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Abstract: Deep- and reinforcement-learning techniques have increasingly required large sets of
real data to achieve stable convergence and generalization, in the context of image-recognition,
object-detection or motion-control strategies. On this subject, the research community lacks
robust approaches to overcome unavailable real-world extensive data by means of realistic
synthetic-information and domain-adaptation techniques. In this work, synthetic-learning strategies
have been used for the vision-based autonomous following of a noncooperative multirotor.
The complete maneuver was learned with synthetic images and high-dimensional low-level
continuous robot states, with deep- and reinforcement-learning techniques for object detection
and motion control, respectively. A novel motion-control strategy for object following is introduced
where the camera gimbal movement is coupled with the multirotor motion during the multirotor
following. Results confirm that our present framework can be used to deploy a vision-based task
in real flight using synthetic data. It was extensively validated in both simulated and real-flight
scenarios, providing proper results (following a multirotor up to 1.3 m/s in simulation and 0.3 m/s
in real flights).

Keywords: multirotor; UAV; following; synthetic learning; reinforcement learning; deep learning

1. Introduction

Currently, learning techniques aided by synthetic information are increasingly popular in the
robotics field, mostly due to the lack of available real-domain data information for application-specific
tasks, for example, low-level motion control for complex robot dynamics [1–3] or vision-based strategies
for unusual scenarios [4–6]. In addition, with the rise of deep learning [7] and multiple-layer models,
the amount of data required for the stability of learning and model generalization has grown several
orders of magnitude, which makes dataset generation harder. State-of-the-art reinforcement-learning
techniques are also still notably sample-inefficient [8], which leads to needing a high number of
agent–environment interactions, which is normally not possible in the real world due to system
stability, sample randomness or power availability. In this context, in order to achieve scalability for
both deep- and reinforcement-learning techniques, the exploration of synthetic-learning strategies
in robotics is a matter of importance that is not yet resolved. This paradigm is potentially valuable
when annotated datasets are not available and/or there is highly nonlinear mapping between several
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heterogeneous information sources, for example, navigation-throughout-cluttered indoor and outdoor
environments using simulated image cues [9].

In the context of synthetic-data generation by robotic simulators, there is an explicit differentiation
between robot-dynamics simulation and photorealistic-image generation and they are normally
treated separately. Realistic simulation of robot dynamics is important in the field of imitation-
or reinforcement-learning algorithms, that is, more realistic models and/or physics can lead to
more effective performance in the real world. In this regard, novel system dynamics can be
realistically simulated to be controlled with learning-based (or classical) approaches and without
the necessity of building the actual robot. Although there are inconsistencies between virtual and
real models, differences between simulated and real systems can be tackled with several methods
(e.g., References [1–3]). Within the scope of the generation of photorealistic images, there is still a clear
ceiling in the achieved realism for current simulators. Light, polygons and material simulations have
intrinsic limitations that can be very evident for a human observer. Nevertheless, they can be extremely
useful in the field of vision-based strategies, such as object detectors, along with other transfer-learning
or domain-adaptation techniques (e.g., References [10–12]).

In this scenario, a multirotor can be a suitable robotic test bench to validate this type of synthetic
technique for robotic applications. Their inherent open-loop system instability, which can create
a stressful scenario for the technique under research and their low-cost RGB camera, which can
lead to a wide variety of applications, make this platform a suitable target for novel motion-control
research, as well as for vision-based strategies. In this respect, the versatility of this platform and the
lack of complete learning-based techniques aided by synthetic data compose the base motivation for
the studied application case in this work. Indeed, the multirotor following task introduced in this
study was proposed as a baseline task due to its challenging nature and increasing interest of the
research community (e.g., International robotics competition: https://www.mbzirc.com/). At the
same time, since multirotors have become the center of attention of many industrial automation
processes, the capacity of multirotor detection with a low-cost sensor and the ability to follow a
potential noncooperative multirotor is an interesting topic of research.

In particular, this paper explores an scenario where a noncooperative target multirotor has the
ability to move in the 3-Degrees of Freedom (DOF) of space and the follower multirotor, which
implemented our approach, specifically relies on its low-level attitude Flight Controller (FC) and its
monocular RGB camera to accomplish the complete following maneuver. We focused on a novel
object-following case where the follower RGB camera was also able to move in two directions of
space (camera gimbal pan and tilt), providing higher dimensionality and versatility to the approach.
The entire behavior was learned with synthetic data by means of two strategies based on deep and
reinforcement learning for multirotor detection and motion control, respectively.

2. Contribution

In this study, monocular vision-based following of a noncooperative multirotor using
synthetic-learning techniques is presented. The aim was to establish a complex real-world multirotor
application based on synthetic data, by means of deep- and reinforcement-learning methods. The main
contributions of this work are listed below:

• A robust detection technique was trained with a novel approach based on synthetic photorealistic
images generated by a commercial game engine. The synthetic multirotor image dataset, utilized
in this work for detector training, was also released as an open-source dataset.

• Problem formulation under the reinforcement-learning framework was designed in order to achieve
learning convergence for a motion-control agent with a state-of-the-art deep reinforcement-learning
algorithm and within the context of high-dimensional continuous state and action spaces. The agent
was trained in a simulated environment and tested in real-flight experiments (refer to Figure 1).

• A novel motion-control strategy for object following is introduced where camera gimbal
movement is coupled with multirotor motion during multirotor following.

https://www.mbzirc.com/
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(a) (b)

Figure 1. Image composition of a noncooperative multirotor (light-blue) followed by another multirotor
that implemented our synthetic-learning-based approach (light-green) in the (a) simulated and (b) real
experimentation environment.

Additionally, real-flight tests were performed in a broad variety of conditions in order to validate
the virtual-to-real approach and with low-cost on-board sensors as single raw data inputs. Results
prove that our present framework can be used for vision-based tasks in a real flight using synthetic data.
The remainder of the paper is organized as follows: Section 4 describes our approach and provides
a detailed explanation about the multirotor detector and the motion-control policy, explaining the
problem formulation and the system architecture. Section 5 outlines the carried-out experiments and
their corresponding results and Section 6 remarks on and discusses the most relevant experimentation
outcomes. Finally, Section 7 concludes the paper and indicates future lines of research.

3. Related Work

In this paper, the task and techniques under study were approached with strategies of diverse
nature and, due to this, there are several related works that are adjacent to the case under study. In the
following section, the key aspects of the most relevant related works are described.

3.1. Autonomous Aerial Pursuit

Autonomous aerial pursuit, that is, Unmanned Aerial Vehicle (UAV)-to-UAV pursuit, has been
an underlying field of research during the last decade. This line of research has not been the focus of
UAV research but has provided theoretical contributions mostly validated on numerical simulations.
Hence, most innovations assumed ideal data information sources and were tested only by means of
numerical simulations [13–17].

In References [14–16], the target UAV state was assumed to be known and considered cooperative
under the case of study. In Reference [17], a sliding-mode approach with proper Lyapunov function
was explored and validated on numerical simulations. In Reference [16], both pursuit algorithms and
vision-based theoretical strategies were explored under the assumption of ideal sensors and validated
on numerical simulations. A cooperation strategy for multiple UAVs to pursue a target moving in an
adversarial environment where threat exposure should be minimized was studied in Reference [13].
A probabilistic model of the environment was provided and the information exchange between the
cooperative UAVs is assumed to be available in a numerical simulation.

3.2. Monocular Vision-Based Object Following

Several works researched the topic of vision-based autonomous object following with
UAVs. Most of them explored classical control schemes (e.g., Proportional Integral Derivative
(PID) control [18]) with classical computer-vision techniques (e.g., color-based detectors [19]).
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In Reference [20], a nonlinear adaptive observer was used for target-object estimation and a guidance
law for target-object tracking was developed. In this case, the vision sensor was modeled and the
complete approach was validated under numerical simulations.

Some approaches rely on an online user-defined Region-of-Interest (RoI) within the image plane
during the execution of a real flight in order for the UAV to be able to follow a tracked object [18,21,22].
In Reference [18], a PID control scheme was used to control a multirotor aerial robot based on the
OpenTLD [23] tracker in the image plane. In Reference [21], the authors developed a novel frequency-
and image-plane-domain tracker with latter pose estimation of the object and standard PID control.
In Reference [22], a state-of-the-art tracker [24] was used and a standard PID control scheme within
the image plane was established. The stated work also performed real-flight validation tests and
developed a novel camera handover strategy in order to enable long-term operation through several
UAVs. As other close related works, some strategies use learning techniques for orientation tracking
with respect to image patches based on state-of-the-art detectors and trackers [25,26].

Furthermore, some techniques carried out specific-object detection in conjunction with
continuous-tracking strategies, such as Kalman or particle filters [19,27,28]. In References [27,28],
a strategy for human following was designed and tested in real flights. In Reference [27], a miniature
robotic blimp was used as the robotic platform, with human-pose estimation and standard PID control.
In Reference [28], human tracking was carried out over a long period of time and long distances by
means of active infrared markers and the estimation of the pose of both human and UAVs without
calibrated or stationary cameras. In Reference [19], a color-based detector fed a particle filter that aided
a pose-based PID control scheme.

Finally, some other strategies aimed at separately controlling a camera gimbal for object tracking,
in which the detected object is kept centered in the image plane over time [29,30]. In Reference [29],
a ground-based camera gimbal is able to track a remote object. In Reference [30], a camera gimbal was
mounted as payload on a fixed-wing UAV for target tracking during the execution of the test flights.

3.3. Reinforcement Learning for Real-World Robotics

Several state-of-the-art techniques aim at training reinforcement-learning agents with synthetic
data but by targeting their deployment in the real world. Some techniques focus on learning
high-dimensional system dynamics for motion control [1–3]. The authors of Reference [1] utilized
precise simulations and randomized system dynamics for quadruped locomotion learning with
continuous states and actions. In Reference [2], high-level velocity control was learned with
ground-truth simulations in order to develop a UAV task-specific landing maneuver on top of a
moving platform. Validation tests were carried out through a motion-capture system in the real
world. In Reference [3], the dynamics of a multirotor UAV were precisely simulated in order to
train a reinforcement-learning agent for low-level attitude control. The learned policies were directly
validated in the real world with a motion-capture system.

On the other hand, some strategies intend to overcome the virtual-to-reality gap for
vision-based applications [9,31–35]. In Reference [9], synthetic-data adaptation was performed
using an application-dependent Cycada pipeline for ground-robot navigation. In Reference [31],
domain-randomization techniques were used to train a deep reinforcement-learning algorithm for
dexterous in-hand manipulation. The authors of Reference [32] randomized simulated images to
generate a canonical environment for hand manipulation.

Moreover, multirotor-related vision-based applications have also been studied [33–36].
In Reference [33], a color-based detector and an image-based deep reinforcement-learning policy
controller were utilized for object following with an off-the-shelf multirotor. In Reference [36],
human commands were mixed with reinforcement-learning exploration–exploitation actions in
order to improve safety for multirotor navigation. The authors of Reference [35] used the
Monte Carlo policy-evaluation method for vision-based navigation learning with synthetic images.
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In Reference [34], small-size multirotor navigation was achieved through a combination of real-world
data to learn about robot dynamics and synthetic data for vision-based collision avoidance.

3.4. Multirotor In-Flight Detection and Tracking

Multirotor in-flight detection and tracking is increasingly becoming a topic of interest for the
research community since the successful application of multirotor UAVs in several automation
processes in the industry. Most strategies rely on motion detection during flight for a relatively
reduced subset of UAV types [10–12,37,38]. In Reference [10], Convolutional Neural Networks (CNNs)
were used for camera-motion estimation and temporal information was exploited to detect UAVs and
aircrafts. In Reference [11], pixels corresponding to the background in the image were estimated and a
Kalman filter was utilized to track motion of a UAV. In Reference [12], UAV detection and tracking
required the exchange of information between both UAVs. The authors of Reference [37] explored
Haar-like features, Histogram of Gradients (HOG) and Local Binary Patterns (LBP) using cascades
of boosted classifiers for outdoor UAV detection and tracking. In Reference [38], extensive flight
experimentation was carried out with real-time performance for general object tracking.

3.5. Object Detection with Synthetic Images

Deep learning is de facto the most used technique for object detection. Nevertheless, it usually
requires a large amount of domain-specific data to achieve generalization. In this context, the research
community is exploring the incorporation of synthetic images into the training process due to their
availability and capabilities [4–6,39–42]. In Reference [4], synthetic images were optimized to match
object-detector-extracted features. These images were used for real-image dataset augmentation [4].
The authors of Reference [5] randomized simulated images for 3D object localization; objects were
composed of low-dimensional feature textures and shapes.

In Reference [40], synthetic images were generated by adding background and textures to simple
3D Computer-Aided Design (CAD) models. Features were extracted with a CNN trained on ImageNet
and a classifier was trained for the final stage. In Reference [6], adversarial training was used to
train Faster R-CNN [43] for cross-domain adaptation. The domains were adapted at the image level
(e.g., image style and illumination) and instance-level representation (e.g., object appearance and size
shift). In Reference [39], simple synthetic objects were detected through backbone-network (feature
extractor) weight freezing and fine-tuning the last layers. Validation tests were performed with Faster
R-CNN, R-FCN [44] and Mask R-CNN [45]. In Reference [41], adversarial training was used for
simulated-to-real domain transferring. The dataset was generated through synthetic-image refinement
and automated labeling. Finally, novel approaches showed outstanding performance when trained
with small real-world datasets, outperforming previous pretrained architectures [46], such as SSD or
Faster R-CNN. These strategies are potentially usable in the field of synthetic-dataset integration .

4. Vision-Based Multirotor Following Approach

In this paper, the vision-based autonomous following of a Noncooperative Multirotor (NC-M) is
presented. Our approach is mainly composed of a multirotor detector, an image-based tracker and
motion-control policy.

4.1. Multirotor Detector

A deep-learning-based detector was trained by means of synthetic multirotor images with a simple
background (see Section 5.2.1) and with the aim of extracting an accurate RoI of the NC-M. The detector
is able to generalize enough from synthetic multirotor images and provide state-of-the-art accuracy and
inference time. The detector used in this study was a custom implementation of the one-stage RetinaNet
detector [47], which is a single unified network composed of a backbone network and two task-specific
subnetworks (refer to Figure 2). The backbone is responsible for computing a convolutional and
pyramidal feature map over an entire input and is an off-the-shelf convolutional network. In this work,
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ResNet50 was selected as the full network backbone in order to find a balanced trade-off between
accuracy and image throughput [48].

Figure 2. Architecture of proposed multirotor detector, based on RetinaNet architecture, with ResNet50
backbone and five levels for Feature Pyramid Network (FPN; fewer levels represented in figure for the
sake of simplicity). Backbone weights were frozen during training. Final subnetworks were fine-tuned
with pure synthetic multirotor images.

The key aspects for RetinaNet to be suitable for learning new pure synthetic classes are its rich
feature maps, generated by its Feature Pyramid Network (FPN) architecture and its Focal Loss (FL)
design, which is a specific case of a weighted cross-entropy loss function. RetinaNet was also proven
to be the best architecture in terms of accuracy and speed, compared with Faster R-CNN, R-FCN
and other state-of-the-art architectures, in the wide variety of conditions presented in Reference [47].
Our approach incorporated five-layer levels from the backbone for FPN feature-map generation. FL
minimizes the effect of large class imbalance (diminishing the influence of already well-learned classes)
and encourages learning those samples that have not yet been properly learned (i.e., particular losses of
already learned samples can overwhelm whole loss computation), as shown in Equations (1) and (2).

FL(pt) = −αt(1− pt)
η log(pt) (1)

pt =

{
p if y = 1

1− p otherwise
, (2)

where η is the focusing parameter and αt is the classical α-balanced loss parameter [47]. This model
architecture enables the detection (RoI) of a real NC-M within the image plane, which can be used by
the next stages of the approach.

4.2. Image-Based Tracker

The stated multirotor detector can infer the RoI of the detected NC-M. Nevertheless, due to the
multirotor perspective, illumination changes or glitches in the video feed, the multirotor detector could
fail to regress a RoI, even when the NC-M is present in the image and the detector is able to run in
real time. In this scenario, in order to provide a continuous RoI of the NC-M and to improve overall
performance, our approach incorporated an adapted implementation of the state-of-the-art ECO
tracker [49] that can track the RoI of the NC-M in every camera frame during the following maneuver.

The key aspects of the ECO tracker that make it suitable for these dynamic-feature frames are
its robust hand-crafted features for tracking and its factorized convolution design. The hand-crafted
features are computationally efficient and robust. The factorized convolution operator dramatically
reduces the number of parameters of the Discriminative Correlation Filter (DCF), allowing for real-time
tracking (>20 Hz) on an average CPU. In this context, the tracker is able to provide a RoI at every time
step. However, when the detector provides a new RoI (with a predefined threshold of uncertainty that
assures robustness), the current tracker RoI is updated for further tracking.
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4.3. Motion-Control Policy

Deep reinforcement-learning techniques were applied for learning the multirotor motion-control
policy for object following. The complete learned behavior is challenging due to the coupled nature of
actuation–response of the system, that is, the multirotor system was coupled with the camera gimbal
actuation since different trajectories of actuation (in both the multirotor and the camera gimbal) could
lead to the same result in the image plane. This characteristic of the system is further explored in
Section 5.

Considering the reinforcement-learning framework, an agent and an environment compose the
two main elements that are defined to interact with each other. The stated interaction is carried out
through agent actions that occur in an instantaneous effect in the environment, (returning the effect
consequence back to the agent, that is, agent state) and through environment rewards that guide the
evolution of the agent behavior. Thus, in the reinforcement-learning paradigm, an agent is determined
to generate a policy π(st) in order to maximize its expected accumulated reward Rt through the
execution of an action at ∈ A for each state st ∈ S at any step in time t. The expected return, given
a state and an action in time t, is

Qπ(st, at) = Eπ [Rt|st, at] (3)

where Qπ(st, at) represents the action–value function. A broadly used reinforcement-learning approach
is learning the stated action–value function by means of an optimization process that has as its main
objective to estimate the optimal Q-function (which, in the context of discrete action spaces, leads to
an optimal policy of the agent). Other algorithms aim at directly estimating the agent optimal policy
π?(st) by means of the parallel estimation of the Q-function (or, equivalently, the V-function [50]) and
the computation of the policy gradient [51]. These methods, that follow the actor–critic paradigm and
are compatible with continuous state and action spaces are known as policy-gradient methods, such as
Deep Deterministic Policy Gradients (DDPGs) [51] or Trust-Region Policy Optimization (TRPO) [52].
Other recent algorithms, which compose a family of natural policy-gradient algorithms named
Proximal Policy Optimization (PPO) [53], include a surrogate objective function for optimization.
This family of algorithms lead to a reduction of complexity and an increase of both sample efficiency
and performance. Stated increase in performance was taken into consideration for the application
under study due to its high-dimensional nature of state and action spaces (refer to Section 4.3.1).
Since PPO aims at directly optimizing an objective function for the policy, an instant update of the
policy is controlled in order to avoid divergence and to assure optimal convergence. The strategies for
constraining the policy update are diverse and a matter of research. Nevertheless, the most common
strategies are based on Kullback–Leibler divergence (KL-divergence) penalty and on direct-clipping
penalty (see Equation (4)).

LCLIP
θk

= Eτ∼πk [
T

∑
t=0

[min(rt(θ)Âπk
t , clip(rt(θ), 1− ε, 1 + ε)Âπk

t )]] (4)

where LCLIP
θk

represents the objective function for policy-weight update, rt(θ) is the new–old policy

ratio, Âπk
t is the advantage function for policy update at time t and ε is the clipping constraint.

In this work, due to computation simplicity and performance increase, PPO with a clipping penalty
was selected to train the agent to accomplish the image-based multirotor following maneuver with
continuous state and action spaces.

4.3.1. Problem Formulation

In our problem formulation, the reinforcement-learning agent perceives a continuous state st ∈ S
at time t (5).

S = {ecx, ecy, earea, ėcx, ėcy, ėarea, Θx, Θy}, (5)
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where ecx, ecy and earea represent the normalized error of the current RoI with respect to the target
RoI center position (in x and y axes) and area; ėcx, ėcy and ėarea represent the normalized difference
of errors (ecx, ecy and earea) with respect to the previous time step and Θx and Θy are the normalized
angular states of the camera gimbal in the current time step. The state is represented in the Camera (C)
frame of reference (see Figure 3) and S ∈ [−1, 1]. A virtual camera gimbal was added to the multirotor
simulation in order to meet real platform specifications.
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Figure 3. Architecture of proposed deep- and reinforcement-learning-based multirotor following
system. Every involved frame of reference and architecture component is depicted. Actor–critic
network, which is in charge of providing the final behavior, is structurally represented. Stabilized
Multirotor (SM) frame of reference is stabilized in pitch and roll and attached to the multirotor body
structure. Multirotor detector and tracker were only included in real-flight testing (dashed lines).
In simulated experiments, a ground-truth Region of Interest (RoI) was generated based on projection
of NC-M 3D points.

The reinforcement-learning agent has the ability to perform a continuous action at ∈ A at time t,
as represented in Equation (6).

A = {θ, φ, ż, Θ̇x, Θ̇y}, (6)

where θ and φ represent the multirotor pitch and roll absolute angles, respectively; ż represents
multirotor altitude velocity; and Θ̇x and Θ̇y represent the camera gimbal angular difference of angles
in the x and y axes, respectively. The action space is represented in the Stabilized Multirotor (SM) frame
of reference for θ, φ and ż and in the C frame of reference for Θ̇x and Θ̇y (A ∈ [−1, 1]). The actions are
directly forwarded to the multirotor FC as an input through SDK commands, avoiding postprocessing
or filtering.

An important component in reinforcement-learning formulation is the reward function r, due
to the high sensitivity of the current techniques to the reward-function design. Although there are
some techniques that are able to deal with low-frequency and sparse-reward functions [54], most of
the techniques require a more behavior-guided design. In this scenario, a well-suited reward function
can decrease training times but, conversely, a weak design can introduce human bias in the final policy
or even completely prevent the agent from learning a stable policy. In our presented formulation, the
reward function was designed in a scheduled trend, by rewarding the main application goal higher,
which keeps the target multirotor in the image plane but at the same time, by encouraging safe and
smooth movements. Resulting reward function r is
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r =


r1 = −100 if cx or cy

out of image

r2 = −100 if area < 350 px2

r3 otherwise

(7)

r3 = shaping[t]− shaping[t− 1] (8)

shaping[t] = pcenter[t] + pgimbal [t]

+parea[t] + pvelocity[t]
(9)

pcenter[t] = −g1

√
ecx2 + ecy2 (10)

pgimbal [t] = −g2

√
Θx

2 + Θy
2 (11)

parea[t] = −g3|earea| (12)

pvelocity[t] = −g4

√
ė2

cx + ė2
cy (13)

where cx, cy and area represent the center (in x and y axes) and the area of the current RoI, respectively;
g1, g2, g3 and g4 are experimentally defined constants (100, 65, 50, 30, respectively); r1 and r2 prevent
the agent from exploring states out of a certain volume with respect to the target NC-M, based on
image coordinates; and r3 informs the agent about its instantaneous progress and helps speed up
learning [55].

Furthermore, in the shaping component an explicit distinction was included in the importance of
minimizing the relative image position between current and target RoI centers, the absolute position
of the camera gimbal, the current and target RoI area ratio and the error velocities (each variable was
weighted by a different coefficient g1, g2, g3 and g4). In this trend, the agent is encouraged to coarsely
learn to minimize the position of the current RoI with respect to the target RoI, which retains the target
NC-M within the camera Field of View (FOV). Subsequently, the agent is encouraged to optimize its
behavior in order to keep the camera gimbal in a centered position (angles close to zero) and to finally
keep a certain distance with respect to the target multirotor (RoI area directly related to the distance)
as well as to decrease image velocities. Particularly, we found out that the incorporation of Θx and
Θy components, weighted by g2 coefficient, is a determinant for learning convergence. As stated,
this component of the reward function encourages the agent to keep the camera gimbal in a centered
position during the execution of the maneuver, diminishing the uncertainty of the solution space and
making the desired behavior more explicit, that is, centering the camera gimbal provides the RL-M
with more reaction time in case of sudden movements by the NC-M. Finally, the final reward was
not normalized. Although pcenter[t], pgimbal [t], parea[t] and pvelocity[t] by far exceeded the unitary value
during training, the final computation of reward r3, which informs the agent about its instantaneous
progress, did not. In the context of this application and reward-function design, final reward r3 is in
the decimal order of magnitude, with values near the unit. Thus, taking this into consideration and the
algorithm involved, reward normalization was not required.

4.3.2. System and Network Architecture

A versatile system architecture was designed and implemented, taking the standardization of
the virtual and real contexts as the main consideration. In this scenario, most of the component
interfaces were shared for both simulated and real-flight experiments. A global overview of the system
architecture is depicted in Figure 3. From the side of the agent, the PPO component, which had
the actor–critic network as its motion-policy representation model, was wrapped with an ROS [56]
interface. This design not only increased the similarity between the virtual and real contexts but
also reduced the friction of interaction with robotic components, since ROS is the most common
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middleware in the robotic ecosystem. Conversely, the implemented environment interface is in charge
of parsing the raw information (target NC-M RoIs and angular states of the camera gimbal) in order
to properly adapt it to the reinforcement-learning formulation (refer to Section 4.3.1). It is also in
charge of interacting through SDK commands with the hardware interface, which can be real or
simulated due to standard implementation. The RoI of the target NC-M was generated based on
the projection of the multirotor ground-truth 3D points and the intrinsic camera parameters for the
simulated environments and based on the multirotor detector, described in Section 4.1, for real-flight
experiments. Hence, in order to send state st to the PPO agent, the environment interface performs all
the required processing by relying on current and target RoIs.

The actor–critic neural network is a feed-forward neural network with two hidden layers of
256 units each. The activation function of each unit of a hidden and output layers is a hyperbolic
tangent (tanh). The input- and output-layer dimensions of the actor–critic network are based on the
state, action and value dimensions (8 and 5 + 1 units), respectively (see Figure 3). The activation
function of the output layer is bounded to the range of [−1,1] and is provided by a linear unit for the
value, to output an estimation of the V-function, used to compute an advantage function [53]. It has to
be remarked that other values of the number of hidden layers and/or hidden units have been tested.
Nevertheless, the stated neural-network structure composes the minimum size in terms of hidden
layers and units per layer, which allows for learning stability in the conditions described in this work.
For instance, network models with 128 units and two hidden layers did not provide proper results.

5. Experiments

As supplementary material, the video of the experiments can be found in https://vimeo.com/
352940150, and the stated open-source dataset in https://bitbucket.org/alejodosr/uav-dataset.

5.1. Experiment Setup

The environment and hardware interfaces were been implemented in c++11 and the neural
networks were trained with the Tensorflow (https://www.tensorflow.org/) library. The multirotor
detector was migrated to c++11 for fast-inference purposes. The agent was synchronous with
a frequency of 20 Hz, the input of the environment interface was implemented as asynchronous
(it is triggered by any sensory input, such as camera images and camera gimbal states). However,
the output of the environment interface (i.e., the state and reward) is generated every time an action
from the agent is received. Despite the fact that the system architecture was implemented to be
nonspecific, as described in Section 4.3.2, there existed small differences between simulated and real
experiment setups.

5.1.1. Simulation

The simulated environment, designed for training the reinforcement-learning agent, was
generated under the Gazebo (http://gazebosim.org) simulator and RotorS UAV simulator [57].
An AscTec Hummingbird multirotor was selected as the RL-M, due to its similarities with the real-flight
platform. A generic NC-M was included in the simulation, based on which the ground-truth RoI was
generated. An Nvidia GeForce GTX 1070 was used to train and test the reinforcement-learning
simulated agent. A near replica of the real-flight software camera gimbal was implemented
in simulation.

5.1.2. Real Flight

The Parrot Bebop 2 was chosen as the real-flight multirotor platform for both NC-M and
follower RL-M due to its frictionless integration, stability, size and manoeuvrability (see Figure 1).
The motion-control policy and multirotor detector were successfully tested on an average CPU and
GPU (at least 1 GB of video memory). The Parrot Bebop 2 camera gimbal has a resolution of 856 × 480,
a horizontal FOV of 1.3463 rad, a maximum camera gimbal velocity of 0.22 rad/s and maximum camera

https://vimeo.com/352940150
https://vimeo.com/352940150
https://bitbucket.org/alejodosr/uav-dataset
https://www.tensorflow.org/
http://gazebosim.org


Sensors 2019, 19, 4794 11 of 20

gimbal angles of 0.87 and 0.61 rad in the x and y axes, respectively. Although the reinforcement-learning
agent was exactly trained as stated in Section 4.3.1, that is, controlled in attitude for x and y axes
and altitude velocity for z axis, it was slightly different for the real-flight platform. Parrot Bebop 2
does not allow for pure attitude control, so it was controlled in velocity (in the three axes of space).
The adaptation for the commanded actions is

vx = kθ (14)

vy = kφ, (15)

where k was experimentally set and represents the adaptation coefficient (0.23 m rad−1 s−1); vx and
vy represent velocity in the x and y axes, respectively; and θ and φ are commanded pitch and roll,
respectively. This adaptation is only valid for stationary values of the pitch and roll angles and
contributes to the differences between the simulated and real multirotor platform.

5.2. Training Methodology

5.2.1. Multirotor Detector

The multirotor detector was trained with standard supervised-learning techniques by means
of synthetic images. These synthetic images were generated under the photorealistic Unreal
(https://www.unrealengine.com) game engine and also released as an open-source dataset (see
Supplementary Material). For our approach to be successful with our synthetic dataset, the detector
network was pretrained on the COCO dataset [58] and fine-tuned with our syntethic dataset (new
synthetic multirotor class not available in COCO dataset). Our dataset was mainly composed of two
synthetic multirotor models (Parrot ArDrone and DJI Matrice 100) and a small subset of birds and cars
extracted from the COCO dataset. We found that, with the addition of these two extra classes, we were
able to decrease the total number of false positives. A small multirotor-validation dataset composed
of real images was also annotated in order to select the most appropriate network and to provide
training and validation results. The training and validation datasets were composed of approximately
8000 and 300 samples, respectively. A reduced set of samples from the training and validation datasets
is depicted in Figure 4.

The whole network was trained with the Adam optimizer, with a minibatch size of 1 and
the remaining hyperparameters as in Reference [47]. We fine-tuned our network for six epochs
(10,000 update steps each with frozen backbone weights) and selected the best one in terms of mean
Average Precision (AP) performance. In Table 1, AP is shown for every epoch of training and validation
and taking into consideration in a separate trend both the full dataset and the part of the dataset
corresponding to the multirotor class. Additionally, a special case was included, where the network
was not yet trained with synthetic images (epoch 0). In this special scenario, since the multirotor
class was not present in the COCO dataset, the airplane class was selected instead (stated class has
been the closest in terms of AP, among others). The average inference time of the network has been
100 ms (Nvidia GeForce GTX 950M). Nevertheless, in order to assure a RoI in every frame during the
whole experiment, as explained in previous sections, a state-of-the-art tracker was also integrated. The
multirotor detector was periodically executed during the experiment in order to refine the tracker RoI.
Backbone weight freezing with final subnetwork fine tuning were crucial for the detector to generalize
for real-domain multirotor images based on pure synthetic multirotor-training images. Complete
model retraining did not provide competent results for the application under study. Hence, the
backbone extracted a high-dimensional feature map that was rich enough to extract an encoding of the
input image, which was latterly classified by the final subnetworks to decide the corresponding class.

https://www.unrealengine.com
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(a)

(b)

(c)

(d)

(e)

Figure 4. Samples from multirotor-detector results (ground-truth Region of Interest (RoI), pale blue;
detected RoI, dark blue). (a) Training samples from synthetic dataset. (b) Validation samples from
multirotor dataset (true positive). (c) Validation samples from multirotor dataset (false negative).
(d) Validation samples from birds dataset (true positive and false negative). (e) Validation samples
from cars dataset (true positive and false negative).

Table 1. Average Precision (AP) was computed for a minimum Intersection over Union (IoU) of
[0.5:0.05:0.95], 0.5 and 0.75 (AP, AP50 and AP75, respectively). Network of epoch 0 corresponds to a
special case (0∗), where network was not yet trained with synthetic images (only with real images of
nonmultirotor classes from COCO - Common Objects in Context - dataset) and was listed in order
to make more salient the effect of our synthetic dataset. Network of epoch 4 (bold) was selected for
experimentation due to its capability of generalization.

Training Validation Training Validation
(only NC-M) (only NC-M) (full) (full)

Epoch AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

0∗ 0.73 0.98 0.54 0.24 0.35 0.30 0.30 0.58 0.54 0.59 0.73 0.69
1 0.91 0.99 0.99 0.25 0.35 0.31 0.69 0.83 0.76 0.73 0.96 0.85
2 0.92 0.99 0.99 0.63 0.93 0.70 0.76 0.88 0.83 0.75 0.96 0.87
3 0.94 0.99 0.99 0.61 0.92 0.70 0.76 0.88 0.83 0.73 0.95 0.85
4 0.93 0.99 0.99 0.64 0.93 0.75 0.85 0.95 0.92 0.75 0.97 0.89
5 0.95 0.99 0.99 0.61 0.89 0.69 0.95 0.99 0.98 0.74 0.95 0.87
6 0.95 0.99 0.99 0.60 0.89 0.68 0.95 0.98 0.98 0.73 0.96 0.88

5.2.2. Motion-Control Policy

The reinforcement-learning problem was treated as episodic, that is, once the agent reached
an absorbing state, the episode reset and both multirotors were respawned to a uniformly randomized
position within the RL-M FOV boundaries. The states where the agent perceived r1 or r2 as its
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instantaneous reward were considered absorbing states (refer to Equation (7)). The time length of
an episode is limited to 1000 time steps (considering a time step of 0.05 s, as previously stated).
The NC-M RoI was synthetically generated for training the reinforcement-learning agent by means
of the 3D ground-truth position of the NC-M and the simulated camera gimbal intrinsic parameters.
However, it showed similar performance when tested with the RoI generated by our multirotor
detector and tracker. The NC-M was also completely static during the whole training process. This fact
did not deteriorate the final performance since the distribution of states and actions experimented
with either static or moving NC-M was equivalent and the actor–critic network did not take temporal
structure into consideration (feed-forward neural network).

As shown in Figure 5, in order to provide a baseline for training, DDPG has been included in the
study. Hence, both DDPG and PPO algorithms has been trained in the same conditions. Nevertheless,
DDPG has not provided adequate results in terms of practical performance, even when the average of
the accumulated reward seems to reach similar values with respect to PPO. Considering these results,
only PPO has been selected for further experimentation (refer to Section 6 for more in-depth details). Both
DDPG and PPO actor-critic networks have been trained with Adam optimizer, with a learning rate of
3× 10−4 and a minibatch size of 64. DDPG has been trained with a soft target update rate τ of 0.001 [51].
PPO has been trained with a policy clipping value of 0.1 [53]. The agent has been trained over 4432 update
steps (with trajectories of 256 experiences) for a total time of approximately 48 h and 16 h for DDPG and
PPO, respectively. Each weights update step incurs in 8 epochs with the stated minibatch size. In the
case of PPO, which has been the only algorithm to provide the full desired behavior, several networks
have been tested from update step 3000 to update step 4300, being able to select actor-critic network of
update step 4220, which has shown the best results in terms of performance for the scenarios presented in
this work. Stated performance was measured with a small subset of 10 testing trials for every network
pre-selected and utilizing metrics shown in Table 2. After performance-based pre-selection, the network of
episode 4220 has been exhaustively tested for both simulated and real-flights.

Table 2. RoI center and area error statistics for the whole set of experiments (simulated and real-flight
cases). Average, maximum and minimum values are provided.

Simulation Real Flights

Experiment Center error (px) Center error (px)
scenario Avg Max Min Avg Max Min

X-axis 5.79 24 0 15.15 44 0
Y-axis 5.72 27 0 22.35 80 0
Z-axis 7.58 39 0 20.31 66 0

Arbitrary 5.7 24 0 26.71 65 0

Experiment Area error (%) Area error (%)
scenario Avg Max Min Avg Max Min

X-axis 13.61 52.51 0.16 33.59 57.38 0
Y-axis 8.59 24.10 0.16 44.02 148 0
Z-axis 17.41 74.51 0 47.12 104 0

Arbitrary 10.94 47.56 0 63.99 162.8 0.6

5.3. Simulated and Real-Flight Experiments

A representative set of experiments that were able to illustrate the complete performance of our
approach for both simulated and real flights were designed. Furthermore, with the aim of testing the
performance of our approach in every axis of space, a separate X-axis, Y-axis and Z-axis experiment was
carried out. In order to provide complete results about the final behavior and to bring up possible coupling
interferences between axes, we performed an arbitrary experiment (refer to Figures 6 and 7). Every
experiment was carried out under maximum velocity conditions (that allowed RL-M to keep track of
the NC-M), which were extracted from experimentation. For every performed experiment, 2D and 3D
ground-truth trajectories, as well as current-target RoI center error (in pixels) and current-target RoI area
error are depicted. For a complete overview of the experiment, refer to the Supplementary Material section.
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Figure 5. Moving average and standard deviation over 50 update steps of the training. (a) Accumulated
Reward and (b) Critic loss function (logarithmic representation). The network corresponding to update
step 4220 provided the best performance.

0

1

2

2

z-
ax

is

X-Axis

3

2

y-axis

0

x-axis

4

0
-2 -2

rl-m
nc-m

(a)

-3

-2

-1

0

1

2

3

x-
ax

is

-202

y-axis

X-Axis

rl-m

nc-m

(b)

-200 -100 0 100 200

x-axis (px)

-200

-150

-100

-50

0

50

100

150

200

y-
ax

is
 (

px
)

RoI center error

error

(c)

0 2 4

time (s)

-150

-100

-50

0

50

100

150

E
rr

or
 (

%
)

Area error

error

(d)

0

1

2

2

z-
ax

is

2

Y-Axis

3

y-axis

0

x-axis

4

0
-2 -2

rl-m
nc-m

(e)

-3

-2

-1

0

1

2

3

x-
ax

is

-3-2-1

y-axis

Y-Axis

rl-m
nc-m

(f)

-200 -150 -100 -50 0

x-axis (px)

-200

-150

-100

-50

0

50

100

150

200

y-
ax

is
 (

px
)

RoI center error

error

(g)

0 2 4 6 8 10 12 14

time (s)

-150

-100

-50

0

50

100

150
E

rr
or

 (
%

)
Area error

error

(h)

0

1

2

z-
ax

is

2

2

Z-Axis

y-axis

0

x-axis

0
-2 -2

rl-m
nc-m

(i)

-3

-2

-1

0

1

2

3

x-
ax

is

-3-2-1

y-axis

Z-Axis

rl-m
nc-m

(j)

-200 -100 0 100 200

x-axis (px)

-200

-150

-100

-50

0

50

100

150

200

y-
ax

is
 (

px
)

RoI center error

error

(k)

0 5 10 15 20 25

time (s)

-150

-100

-50

0

50

100

150

E
rr

or
 (

%
)

Area error

error

(l)

0

2

0.5z-
ax

is

2

Arbitrary

y-axis

1

0

x-axis

0
-2 -2

rl-m
nc-m

(m)

-3

-2

-1

0

1

2

3

x-
ax

is

-3-2-1

y-axis

Arbitrary

rl-m
nc-m

(n)

-200 -100 0 100 200

x-axis (px)

-200

-150

-100

-50

0

50

100

150

200

y-
ax

is
 (

px
)

RoI center error

error

(o)

0 10 20 30

time (s)

-150

-100

-50

0

50

100

E
rr

or
 (

%
)

Area error

tl

(p)

Figure 6. Simulation results corresponding to four different scenarios for our multirotor following
approach. (a,b,e,f) Rectilinear periodic trajectory of the Non-Cooperative Multirotor (NC-M) along the
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x and y axes with a maximum velocity of 1.3 m/s (X-Axis and Y-Axis, respectively). (i,j) Rectilinear
periodic trajectory of the NC-M along z axis with a maximum velocity of 0.5 m/s (Z-Axis).
(m,n) Arbitrary non-periodic trajectory of the NC-M with a maximum velocity of 0.47 m/s (Arbitrary).
(c,d,g,h,k,l,o,p) Current-target RoI center and area error corresponding to each of the four stated
experiments. Multirotor trajectories have been generated by a groundtruth source.
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Figure 7. Real-flight results corresponding to four different scenarios for our multirotor following
approach. (a,b,e,f,i,j) Rectilinear periodic trajectory of Noncooperative Multirotor (NC-M) along
x, y and z axes with a maximum velocity of 0.3 m/s (X-Axis, Y-Axis and Z-Axis, respectively).
(m,n) Arbitrary nonperiodic trajectory of NC-M with maximum velocity of 0.3 m/s (Arbitrary).
(c,d,g,h,k,l,o,p) Current-target RoI center and area error corresponding to each of four stated
experiments. Multirotor trajectories have been generated by an Extended Kalman Filter (EKF) that
utilizes optical-flow velocities and measured accelerations as only input source.

6. Discussion

The considerable testing and validation of the presented multirotor following technique describes
a proper pipeline to utilize synthetic data in the context of a challenging real-world and image-based
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application. It was tested in both simulated and real-flight environments in order to demonstrate the
approach and to compare the differences between scenarios. On the one hand, the multirotor detector
showed outstanding performance with untrained real multirotor images. It sufficiently generalized not
only for the multirotor used in this work but for a wide variety of multirotors of the validation dataset
(see Table 1). Epoch 0 of training showed inadequate network performance, while the following epochs
showed an abrupt growth of the AP for both partial and full datasets. Results validated our technique
and confirmed the benefits of the inclusion of our synthetic dataset. Additionally, this trend enables
numerous applications based on multirotor detection and drafts a training pipeline for unavailable
annotated datasets, such as the case of this study.

On the other hand, the multirotor motion-control policy, which was only trained in a simulated
environment with NC-M in random and static positions, sufficiently generalized to perform in
simulated scenarios where the NC-M was dynamically moving, as well as in real-flight scenarios with
similar conditions. To the best of the authors’ knowledge, it was the first time that the camera gimbal
motion was jointly controlled with multirotor motion based on image cues. Additionally, an approach
where complex and image-based behavior was trained in a synthetic environment and used in the real
world was validated.

The simulated and real-world environments were similar but not perfect, such as the FC response
or the multirotor dynamics. Indeed, we found a decrease in performance of the approach in real-flight
experiments compared with the simulated scenarios (refer to maximum velocities in Figures 6 and 7).
This can be due to differences between real and simulated multirotor dynamics, FC response and
the camera gimbal model. Nevertheless, even with a decrease in performance, the transition of the
approach from simulation to real world was direct, which was the overall aim of this work, taking into
consideration the stated adaptation from Section 5.1.2.

Even though natural policy methods show outstanding data efficiency when compared with
previous methods, such as the DDPG method, there are still sample inefficiencies that are a matter of
community research (4432 update steps over 16 h). However, for the PPO method, both accumulated
reward performance substantially improved after a few hours of training (see Figure 5). DDPG
managed to improve its performance in terms of accumulated reward but, compared to the PPO
method, it resulted in higher variance, a lower average of accumulated reward and longer training
times (approximately 48 h). It also did not provide practical results (the variance of the agent actions
was very low and usage of the camera gimbal was not present).

Regarding Figure 6, our approach showed outstanding performance in all experiment scenarios.
The multirotor was able to keep track of the NC-M during the whole set of tests, being able to follow
the target at a maximum velocity of 1.3 m/s for the X-Axis and Y-Axis experiments. As seen in Figure 7,
the agent was able to show a similar behavior compared to the simulated environments, following
the NC-M at a maximum velocity of 0.3 m/s for the arbitrary experiment. Due to differences in the
simulated and real-flight autopilot capabilities, tracking the NC-M for Z-Axis experiment was best
achieved through camera gimbal actions for simulation and through RL-M altitude velocity actions for
the real-flight experiments (although keeping the NC-M within the camera FOV in both experiments).

In Table 2, we can see that both the simulated and real-flight results were in a similar order of
magnitude and showed suitable behavior (the RoI was being centered during the whole experiment
scenario and, in a second order of priority, the area was being compensated). The processing overhead
of both multirotor detector and motion-control policy was reduced and could be executed in an average
CPU (motion-control policy) and GPU (multirotor detector).

7. Conclusions and Future Work

In this paper, the vision-based following of a noncooperative multirotor was presented.
The approach was mainly based on synthetic data and utilized deep- and reinforcement-learning
techniques for the multirotor detector and motion-control policy, respectively. The multirotor detector
was trained with synthetic images generated by a commercial game engine and was able to generalize
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to a wide range of real-world multirotors and environments. The camera gimbal and multirotor motion
control were jointly treated within a motion-control policy, fully learned in a simulated multirotor
environment. The complete approach was tested in both simulated and real-flight environments
providing proper results, even in the presence of virtual-to-real differences in the multirotor and
camera-gimbal models.

This study could be extended by improving the performance of both the multirotor detector and
the motion-control policy. On the one hand, to improve the multirotor detector, the synthetic dataset
could be extended and other network structures could be tested (e.g., MobileNet-SSD and YOLO).
On the other hand, in order to improve the motion-control policy, both the simulated multirotor and
the camera gimbal could be more realistically modeled and end-to-end fully convolutional network
structure could be included as a future line of research.
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DOF Degrees Of Freedom
FC Flight Controller
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UAV Unmanned Aerial Vehicle
PID Proportional Integral Derivative
RoI Region of Interest
HOG Histogram Of Gradients
LBP Local Binary Patterns
CAD Computer-Aided Design
CNN Convolutional Neural Network
NC-M Noncooperative Multirotor
RL-M Reinforcement-Learning-based Multirotor
FPN Feature Pyramid Network
FL Focal Loss
DCF Discriminative Correlation Filter
DDPG Deep Deterministic Policy Gradients
TRPO Trust-Region Policy Optimization
PPO Proximal Policy Optimization
FOV Field Of View
ROS Robotic Operating System
COCO Common Objects in COntext
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