 0+ 0; this equals the contribution of e[q 4 to u(T;(v"))
which is 0.

(6) @ =2 b =2 i; then the contribution of ey, ;1] + epy1,4) to u(v) is 1 — 1 or
—1+ 1; this equals the contribution of e, ) to u(T;(v")) which is 0.

This proves (b).

1.12. We view V as the set of vertices of a graph in which z,2’ in V are joined
whenever there exists ¢ € [1, D] such that x4z = e;, (z,¢;) = (2, ¢;) = 0. Similarly
if D > 2, we view V' as the set of vertices of a graph in which y, 1’ in V' are joined
whenever there exists ¢ € [1,D — 2] such that y +y' = €., (y,e}) = (v, e;) = 0.
We show:

(a) If y,y in V' are joined in the graph V', then T;(y), T;(y') are in the same
connected component of the graph V.

We can find j € [1,2d — 2] such that (y,e})" = (y/,¢})’ =0, y +y' = €}. Hence
@ T(e)) = (7. Tle)) = 0. §+§ = Ti(e)) where § = Ti(y),§’ = Ti(y). 1
Ti(ej) = ep for some h € [1,2d], then g,y  are joined in V, as required. If this
condition is not satisfied, then 1 <i < D, j =14 —1 and Ti(€}) = ¢; + ;41 + €j12.
We have (7,e; +ej11+e€j12) =0, §+ 7 =e€j+ejr1+e€j42. Since g € V;, we have
(9,€e;) = 0 hence (7,e;41) = 0 so that (3,e;) = (7, €ej42). We are in one of the two
cases below.

(1) We have (7, ¢;) = (9, €j+2) =0.

(2) We have (5, ¢;) = (3. cjs2) = 1.

In case (1) we consider the four term sequence §,7+¢€;,7+e; +€j42,7+€; +
ej+1+ejro = J'; any two consecutive terms of this sequence are joined in the graph
V. In case (2) we consider the four term sequence §,9 + €j41,9 + €j + €j41,7 +
ej +ej+1 + €ej12 = ¥'; any two consecutive terms of this sequence are joined in the
graph V. We see that in both cases ¢, ¢’ are in the same connected component of
V; (a) is proved.

Let Vo = {z € V;u(x) = 0}. Note that 0 € Vp. We show:

(b) If x € Vi, then x,0 are in the same component of the graph V.
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We argue by induction on D. If D = 0 there is nothing to prove. Assume now
that D > 2. If (z,e;) = 1 for all ¢ € [1, D], then

xr = 6[2’3] + 6[6’7] + 6[10’11] + -+ e[D72,D71] if D/2 is even,

Tr = 6[112] + 6[5,6] + 6[9710] + -+ e[D,LD] if D/2 is odd.
In both cases we have u(zx) # 0 contradicting our assumption. Thus we have
(x,e;) =0 for some i € [1, D]. By 1.9(a) we have = T;(z) + ce; for some 2’ € V'
and some ¢ € Fy. By [LII(b) we have u/(z’) = 0. By the induction hypothesis
2’,0 are in the same connected component of V’. By (a), T;(z’),0 are in the same
connected component of V. Clearly x, T;(«’) are joined in the graph V. Hence z,0
are joined in the graph V. We see that (b) holds.

We show:

(c) Vo is a connected component of the graph V.

If z,2 in V are in the same connected component of V', then u(x) = u(z"). (We
can assume that z, 2" are joined in the graph V. Then for some i € [1, D] we have
x = Ti(y) + ce;, ' = Ty(y) + c'e; where y € V' ¢ € Fy, ¢/ € Fo. By [LII(b) we
have u(x) = u'(y), u(z’) = v/(y), hence u(x) = u(a’), as required.) Thus Vj is a
union of connected components of V. On the other hand, by (b), V; is contained
in a connected component of the graph V. This proves (c).

1.13. We show:

(a) If B € Sp, then (B) C V.

We argue by induction on D. If D = 0 there is nothing to prove. Assume
that D > 2. If B = () there is nothing to prove. Assume that B # (). We
can find ¢ € [1,D] and B’ € Sp_s such that B = t;(B’). By [L9(c) we have
(B) = T;((B')) @ Fae;. Using [LIII(b), to prove that u = 0 on (B) it is enough
to prove that v’ = 0 on (B’) and this follows from the induction hypothesis. This
proves (a).

We show:

(b) If x € Vi, then x € (B) for some B € Sg.

We argue by induction on D. If D = 0 there is nothing to prove. Assume that
D > 2. As in the proof of [LT2|b), from the fact that u(z) = 0 we can deduce that
(x,e;) =0 for some i € [1, D]. By [[9(a) we have x = T;(z') + ce; for some 2’ € V'
and some ¢ € Fo. By [[II(b) we have u'(z’) = 0. By the induction hypothesis
we have 2/ € (B’) for some B’ € Sp_s. Then = € T;({(B’)) ® Faey = (B) (we use
[[9l(c)). This proves (b).

From (a),(b) we deduce:

(c) We have Ugcg, (B) = Vo.

A closely related result is proved in [L3] 3.4].

1.14. The function € : Sp — V has values in pcg, (B) (see [LI(c)) hence by
[L13(c) it has values in V4. Thus, it can be viewed as a function € : Sp — Vj.
From [[T10(a) we see that:
(a) € : Sp — Vj is injective.

1.15. Let Fy be the Q-vector space consisting of functions Vy — Q. For z € V}
let v, € Fy be the characteristic function of x. For B € Sp let ¥ € Fy be the
characteristic function of (B). (We use that (B) C Vp; see [LI3) Let Fy be the
Q-subspace of F\ generated by {¥p;B € Sp}. When D > 2 we define ¢, for

' € V' and ¥, for B’ € Sp_a, Fé,Fé, in terms of Sp_o in the same way as
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Vs, U, Fy, Fy were defined in terms of Sp. For any i € [1, D] we define a linear
map 0; : F} — Fy by ' — f where f(T;(2') + ce;) = f'(2) for 2/ € V', ¢ € Fy,
f(z)=0forz € V —eit. We have

0i () = Uiy + VT, () te, for any z' € V7,

0;(V'g) = Uy, (g for any B’ € Sp_».

We show:

(a) For any x € Vy, we have ¢, € Fy.

We argue by induction on D. If D = 0 the result is obvious. We now assume
that D > 2. We first show:

(b) If 2,2 in Vi are joined in the graph V and if (a) holds for x, then (a) holds
for z.

We can find j € [1,2d] such that z+2 = e, (z,e;) = 0. We have x = T} (z')+ce;,
T =Tj(2') 4+ cej where 2’ € V' and ¢ € Fy,¢’ € Fy, ¢+ ¢ = 1. By the induction

hypothesis we have ¢/, = ZB/ESDJ“ ap' V'’ where ap € Q. Applying 6; we obtain

Yo + Yz = Z ap'Vi;(Br).-

B'eSp_2

We see that ¢, + 1z € Fy. Since 1, € F, by assumption, we see that 1z € F. This
proves (b).

We now prove (a). Since Vj is the connected component of V' containing 0, to
prove (a) it is enough (by (b)) to show that (a) holds when = 0. This follows
from the fact that 9 = U5 where B = (). This proves (a).

Since Fy C Fy, we see that (a) implies:

(C) FO = F().

We have the following result.

Theorem 1.16. (a) {Up; B € Sp} is a Q-basis of Fy.
(b) €: Sp — Vp is a bijection.

Proof. From the definition of Fy we have dim Fy < |Sp|. By [LId(a) we have
1Sp| < |Vo| = dim Fy. Since Fy = Fy (see [LIBNc)) it follows that dim Fy = |Sp| =
[Vo| = dim Fy. Using again the definition of Fy and the equality Fy = Fy we see
that (a) holds. Since the map in (b) is injective (see [[I4{a)) and |Sp| = |Vo| we
see that it is a bijection so that (b) holds. O

1.17. In this subsection we describe the bijection in [[I6(b) assuming that D is 2,
4, or 6. In each case we give a table in which there is one row for each B € Sp; the
row corresponding to B is of the form (B) : (...) where B is represented by the
list of intervals of B (we write an interval such as [4, 6] as 456) and (...) is a list
of the vectors in (B) (we write 1235 instead of e; + e3 + e3 + e5, etc.). In each list
(...) we single out the vector corresponding e(B) in [[I6(b) by putting it in a box.
Any non-boxed entry in (...) appears as a boxed entry in some previous row. We
see that in these cases, [IL5i) holds.
The table for D = 2.

0:(0)
(1): (0,[1)
)1 (0,[2)).

2
The table for D = 4.
0: (o))
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5,456) :
1,3,5): (0,1,3,5,13,15,35,[ 135 )
1,3,6) : (0,1,3,6,13,16, 36,] 136 )
1,4,345) : (0,1,4,345,14,35,135,[ 1345 )
1,4,6) : (0,1,4,6,14, 16, 46,[ 146 )
2,4,6) : (0,2,4,6,24,26,46,[ 246 ])
1,5,456) : (0,1,5,456, 15,46, 146,
2,5,456) : (0,2,5,456, 25, 46, 246,| 2456
2,5,123) : (0,2,5,123,25, 13, 135,[ 1235
)
4

(
(
(0,4, 35,
(
(
(

1456

o~ o~~~

)
)
)
2,6,123) : (0,2,6,123,26,13,136,[ 1236 |)
2,4,12345) : (0,2,4,24, 1345, 1235, 135, 12345 |)

o~ o~ o~ o~~~ o~~~ o~~~ o~~~ o~ o~~~ o~~~ o~~~
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(3,234,12345) : (0,3,234, 12345, 24, 15,135, 1245 )
(3,6,234) : (0,3,6,234, 24, 36, 246,| 2346 |)
(3,5,23456) : (0,3, 5, 2456, 35, 2346, 246,| 23456 |)
(4,345, 23456) : (0,4, 345, 23456, 35, 26, 246, | 2356 |).

2. THE SETS F.(V), F(V)

2.1. We no longer assume that D is even. We define a collection F, (V) and a
collection F(V') of subspaces of V by induction on D as follows. If D € {0,1},
F.(V) and F(V) consist of {0}. If D > 2, a subspace X of V is said to be in
F«(V) if there exists ¢ € [1, D] (if D is even) or i € [1,D — 1] (if D is odd) and
X" € F(V') such that X = T;(X’') @ Fae;; a subspace X of V is said to be in
F(V) if either X = 0 or if there exists ¢ € [1,D] (if D is even) or i € [1,D — 1]
(if D is odd) and X’ € F(V’) such that X = T;(X’) ® Fae;. By induction on D
we see that for X € F,(V) we have X € F(V) and dim(X) = D/2 if D is even,
dim(X) = (D —1)/2if D is odd. When D is odd, let V be the subspace of V' with
basis {e1,e,...,ep_1}. This vector space with basis is of the same kind as V in
(but of even dimension) hence F(V), F.(V) are defined. Using induction on D
we see that for D odd we have F(V) = F(V), F.(V) = Fi (V). Thus, the study of
F(V),F.(V) when D is odd is reduced to the similar study when D is even.

We now assume that D is even. If B € Sp, then (B) € F(V) (this follows from
[L9(c) by induction on D). Conversely, if X € F(V), then there exists B € Sp such
that X = (B) (this again follows from [[9(c) by induction on D). Thus we have a
surjective map Sp — F(V), B — (B). We show:

(a) This map is a bijection.

Indeed, if B, B in Sp satisfy (B) = <§>, then the functions U, ¥ 5 in Fj coincide
hence B = B by [LI6(a). This proves (a).

For B € Sp we show:

(b) {er; I € B} is an Fa-basis of (B).

We argue by induction on D. If D = 0 there is nothing to prove. Assume that
D > 2. If B = (), then (b) is obvious. We now assume that B # (). Assume
that ), pcrer = 0 with ¢; € Fy not all zero. We can find I = [a,b] € B with
cr # 0 and |I| maximal. If I’ € B is such that a € I', I’ # I, ¢p # 0, then by
(Py) we have I < I’ (contradicting the maximality of |I|) or I’ < I (contradicting
a € I'). Thus no I" as above exists. Thus when > _; _p ¢, ey, is written in the basis
{e;;j € [1, D]}, the coefficient of e, is ¢, hence ¢;, = 0, contradicting ¢, # 0.
This proves (b).

We show:

(c) If X € F(V), then X is an isotropic subspace of V.

We argue by induction on D. If D = 0 there is nothing to prove. Assume that
D > 2. If X =0, then (c) is obvious. We now assume that X # 0. Then there
exists ¢ € [1,D] and X’ € F(V') such that X = T;(X’) @ Fae;. By the induction
hypothesis, X’ is isotropic in V’. Since T; is compatible with the symplectic forms
it follows that 7;(X’) is an isotropic subspace of V.. Since T;(X") is contained in e;-,
T;(X") @ Fae; is also isotropic. This proves (c). Alternatively, (¢) can be deduced
from property (Fp).



452 G. LUSZTIG

2.2. For § € {0,1} let [1,D]° = {i € [1, D];i =2 §}. Let V° be the subspace of V'
with basis {e;;i € [1,D]°}. We have V = V° @ V1. Similarly, if D > 2, we have
V' =V"0 @ V'l where V'? has basis {e};i € [1,D — 2]°}.

For any I € Z5, and 6 € {0,1} we set I° = I N [1, D], so that I = I° U I'; we
define k(I) € {0,1} by a =2 k(I) or equivalently b =2 x(I) where I = [a,b]. We
show:

(a) Let B € Sp and let I € B. Let 6 = x(I). We have e;s =3 pcp.pcyer.

We argue by induction on [I|. If [I| = 1 the result is obvious. Assume now
that |I| > 1. By (Pp), (P1), we can find [a1, b1], [ag, bs],. .., [ak, bg] in B such that
a1 < by < ag < by <ag < bs < ..., al,bl,ag,bg,..., are all in 1 — ¢ + 2Z and

[a,b] N (1 = +2Z) C [a1,b1] U [az,b2] U - U [ag, bg]. From the definition we have
ers = er+ Z?:l €la, b;)1-5- By the induction hypothesis, for j € [1,k] we have
€lay b0 = 2opeB;IClay.b,] €1/ Lhus we have

ers = ey + E ey = E err.

I'€B;I' CUj[aj,b;] I'eB;I'CI

This proves (a).

We show:

(b) Let B € Sp. Then {e;~;I € B} is a basis of the vector space (B).

From (a) we see that the collection of vectors {e;.u);I € B} is related to the
collection of vectors {e;;I € B} by an upper triangular matrix with 1 on the
diagonal. Hence the result follows from 2Ii(b).

We deduce that if B € Sp and X = (B) € F(V), then for § € {0,1},

(c) X° = XNV?° has basis {e;«n; I € B,k(I) = §}; in particular, X = X @ X!,

2.3. Assume that D > 2. Let ¢ € [1, D] and let 6 € {0,1}. There is a unique linear
map T? : V'° — V? such that

To(e}) =ep if k<i—2, k=20;

Tf(e}c) =epio if k>4, k=5 6;

T, \)=ei1+eq1ifi=0d+1,1<i<D.

Note that T? is injective and (z,y) = (T2(x), T} (y)) for any = € V'O y € V'L,
For any I' € I},_, such that x(I') = § we have T?(€},5) = eg,(rys. (Here (1), 1"
are defined in terms of I’ in the same way as #(I), I° are defined in Z2) Let V°
be the image of 77 : V' — V. From the definitions we deduce:

(a) We have V; @ Fae; = V) ® VI @ Fae;.

We define a collection C(V?) of subspaces of V° by induction on D as follows. If
D =0, C(V?) consists of {0}. If D > 2, a subspace £ of V? is said to be in C(V?) if
either £ = 0 or if there exists i € [1, D] and £’ € C(V'%) such that £ = T? (L") ©Fqe;
(if i =9 0) or L =T (L") (if i =9 0 + 1).

We show:

(b) If X € F(V), then X° € C(V?).

We argue by induction on D. If D = 0 the result is obvious. Assume now
that D > 2. If X = 0 there is nothing to prove. Assume that X # 0. We can
find ¢ € [1,D] and X' € F(V’) such that X = T;(X’) @ Fae;. By the induction
hypothesis we have X’ € C(V'%). Hence TP (X'?) @ Faoe; € C(V?) if i =5 0,
To(X') € C(V?) if i = § + 1. Tt is enough to prove that 77 (X'?) @ Fae; = X? if
i =90, T(X"?) = X% ifi=58+1, or that T} (X"°) ® Fae; = (T;(X') ® Fae;) N V?°
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ifi =96, TP(X'®) = (Ti(X') @ Fae;) N VP if i =9 6 + 1. This follows by comparing
the definition of T with that of T;.

2.4. Let 6 € {0,1}. If Z is a subspace of V® we set Z' = {x € V79 (2,2) =
0 Vz € Z}. Similarly, if Z’ is a subspace of V'® we set Z'" = {x € V'17%; (2,2)" =
0 Vze Z'}. Let £ €C(V%). We show:

(a) We have £' € C(VI=%) and L& L' C V is in F(V).

The first statement of (a) follows from the second statement, using [Z3(b). We
prove the second statement of (a) by induction on D. If D = 0 the result is
immediate. Assume now that D > 2. If £ =0, then £' = V=% = (B) where B =
{{j};5 € [1,D]*7%} € Sp; thus we have £' € F(V). Next we assume that £ # 0.
We can find i € [1, D] and £' € C(V'?) such that £ = T?(L') ® Fae; (if i =5 §) or
L=T(L") (if i =2 6 + 1). By the induction hypothesis we have £’ @ L"* € F(V").
Hence T3 (L' & L") ©Fqe; € F(V). From the definition we have T;(L' @ L") ©Fqe; =
T (L) @ T} °(L") ® Fae;. Thus we have TP (L) @ T} % (L") @ Fae; € F(V) or
equivalently £@® T} (L") € F(V) (if i =5 §) and L& T} °(L") ® Fae; € F(V) (if
i = 6+1). Tt is enough to show: £' = T} (L") if i = § and L' = T} (L") ©Fqe;
ifi=y 04+ 1. Ifye L' xec Ll wehave (T} °(y), TP (x)) = (y,x) = 0; if i =5 &
we have (T 7°(y),e;) = 0. If i =5 § 4+ 1 we have (e;, TP (z)) = 0. We see that
T0(L") € Lif i =5 6 and T} (L") @ Fae; € L' if i =5 § + 1. The last two
inclusions are between vector spaces of the same dimension; hence they must be
equalities. This completes the proof of (a).

Let Sp. = {B € Sp;|B| = D/2}. From 2IIb) we see that the bijection
Sp = F(V), B+ (B) (see2l(a)) restricts to a bijection

(b) Sp .« = Fu(V).

We show:

(c) We have a bijection v : C(V?) =5 F.(V) given by o(L) = L& L.

The fact that ¢ is well defined follows from (a). (For £ € C(V°) we have
dim(£ @ £') = D/2.) We define ¢/ : F.(V) — C(V°) by X + X°. This is well
defined by Z3I(b). Clearly, v/s = 1. Let X € F.(V). Then X179 C (X°)' since X is
isotropic so that X @ (X%)' C X; this is an inclusion of vector spaces of the same
dimension, hence is an equality. Thus «/ = 1. This proves that ¢ is a bijection.

2.5. Let 6 € {0,1}. We define a subset S, of R}, by induction on D as follows.
When D = 0, S, consists of ) € R},. When D > 2 we say that 8 € R} is in S9, if
either 8 = ) or if

(i) there exists i € [1,D] and ' € S$,_, such that 8 = {&(I');I' € B’} U {i} if
1 =9 6 and ﬂ = {61(1/)71/ S ﬂ/} ifi=90-+1.

From the definition we see by induction on D that if 3 € S9, and I € 3, then
k(I)=4.

Let S5, be the set of all 3 € R}, such that x(I) = ¢ for any I € 3 and such that
the following holds:

(P) If I € B, I € B, then either I =1, or I&I, or I <1, or I < 1.

By arguments similar to those in [[.3] we see that

(a) We have S$, = Sp°.

We show:

(b) If B € Sp, then °B := {I € B;x(I) =4} is in S.

From 25(c) we see that °B € S}, hence (using (a)) °B € S9,.

Using the definitions we can verify:
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(c) Assume that D > 2, that B' € Sp_s, and that B = t;(B’) € Sp. Let
B =°B' €8 ,, B=°B¢cS%. Then 3 is obtained from ' as in (i) above.

Let ’SJ‘SD be the set of all subsets of R}j of the form °B for some B € Sp«. We
show:

(d) 'S5 — S5

The inclusion 'S%, C S9, follows from (b). Conversely we show that if 3 € S9),
then 3 € 'S%. We argue by induction on D. When D = 0 there is nothing to prove.
Assume that D > 2. If 8 = () there is nothing to prove. Assume that 8 # 0. We
can find i € [1, D] and B’ € S%_, such that 3 is obtained from 4’ as in (i) above.
By the induction hypothes1s we have 3’ = °B’ where B’ € Sp_5.,. Let B = t;(B’).
We have B € Sp.. Let 3 =B €'S%. By (c), 3 is obtained from 8 as in (i)
above. Since 8 has the same property, we have § = 3. Thus 8 €/ S¢,, as required.
This proves (d).

We show:

(e) The map Sp. — 'S, B — B is a bijection.

It is enough to show that this map is injective. Assume that B € Sp ., Be SD
satisfy °B = °B. We must show that B = B. By the proof of Z4(c) we have a
bijection ¢/ : F, (V) — C(V?) given by X +— X°. Now /({B)) has basis {e;un; [ €
B,k(I) = 6} and ¢/((B)) has basis {ermmi I € B n( ) = 8}. Since °B = °B, these
two bases coincide hence /((B)) = ¢/({B)). Since /' is a bijection we deduce that
(B) = (B). Using ZI)(a) we see that B = B. This proves (e).

Combining (d),(e) we obtain:

(f) The map Sp« — S, B — °B is a bijection.

For any 3 € S% let (8) be the Fa-subspace of V% spanned by {e;«; I € 8}. By
the proof of (e), we have (3) € C(V?) and dim(B) = \5| We show:

(g) The map B+ (B) is a bijection " : 3, = C(V?).

We have a commutative diagram

SD,* E— f*(V)

L

58— (Vo)

where the top horizontal map is a bijection as in 2.4[b), the left vertical map is a
bijection as in (e) (see also (d)), and ¢’ is a bijection as in the proof of (e). It follows
that ¢ is a bijection. This proves (g).

2.6. Let 6 € {0,1}. We define a bijection S%, — SID*‘S,ﬁ — ' as follows. Let
B € S%. By Z3g), we have (3) € C(V?) and by Ed(a) we have (8)! € C(V179).
Then ' is the unique element of S5 such that ()" = (8'); see Z5(g). From the
definition we have (') = 8 and |B'| = (D/2) — |8|. Recall that (8) @ (8") = (B)
where B € Sp . satisfies °B = 3,798 = j'.

The order reversing involution i +— ¢* = D+ 1 —i of [1, D] induces an involution
RL — Ry, I~ I* = {i*;i € I'} and an involution Sp — Sp, B+~ B* := {I*;] €
B}. Tt also induces a bijection 7s : 5113—5 =5 89, Then B ~ ~5(B') is a bijection
S9, — S which carries any subset with m elements (m € [0, D/2]) to a subset
with (D/2) — m elements.
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2.7. Let 6 € {0,1}. Let U° = {(L£, L") € C(V?) x C(V?®); L C L'}. We define a map

(a) F(V) = U® by X — (X2, (X'79).

(We have X° C (X'7%)" since X is isotropic.) This map is injective since X can
be reconstructed from X%, X'79: we have X = X% @ X9,

We note that the map (a) is not surjective. For example, if D = 2,6 = 0 and
L =0, L' = Faey, then (£,£') € U° is not in the image of the map (a). The
following result is a reformulation of 2.4]c).

(b) The map (a) restricts to a bijection Fo(V) = {(L,L") € U L = L'}.

2.8. In the remainder of this section we prove Theorem [0.4] assuming that W is
a Weyl group of type B,,C,, or D,. If |c| = 1 the theorem is trivial; we have
G. = {1} and B, consists of the unique representation in c¢. Assume now that
le|] > 2. As in [L5] 4.5,4.6], [L4], [L6], we can find D € {2,4,6,...} and ¢ € {0,1}
such that if V' is the Fa-vector space with basis {e;;¢ € [1, D]} as in[[.9] then (i)-(iii)
below hold.

(i) The group G, in[@3lis V?; hence M(G.) = VO @Hom(V?, C*) can be identified
with V = V% @ V'~ (an element y € V79 can be identified with the homomor-
phism V% — C* given by x s (—1)®¥)),

(ii) ¢ is naturally in bijection with Vp (see [LI2)); hence any object £ € R, can
be viewed as the function fg : Vj — N such that for E € ¢ the multiplicity of E in
£ is equal to the value of fg¢ at the point of Vj corresponding to E.

(iii) The constructible representations in R, viewed as functions V, — N are
exactly the characteristic functions of the subsets X C V with X € F, (V).

(More accurately, the results in [L4]-[L6] for W of type D,, are formulated in
terms of a V as in with odd D, but they can be restated in terms of a V' as in
with D even, by the argument in the first part of [211)

If £ is a subspace of V%, then S; o € C[M(G.)] = C[V] (see (i) and [I2)) can be
identified with the function V — C whose value is 1 at any element of £® £' and is
0 at any element of V — (L@ £'). If £ € C(V?) this is the characteristic function of
some X € F,(V) namely, X = L& L'; the converse also holds. We see that . (see
[0-3) consists of the subspaces £ € C(V?). We have 0 € C(V?) hence §. = .. Now
O, becomes the set of pairs (£, L) € C(V?) x C(V?) such that £ C £'. We define
O. to be the set of pairs (£, L) € C(V°) x C(V?) such that L@ L € F(V). (We
then automatically have £ C £’ since the subspaces in F(V) are isotropic. Thus
0. C O©..) If (£,L') € O, then S; o € C[M(G.)] = C[V] (see (i) and [I2Z) can
be identified with the function V' — C whose value is 1 at any element of £ & L
and is 0 at any element of V — (L@ £"). If (£, L) € O, this is the characteristic
function of some X € F(V), namely X = £ @ L"; the converse also holds. We
see that ©. can be identified with F(V'). With these identifications Theorem [0.4]
follows from the results in §lland §21 The representations in B, corespond as in (ii)
to the functions f~ : V5 — N which equal 1 on X and equal 0 on Vy — X (where
X € F(V)). The bijection ¢ — B, mentioned in [I.5 is x — (e~ !(x)) where € is as
in [LI0(D).

3. EXCEPTIONAL WEYL GROUPS

3.1. In this section we will prove Theorem assuming that W is of exceptional-
type. In B.2H3.8 we will give a table of new representations in R, in the form of a
matrix M, indexed by ¢ X ¢. (The table will be justified in B.I0l) The columns of
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M, are indexed by the representations in ¢. The rows of M, are also indexed by the
representations in ¢ (for any k € [1,|c|], the kth row from up to down is indexed by
the same representation in ¢ as the kth column from left to right). Each row of M.
corresponds to a new representation; the entries of that row give the multiplicities
of the various representations in c¢ in the new representation. The first row in M,
stands for the special representation in c.

3.2. If |¢] = 1, M, is the 1 x 1 matrix with entry 1.

3.3. If || = 2 (so that W is of type E7 or Eg) we order ¢ using its bijection with
{(1,1),(1,¢)} in [L5, 4.12, 4.13] (ordered from left to right); then M, is

10
1 1)
The second row stands for a constructible representation.

3.4. If |c| = 3 we order ¢ using its bijection with {(1,1),(g2,1),(1,€)} in [L5] 4.10,
4.11, 4.12, 4.13] (ordered from left to right); then M, is

1 00
1 10
1 0 1
The last two rows stand for constructible representations.

3.5. If |e] = 4 (so that W is of type G2) we order ¢ using its bijection with
{(1,1),(1,7),(g2,1), (g3, 1)} in [L5] 4.8] (ordered from left to right); then M, is

1 0 0 0
110 0
1110
1 01 1

The last two rows stand for constructible representations.

3.6. If |¢] = 5 (so that W is of type Fg, E7, or Eg) we order ¢ using its bijection
with {(1,1),(1,7), (g2,1), (g3,1),(1,€)} in [L5L 4.11, 4.12, 4.13] (ordered from left
to right); then M., is

10 0 0 O
110 00
1 1 1 00
1 01 10
1 2 0 0 1

The last three rows stand for constructible representations.

3.7. If |¢| = 11 (so that W is of type Fy) we write the elements of ¢ (notation of
[L5, 4.10]) in the order

1217937627 137 1617927447617437417 12
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(from left to right); then M, is:

o

el el e e
= O RN O N =

[eNeNel o Nael =l =N
[N N i e R en B an B e
= OO, OOOOoOOo
OO R H OODOOOoOO
OR P OO0 O OoOo
O R OO OO oo
_H O OO o oo

H = OOKFE R RFRKFEOO
_H O OO OoOOoOOoOOoOOo

_
o
o
[
[\)
jen)
o
_
o

The last five rows stand for constructible representations.

3.8. If |¢| = 17 (so that W is of type Eg) we write the elements of ¢ (with notation
of [L5l 4.13.2] with subscripts omitted) in the order

4480, 5670, 4536, 1680, 1400, 70, 7168, 5600, 3150, 4200, 2688, 2016,
448, 1134, 1344, 420, 168
(from left to right); then M, is:

1 000O0O0OOOOOOOOO0OGO0OO0OO®O
1 1000O0O0OOOCOOOOT®O0OO0OO0OO®O0
1 1100O0O0OO0O0OO0OO0OOO0OO0OO0O0OO
1 21100O0O0O0O0OO0OO0OO0OO0O0O0O
1221 100O0O0O0O0O0O0O0O0O0TO0
1333 2100O0O0O0O0O0O0O0O0O0
1 110001O0O0O0O0O0O0OO0OGO0CO0OT® O
1 221101100O00O0O0O0O0O0°T©O0
1110001 11O0O0O0O0O0O0O0O0
1110101101 O0O0O0O0O0O00O0
1 2211022011000 000
11100021111 1%000°O00O0
1333 2112000010000
1211001210001 1¢000O0
1 1000011110001 T1O00O0
1 000O0O0O1O0110100T1T10
1110101102000 O0T1TO0°71

The last seven rows stand for constructible representations.

3.9. For N > 1let Sy be the group of all permutations of [1, N]. If ay > as > ... is
a partition of N (written as ajas . ..) we say that a subgroup H of Sy is in Sg,a,..
if H is conjugate to the subgroup of all permutations of [1, N] which keep stable
each of the subsets [1,a1],[a1 + 1,a1 + as2],[a1 + a2 + 1,a1 + a2 + as],.... We say
that a subgroup H of Sy (with N > 4) is in Sy if it is conjugate to the subgroup
of all permutations of [1, N] which act as an identity on [1, N] — [1,4] and whose
restriction to [1,4] commutes with the permutation 1+ 4 — 1,2 — 3 +— 2.

The following results come from [L7].

If |¢| = 1 we have G, = {1} and §. consists of {1}.
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In the setup of B.3 or B.4] we have G, = S5 and T, consists of Sa, {1}.

In the setup of or we have G. = S5 and §. consists of 3, {1} and the
subgroups of S3 in So;.

In the setup of B.7l we have G. = S and F. consists of S4, {1} and the subgroups
of 54 in 831, 822,8211, 34.

In the setup of B8 we have G, = S5 and §. consists of S5, {1} and the subgroups
of S5 in 841, 832, 8311, S221, S2111, S5

3.10. We describe the set O, in each of the cases

If |¢| = 1, ©, consists of (1,1). (We shall write 1 instead of {1}.)

In the setup of B3 or B4, O, consists of (1,53), (Ss, Sa), (1,1).

In the setup of B-5orBH8, O, consists of (1, S3), (1, Ho1), (Ha1, Hay), (S3, S3), (1,1)
where Hsp runs through Sopq.

In the setup of B ©. consists of

(1,84), (1, Hs1), (1, Hz), (1, Ho11), (Ho11, Haz), (Hao, H),
(Ha11, Ha11), (Hs1, H31), (Sa, Sa), (Haz, Hao), (H, H), (1,1), (1, H),

where Hsyp runs through Ssq11, Hsp runs through Ssi, Hao runs through Soo, H
runs through 54; for Hos € Sao, Hayy denotes one of the two subgroups in Sao11
contained in Hss; for He 5‘4, E[QQ denotes the unique subgroup in Sso contained
in H.

In the setup of B8, ©. consists of

(1,85), (1, Ha1), (1, H3a), (1, H311), (1, Ha1), (1, Ha111), (Hai11, Haa),
(Hay11, Haa1), (Hzi1, Hsa), (Haoy, H), (Haa1, Haoy ), (Haa, Haa),
(Ha111, Ho111), (Hau1, Han), (Har, Hay), (S5, Ss), (H, H), (1,1), (1, H),

where Hs111 runs through Ss111, Hoop runs through Sseq, Hso runs through Sso,
Hj11 runs through Ss311, Hyy runs through Sy, H runs through 35; for Hoo1 € Sao1,
Hoy111 denotes one of the two subgroups in Sa111 contained in Haoq; for Hss € Ssa,
lflgln denotes the unique subgroup in S2111 which is a normal subgroup of Hss and
Hsyq1 denotes the unique subgroup in S311 which is a normal subgroup of Hss; for
He 55, ffggl denotes the unique subgroup in Ss9; contained in H.

3.11. We define the set ©. in each of the cases by removing from O, the
pair (1,1) whenever ¢ is anomalous (see [I13) and by removing the pairs (1, H) with
H in &4 or S5 whenever Sy or Sy is defined. This guarantees that for (H,H') € O,
H'/H is isomorphic to a product of symmetric groups.

If |¢| = 1, O, consists of (1,1).

In the setup of B3] O. consists of (1,.52), (Se, S2).

In the setup of B4, O, = O, consists of (1,53), (S2, S3), (1,1).

In the setup of BBl ©, consists of (1,53), (1, Ha1), (H21, H21), (S3,53) (notation
of BI0)).
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In the setup of B8, O, = O, consists of (1, S3), (1, Ha1 ), (Ha1, Ha1), (S3,S3), (1,1)
(notation of BI0).

In the setup of B.7, O, consists of
(1,84), (1, H31), (1, Ha2), (1, Ho11), (Ha11, H22), (Hzo, H),
(Ha11, Ho1), (Ha1, Hay), (Sa, Sa), (Haz, Hao), (H, H),
(notation of BI0).
In the setup of B.8l O, consists of
(1,85), (1, Har), (1, H32), (1, H311), (1, Ha21), (1, Ha111), (Ha111, Haz),
(Ha111, Hoo1), (Hz1, Haz), (Haor, H), (Hazt, Hoot), (Hzo, Haz),
(Ho111, Ha111), (Hs11, Ha11), (Ha1, Hai), (Ss, Ss), (H, H),
(notation of BI0).

In each case, the number of G.-orbits on O, is equal to |¢|]. By computation
we see that Sy p with (H,H') running through a set of representatives for the
G.-orbits on O, are of the form Fy g (see[l3) where Ey g+ € R, runs through the
objects of R, described by the rows of the matrix M, in (in the same order
as the one used in the description of ©. given above). These objects form a basis
of G., due to the form of the matrix M,.. Now Theorem [(0.4] follows in our case.

4. PROOF OF THEOREM [0.7]

4.1. Let H C H' be subgroups of the finite group I' with H normal in H’. For
any © € I' we consider the set S(z) of all p in T'/H’ such that for some 7 in
I'/H contained in g we have v = v. Now Z(z) acts on S(z) by y : p — yu.
For any (x,0) € M(I') let N, , € N be the multiplicity of o in the permutation
representation of Z(x) on S(z). We have

Now =1Z(x)|7" Y #(p € S(x);yp = p)tr(y, o),
y€Z(z)

where

B € S(x);yp = p)

=f#(n € T'/H'; for some u € ' we have zuH = uH,u = uH',yuH' = uH’).
If the previous three equations hold for some u, then they hold for uh’ for any h' €
H'. (Indeed, xuh'H = uh'H since " H = HK, and p = vwh’'H',yuh/H' = uh/H'.)
Thus,

f(u € S(x);yp=p) =t(u € T;zulH = uH,yuH' = uH')/|H'|
and
Noo = |Z(2)| | H | Z t(u € T;zuH = uH,yuH' = uH")tr(y, o)
yeZ(x)

= |2 ()| > tr(y. o).

yeZ(z)uel;zuH=uH,yuH' =uH’
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Let f = > (;o)emr) Noo(z,0) € CIM(I)]. We have f = Spp. We write
A(f) = Z(w’,a/)EM(F) N;/,o./ (.I/,U,) Wlth N;/,o./ S C We have

e = Y. Nag(z,0), (2,0

(z,0)€EM(T)
= > Z@ITE 2@ 2@ >
(z,0)eM(T) yeZ(z),uel,zauH=uH,yuH'=uH’'
Z tr(zez=1, o/ )tr(z 12’2, 0)tr(y, o)

z€l;zxz—ta' =z zxz—1

= > ITHE T Z (@) 2 >

zel’ yeZ(z),uel,zuH=uH,yuH'=uH'
— -1,/
E tr(zzz=1,0") g tr(z7 'z, 0)tr(y, o).
z€lzez—la'=a' 2021 oclrr(Z(x)

1

The last sum over o equals |Z(z) N Z(y)| if 2712’2 = ay~ta™! for some a € Z(x)

and equals 0 otherwise. Hence

Ny or = D IUITHH T Z(2) 7Y 2 ()| >

el yeZ(z)uel;zuH=uH,yuH'=uH’
E tr(zzz=1t, o).
z€lizaxz— 1o/ =2’ zxz= Y, a=nZ(x),z~ 1o’ z=ay—la~1
We substitute z; = za. We get

Ny or = D IUITHE T Z(2) 7Y 2 ()| >

zel yeZ(z)uel;zuH=uH,yuH'=uH’
E tr(z122; b, 07).
z1EF;zlzzflm’:z’zlzzfl,a‘an(z),zflm’zlzy_l
We can eliminate a and change z; to z. We get

Ny o= IUITHA Y Z @) >

zel yeZ(z),uelzuH=uH,yuH'=uH’
E tr(zaz=1, o).
ze€lizxz—ta' =/ zxz— 1 2z 1o/ 2=y~ 1
We substitute z; = v~ 'zu,y; = v~ tyu, z; = zu. We get

Ny o= TITH Y2 >

z1€l y1€Z(z1),u€lz1 H=H,y1 H'=H’
-1
E tr(z1z12, -, 0').
21GF;zlzlzflz/:r’zlmlzfl,z;lz/zl:yfl
We can eliminate u and change x1,y1, 21 to z,y, 2. We get

v =HTHZE) T Y

x€H,ycZ(x)NH'

Z tr(zzz=1, o).

z€Tizxz— o' =/ zxz— 1 z— 1o/ 2=y~ 1
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-1 1,./ 1

2’ = 2'zxz! follows from 2z 12’2 = y~!, yzr = 2y. Hence

Ny o = [H 2GS > G L),

z€H,ye€Z(x)NH' z€l;z—1a/ 2=y~ 1

Here the condition zzz

that is,
e =H T2 Y > tr(zzz—1,0).
2€H zel;z—1a’2€Z(x)NH’
We substitute zzz~! = z,. We get

z/,0" = |H/|_1|Z( )‘_1 Z tl“(:L‘l,U/)7

1€l z€T2’€Z(x1)NzH 2= Y x1€2Hz 1

that is,
Ny o= [H'|7HZ ()7
Sy wwe
z€lz— o' 2€H w1€Z(x')NzHz 1
and

o = [H'|7HZ()] 7
> (1:d(Z@)nzHz )| Z(@') N zHz T,

ze€lz—lx'2€H'
where : denotes multiplicity. Thus we have
Nm’,o” € QZO

so that A(f) € M(T')>o. Since f € M(I")>¢ is obvious we see that f is bipositive.
This proves Theorem
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