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Abstract

Constitutive equations for dilute and concentrated polymer solutions are developed
by using phase space kinetic theory in this thesis. The focus is on the study of spatial
nonhomogeneities that are important in systems involving large gradients in stress
and velocity, geometries with small spatial dimensions such as porous media and
problems involving phase-separating systems. The modifications to classical kinetic
theory that must be made in order to study such nonhomogeneous problems involve
explicitly taking into account the spatial dependence of the polymer configurational
distribution function and the finite spatial extent of the polymer molecules.

The nonhomogeneous dilute solution theory developed using a Hookean dumbbell
model is a nonsimple viscoelastic fluid theory with diffusive coupling between stress
at all points in the flow. Solution of any fluid mechanical problem with this theory
involves imposing orientational boundary conditions. A generalized flux expression
is derived that predicts molecular migration due to concentration, stress and velocity
gradients. The stress diffusion terms are shown to scale as VD Mg, where D, is
the polymer translational diffusivity and Ay is the polymer relaxation time. Solution
of a rectilinear shear flow problem was carried out and ties together ideas such as
apparent slip in polymer solutions and the development of polymer depletion layers
near solid walls. The apparent slip coefficient scaled as /D¢ Ay /L, where L is the
characteristic length scale of the system. The thickness of the depletion layers also
scales as /Dy Mg+

The nonhomogeneous concentrated solution theory developed using a rigid dumb-
bell model incorporates the effects of hard-body polymer-polymer interactions and
predicts a transition from a randomly-ordered isotropic phase to a prolate nematic
phase with increasing concentration. The isotropic-nematic transition in spatially
homogeneous systems was studied at equilibrium and in the presence of shear and
shearfree flows. Material functions in these flows were also calculated. Multiple ne-
matic phases were shown to coexist depending on the imposed kinematics and the
initial molecular orientation. The existence of oblate symmetry was predicted in bi-
axial stretching flow and a two-dimensional in-planar oblate to prolate transition was



predicted with increasing concentration.

The development of structure by spinodal decomposition at the isotropic-nematic
transition point was studied with a linear stability analysis. The effects of alternative
forms of the intermolecular potential on the formation of structure were explored.
In the absence of rotational diffusivity effects, the characteristic domain size Agom '
was shown to scale as the range of interaction between the interacting molecules
and the growth rate scaled as D, /A%, in agreement with the classical theory of
spinodal decomposition. In the presence of rotational diffusivity, no spatial pattern
develops for a range of concentrations within the unstable spinodal region. At higher
concentrations, classical behavior and domain formation is again seen. The effect of
flow on the onset of instability was also studied with the linear stability analysis and
the critical concentration for change in stability in the presence of flow N’ scaled such
that AV, — N' ~ §'/2, where § = ¢/D, in shearfree flow and § = 4/D, in shear flow.
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Chapter 1

Introduction

1.1 Issues in the Development of Molecular The-
ories for Polymeric Liquids

Low-molecular-weight fluids, such as water, that display Newtonian behavior have
been the focus of many intensive studies in the area of fluid mechanics. Such fluids
are characterized by a constant viscosity, and have flow behavior that is accurately
described by the Navier-Stokes equations. However, many other fluids, such as poly-
mer solutions and melts, fiber and colloidal suspensions, liquid crystals and foams do
not obey this description. These fluids form a large and important segment of today’s
chemical process industries. In 1988, for instance, 30 billion tons of synthetic poly-
mers were produced in the United States, with a value of approximately $240 billion
(Standard and Poors, 1989). It is crucial to extend our understanding of Newtonian
fluid mechanics to encompass this vast array of materials that are generally called
non-Newtonian fluids. |

The first step in the study of non-Newtonian fluid mechanics is obtaining a rhe-
ological equation of state or constitutive model for the fluid that describes precisely
the relations between the stress T and strain-rate 4 of an arbitrary material element,
regarded as part of a flowing continuum. This is the counterpart of the Newtonian -

constitutive equation 7 = —u~, where p is the constant Newtonian viscosity. The
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constitutive equation, in general, is a relation between the kinematic, dynamic and
thermodynamic variables associated with a material element and also involves phys-
ical constants of the material. The development of a compact constitutive equation
for any non-Newtonian fluid is complicated by the vast range of complex rheologi-
cal responses displayed by these fluids. This complex rheology is a consequence of
the internal microstructure possessed by non-Newtonian fluids, that can be deformed
by the imposed flow field. In turn, the fluid stresses are strongly dependent on the
microstructure and any change in the microstructure also affects the flow field and
results in the complex rheology. The close coupling between the internal microstruc-
ture and the imposed flow fields can, in fact, be used to “tailor” the microstructure to
specifications, and thereby achieve desired material properties in the final material.
A good constitutive model should be capable of describing the relationship between
the internal microstructure and the imposed flow field, by capturing the essence of
the underlying dynamical processes on the scale of the internal microstructure,

The early constitutive models were phenomenological, often restricted to only a
few classes of flows and incapable of describing all the rheological responses displayed
by these fluids. In the last several decades, the close relation hetween the internal
microstructure and rheological properties has been recognized, and the more recent
constitutive equations are based on micromechanical descriptions of macromolecular
systems. This approach is referred to as kinetic theory and uses the principles of
nonequilibrium statistical mechanics to obtain the relation between the microscopic
mechanical model parameters and the macroscopic flow properties of the system.
Kinetic theory is applied in this thesis to focus on the development of constitutive
equations for polymeric liquids.

Early kinetic theories for polymeric liquids used crude models for the polymer
chain that did not account for the details of the molecular architecture; subsequently,
more complex models were introduced to account for chain branching and steric hin-
drances between two different molecules and between parts of the same molecule.
Such realistic complex models are used in the study of equilibrium properties of the

polymer solutions, e.g., differences in chain conformation in the presence of different
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solvents. However, the study of microstructure in the presence of flow is a much
more complex problem; as a result, kinetic theory developments of constitutive equa-
tions aimed at describing the rheology of polymer solutions and melts are generally
restricted to simpler micromechanical models.

Kinetic theory development of constitutive equations can be broadly divided into
two categories: dilute solution theories and theories for concentrated solutions or
melts. In the dilute solution theories, the polymer molecule is considered to interact
only with the surrounding solvent molecules, which are considerably smaller than the
polymer chain. On the scale of the macromolecule, the average behavior of a single
polymer chain in a mean fleld due to the surrounding solvent particles provides an
accurate description of the system. Theories for concentrated solutions are much more
complex ihan the dilute solution theories. A primary reason is that polymer-polymer
interaction must be explicitly considered for an accurate representation of the system.
However, a mean field approach is necessary to keep the problem mathematically
tractable. The goal of such a theory is to capture the essence of the intermolecular
interactions in a mean field description, so as to predict the behavior of concentrated
systems with some degree of accuracy.

Some of the problems studied using these constitutive theories include the effect
of chain flexibility on rheological properties (Armstrong, 1974a & 1974b; Wedgewood
et al., 1991), the eftect of incorporating hydrodynamic interaction, i.e., perturbation
of the solvent velocity due to the local chain motion (Ottinger, 1985, 1986 & 1987),
the effect of excluded volume interactions between different parts of the same polymer
chain due to the finite volume occupied by the chain (Baldwin and Helfand, 1990;
Ottinger, 1989b & 1990), effect of entanglements in concentrated systems (Lodge,
1985) and the effect of constraints imposed on the motion of a single polymer chain
due to the surrounding polymer matrix (Doi and Edwards, 1978a, 1978b, 1978¢c &
1979; Curtiss and Bird, 1981a & 1981b). These and other developments in polymer
kinetic theory have been reviewed recently by Bird and Ottinger (1992).

17



1.1.1 Importance of Incorporating Spatial Nonhomogeneities

The extensive use of kinetic theory for development of constitutive theories has given
considerable insight into molecular processes underlying the complex rheological fea-
tures exhibited by polymer solutions and melts and it is sometimes possible to relate
specific molecular features to a characteristic rheological response. However, for sim-
plicity, most theories have been aimed at elucidating bulk properties of the system,
and at the very outset in their development, the system is taken to be unbounded
and spatial homogeneity is assumed. This implies an assumption of uniform concen-
tration through the system, as well as uniform stress and velocity gradients on the
length scale of the macromolecule. These homogeneous, unbounded constitutive the-
ories are sufficient in problems where the assumptions of spatial homogeneity hold,
such as in the calculation of bulk rheclogical properties in an imposed flow field,
However, in coupling fluid rheology and fluid mechanics, specific flow geometries and
boundaries are introduced that can lead to a breakdown of the assumption of spatial
homogeneity. Consequently, the homogeneous theories are unsuitable for the study
of intrinsically nonhomogeneous problems, e.g., problems involving sharp gradients .
in stress and velocity fields, possibly on length scales comparable to macromolecu-
lar length, descriptions of phase-separating systems and models of systems involving
small spatial dimensions such as flow through porous media where wall effects could
play a major role. These systems are often encountered in the processing of polymer
solutions, as described next.

The advisability of using intrinsically homogeneous models for studying problems
involving large gradients in the stress and velocity fields has often been questioned
(Brown et al., 1986; Lipscomb et al.,, 1987). The difficulty is clear from studies of
the flow through an abrupt contraction (Coates, 1992; Marchal and Crochet, 1987),
as shown in Fig. 1-1. For both Newtonian and non-Newtonian fluids, the stresses
in the fluid become infinite as one approaches the reentrant corner singularity. For
the Newtonian fluid, the stress is square integrable and leads to a finite force on
the wall (Dear. and Montagnon, 1949; Moffatt, 1964; Coates et al., 1992); for the

homogeneous viscoelastic fluid models that have been used, the integrability of the
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Reentrant
Comer

Figure 1-1; Flow through an abrupt contraction,

stresses is not necessarily guaranteed. A number of homogeneous viscoelastic models
have been studied by Coates (1992); in most cases, integrability is guaranteed only
in the presence of a Newtonian solvent or by suitable modification of the constitutive
theory in the vicinity of the singularity, In t.he;e models, however, the effect of the
large stress and velocity gradients on the fluid microstructure in the vicinity of the
reentrant corner singularity has not been rigorously examined.

It has been suggested that development of large gradients in stress and velocity on
length scales comparable to the length of the polymer chain can result in segregation
between solvent and polymer molecules or between polymer molecules of different
molecular weight (Tirrell and Malone, 1977; Aubert and Tirrell, 1980; Aubert et al,
1980). The hypothesis of Tirrell and Malone, termed as “stress-induced diffusion”,
suggests that polymer molecules migrate from regions of higher stress gradients to
regions of lower stress gradients, due to an entropic driving force. Extending this hy-
pothesis to the contraction flow problem, it can be speculated that polymer molecules

migrate away from the corner singularity and leave only the Newtonian solvent behind.
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Figure 1-2: Extrudate distortion in the melt fracture instability (reproduced from
Denn, 1490).

Thus, at the reentrant corner, the integrable stress condition would he automatically
satisfied, A constitutive theory that consistently accounts for the effects of such
stress and velocity gradients on the microstructure is necessary to prove or disprove
this micromechanical picture of the polymer solution in a high stress gradient,

The presence of solid boundaries is an ubiquitous source of nonhomogeneities; in
flow problems involving small spatial dimensions, wall effects can have a significant
impact on the bulk flow. For instance, in problems of enhanced oil recovery, poly-
mer solutions have to flow through natural porous media where the pore dimension
(1 = 20um) is often comparable to macromolecular sizes (0.4 - 1gm); molecular ori-
entation imposed as a result of steric hindrances with the wall lead to a reduced
apparent viscosity that depends on pore size and increased flow rate through the
porous medium {(Chauveteau, 1982). The interaction between the polymer and wall
also has been invoked to explain the melt fracture instability, illustrated in Fig, 1-2,

When the throughput of polymer melt from an extruder exceeds a material-dependent
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critical value, the surface of the extrudate develops wave-like periodic oscillations, as
seen from Fig. 1-2. It has been suggested that adhesion of the polymer to the wall
breaks down beyond a critical throughput, and leads to the onset of the melt fracture
instability (Ramamurthy, 1986; Denn, 1990). The data collected by Ramamurthy E
indicate that the point of onset of the instability is modified by changing the material
of the die and thus, by changing the adhesion properties at the solid-melt interface.
The mechanism for the lack of adhesion leading to the instability is not at all clear.

Spatial nonhomogeneities that are introduced either due to the presence of solid
boundaries or due to the effect of nonhomogeneous stress and velocity fields can be
viewed as nonhomogeneities that are extrinsic to the dynamics of the internal mi-
crostructure. In addition to these extensive sources, spatial nonhomogeneities are in-
trinsic to and an important consequence of the dynamics of phase-separating systems.
The problem of treating such spatial nonhomogeneities is of particular importance in
polymeric liquid crystalline systems, where the development of uniform orientational
order is key to exploiting the unique properties of these materials.

A schematic of the disorder-order transition that occurs with increasing concen-
tration in liquid crystalline systems is illustrated in Fig. 1-3. The solution makes the
transition from an isotropic state to an ordered nematic one through a metastable
region of coexistence as the concentration is increased. In the metastable region, ori-
entational order develops via nucleation and growth, whereby a nucleus of well-defined
order is first formed and then grows in wavelength with fixed amplitude. In the unsta-
ble region, orientational order spontaneously develops by spinodal decomposition over
the entire system (Cahn, 1961 & 1965); in this case, direction of ordering is correlated
over a fixed wavelength and the amplitude or degree of ordering increases gradually
with time. Both processes lead to the development of a so-called polydomain texture,
where the molecular orientation is relatively uniform over a region identified as the
domain, although orientation between domains is entirely uncorrelated. The surfaces
between domains eventually decay to point and line defects (de Gennes, 1974); the
defects represent very rapid changes in orientational order over very small distances,

These defects are persistent, especially in liquid crystalline polymers, and can have a
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Figure 1-3: Schematic of the disorder-order transition in liquid crystalline systems.
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significant effect on the properties of these systems.

In order to consider these and the descriptions of other systems with nonhomoge-
neous structure, it is necessary to develop a comprehensive theory that considers the
effects of nonhomogeneities on a macromolecular length scale. The goal of this thesis
is to construct a rigorous and consistent kinetic theory framework that allows the
incorporation of spatial nonhomogeneities into constitutive equations that describe

polymer and liquid crystalline solutions.

1.2 Thesis Goals

The role of spatial nonhomogeneities in different physical systems is examined in
this thesis using the concepts of phase-space kinetic theory, as laid out in Bird ef
al. (1987b). Two problems have been studied. The first problem is the extension
of the homogeneous dilute solution theories to incorporate nonhomogeneities and
to understand the coupling between polymer concentration, stress and velocity fields.
The theory is based on explicitly retaining the spatial dependence of the field variables
and allowing for rapid changes in the concentration, stress and velocity fields on
the length scale of the polymer molecule. This nonhomogeneous theory allows the
incorporation of polymer-wall interactions, by way of explicit boundary conditions,
The effect of boundary conditions on the bulk flow behavior can thus be easily studied.
A very simple molecular model is used to keep other complications to a minimum.
The development of structure at the order-disorder transition in liquid crystalline
polymers eventually leads to the formation of defects that have a significant impact
on the material properties. The second problem is therefore concerned with the
extension of the nonhomogeneous dilute solution theory to a highly concentrated
solution of rigid rods that undergoes a transition from a randomly ordered phase to
an orientationally ordered liquid crystalline phase with increasing concentration. In
such concentrated systems, the intermolecular interaction between polymer molecules
plays a key role in determining the properties of the system. In the description of

the rigid-rod system, pairwise ezcluded volume interactions between two rigid rods
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prevent the intersection of two rigid rods and leads to the disorder-order transition
with increasing concentration (Onsager, 1949). Here, ezcluded volume refers to the
volume occupied by a rigid rod that is inaccessible to any other rigid rod. The goal of
this study is to understand the role of the intermolecular potential in the development
of structural order at the critical concentration.

A nonhomogeneous theory for the concentrated rigid rod system is developed
within the kinetic theory framework. A mean-field version of the hard-rod interac-
tion potential is developed; the potential is a nonhomogeneous generalization of the
mean-field Maier-Saupe potential that has been used in previous homogeneous the-
ories for liquid crystalline polymers (Maier and Saupe, 1958 & 1959; Doi, 1980 &
1981, Menon, 1990). The potential accounts for the increased importance of the ex-
cluded volume interactions between the molecules with increasing concentration and
incorporates the effects of a finite range of interaction between two rigid rods. The
homogeneous aspects of the theory are first studied by ignoring all spatial gradients
in the description of the microstructure. The equilibrium phase transition from a
disordered to an ordered phase is studied, along with the effect of different flow fields
on the development of microstructure and the associated rheological properties of the
system in steady and transient flows.

The formation of oriented domains at the disorder-order transition point by spin-
odal decomposition is a result of a short-range ordering process between the rigid-rod-
like molecules, and as such can be regarded as an example of cooperative phenom-
ena (Stanley, 1971). It crucially depends on the manner in which the interactions
propagate order from one particle to another, and the interaction potential plays an
important role in determining the dynamics of this ordering process. The final goal
in the study of these concentrated systems is to understand the role of the inter-
action potential on spinodal decomposition, and identify the details that must be
incorporated into the nonhomogeneous theory in order to correctly model the phase
transition. Linear stability theory is adopted to study the structure that develops at
the equilibrium phase transition point and to predict the characteristic domain sizes

al the onset.
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1.3 Thesis Outline

The internal microstructure possessed by polymer solutions is responsible for its com-
plex flow behavior that differs greatly from that exhibited by small-molecular-weight
Newtonian fluids. The close relationship between the microstructure and fluid rhe-
ology has lead to the development of constitutive theories based on micromechanical
models and nonequilibrium statistical mechanics to describe non-Newtonian behav-
jior. An introduction to the development of micromechanical-model-based constitutive
theories for polymeric or viscoelastic fluids is given in Chapter 2. The structure of
the macromolecule, and the ideas of relazation time and fading memory are intro-
duced in Section 2.1. The behavior of polymeric liquids is contrasted with ordinary
Newtonian fluids, with the goal of illustrating the complex rheology displayed by the
polymeric fluids. The different flow fields and material functions that are used to
characterize the complex rheological behavior are described in Section 2.2, Finally,
the basic concepts behind kinetic theory of viscoelastic constitutive equations are
introduced in Section 2.3. The molecular models that are commonly used to model
complex polymer molecules are described in Section 2.3.1, and concepts of configura-
tional distribution functions and ensemble averaging are introduced in Section 2.3.2.
Some of the common problems encountered in most kinetic theory developments are
also discussed, such as the mean-field treatment of the intermolecular forces and the
need to use closure approximations. This section serves as an introduction to much
of the notation that is used in the subsequent development of the nonhomogeneous
theories. The Oldroyd-B constitutive equation is derived in Section 2.3.3 using the
kinetic theory ideas described in the previous sections, and the derivation serves as an
illustration of the underlying assumptions in traditional kinetic theory developments.
The ideas of spatial homogeneity that makes the traditional theories unsuitable to
the study of inherently nonhomogeneous problems also are discussed.

The development of a consistent kinetic theory framework for the treatment of
nonhomogeneous problems is described in Chapter 3. An introduction to the nonho-

mogeneous problem is given in Section 3.1. Other theories that have been suggested
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to explain the anomalous behavior observed in nonhomogeneous systems also are re-
viewed in this section. The changes that must be made to a homogeneous kinetic
theory in order to incorporate spatial nonhomogeneities are discussed in Section 3.2.
The constitutive equation for nonhomogeneous systems is devvelopcd in Section 3.3
using phase space kinetic theory. At the outset, the choice of the molecular model and
the notation are described. The hydrodynamic equations of change are obtained first.
Next, simplified expressions for the mass flux vector and stress tensor are developed
involving averages with respect to the distribution functions. Finally, evolution equa-
tions for the distribution function are obtained in order to close the equation set. On
simplification, a coupled set of equations are obtained for the polymer concentration
and stress contribution. These equations are compared to the corresponding homo-
geneous constitutive equation, the Oldroyd B fluid model, and the significance of the
new terms in the constitutive theory is discussed. The nonhomogeneous constitutive
theory is a non-simple fluid theory, because the stress at a point in the flow couples,
in a diffusive manner, to all other points in the flow. There is need to impose bound-
ary conditions on molecular orientation which allows determination of stress at the
boundary. Suitable boundary conditions are also discussed in this section. A simple
problem of rectilinear shear flow is solved to illustrate the significant features of this
constitutive equation. The main development in Chapter 3 ignores the eftect of all
external forces and neglects the effects of bead inertia. The effect of incorporating
external forces and bead inertia is studied in Section 3.5.

The development in Chapter 3 accounts for the effect of spatial nonhomogeneities
that arise due to factors external to the dynamics of the molecules. In addition,
spatial nonhomogeneities develop as a result of phase separation, and the struct'urc
of the nonhomogeneity in these systems is closely related to the interactions between
individual macromolecules that comprise the internal microstructure. These prob-
lems are of special importance in polymeric liquid crystalline systems, as discussed in
Section 1.1.1. The nonhomogeneous theory for dilute polymer solutions developed in
Chapter 3 is extended in Chapter 4 to concentrated sjstems of rigid-rod-like molecules

that undergo a transition to liquid crystalline nematic phases with increasing concen-
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tration. An introduction to liquid crystallinc systems is presented in Section 4.1,
along with the significant rheological features displayed by these systems. The rhe-
ology of liquid crystalline polymers is also compared to isotropic polymer rheology
to illustrate the effects of molecular ordering. A review of existing theories for liquid
crystalline polymers is presented in Section 4.2.

The development of Chapter 3 is paralleled in Section 4.3, where the nonhomoge-
neous liquid crystalline constitutive theory is dveveloped. The theory differs from the
development presented in Chapter 3 in that the molecular model is chosen to be a
rigid dumbbell to account for the stiff backbones of molecules that have a tendency
to form ordered phases. Moreover, intermolecular interactions that were neglected
in the dilute solution theory of Chapter 3 are now included. The presence of a rigid
dumbbell model makes it convenient to use generalized coordinates, which are de-
scribed in Section 4.3.1. The importance of correctly capturing the essence of the
intermolecular interaction into a mean-field type potential has already been empha-
sized in this chapter. The homogeneous mean-field Maier-Saupe potential has been
used in the early homogeneous theories for liquid crystalline polymers and is general-
ized here to account for spatial nonhomogeneities by including the effects of a finite
interaction range between the interacting rigid-rods. One such generalization, the
hard-rod potential, that is used to model the excluded volume effects is discussed in
Section 4.3.2. An alternative form for the interaction potential was recently developed
(Marrucci and Greco, 1991; Greco and Marrucci, 1992a & 1992b) by using a similar
development, and is compared in this section with the hard-rod potential. The rele-
vant equations of change and the constitutive equation are developed in Section 4.3.3
for a general potential. Closure approximations that are required to obtain a closed
set of equations also are described in dct.;til.

The homogeneous aspects of the liquid crystal problem are studied in Chapter 5.
A considerably simpler set of equations is obtained in Section 5.1 by making an as-
sumption of spatial homogeneity in the equations developed in Chapter 4. The phase
behavior and microstructure predictions at equilibrium and in the presence of shear

and elongational flow fields is studied in Section 5.2. The different phases that can
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coexist are obtained in the different flow fields. The rheological predictions in steady
and transient flows are studied in Section 5.3. The use of closure approximations
has a significant eflect on some rheological predictions. The conditions that must be
imposed on any closure approximation and the possibility of using alternative closure
approximations is explored in Section 5.5.

The nonhomogeneous aspects of the liquid crystalline problem are studied in
Chapter 6. With increasing concentration, the randomly ordered isotropic state
becomes unstable due to the increased effect of excluded volume interactions that
prevent two molecules from intersecting each other. In the unstable region, orienta-
tional order spontaneously develops by spinodal decomposition. The classical theory
of spinodal decomposition in binary alloys and glasses developed by Cahn (1961 &
1965) is presented in Section 6.1. Linear stability theory is adopted in Section 6.2
to study the predictions of the nonhomogeneous governing equations developed in
Chapter 4. A dispersion equation that gives the relation between growth rate and
spatial wavenumber is used to obtain the characteristic domain sizes at any given
concentration in Section 6.2,1. The eftect of closure on the dispersion relation is also
examined in this section. The predictions for the two forms of the intermolecular po-
tential, developed in Section 4.3, are compared in Section 6.2.2. The predictions for
characteristic domain size are related to the interaction range of the intermolecular
potential. In classical spinodal decomposition, the separation of phases is accom-
plished purely due to translational diffusivi‘ty of the separating molecules. In the
liquid crystal problem, rotational diffusivity D, also can be significant compared to
the translational diffusivity D,.. The role played by D, in spinodal decomposition
is explored in Section 6.2.3. The effect of flow on the dispersion relation and on the

critical concentration for the onset of instability is studied in Section 6.3.
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Chapter 2

Viscoelastic Constitutive Theories

The internal microstructure possessed by polymer solutions and melts leads to com-
plex rheological behavior. It is inadequate to define a single viscosity for these ma-
terials and other material functions are needed to characterize the fluid completely.
The behavior of Newtonian and viscoelastic materials is compared in Section 2.1, and
some of the commonly used material functions are defined in Section 2.2. Our goal is
to be able to describe the complex rheology of polymeric fluids with the help of closed
form constitutive models. Recognizing the close relation between the rheology and
the internal microstructure, recent constitutive models are based on micromechanical
models of the macromolecular system and are developed by using a formal kinetic
theory framework. The basic ideas behind the kinetic theory of polymer solutions are
presented in Section 2.3, The different inolecular models that have been used for the

development of constitutive equations are discussed in this section,

2.1 Viscoelastic Phenomena

A polymer or macromolecule consists of a long backbone of smaller monomer units
joined together, with attached side-groups that are often bulky and complicated. Typ-
ical molecular weights range from 10 — 10° gm/mol. Free rotation about the C-C
bonds, that make up a hydrocarbon backbone, allows the molecule to exist in a large

number of configurations. Furthermore, the molecule can change from one configura-
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tion to another; such configurational changes may be either local rearrangements of
the backbone or large overall changes in configuration. The preferred configuration
depends on the different forces that act on the molecule. For instance, when subjected
to a spatially or temporally varying flow field, the molecular configuration changes
continuously so as to balance this applied force. As the molecule coils and stretches
in an effort to change its configuration, there are a number of characteristic time
constants (or scales) associated with the different molecular motions. These comprise
the spectrum of relaxation times that characterize the polymer molecule, The re-
laxation spectrum gives the fluids a fading memory with the duration of the longest
relaxation time. When this longest relaxation time is of the same order-of-magnitude
as the characteristic time for the macroscopic flow system, marked deviations from
Newtonian fluid mechanics are observed.

A measure of the deviation of the system from Newtonian behavior is best given in
terms of a dimensionless group, the Deborah number (Reiner, 1964; Bird, 1965). The
Deborah number is defined as the ratio of a characteristic time for the fluid relaxation

A to a characteristic time of the flow system o4, as

A
tﬂow ‘

De = (2.1)

If the Deborah number is small, the polymer molecules retain their equilibrium con-
figuration, and the polymeric fluid exhibits more or less Newtonian behavior, Thus,
the limit De — 0 represents a viscous Newtonian fluid. Conversely, if the Deborah
number is large, polymer molecules that are strongly distorted by the flow cannot
relax to their equilibrium configuration during the time scale of the process or ex-
periment. In the limit De — oo, the experiment happens so fast that.the polymer
molecules have no time to change configuration, and the fluid behaves like an elastic
solid. Polymeric liquids are therefore often referred to as viscoelastic fluids.

The deformability of the internal microstructure by external flow fields and the
fading memory possessed by the constituent polymer molecules results in a number of

interesting viscoelastic phenomena. For instance, if we insert rotating rods into two
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Newtonian Fluid Polymeric Solution

Figure 2-1: The Weissenberg effect.

beakers, filled with a Newtonian and a polymeric liquid, drastically different effects
are seen; see Fig. 2-1. In the Newtonian case, the centrifugal forces push the liquid
outward from the rotating rod, and a small dip in the free surface is seen at the center.
On the other hand, for the polymeric solution, the fluid is pushed inwards and climbs
up the rotating rod. This phenomenon is a direct consequence of the stretching and
orientation of the polymer molecules along the circular streamlines that results in the
development of normal stresses. These normal stresses oppose the centrifugal force on
the fluid and are sufficiently strong to cause a net flow inwards, resulting in the rod-
climbing phenomenon or the Weissenberg effect. Fluids comprised of small molecules
that can be treated as point particles do not show such normal stress effects since the
molecules are not capable of alignment with the flow.

This example illustrates the point that the deformable internal microstructure
possessed by polymer solutions is responsible for effects that are unique to viscoelas.
tic fluids. Other examples of such viscoelastic phenomena are described in Bird et
al, (1987&). In order to accurately model the flow behavior of such polymeric flu-

ids, a constitutive theory must be able to account for the stretching, rotation and
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deformation of constituent molecules that changes the internal microstructure.

2.2 Material Functions for Polymeric Liquids

Fluids without microstructure, such as Newtonian fluids, are characterized by a single
viscosity coefficient. Alternatively, due to the internal microstructure and its ability
to get deformed in the presence of flow fields, a number of material functions that
depend on shear rate, frequency and time must be defined in order to characterize
completely the viscoelastic fluid.

The flow fields used most commonly to characterize non-Newtonian fluids are

shear flow and shearfree flow. A simple shear flow is given by the flow field
Vo = Yyeyi vy = 0; v, =0 (2.2)

where the velocity gradient 4,, may be a function of time. Based on measurements
of the shear stress 7., in steady shear flow (i.e., 4, = constant), a steady-state

non-Newtonian viscosity 7 is defined as

Tye = ~1(4) e (2)

where the shear rate 4 = |/1/2:%. Viscoelastic fluids show non-zero normal stresses
in simple shear flow, unlike Newtonian fluids which show no normal stresses. These
normal stresses manifest themselves dramatically, as illustrated by the rod-climbing
experiment, and must also be measured. For simple shearing flows of incompressible
fluids, only two independent combinations of the normal stresses can be nleasﬁred
(Bird et al., 1987a), provided the fluid is isotropic. Also, it is not possible to dis-
tinguish between pressure and normal stresses from normal force measurements in
experiments. Therefore, the two normal stress differences 7., — Tyy and 7y, — Tu.
are customarily measured. Based on these stress measurements, two other steady-

state shear flow material functions are defined as the first and second normal stress
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Figure 2-2: Typical viscosity and first normal stress coefficient for a polymer melt
plotted as a function of shear rate.

coefficients, ¥, and ¥, respectively:
Toe — Tyy = "‘I’l(;y)")';m (2'4)

Tyy — Tz = _'1’2("7);7;' (2.5)

Generally, 7., is large and negative, as a consequence of molecular alignment along
streamlines, and results in a large positive first normal stress coefficient. Typical
behavior of the viscosity 7 and first normal stress coefficient ¥, for isotropic fluids
is shown schematically in Fig. 2-2 as a function of the shear rate 4. The viscosity
typically displays a constant viscosity plateau at low shear rates, called the zero-
shear-rate viscosity 7o. At higher shear rates, the viscosity follows a linear power-law,
where the viscosity could decrease by as much as two to three decades. The slope of
this region, on a log-log plot, is typically between -0.4 and -0.9. Similar behavior is
displayed by ¥,, although it decreases much more rapidly than 5. The second normal
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stress coefficient in isotropic fluids has not been studied much because it is very
difficult to measure; it is generally believed to be about 10% of ¥,, and of opposite
sign (Bird et al., 1987a).

In the case of anisotropic fluids, such as liquid crystalline solutions, the first normal
stress coefficient ¥, decreases as y~! at low shear rates (Larson, 1988). A negative
value of ¥, also is reported in some systems over a substantial range of shear rates,
and is accompanied by large second normal stress differences (Magda et al., 1991).

The relaxation of the molecular configurations on time scales that are comparable
to those in the experiment imparts an inherently temporal character to the problem.
Therefore, it is insufficient to give only the steady-state material functions. It is also
necessary to define material functions in time-dependent shear flows. Rheologists have
devised a number of such unsteady shear flow experiments such as small-amplitude
oscillatory shear and stress growth on start-up of steady shear flow. These experi-
ments and the relevant material functions are described in the book by Bird et al.
(1987a), and are summarized in Figs. 2-3 and 2-4.

Simple shearfree flows are given by the velocity field

1,
v, = —-—2-6(1 + b)z,
1,
by = _56(1 - by,
v, = +éz (2.6)

where 0 < b < 1 and ¢ is the elongation rate. Special shearfree flows are defined for
particular values of b. The flow for b = 0 and é > 0 is uniaxial extension; b = 0
and ¢ < 0 corresponds to biaxial stretching flow; and all flows with b = 1 are planar
elongational flows. The two normal stress differences of experimental interest in these

flows are T,, — Tzz and Ty — 7y, and two viscosity functions, 7, and 7jz, are defined as
Tzz — Tax = —ﬁl(éj b)é'l (2'7)
Tyy =~ Tax = —ﬁz(évb)é~ (2.8)
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Figure 2-3: Various types of simple shear flow experiments used in rheology (repro-
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Figure 2-4: Material functions in simple shearing flows (reproduced from Bird et al.,

1987a).
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For isotropic fluids in steady-state shearfree flow with b = 0, 7j, = 0 and j, is simply
called the elongational viscosity 7. However, for anisotropic fluids, such as liquid
crystalline systems, both the viscosity functions are important. As in the case of
shear flows, material functions in time-dependent shearfree flows also are defined and
these have been summarized in Fig. 2-5.

A proper understanding of non-Newtonian fluid mechanics is critically dependent
on our ability to develop accurate constitutive models for these fluids. The primary
goal of theoretical studies is to incorporate that physics into the constitutive model
which is responsible for the complex rheological behavior of the macromolecular fluids.
The early constitutive models were phenomenological, often restricted to only a few
classes of flows and incapable of describing all the rheclogical responses displayed by
non-Newtonian fluids. Modifications of the models proceeded on an ad hoc basis,
and gave no insight into the relation between rheology and the underlying molecular
processes could be gained. Recognizing the strong coupling between the internal
microstructure and the rheological response, recent constitutive theories are based on
a micromechanical description of the macromolecular solution and a formal kinetic
theory framework is used to rigorously derive the governing equations. It is interesting
that a number of the early phenomenological models have been rederived using a more
rigorous molecular theory. The basic concepts (;f polymer kinetic theory are discussed

in the next section.

2.3 Constitutive Theories with a Micromechani-
cal Basis: A Kinetic Theory Approach

The aim of kinetic theory is to use simple molecular models to describe the relevant
statistical features of macromolecular configuration in nonequilibrium systems and
to use this statistical description to deduce the associated transport and rheological
properties. The biggest advantage of this approach is that it makes direct use of
the fact that the rheology of macromolecular systems and suspensions, such as poly-

mer solutions and melts, liquid crystal polymers and fiber suspensions, is intimately
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Figure 2-5: Material functions in shearfree flows (reproduced from Bird et al., 1987a).
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related to the microstructure of these macromolecules and particles. The macro-
molecules in polymer melts and solutions are represented by simplified mechanical
models, and principles of nonequilibrium statistical mechanics are applied in order
to obtain relations between the microscopic mechanical model parameters and the °
macroscopic properties of the fluids. Simplifying assumptions are made at different
points of the development, but the physical basis behind these is well understood and
clearly stated. A systematic improvement over existing theory is possible, and the

addition of new terms to the constitutive model does not proceed on an ad hoc basis.

2.3.1 Micromechanical Models for Polymer Molecules

The first step in the development of a kinetic theory for polymer solutions is the mi-
cromechanical representation of the polymer molecule. Micromechanical models that
incorporate detailed structural features of the polymer molecule can be constructed.
For instance, I'lory and coworkers (Flory, 1969) modelled a polymer by a linear chain
of beads and rods, with the rod length equal to the length of a C-C bond and with
successive rods at angles appropriate to the lllolécular structure; the model has been
used to study conformational properties of a single polymer molecule in a solvent bath
at equilibrium. Such realistic models can be used if the ultimate goal is to obtain
the detailed relationship between the molecular architecture and equilibrium bulk
properties. However, if the objective is to study nonequilibrium flow systems and ob-
tain the associated rheological properties, the problem is far more complicated, and
it becomes necessary to use considerably simpler molecular models to obtain either
analytical or numerical results (Bird and Ottinger, 1992).

Thus, in polymer kinetic theory, simple mechanical models are preferred. Each
polymer molecule is modelled as a collection of beads, where each bead represents
a collection of several monomer units. The beads are of finite size and arbitrary
shape, or are restricted to point masses, which are referred to as structureless beads.
The beads are then joined in an arbitrary manner, by springs or massless rods. A
combination of connectors can also be used in the same molecule.

The simplest of these molecular models are the so-called dumbbell models, where
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the number of beads is set equal to two. There are two kinds of dumbbell models:
rigid and elastic dumbbells (Bird et al., 1987b). In the former, the connector is a
rigid rod, whereas in the latter, the beads are connected with a spring, as illustrated
in Fig. 2-6. The simplest elastic dumbbell model is the Hookean dumbbell, where
the beads are connected by a perfectly elastic or Hookean spring and the tension in
the spring is proportional to the bead separation. The dumbbells are orientable in a
solvent flow field, and stretchable (except the rigid dumbbell). These two properties
- orientation and elastic stretching - are essential for the qualitative description of
rheological properties of the fluid.

These dumbbell models are very crude representations of polymer molecules and
dc not account for the details of the molecular architecture, It is possible to improve
on these models by adding more beads and connectors, This approach leads to the
bead-rod chain model or the pearl necklace model, and the different bead-spring hod-
els such as the Rouse-Zimm model (Rouse, 1953; Zimm, 1956); see Fig. 2-6. The
Rouse and Zimm theories use the same molecular model, but differ in the treatment
of hydrodynamic interaction with the solvent. These models can depict the bending
motions of a polymer molecule, in addition to the orientability and stretching motions
described by the dumbbell models. The increased modes of cooperative motion in the
multibead models lead to a more accurate description of spectrum of relaxation times
exhibited by polymer solutions and melts. Therefore, the Rouse and Zimm models
have been preferred over the simpler dumbbell models in the interpretation of linear
viscoelastic data (Ferry, 1980). However, in fiows involving large molecular deforma-
tions, the dumbbell models and their multibead analogues generally yield the same
qualitative information; see Section 2.3.3. Furthermore, the attendant mathematics
is much simpler in the case of dumbbell models, and with a minimum of mathemat-
ical effort, it is possible to go from molecular models to fluid dynamics. The effect
of changes made at the molecular level, in either the micromechanical model or in
the assumptions underlying the development, can be observed by solving simple flow
problems, such as homogeneous shear and shearfree flows. A qualitative understand-

ing of rheological phenomena is thus developed with the simple dumbbell models, and
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spring connectors
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(c) MULTIBEAD ROUSE-ZIMM
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Figure 2-6: Commonly used molecular models: (a) Elastic dumbbell; (b) Rigid dumb-
bell; (c) Rouse-Zimm chain model,
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the main ideas can be extended to other molecular models, if necessary. Hence, the
simpler dumbbell models have been used more extensively than multibead models in
the study of viscoelastic fluid mechanics. In this thesis, only the Hookean and rigid

dumbbell models have been used.

2.3.2 Basic Concepts of Kinetic Theory

In the most general description of a polymeric solution or melt, the system is viewed as
a collection of a large number of molecules of various kinds. The polymer molecules are
modelled with the different bead-rod-spring models discussed above and the smaller
solvent molecules are treated as simple mass points. This allows an explicit description
of the molecular motion of the solvent and polymer-solvent interactions. Typically,
m.o:t kinetic theories treat the solvent as a continuum, specifically an incompressible
Newtonian liquid of viscosity 7, that exerts a drag on the individual beads of the mi-
cromechanical model as macromolecule moves through the solvent, This description
is reasonably accurate, considering the disparity in the molecular sizes of the polymer
and solvent molecules. The contributions of the solvent and polymer to the stress
tensor or mass flux vector are assumed to be additive.

The different species present in this system are denoted as (a,f,...) and the
different molecules are labelled (i, 7,...). This notation is consistent with the devel-
opment presented in Bird et al. (1987b). The center of mass position of molecule ¢
of species a is then denoted as 7% and the associated momentum is denoted as p2',
The internal configuration of the molecule in space is best described by generalized
coordinates (Q%,Q%%,...,Q%"), s < 3N — 3 where N is the number of beads in the
molecular model. The internal coordinates are independent and sufficient to describe
the relative locations of all the constituent beads of the molecular model, and account
for all constraints in the molecular model. These internal position coordinates are
associated with the generalized conjugate momenta { P>} that are related to the time
rate of change of the internal position coordinates. The generalized coordinates sim-
plify considerably when the molecular model has no constraints, e.g., in the Hookean

dumbbell, the internal coordinates can be given by a single 3-dimensional connector
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vector @ with three independent components; see Chapter 3. The presence of con-
straints in the molecular model decreases the degrees of freedom and the number of
generalized coordinates, e.g., in the rigid dumbbell model, the two polar angles (6, ¢)
are sufficient to describe the orientation of the molecule.

The dynamical state of this macroscopic system, consisting of the solvent and
the micromechanical model of the polymer molecules, then is described by a system
pointin the associated phase space. The phase space is a multidimelnsional space with
coordinates that are the configuration and momentum coordinates {ro¥, @%%, p2*, P2’}
of all molecules ai making up the macroscopic system of interest. In general, the
dynamical state changes with time, and the system point traces out a trajectory in
the phase space. This evolution of the dynamical state is governed by Hamilton’s

equations of motion. These equations are the equivalent of Newton’s equations of

motion in three-dimensional space, and are written as

i OHM
T, = ope
Nai aH(T)
Qs - aP'a,'

(4] 3H(T)
P = - arai
. OHT)

where H!T) is the Hamiltonian of the entire system and is equal to the sum of the
energies of the separate molecules and the intermolecular potential @, associated
with the forces between the molecules. The energy of each molecule, in turn, is a
sum of the kinetic energy of the motion of the center of mass, the kinetic energy
Kine associated with the internal coordinates, the intramolecular potenti.al ¢ and the

external potential ¢{)*' acting on the system. The Hamiltonian H(T) is written as

1 . .
HO = S5 [ (b8 + K + 6+ 4% + @ (2.10)
a H '
where m® is the mass of a molecule of species a, -
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In order to obtain the average behavior of a macroscopic system, such as the
one described above, the concept of ensembles is used. The ensemble consists of a
large number of systems that are identical to the macroscopic system of interest. The
probable behavior of the macroscopic system is then described l;y the average behavior
of systems comprising the ensemble. Each system within the ensemble is represented
by a system point in phase space, and each system evolves according to Hamilton's
equations. The dynamical state of such an ensemble is described by a distribution
of system points in the phase space, f(z,t) and the average behavior of the system
is described by the time evolution of such a distribution. Here, the system point =
refers to the full set of configuration and momentum coordinates {r¢, Q%‘, p?’, P2}
of all the molecules in the system and f(z,t)dz is the number of system points that
lies in the (6 + 2s)-dimensional differential hypercube of volume dz in the phase
space.

It is important to note that system points are neither lost nor created; as time
evolves, they simply move through the phase space describing the time evolution of
the dynamical state of each system in the ensemble. Thus, the conservation equation
or equation of continuity in phase space is simply written as

% =St (2.)
The equation of continuity (2.11) combined with Hamilton’s equations of motion
(2.10) results in the Liouville equation, which is the starting point for all further
development in nonequilibrium statistical mechanics.

In the formal development, the theory is usually restricted to two-body inter-
actions, and it is unnecessary to deal with the complete phase-space distribution
function f. Therefore, more tractable lower order distribution functions are defined.

Thus, the singlet phase-space distribution function f, is defined as

fa(r’ Q:p’ P7t) = (Z 6(1'::“' - 1‘)6(Q°'" - Q)é(p:". - p)ﬁ(Pai - P)) (2'12)

where § is the Dirac delta function. The argument Q represents the full set of gen-

-
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eralized coordinates @, and §(Q> — Q) represents the corresponding product of é-
functions; similarly, P represents the full set of generalized momenta P, and §( P*—P)
represents the corresponding product of §-functions, The angular brackets ( ) repre-

sent an ensemble average defined as

(B) = fo(w,t)d:c (2.13)

where « refers to all the phase-space coordinates and the dynamical variable B =
B(z). The product fo(r,Q,p, P,t)drdQdpdP gives the probable number of molecules
of species o with center of mass in the region dr about r, internal configuration in a
range d@ about @ and momenta in the ranges dp and dP about p and P, respectively.

Integrating f, over all momenta yields the singlet configurational distribution function

Uo(r,Q,t) = // fa(r,Q,p, P,t)dpdP. (2.14)

In a similar fashion, a pair phase-space distribution function is defined as

fas(P, @',7", Q" B, P8, Pyt) = (X Y 8(r ~ #)
i g

x8(Q% — Q")8(rd" — v")8(Q% - Q")8(pS" - p')
x§(P™ — P')§(pP — p")6(PPi — P")). (2.15)

The product f,a(',Q',»",Q",p', P',p", P",t)dr'dQ'dr"dQ"dp'dP'dp"dP" gives the
joint probable number of finding a molecule of species a in the range (dr',dQ’, dp',dP')
about (7',Q',p', P') with a molecule of species 3 in the range (dr",dQ",dp",dP")
about (r",Q",p", P"). Integrating f,s over all momenta yields a pair conﬁgdrational

distribution function as

ap(r', @ v, Q" 8) = [[[[ faslr', Q7. Q", P, P, B, P" t)dp'dP'dp"dP".
(2.16)
Governing equations of change for these lower order distribution functions are then

obtained from the Liouville equation by making suitable choices for the dynamical
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variable B. Other choices for B lead to the hydrodynamic equations of change;
from these, general expressions for the macroscopic fluxes of mass, momentum and
energy are obtained in terms of the intermolecular forces. It also is possible to derive
statistically averaged equations of motion for the polymer chain, where we can identify
expressions for the different forces acting on the polymer such as the Brownian forces,
the hydrodynamic drag forces on the beads, the intramolecular spring forces and
intermolecular forces due to ezcluded volume. Force balances then can be obtained,
and used to write general diffusion equations that govern the time evolution of the
lower order distribution functions of interest. All the macroscopic variables of interest
are given by averages over these lower order distribution functions,

In general, it is assumed in polymer kinetic theory that the velocity distribution

is not much perturbed from equilibrium and can be given as

B exp(—-H/kT)
= T Texp(~H/KT)dp,dP

{1
(1

(2.17)

This assumption is referred to as the assumption of equilibration in momentum space.
In addition, by taking averages over all the momentum coordinates, it is possible
to reduce the problem to the configuration space of a single molecule. Evaluation
of the singlet configurational distribution function ¥, becomes a central task in the
further development of the theory. However, since the intermolecular potential ® is
approximated by a sum of two-body potentials, the time evolution equation for ¥,
obtained from the Liouville equation also involves the pair distribution function ¥,4.
Terms involving ¥,s account for the two-body interaction of the polymer a with
surrounding solvent and polymer molecules. This leads to a closure problem, that is a
common feature in non-equilibrium kinetic theory development, and that is a direct
consequence of trying to compress all the information present in a complete phase-
space distribution function f into a lower-order distribution function f, involving just
one of the species present in the system,

The method generally employed to overcome this problem is to “smear out”

the solvent-polymer and polymer-polymer interaction, and treat a single polymer
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molecule as being acted upon by a mean field that would depend on ¥, alone. Thus,
in dilute solution theories where no polymer-polymer interactions are considered, all
solvent-polymer interactions are taken to result in a hydrodynamic force, that is given
empirically by an expression modelled after Stokes’ law for drag on a solid sphere in
creeping flow. This is equivalent to treating the solvent as a continuum that exerts a
drag on the beads of the molecular model. Such a mean field description is reasonably
accurate since the polymer molecule is large compared to the solvent molecule.

The problem is more complex in concentrated systems, since polymer-polymer
interactions are no longer negligible. A mean field approach is still adopted to keep
the problem tractable. The goal is to capture the essence of the intermolecular in-
teraction in the mean field description, and to depict accurately the behavior of the
concentrated csystem. In one view of the problem, the motion of a single polymer
chain within a matrix of surrounding polymer chains is taken to be anisotropic, such
that the polymer can move more easily along its length rather than sideways. This
effect is treated by means of an anisotropic friction tensor and anisotropic Brownian
motion (Curtiss and Bird, 1981a & 1981b). Another view of the problem considers
the polymer chain as being trapped in a tube formed by the constraints due to sur-
rounding polymer molecules; the molecule moves by reptation such that on an average
the velocity of an individual bead is along the length of the chain (de Gennes, 1971;
Doi and Edwards, 1978a, 1978b, 1978¢ & 1979).

In some concentrated systems, other intermolecular interactions also are impor-
tant. For example, in liquid crystalline systems, the excluded volume interactions
between molecules with rigid backbones are directly responsible for a transition from
an isotropic to a liquid-crystalline phase. Here, ezcluded volume refers to the volume
occupied by a polymer molecule that is inaccessible to any other molecule. In these
systems, the excluded volume interactions are modelled by the mean-field Maier-
Saupe potential (Maier and Saupe, 1958 & 1959; Doi, 1980 & 1981) acting on the
molecule of interest, over and above the hydrodynamic drag forces exerted by the sur-
rounding medium. The Majer-Saupe potential is essentially a mean-field version of

the hard-rod intermolecular potential and accurately describes the increased excluded
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volume interactions between rigid rods with increasing concentration. The excluded
volume interaction prevents the rods from intersecting each other and leads to spon-
taneous orientational ordering when the concentration is increased beyond a critical
value. Such liquid crystalline systems are discussed in greater detail in Chapters 4, 5
and 6.

A simpler diffusion equation for ¥, is obtained after making these approximations.
This form of the diffusion equation also is referred to as the Smoluchowski equation
or the Fokker-Planck equation (Doi and Edwards, 1986). The rigorous phase space
approach is not always used in the kinetic theory development of the constitutive
models. A number of kinetic theories are set up directly in the configuration space
of a single polymer molecule; ad hoc expressions for the different forces that act
upon the molecule are then used to write a diffusion equation that governs the time
evolution of ¥,. However, in problems where the details of intermolecular interaction
are important or in problems involving spatial nonhomogeneities, it is preferable to
use rigorous phase space kinetic theory so that all the relevant equations of change
can be consistently derived. Thus, average properties of the macromolecular system
can be determined by solving the diffusion equation for the distribution function,

An expression for the stress tensor must be obtained in order to make the con-
nection with rheological behavior and bulk fluid mechanics. An expression for the
total stress tensor r is obtained when phase space kinetic theory is used in developing
the equation of conservation of momentum from the Liouville equation. The expres-
sion for the total stress mr is simplified by making the assumption of equilibration in
momentum space and approximating the polymer-solvent interactions by an average
hydrodynamic drag force, as in deriving the diffusion equation. The final expression
for the stress tensor typically involves ensenible averages with respect to the singlet
configurational distribution function ¥,.

In a typical fluid mechanical problem, where the primary interest is in momentum
transport alone, the hydrodynamic equations of motion and continuity, the expression
for the stress tensor, and the diffusion equation for the configurational distribution

function form a closed set of equations that must be solved simultaneously to ob-

48



tain the stress and velocity profiles. However, solving the evolution equation for the
configurational distribution function is computationally intensive, especially in flujd
mechanics problems involving two or three spatial dimensions (Advani and Tucker,
1987). Instead, a typical solution involves taking lower order moments of the diffusion
equation with respect to the internal coordinates, and solving for them directly, This
method is equivalent to expanding the distribution function in terms of its moments,
and retaining only the lower order moments. Since the expression for the stress ten-
sor also involves the lower order moments of the distribution function, this method is
convenient and less computationally intensive. However, as in the case of obtaining
lower order distribution functions from the phase-space distribution function, a clo-
sure problem results when we attempt to compress all the information present in the
configurational distribution function into a limited number of lower order moments.
Thus, the equation for the second moment involves the fourth, the equation for the
fourth involves the sixth, and so on. Closure approzimations are used to approximate
the higher order moments in terms of the lower ones and thus obtain a closed set, of
equations. The advantages and disadvantages of such approximations are discussed
at length in Chapter 5,

In recent years, with the advent of better computational facilities, exact evaluation
of the lower order distribution functions in simple flow problems and in the evaluation
of rheological properties has been attempted (Stewart and Sgrensen, 1972; Fan, 1989),
However, solving realistic fluid mechanics problems by using this approach is not
yet feasible and direct evaluation of moments is still the method of choice. Thus,
we strive to develop a closed set of equations consisting of the equations of motion
and continuity, the stress tensor expression in terms of the lower order moments of
the distribution function and governing equations for these lower order moments.
These equations are simultaneously solved by a variety of numerical methods to get
a solution to the flow problem. The major steps involved in going from the Liouville

equation to the solution of, flow problems are shown schematically in Fig. 2-7.
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Figure 2-7: Schematic diagram of development of the constitutive equation.
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2.3.3 Development of the Oldroyd-B Fluid Model from Ki-

netic Theory

The classical kinetic theory development of the Oldroyd-B fluid model is considered °
as an example of the development of micromechanical-model-based constitutive equa-
tions, The Oldroyd-B model results from a dilute solution theory that is derived for
a Hookean dumbbell model of a polymer molecule, illustrated in Fig. 2-6(a). The
configuration of the dumbbell is specified by its center-of-mass position vector 7.
and the connector vector Q. Since the molecular model has no internal constraints,
generalized coordinates can be avoided. The average behavior of the system can be
described in terms of the singlet configurational distribution function ¥,(7,Q,t). The
product ¥,(r,Q,t)drdQ gives the number of dumbbells in the configuration range
(dr,dQ) about (r,Q). Since the number of dumbbells is constant, an equation of
continuity for ¥, is written in the six-dimensional configurational hyperspa.ce,'in a

manner analogous to writing the equation of continuity in hydrodynamics, to give

8%, 8 oo @
B = g () - 55 (1QPY,) (2.18)

Equations of motion for the momentum-space-averages [[#|]” and [[Q]]P are obtained
by setting up a force balance over the Hookean dumbbell, accounting for hydrody-
namic drag, Brownian, intramolecular spring and external forces on the dumbbell.

Neglecting the effect of external forces yields

[[#]]F = v(r) - %61;:1’,, (2.19)
and
MP — [pe . — Maln Yy - ﬁ
@l = 1x- Q) - T2 T35 - 2. (2.20)

where ( is a scalar frictional drag coefficient and H is the Hookean spring constant.
The drag experienced by the beads of the dumbbell moving through the solvent is
taken to be isotropic, and is characterized by a single drag coefficient, The transposed

velocity gradient tensor & is taken to be constant, and implicitly assumes that velocity
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variations over the length scale of the molecules can be neglected. The expression for
the Brownian forces used in Eqs. (2.19) and (2.20) is derived from rigorous kinetic
theory using the equilibration in momentum space assumption. No intermolecular
forces are considered, since the Oldroyd-B fluid model is a dilute solution theory.
Further development of the constitutive theory is based on the assumption of
spatial homogeneity. Classical kinetic theory assumes that the configurational dis-
tribution function ¥, has no dependence on the location of the center of mass of
the molecule. Thus, the distribution of configurations and the number density of
the molecules are independent of spatial position. This hypothesis is consistent with
the assumption that the system is infinite and unbounded, as well as subject to a
homogeneous flow field. The configuration distribution function ¥, is then factored

as

‘I'P(T’Q’t) = nd’p(Q:t) (2'21)

where n is the constant number density of dumbbells and ¥,(Q,t) describes the inter-
nal molecular configuration.

Substituting Eqgs. (2.21), (2.19) and (2.20) into Eq. (2.18) gives the diffusion equa-
tion in terms of the distribution function ¢, as

o, 0 2kT Oy,  2H

=30 | Q)p — wari —C'—Q’/’p : (2.22)

An expression for the stress tensor is required to relate the changes in the configu-
rational distribution function due to imposed flow fields, as given by Eq. (2.22), to
fluid mechanics and rheology. An elementary derivation of the stress tensor was given
by Kramers (1944) and accounted for stress in the fluid due to Brownian motion of
the individual beads, external forces acting on the beads and intramolecular forces
transmitted through the spring connectors. Neglecting external forces, the expression

for the stress tensor is

T, = -nH(QQ) + nkT$. (2.23)

The same expression can be derived from phase space theory; see Chapter 3. The
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quantity (QQ) is an ensemble average over the distribution function t,. Equa-
tion (2.22) for the distribution function ¥, and Eq. (2.23) for the stress tensor 7,
are a coupled set of equations that can be solved simultaneously with the equation of
motion to obtain solutions to any fluid mechanical problem. However, solving for the
distribution function is not a trivial task. Since the expression for the stress tensor is
related to the distribution function 1, only through the average (QQ), a considerable
simplification is achieved by rewriting Eq. (2.22) in terms of its second-order moment

as

4kT 4H
(QQ)n) = —2—5 i

Here, the quantity (QQ)() is the contravariant, codeformational time derivative,

(QQ). (2.24)

which is defined for a general second-rank tensor A as (Bird et al., 1987a)

D

Ay = 5;A- {(Vo)l . A+ A.(Vo)} (2.25)

where D/Dt is the substantial time derivative.

Egs. (2.24) and (2.23) form a closed set of equations that can be solved to-
gether with the equation of motion. However, following the same procedure with
other molecular models, e.g., the rigid dumbbell, gives an analogous equation for the
second moment involving the fourth moment, and a closed set of equations is not
achieved. Solution of the problem necessitates closure approximations as discussed in
Section 2.2.2; the alternative is to solve for the entire distribution function by solving
Eq. (2.22).

Combining Eqs. (2.24) and (2.23) yields

Tp+ /\HTp(l) = —nka\qu(l) (2.26)

where Ay = (/4H is the time constant for the Hookean springs. In the absence of
solvent contributions, the polymeric contribution to the stress tensor 7, is set equal
to the total deviatoric stress 7 in Eq. (2.26). The resultant equation is referred to as

the Upper Convected Maxwell (UCM) model and has been widely used in viscoelastic
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flow calculations because of its simplicity. Adding the Newtonian solvent contribution
to the stress tensor 7, = —7,7% to 7, in Eq. (2.26) gives the Oldroyd-B fluid model
as

T+ MiTpa) = —Mo(Y(1) + A2¥(2)) (2.27)

Here, A, = Ay is the relaxation time, o = 7, + nkT Ay is the zero-shear-rate viscosity
and A\, = 7,/noAx is the retardation time of the model. Thus, constitutive equa-
tions such as the UCM and the Oldroyd-B fluid, originally derived using continuum
concepts, can be obtained from kinetic theory using the simple Hookean dumbbell
model.

The UCM and Oldroyd-B models incorporate the inherent time-dependent behav-
ior associated with the molecular relaxation process. However, in shear flow, these
models predict a constant viscosity 7o at all shear rates, a constant first normal stress
coeflicient ¥,, and a second normal stress coefficient ¥, that is identically zero. These
models also predict an infinite elongational viscosity at finite elongational rates. In us-
ing a molecular theory approach in deriving the constitutive equations, the drawbacks
and limitations of these equations can be considered in terms of the molecular model
used and the assumptions made in the development of the theory. For example, it can
be recognized that the infinite elongational viscosity displayed by the UCM model is
a result of the infinite extensibility of the Hookean spring in elongational flow. The
Hookean spring also is responsible for the constant viscosity behavior of the UCM
model in steady shear flows. It is possible to improve these constitutive equations by,
for example, replacing the linear spring force law used in the Hookean dumbbell with
a nonlinear one that accounts for the finite extensibility of the spring connector, e.g.,
the Warner or the Finitely Eztendible Nonlinear Elastic (FENE) springs (Warner,
1972; Armstrong, 1974a &1974b). A dramatic improvement over the rheological pre-
dictions of the UCM model is seen when the FENE springs are used. Thus, in shear
flow, models based on FENE dumbbells show a shear-thinning viscosity that com-
pares well with experimental data; in elongational flows, the elongational viscosity is

bounded at all elongational rates (Armstrong, 1974a &1974).
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Kinetic theory has been very successful in deriving a number of constitutive equa-
tions that capture much of the wide range of rheological behavior displayed by polymer
solutions and melts. Modelling of the variety of macromolecular systems seen in prac-
tice, e.g., branched and linear, flexible and rigid, dilute and concentrated solutions,
requires a number of different micromechanical models. A significant advantage of this
molecular approach is that since the molecular basis behind the constitutive theory
is clearly stated, one can relate the limitations of the theory to the micromechanical
model parameters and seek other avenues for improvement in a systematic manner,
Thus, the unrealistic material function predictions of the Hookean-dumbhell-based
UCM and Oldroyd-B models were corrected by replacing the Hockean spring with a
finitely extendible one, leading to the family of FENE models (Warner, 1972; Arm-
strong, 1974a & 1974b; Bird and DeAguiar, 1983; DeAguiar, 1983; Wedgewood et al.,
1991). The Chilcott-Rallison model (Chilcott and Rallison, 1988) that has been used
in recent viscoelastic flow calculations, although not rigorously derivable from kinetic
theory, is clearly inspired by the idea of FENE-like spring force laws. Other modifica-
tions of the UCM ana Oldroyd-B models have been attempted, such as the use of an
anisotropic drag coefficient to give the Giesekus model (Giesekus, 1982) and incorpo-
rating the effect of hydrodynamic interaction, i.e,, perturbation of the solvent velocity
due to the local chain motion (Ottinger, 1985; 1986 & 1987). Multibead generaliza-
tions of the Oldroyd-B constitutive theory also have been derived. The simplest of
these is based on a N-bead Rouse chain, shown in Fig. 2-6, with each bead connected
by a Hookean spring. The tesultant model has N modes of relaxation and a different
relaxation time constant associated with each mode, and thus accounts for the relax-
ation spectrum displayed by polymer solutions and melts. The governing equation
for each mode is exactly of the form of Eq. (2.26). The use of Hookean springs in
the Rouse model leads to unrealistic material functions, and multibead models with
nonlinear springs have also been studied (Bird et al., 1980). For concentrated so-
lutions, we have models such as the Doi-Edwards model (Doi and Edwards, 1978a,
1978b, 1978¢ & 1979) based on ideas of reptation first suggested by de Gennes (1971),
and the Curtiss-Bird theory (Curtiss and Bird, 1981a & 1981b) that uses anisotropic
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mobility and anisotropic Brownian motion to model polymer-polymer interaction.

A common feature shared by the many constitutive theories listed above is that
all make the assumption of spatial homogeneity. Thus, the distribution function is
factored, as given by Eq. (2.21), and the polymer concentmtion' is taken to be uniform
over the entire flow domain. The assumption of spatial homogeneity is consistent
with the assumption of an unbounded system, and the effect of boundaries on the
bulk flow is thus ignored. The assumption of spatial homogeneity is also tantamount
to assuming no variation in the velocity gradient and stress across the length of the
macromolecule and is highly suspect in strongly nonhomogeneous flows, where one
intuitively expects a nonhomogeneous distribution of concentration and stress fields
with spatial gradients on small length scales. Furthermore, such an assumption is
justified only if the distribution function is a slowly varying function of r and all
spatial variations on the length scale of the macromolecule can be neglected. Strictly
speaking, it is not possible to say a priori whether the distribution function varies
slowly with = or not.

A number of problems are seen in practice, where the system is inherently non-
homogeneous, e.g., problems involving sharp gradients in stress and velocity fields
such as are seen in flows through abrupt contractions, problems of phase separating
systems such as concentrated solutions of molecules with rigid backbones undergoing
a transition from a disordered state to an ordered one and problems involving small
spatial dimensions where boundary effects play a significant role. The existing theo-
ries cannot be applied to the solution of these problems, due to the assumptions of
spatial homogeneity. Traditional kinetic theory is generalized in the following chap-
ters to account for the effect of spatial gradients in stress, velocity, concentration and

orientation and study the effect on polymer rheology.
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Chapter 3

Kinetic Theory of Dilute,
Nonhomogeneous Polymer

Solutions

The assumption of spatial homogeneity is inhegent to classical constitutive theories,
such as UCM and Oldroyd-B discussed in Section 2.3.3 and makes these models
unsuitable to the study of intrinsically nonhomogeneous problem. An extension of
these theories to nonhomogeneous systems is developed in this chapter using phase-
space kinetic theory, as introduced in Section 2.3.2. The development is carried out
using the Hookean dumbbell model for the polymer molecule, but the approach is

general and can be extended easily to other micromechanical models.

3.1 Introduction to the Nonhomogeneous Prob-
lem

Spatial nonhomogeneities may enter a fluid mechanical problem in a number of ways.
The presence of solid boundaries in a problem imposes restrictions on the allowed
macromolecular configurations and is thus a source of spatial nonhomogeneity. These

wall effects are especially important in flow geometries with small spatial dimensions.
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The development of large gradients in stress and velocity fields on length scales com-
parable to the polymer length is seen in some flow geometries, e.g., flow through
an abrupt contraction, discussed in Chapter 1. In such flows, the extended polymer
molecule experiences different forces at different points along its length. Such non-
homogeneities on a microstructural length scale can have a large impact on the bulk
flow.

In early studies of nonhomogeneous flows, molecular migration was speculated
as one of the significant effects of such nonhomogeneous stress and velocity fields.
Molecular migration here implies that a suspended particle or macromolecule moves
or drifts relative to the solvent velocity at its center-of-mass, when its motion is obh-
served on a time scale that is long compared to the time scale of Brownian motion
(Aubert et al., 1980). The most unambiguous observation of cross-streamline molec-
ular migration was made by Shaefer et al. (1974) in circular Couette flow. In this
study, high molecular weight DNA molecules were observed to migrate towards the
rotating inner cylinder.

Other speculations of polymer migration in nonhomogeneous flow were based on
indirect measurements in the capillary flow of polymer solutions. It was suggested
that since molecular migration can produce spatially nonuniform polymer concentra-
tions, it can influence the rheological behavior of the fluid. For example, a number
of research groups reported that the viscosity measured in a capillary decreased with
decreasing capillary radius and with increasing capillary length (Kozicki et al., 1970;
Therien et al., 1970), possibly due to molecular-weight fractionation and molecu-
lar migration in the nonhomogeneous flow field. The different results obtained from
viscosity measurements of the same macromolecular fluid in homogeneous and nonho-
mogeneous flow fields at similar values of shear rate were also attributed to molecular
migration. It is important to understand the cause of such nonuniformities and as-
sess the importance of their effect on the macroscopic flows of polymer solutions and
melts.

Following these observations, a number of theories were propounded in order to

explain the origin of molecular migration, and to establish whether or not nonhomoge-
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neous stress and velocity fields could lead to nonhomogeneous concentration profiles.
One speculation was that in a nonhomogeneous velocity field, a system of macro-
molecules tends to increase its configurational entropy by diffusing from regions of
higher velocity gradients which tend to produce more highly oriented configurations
to regions of smaller velocity gradients (Ouano and Biesenberger, 1971). Tirrell and
Malone (1977) suggested that gradients of stress drive polymer migration and pro-
posed a phenomenological thermodynamic theory of deformation-induced diffusion,
They suggested that the total mass flux j, was a sum of the Fickian diffusion flux

and a new stress-induced flux such that
. D -
Jp=—(DVe+t 1V V) (3.1)

where D is the translational diffusivity, ¢ is ihe local macromolecular concentration
and V is the potential that provides the thermodynamic driving force for migration
of the polymer from regions of high stress to regions of lower stress. An expression
for the entropic potential ¥ was given in terms of the deformation rate 4 as

AZﬁz
3

2*272

V =kT 7

) (3.2)
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Thus, nonuniform deformation rates, and hence nonuniform stress, produce an en-
tropic driving force thet forces molecules to regions of lower stress. However, the
radial molecular weight fractionation in capillary flow predicted by Tirrell and Mal-
one using this model appears higher than that observed experimentally (Whitlock and
Porter, 1972). A similar coupling between stress and concentration fields has also been
suggested by Helfand and Frederickson (1989), in a slightly different context. These
authors developed a phenomenological theory involving stress-induced diffusion to
explain experimental observations of increased turbidity caused by greatly enhanced
concentration fluctuations in polymer solutions that begin to phase separate under
the influence of shear.

The validity of the phenomenological thermodynamic model of deformation in-

duced diffusion developed by Tirrell and Malone was questioned by Aubert and Tir-
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rell (1980) and Aubert et al. (1980). They suggested that instead of stress gradients,
the real driving force for macromolecular migration was a velocity field that was
nonhomogeneous on the length scale of the macromolecule, A similar idea had been
proposed earlier by Shaefer et al. (1974) to explain their observations of radial migra-
tion of DNA molecules in circular Couette flow. Subsequently, Bird (1978) suggested
that such a radial migration could be explained within a kinetic theory framework
using simple dumbbell models that are suspended in a velocity field with a gradient
that shows spatial variation on the length scale of the dumbbell. In this case, the
center-of-mass of the dumbbell does not move with the local solvent velocity, and in
circular Couette flow, an inward radial migration of macromolecules is predicted.

Aubert and Tirrell (1980) and Aubert et al. (1980) extended the ideas of Shaefer
et al. (1974) and Bird (1978) and confirmed the calculations of these authors that
predicted radial migration in circular Couette flow. By studying a number of other
problems involving ionhomogeneous velocity fields such as parallel Couette flow, they
also showed that molecular migration in this theory is a consequence of curvilinear
streamlines. Subsequently, Sekhon et al.(1982), Brunn (1983), and Brunn and Chi
(1984) showed that macromolecular migration across streamlines could be obtained
in rectilinear flows by accounting for hydrodynamic interaction, i.e., the perturba-
tion of the solvent velocity field by finite-sized beads in the dumbbell models. It was
established that in unidirectional rectilinear flow, if nonhomogeneous velocity fields
alone were responsible for migration, any such migration across streamlines required
hydrodynamically interacting beads. However, it was not established whether hydro-
dynamic interaction, which is a perturbation to the primary flow field, is sufficient
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