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Abstract

We report γ-ray dosimeters using carbon nanotubes wrapped with metastable poly(olefin sulfone)s 

(POSs) that readily depolymerize when exposed to ionizing radiation. New POSs, designed for 

wrapping single-walled carbon nanotubes (SWCNTs), are synthesized and characterized. The 

resulting POS-SWCNT composites serve as the active transducer in a novel class of γ-ray 

dosimeters. In our devices, polymer degradation results in immediate changes in the electronic 

potential of the POS-SWCNT active layers by decreasing the electron tunneling barriers between 

individualized tubes and by creating enhanced cofacial π–π electron contacts. By incorporating 

the SWCNT-POS composites into small resistive device platforms, we establish a rare example of 

real-time detection and dosimetry of radioactive ionizing radiation using organic-based materials. 

We show that the sensitivity of our platform closely depends on the intrinsic stability of the 

polymer matrix, the opacity toward γ-rays, and the dispersion efficiency (i.e., the individualization 

and isolation of the individual SWCNT charge carriers). Resistance decreases up to 65% after 

irradiation with a 40 krad dose demonstrates the high sensitivity of this novel class of γ-ray 

sensors. In addition, the detection mechanism was evaluated using a commercial capacitive device 

platform. The ease of fabrication and low power consumption of these small and inexpensive 

sensor platforms combined with appealing sensitivity parameters establishes the potential of the 

poly(olefin sulfone)-SWCNT composites to serve as a new transduction material in γ-ray sensor 

applications.
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Gamma (γ) ray sensors capable of reliably, sensitively, and quantitatively converting an 

adsorption of radioactive ionizing radiation into a measurable (physical) signal represent a 
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crucial technology in many fields including medical radiation therapy, applied physics, 

industrial imaging, food and medical sterilization, and nuclear security.(1) When designing a 

γ-ray sensor, the key properties of consideration are the determination of a durable and 

reliable transduction material that (i) exhibits good sensitivity for γ-rays, (ii) demonstrates 

environmental stability over the desired device lifetime without premature degradation, (iii) 

meets the requirements of the chosen application, such as a potential to operate at room 

temperature, (iv) can be produced with low synthetic/fabrication effort and operated with 

low maintenance cost, and (v) is ideally capable of creating a real-time signal. Many 

different technologies have been investigated as γ-ray dosimeters. Among them, ionization 

chambers are the most important dosimeters to date, as a result of their sensitivity and 

relatively flat energy response. However, their applications are limited because of their large 

size and high bias voltage requirements for achieving acceptable ionization collection 

efficiencies. Similarly, other technologies, such as silicon diodes, metal-oxide semiconductor 

field effect transistors (MOSFETs), thermo-luminescent dosimeters (TLDs), and optically 

stimulated luminescence dosimeters (OSLDs), are often cumbersome and/or costly to use 

and fabricate, require an operation at low temperatures, or are unable to create a real-time 

signal.(2,3)

Molecular and nanoscale material-based radiation sensors can exhibit unique properties to 

overcome these obstacles.(4) Radiation sensors utilizing small molecules, polymers, and 

inorganic or organic nanoparticles have been shown to enable simple, yet robust systems for 

monitoring and quantifying ionizing radiation. To this end, the excellent charge transport 

and ionization collection properties of carbon nanotubes (CNTs) have been efficiently 

utilized to miniaturize ionization chambers and lower bias voltages.(5,6) Other nanoparticle-

based systems monitor photoluminescence from semiconductor quantum dots or plasmonic 

nanoparticle enhancements of surface enhanced Raman scattering. Small molecule based 

radiation sensor systems include the degradation of fluorescent molecules as a result of high-

energy irradiation as a “turn-off” sensor, as well as aggregation-induced emission “turn-on” 

sensors for silole compounds.(7,8) The formation or degradation of polymers triggered via 

free radicals generated by high energy radiation has emerged as a very appealing method. In 

contrast to the nanoparticle detection schemes outlined above, polymer-based systems are 

attractive as a single chemical trigger can initiate a chain reaction. Thus, chemistry induced 

by a single high energy particle can be amplified to generate a large signal.(9)

Polymeric materials that rapidly depolymerize into volatile components on command are 

attractive for many applications, including packaging, encapsulation, drug delivery, transient 

electronics, and sensor applications.(10–12) Examples for these types of self-immolating 

polymers include low-ceiling temperature polyaldehydes, polyglyoxylates, metallo-

supramolecular polymers, and poly(olefin sulfone)s (POSs).(13–17) POSs exhibit low 

ceiling temperatures and have been shown to undergo triggered depolymerization when 

exposed to heat,(18) base,(19,20) or ionizing radiation.(21,22) POSs possess main chain 

sulfonyl (SO2) groups and can be easily synthesized by low temperature free radical 

polymerization of olefin monomers in liquefied sulfur dioxide. As a result of their 

characteristics, POSs have been targeted for the development of photoresists and other 

degradable materials.(19) The generation of radicals, abstraction of acidic protons, or the 
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removal of an electron from the polymer backbone can lead to polymer chain scission, and 

therefore one triggering event can cause the whole polymer to decompose.

To translate POS materials to sensor applications, triggered depolymerization must create a 

measurable modification, amplification, or reduction of a detectable signal. Therefore, as is 

typical for chemical sensors, a sensory material that selectively responds to a target stimulus 

needs to be connected to an efficient physicochemical transducer to provide a readable, and 

ideally real-time, signal.(23) CNTs are exceptional transduction materials and have found 

utility in a variety of chemical sensor applications.(24) The lowest resistance for electrical 

charge transport is along the axis of the nanotube with higher resistivity inter-nanotube 

electronic couplings being necessary for bulk conduction. Two general transduction 

mechanisms dominate CNT transduction: (i) triggered modification of intra-CNT transport, 

where a binding event pins, liberates, creates, or destroys carriers in the nanotube or (ii) 

induced inter-CNT transport by adding, removing, or modifying isolating materials between 

nanotubes to change or eliminate electron tunneling barriers between CNTs. The latter is 

ideally matched to a triggered depolymerization of an isolating polymer matrix to increase 

the transport through a CNT nanowire network.(24,25) In the most straightforward 

manifestation, a network of CNTs is placed between two electrodes with a static potential 

bias (V) and the resulting output current (I) changes with the resistance (R) of the active 

layer according to Ohm’s Law. In impedance or capacitive devices, measurable changes of 

the dielectric constant (ε) can potentially lead to increased sensitivity of the sensor device.

(26,27) Advantages of CNT-based nanowire resistive sensors include straightforward signal 

detection, low power consumption, ease of miniaturization, and sensitivity, which combine 

to facilitate real-time detection. The introduction of new polymer matrices capable of 

programmed degradation upon high-energy irradiation, along with innovations in the 

fabrication of polymer-CNT composites offers an appealing strategy to enable real-time 

dosimetric electrical detection of γ-irradiation. Low cost CNT materials are readily 

integrated into small devices and have similar opacity to biological tissue, all of which are 

desirable for γ-ray dosimeters.

In this work, we introduce new single-walled carbon nanotube (SWCNT)—poly(olefin 

sulfone) (POS) composite materials that function as dosimeters for ionizing γ-rays. We have 

synthesized and characterized new POSs that have been optimized to exhibit strong binding 

interactions with pristine or functionalized SWCNTs. These efforts build on previous 

schemes from our group that made use of multiwalled carbon nanotubes.(28) Using our new 

designs, we have enhanced the sensitivity, demonstrated real-time detection, and evaluated 

capacitive transduction. The central concept of this platform (Scheme 1) is the isolation of 

SWCNTs in the insulating polymer matrix that undergoes rapid depolymerization when 

exposed to ionizing radiation. Disassembly of the polymer matrix results in increased 

contacts between the SWCNTs and increased conduction and capacitance. Small resistive 

and capacitive device platforms were used for real-time detection and dosimetry of ionizing 

radiation. In addition, we studied the influence on and correlation between the dispersion 

quality, the intrinsic polymer stability, and the γ-ray sensitivity of our devices. The latter is 

addressed by incorporating high atomic number bismuth molecular and nanoparticulate 

components in the polymer-SWCNT matrix.
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Materials and Methods

Detailed experimental procedures are described in the Supporting Information. All 

chemicals were purchased from Sigma-Aldrich and were used as received, except for sulfur 

dioxide, which was purchased from Airgas. 6,5-Chirality enriched SWCNTs were acquired 

from Sigma-Aldrich. Unless stated otherwise, all reactions were performed under an 

oxygen-free atmosphere of argon. Graduated flasks were used for polymerization reactions 

with condensed sulfur dioxide. NMR spectra were obtained on a Bruker Avance (400 MHz). 

ATR-FTIR spectra were obtained using a Thermo Scientific Nicolet 6700 FTIR with a Ge 

crystal for ATR. Polymer molecular weights were determined at room temperature on a HP 

series 1100 GPC system in THF at 1.0 mL/min (0.5 mg/mL sample concentrations), 

approximate molecular weights were estimated using a polystyrene calibration standard. 

UV–vis-NIR absorption spectra were obtained using an Agilent Cary 5000 

spectrophotometer. Raman spectra were collected using a Horiba LabRAM HR800 Raman 

spectrometer. X-ray photoelectron spectroscopy (XPS) was performed with a PHI 

Versaprobe II XPS spectrometer. A Gammacell irradiator “Gammacell 200” with a 60Co 

source was used for γ-irradiation of both the resistive and capacitive devices. Typically, 

devices were irradiated for 10 min to achieve a radiation dose of approximately 50 × 103 rad.

Synthesis of Polymers

The general synthesis of poly(olefin sulfone)s has been reported previously and was carried 

out following literature procedures. In brief, a typical polymerization procedure was carried 

out as follows: Sulfur dioxide was condensed into a graduated vessel at −78 °C. After 

transferring the reaction vessel into a −45 °C acetone/dry ice bath, the olefin monomer(s) 

were added in the desired ratio and the solution was stirred for 15 min. Then, tert-butyl 

hydroperoxide (5–6 M in decane) was added to the solution. The polymerization was 

allowed to proceed at −45 °C for 2 h. The polymerization was stopped by pouring the 

reaction mixture into cold methanol. After reaching RT, the solvent was evaporated and the 

resulting powder was redissolved, reprecipitated, and washed three times before the polymer 

was dried under vacuum overnight. The synthesis of POS 1, POS 2, POS 3, and POS 7 has 

been described previously and the characterization of these polymers was consistent with the 

previous reports.(18,20,22,28)

Preparation of POS-SWCNT Dispersions

To a solution of POS (10 mg) in N,N-dimethylformamide or water (5 mL), SWCNTs (1 mg) 

were added and the resulting mixture was sonicated for 1 h in an ultrasonic bath (Branson, 

3510) chilled with ice and then allowed to reach room temperature. Subsequently, the 

suspension was centrifuged for 30 min at 15,000 rpm and allowed to stand overnight 

undisturbed. The isolated supernatant was directly used for the device fabrication via spray 

coating or dropcasting unless otherwise indicated. For UV–vis-NIR absorption spectroscopy, 

the isolated supernatant was further diluted.

Fabrication of Dosimetric Devices

For the preparation of resistive γ-ray sensor devices, glass slides (VWR Microscope Slides) 

were cleaned by sonication in acetone for 5 min followed by UV-ozone treatment using a 
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UVO cleaner (Jelight Company Inc., Model 42) for 20 min. A 10 nm layer of chromium 

(99.99%, R.D. Mathis) and a subsequent 100 nm layer of gold (99.99%, R.D. Mathis) were 

deposited through a custom stainless steel mask using a thermal evaporator (Angstrom 

Engineering). The gap between one pair of gold electrodes was 1.0 mm. The desired amount 

of POS-SWCNT dispersion was loaded into an airbrush (Revolution BR, Iwata) and 

manually spray-coated on the gap of gold electrode pairs through a homemade transparency 

film (CG3700, 3M) mask. In order to prevent unwanted nozzle drips and overwetting on the 

substrate surface, which resulted in nonuniform deposition of composites, the dispersion was 

sprayed intermittently multiple times with an injection rate of about 40 μL/min at a distance 

of 10 cm from the substrate placed on a 90 °C hot plate under N2 carrier gas of 2 bar 

pressure. After the spraying process, the resulting substrate was thermally annealed at 90 °C 

for 2 h. The sheet resistance of POS-SWCNT composite films before, during, and after γ-

irradiation was measured using a Keithley 2400 source meter or a Keithley 2000 multimeter. 

For a read-out of the capacitance change of POS-SWCNT composites upon γ-irradiation a 

SC-200 sensor chip platform provided by Seacoast Inc. was used. The sensor chips were 

coated via micropipetting the POS-SWCNT dispersions directly on top of the sensor chips. 

The capacitance change of POS-SWCNT composites deposited on Seacoast SC-200 sensor 

chips was recorded using the software SC-200 Series Data Logger.

Results and Discussion

Synthesis of Poly(olefin sulfone)s

Critical to the design of our sensor materials is the isolation of carbon nanotubes in a 

nonconductive polymeric matrix. In this work, we synthesized poly(olefin sulfone)s that 

were designed to effectively disperse, debundle, and individualize SWCNTs. Standard 

synthetic conditions involve bulk polymerization at low temperatures (−45 °C) with sulfur 

dioxide serving as both solvent and comonomer and tert-butyl hydroperoxide as the initiator. 

The polymerization reaction proceeds in a strictly alternating fashion as a result of the 

preferred reaction of sulfonyl radical chain ends with the electron rich olefin monomer(s) in 

SO2. The resulting poly(olefin sulfone)s POSs 1–10 are shown in Figure 1.

In addition to new materials, previously reported POSs 1 and 2 were synthesized using 1-

hexene and cyclohexene as olefin monomers. To enhance the dispersibility of SWCNTs, we 

synthesized POS 3, which possesses a benzoate substituent, which visibly increases the 

SWCNT dispersibility in DMF presumably as a result of π–π-stacking with the CNT 

sidewalls. Moreover, POS 3 has a lower decomposition temperature (Tdecomp = 188 °C) 

indicating that it is more susceptible to degradation as compared to POSs 1 and 2.

We also targeted the Lewis basic POS 4 based on the previously observed fact that poly(4-

vinylpyridine) (P4VP) creates exceptionally stable SWCNT dispersions presumably as a 

result of interactions between the nitrogen lone pairs and the SWCNT sidewalls.(29) 

Additionally, aromatic N-heterocycles can display π–π-stacking interactions with CNTs and 

be functionalized with ions for the creation of expanded materials diversity.(29,30) 

Unfortunately, the random copolymerization of SO2 with 4-vinylpyridine or 1-allylimidazole 

failed, most likely due to the basicity of these monomers and the base-sensitivity of the 

polymer backbone.(30) However, we were able to incorporate this functionality in a ter-
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polymerization scheme involving an excess of 1-hexene as comonomer, yielding poly(1-

hexene sulfone)-co-(1-allylimidazole sulfone) (POS 4) with an x/y ratio of 1.0/9.8 in 

moderate yields of 78%. The addition of 1-hexene as a comonomer successfully stabilized 

the polymer up to Tdecomp = 148 °C.

As alternative polymer matrices, we explored the synthesis of new amphiphilic POSs 5 and 

6. In an alternative wrapping mechanism, these polymers were designed to stabilize 

SWCNTs in polar solvents. In amphiphilic polymer-CNT dispersions Coulombic attractions 

between the polar polymer side chains and solvent as well as the hydrophobic and van der 

Waals interactions between the polymer surfactant tails and CNT surfaces work 

synergistically to stabilize the solution. Amphiphilic POS 5 was produced by ter-

polymerization of 1-hexene, di(ethylene glycol) vinyl ether, and SO2 in 59% yield. A second 

amphiphilic ionic surfactant polymer, POS 6, poly(1-hexene sulfone)-co-(sodium 4-

vinylbenzenesulfonate sulfone), was also synthesized with yields of 75%. The successful 

and simple generation of these POSs 5 and 6 illustrates the facile generation of designer 

radiation sensitive copolymers. In order to compare these newly synthesized polymers to our 

previous studies,(28) POS 7 was synthesized. The synthesis of POS 7 involved multiple 

steps and incorporates a pyrene moiety to bind to the surfaces of SWCNTs, and a high-

atomic-number bismuth complex component to increase γ-ray opacity.

The poly(olefin sulfone)s POSs 1–7 were designed to wrap pristine, unfunctionalized 

SWCNTs in solution to create isolated thin film networks. In addition to simple wrapping of 

SWCNTs with POSs 1–7 (Figure 2; Approach A), poly(allyl alcohol sulfone) (POS 8), 

poly(2-allyl hexafluoroisopropanol sulfone) (POS 9), and poly(allylamine hydrochloride 

sulfone) (POS 10), were designed to display supramolecular interactions with noncovalently 

and covalently prefunctionalized SWCNTs (Figure 2; Approaches B–D).

Using POS 8 or 9 as hydrogen bonding donor polymers, dispersions of SWCNTs 

prewrapped with POS 4 (Approach B) and dispersions of covalently pyridyl-functionalized 

SWCNTs (f-SWCNTs)(Approach D) were complexed and shown to display additional 

stability. In addition to the stabilization of SWCNTs via noncovalent hydrogen-bonding and 

hydrophobic interactions, we further explored electrostatic interactions in the wrapping of 

SWCNTs (Approach C). In this layer-by-layer self-assembly approach, pristine SWCNTs 

were first noncovalently prefunctionalized in dispersion with pyrene tetrasulfonate (pyr).

(31,32) In a second step, the polyanionic SWCNTs-pyrdispersions were further stabilized 

by irreversible assembly with POS 10 via Coulombic and entropic driven assembly.(31,32) 

In these assemblies, the aromatic core serves as an anchor to the sidewalls of the SWCNTs 

via π–π-stacking interactions to increase the water dispersibility of the system. Noncovalent 

functionalization procedures are less disruptive to the SWCNT electronic structure as 

compared to a covalent surface functionalization and thereby are expected to have higher 

intrananotube carrier mobilities.

Poly(olefin sulfone)s POS 1–10 were characterized using standard techniques, including 1H 

and 13C NMR spectroscopy, gel-permeation chromatography (GPC), Fourier-transform 

infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and thermogravimetric 

analysis (TGA). The molecular weights of all polymers were found to range between 17 and 
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173 kDa with dispersities (D) of 1.9–2.5. Table 1 displays the molecular weight data and 

decomposition temperatures of all poly(olefin sulfone)s investigated in this work. A 

successful noncovalent functionalization of SWCNTs using pyrene tetrasulfonate was 

proven by UV–vis-NIR absorption spectroscopy (see Supporting Information). The covalent 

attachment of pyridyl-units to the SWCNT sidewalls was accomplished by means of in situ 

diazonium chemistry (see SI).(31,32) This fast and simple functionalization sequence 

yielded f-SWCNTs which was evidenced by Raman microscopy, UV–vis-NIR spectroscopy, 

as well as X-ray photoelectron spectroscopy (XPS) (see Supporting Information). The 

analysis of the D-band intensity relative to the G-band intensity in the Raman spectra 

provided further evidence of successful covalent surface functionalization.

Characterization of POS-SWCNT Dispersions

UV–vis-NIR measurements provided insight into the SWCNT dispersion efficiencies of the 

synthesized polymers using the different coating Approaches A–D. The potential of the 

POSs 1–10 to solubilize carbon nanotubes was determined by sonicating 0.1 wt% SWCNT-

dispersions in the presence of an excess of POS (10 wt equiv) for 1 h at room temperature, 

followed by centrifugation (14,000 rpm) to remove large particulates that were not 

efficiently solubilized. The ratio of the absorbance of the coated SWCNTs at λ ~ 1000 nm 

(targeting the absorption of the 6,5-SWCNT majority species(33)) before and after 

centrifugation (Figure 3) represents the dispersion efficiency (Table 1).(34)

As the performance of the radiation sensor devices directly depends on the individualization 

of the individual SWCNTs in the POS-SWCNT composite active layer, the generation of the 

stable SWCNT dispersions is crucial. Not surprisingly, aliphatic POSs 1 and 2 did not show 

pronounced interactions with the SWCNTs. The UV–vis-NIR spectra before and after 

centrifugation of a solution of 6,5-SWCNTs and POS 1 in DMF are displayed in Figure 3a 

(Entry #1). Alternatively, POSs 3 and 4 resulted in an increased dispersion efficiency of 

4.7% and 7.2%. The isolated supernatant from the centrifuged suspensions contained well-

dispersed POS-SWCNT composites that resisted rebundling and aggregation over extended 

periods (>5 days). In addition to the dispersion efficiency, confirmation of SWCNT 

individualization is necessary to evaluate the quality of the dispersions. Figure 3b displays 

normalized absorbance spectra of a POS 4-SWCNT dispersion before and after 

centrifugation. The peaks, arising from the SWCNT optical transitions were significantly 

sharper and more intense relative to the base absorbance background upon which the spectra 

are normalized. Amphiphilic POSs 5 and 6 showed the most stable dispersions of 26.6% and 

31.3%, respectively. This was attributed to a solubilizing effect of the polar polymer side 

chains and the hydrophobically enhanced van der Waals association between the alkyl 

moieties and the CNT surfaces. Beyond providing information about the dispersion 

efficiency and individualization, the absorbance spectra of POS 9-f-SWCNT (Table 1; Entry 

#15) demonstrated a further evidence for a successful covalent surface functionalization. 

Individualized pristine SWCNT samples typically show pronounced optical transitions, 

arising from the van Hove singularities. These features are reduced by the covalent 

attachment of pyridyl-group and the well-dispersed supernatant in DMF of entry 15 was 

characterized by a reduction of defined interband transitions (Figure 3a).

Zeininger et al. Page 7

ACS Sens. Author manuscript; available in PMC 2019 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Resistive γ-Ray Dosimeters

Sensors using POS-SWCNT composites were fabricated by spray-coating POS-SWCNT 

dispersions onto glass substrates. A shadow mask was used to selectively deposit POS-

SWCNT dispersions between Au electrodes separated by 1.0 mm. The glass-electrode 

substrates were heated on a hot plate at 90 °C for rapid solvent evaporation and to quickly 

pin the SWCNTs in random individualized networks. The spray-coating was adjusted such 

that the deposited POS-SWCNT had a resistance of R0 ~ 10 kΩ as measured by a 

multimeter. Sensor testing was performed using a Gammacell irradiator with a 60Co source. 

By connecting the resistive device via wires to a digital multimeter, real-time dosimetric 

read-outs with γ-ray irradiation were observed (Figure 4a).

To compare the maximum performance of the different composites, the devices were 

exposed to 40 krad. The resistance of all well-dispersed POS-SWCNT composites rapidly 

decreased exponentially until saturation was reached. As expected, composites with poor 

SWCNT dispersion prepared with POS 1 or 2 showed little response to gamma irradiation. 

In general, the dispersion efficiencies correlate well with the response of the POS-SWCNT 

composites to γ-radiation (Figure 4b). Other factors, including the solvent, the intrinsic POS 

stability, as well as the type of SWCNT (pristine vs functionalized) also influence the device 

performance. In devices prepared with amphiphilic POSs 5 and 6, that were spray-coated 

from an aqueous solution, we observed a rapid onset of the resistance decrease. In control 

devices prepared from polymer-free SWCNT dispersions we observed slight resistance 

increases at 40 krad, whereas all other devices from POS-SWCNT composites (entries #3–

15) resulted in resistance decreases. Composite 15 (POS 9and f-SWCNTs) displayed the 

highest response to γ-rays with a resistance decrease ΔR = R′/R0 × 100 of up to −65% at 40 

krad.

Influence of Bismuth Components

The γ-ray opacity of materials increases with increasing Z (atomic number). Therefore, we 

anticipated that integration of high atomic number elements into the polymer matrix would 

result in a concomitant increase the γ-ray cross-section values of the active layer and lead to 

a higher device sensitivity. As an alternative to a tedious functionalization of POSs with a 

soluble bismuth complex, as has been done for POS 7, we targeted Bi nanoparticles (Bi-NP) 

as additional components for our polymer matrices. Dodecanethiol-functionalized Bi-NPs 

were synthesized according to a literature method.(35) To ensure uniform dispersions with 

our lead composition, Entry 15, the Bi-NPs were then treated with POS 5 to form core–shell 

structures as outlined in Figure 5. The addition of Bi-NPs to the POS-SWCNT composite 

provides some resistance decrease ΔR relative to similar thickness metal-free films; 

however, the sensitivity of the devices increases significantly with this addition. The Bi-NP 

augmented version of Entry 15 showed a 50% greater resistance loss at a γ-ray dose of 5 

krad. This simple admixing of high atomic number NP components represents a facile and 

pragmatic approach for the generation of POS-SWCNT composite materials with a high 

opacity toward γ-ray irradiation with greatly minimized synthetic effort.
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Capacitive γ-Ray Dosimeters

Encouraged by the performance of the POS–SWCNT composites as resistive γ-ray 

dosimeters, we explored their performance in a commercial capacitive platform.(36) Here, 

the polymer-CNT composite functions as a dielectric material in a miniaturized capacitive 

sensor equipped with three individual parallel-plate sensing capacitors with a fixed gap (0.75 

μm). The devices were coated by drop-casting the POS-SWCNT dispersions onto the sensor 

platform.

In contrast to resistive devices, in capacitive sensors the SWCNTs need not be transformed 

into a state with macroscopic conductivity. The circuit operates by measuring the electrode 

charging that occurs when the sensor bias is switched to drive the sensor capacitor between 

charging and discharging (Figure 6).(36) The sensor bias was switched using a square-wave 

voltage pulse at a kilohertz frequency. As the capacitance strongly depends on the dielectric 

constant, base values were obtained for the pure polymers, without SWCNTs. Figure 6 

displays the real-time performance of selected POS-CNT composites in capacitive sensors.

The signal-to-noise ratio of devices coated with pure POSs was low and obstructed clear 

dosimetric determination of irradiation results. Devices coated with POS-SWCNT 

composites resulted in significantly higher signal-to-noise ratios that closely correlated with 

the dispersion efficiency. As a result, a smooth increase of the capacitance signal ΔC = C
′/C0 was observed for the devices coated with the most stable composites 6, 7, and 15. In 

agreement with the resistive performance of POS-SWCNT Entry 15 (POS 9 and f-
SWCNTs), this composite also most sensitively responded to a γ-irradiation in the 

capacitive devices, resulting in a maximum response of ΔC = +40% at radiation doses of 

>40 krad. The ease of fabrication and low power consumption of these small and 

inexpensive sensor platforms combined with the highly appealing sensitivity parameters of 

the newly synthesized polymer matrices further demonstrates the potential of poly(olefin 

sulfone)-SWCNT composites to serve as a new transduction materials in γ-ray dosimeters.

Conclusion

In summary, we describe new advanced POS-SWCNT composite materials as transduction 

materials for γ-ray dosimeters. Metastable poly (olefin sulfone)s readily depolymerize when 

exposed to ionizing radiation, and were designed to strongly interact with both 

nonfunctionalized and functionalized SWCNTs. The polymer-SWCNT composites were 

readily deposited as active layers in resistive and capacitive γ-ray dosimeters. The use of Bi-

NPs also increases the sensitivity by increasing the γ-ray opacity. The use of a radiation 

sensitive carbon nanotube based electronic circuits to provide a signal gain represents a 

powerful, straightforward, and inexpensive approach to real-time radiation dosimeters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Illustration of the Dispersion of SWCNTs by Wrapping with POS Chains (top) and How γ-

Ray Initiated Depolymerization of the POS Can Create Resistive or Capacitive Responses 

(bottom)
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Figure 1. 
Synthesis and structures of new and previously reported (*) poly(olefin sulfone)s prepared 

for this study.
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Figure 2. 
Four wrapping approaches investigated in this study for SWCNTs using POSs 1–10.
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Figure 3. 
UV–vis-NIR spectra of selected POS-SWCNT dispersions. Absorption spectra of SWCNTs 

dispersed in POS-DMF solution before (dashed lines) and after (solid lines) centrifugation. 

After centrifugation, the sample is mainly composed of individualized SWCNTs, but at a 

lower concentration: (a) the dispersion efficiency in % is calculated by taking the ratio of the 

absorbance of the supernatant before and after centrifugation; (b) the degree of debundling is 

indicated by the relative intensity of the normalized absorbance spectra.
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Figure 4. 
(a) Real-time resistance changes of selected POS-CNT nanocomposites during γ-ray 

irradiation (see Table 1 for POS-SWCNT composites #1–#15); (b) Sensitivity to γ-rays of 

SWCNT-POS composites deposited from DMF as a function of the dispersion efficiency 

(*Calculation of the dispersion efficiency is detailed in the text).
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Figure 5. 
(a) Wrapping of Bi-NPs with amphiphilic POS 5. (b) DLS curves demonstrating the 

stabilization of Bi-NPs in polar solutions by POS 5. (c) Device performance before and after 

addition of POS 5-coated Bi-NPs to composite #15 (POS 9 and f-SWCNTs).
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Figure 6. 
(a) Image of the capacitive sensor board with sensor chip. (b) Scheme of the electric circuit. 

(c) Real-time performance of selected POS-CNT nanocomposites to γ-radiation in the 

capacitive devices: original signals and exponential fits.
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Table 1.

Characterization of Synthesized Polymers POS 1–10 and Their CNT Dispersion Efficiencies

entry polymer synthesis and characterization SWCNT dispersion

# polymer(s) yield (%) Mn D Tdecomp(°C) CNT wrapping approach
a solvent disp. eff.

b
 (%)

1 POS 1 98 84 2.3 246 SWCNT A DMF 2.4

2 POS 2 76 26 2.2 232 SWCNT A DMF 2.5

3 POS 3 61 S3 2.2 188 SWCNT A DMF 4.7

4 POS 4 78 60 2.3 148 SWCNT A DMF 7.2

5 POS 5 59 49 2.5 156 SWCNT A H2O 26.6

6 POS 6 75 44 2.2 262 SWCNT A H2O 31.3

7 POS 7 - 17 2.1 197 SWCNT A DMF 7.1

8 POS 8 66 35 1.9 273 SWCNT A DMF 1.4

9 POS 9 91 173 2.0 281 SWCNT A DMF 3.6

10 POS 10 86 37 1.9 182 SWCNT A H2O 0.6

11 POSs 4 and 8 - - - - SWCNT B DMF 15.8

12 POSs 4 and 9 - - - - SWCNT B DMF 19.0

13 POS 10 86 37 1.9 182 SWCNT-pyr C H2O 11.7

14 POS 8 66 35 1.9 273 f-SWCNT D DMF 16.6

15 POS 9 91 173 2.0 281 f-SWCNT D DMF 18.8

a
As outlined in Figure 2.

b
Caclulation of the dispersion effciency is detailed in the text.
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