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Abstract

The discovery and optimization of biomolecules that reliably function in metazoan cells is 

imperative for both the study of basic biology and the treatment of disease. We describe the 

development, characterization, and proof-of-concept application of a platform for directed 

evolution of diverse biomolecules of interest (BOIs) directly in human cells. The platform relies 

on a custom-designed adenovirus variant lacking multiple genes, including the essential DNA 

polymerase and protease genes, features that allow us to evolve BOIs encoded by genes as large as 

7 kb while attaining the mutation rates and enforcing the selection pressure required for successful 

directed evolution. High mutagenesis rates are continuously attained by trans-complementation of 

a newly engineered, highly error-prone form of the adenoviral polymerase. Selection pressure that 

couples desired BOI functions to adenoviral propagation is achieved by linking the functionality of 

the encoded BOI to the production of adenoviral protease activity by the human cell. The dynamic 

range for directed evolution can be enhanced to several orders of magnitude via application of a 

small molecule-based adenoviral protease inhibitor to modulate selection pressure during directed 

evolution experiments. This platform makes it possible, in principle, to evolve any biomolecule 

activity that can be coupled to adenoviral protease expression or activation by simply serially 

passaging adenoviral populations carrying the BOI. As proof-of-concept, we use the platform to 

evolve, directly in the human cell environment, several transcription factor variants that maintain 

high levels of function while gaining resistance to a small molecule inhibitor. We anticipate that 

this platform will substantially expand the repertoire of biomolecules that can be reliably and 

robustly engineered for both research and therapeutic applications in metazoan systems.
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Graphical Abstract

INTRODUCTION

Directed evolution methodologies have transformed our ability to generate biomolecules 

with improved or novel functionalities.1-6 The vast majority of directed evolution 

experiments are performed in either acellular environments, bacteria, or yeast. While these 

strategies have yielded many successes, they also frequently lead to products that fail to 

function optimally when later introduced into complex metazoan systems. The evolved 

functions can be derailed by off-target interactions, poor protein folding or stability, 

pleiotropic outputs, or other serious problems that arise because the biomolecules were 

discovered and optimized in overly simplistic environments.7-9 This frontier challenge could 

be most directly addressed by leveraging the human cell itself as the design, engineering, 

and quality control factory for directed evolution-mediated biomolecule discovery and 

optimization.

Extant strategies for directed evolution in human cells rely almost entirely on screens (often 

fluorescent) to identify active biomolecule variants. The most common technique is in vitro 
plasmid mutagenesis followed by transfection and screening.10 This approach is slow, labor-

intensive, and significantly constrains library sizes. Other methods include in vivo 
mutagenesis through somatic hypermutation in immune cells followed by screening or 

selection.11, 12 More recently, robotic cell-picking techniques have been used to 

comprehensively screen for desired phenotypes across multiple dimensions (e.g., both extent 

and localization of a fluorescent signal).9 These methods, while valuable, are still slow, 

inefficient, and have limited library sizes (~105 variants for the most recent robotic 

platform).9 Another recent development has been the use of cytidine deaminase fused to 

Cas9 variants to introduce mutations into endogenous genes in human cells, followed by 

selecting or screening for desired phenotypes.13-15 However, these methods require the 

design and synthesis of many guide RNAs to tile along regions of interest, which requires 

repeated rounds of sequencing and guide RNA redesign as mutations accumulate. Moreover, 

directed evolution achieved via in vivo mutagenesis of the human genome is limited by the 

slow growth rate of human cells and the high potential for false positives (‘cheaters’) 

associated with any strategy that relies on cell selection or screening.

A broadly useful human cell-based directed evolution platform requires several critical 

features: (1) Large mutational libraries expressed in the human cell; (2) Selection schemes 

providing a broad dynamic range for selection and minimal opportunities for cheating; (3) 
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Capacity to evolve multiple biomolecule functions; (4) Applicability across multiple cell 

types; and (5) Ideally, a minimal need for experimenter intervention during evolution 

experiments.

Inspiration for such a platform can be drawn from prior efforts coupling biomolecule 

function to viral replication using HIV16 or bacteriophage.17 However, HIV-based strategies 

suffer from an inability of the virus to propagate under strong selection pressure or in most 

cell types, and raise safety concerns surrounding large-scale HIV culture. The M13 

bacteriophage used in phage-assisted continuous evolution provides large mutational 

libraries and enables rapid rounds of selection and mutagenesis for biomolecules carrying 

out diverse functions, but only permits directed evolution in bacterial cells.

With these parameters and challenges in mind, we aimed to devise a broadly useful human 

cell-based directed evolution platform. We rationalized that adenovirus type-5 would be a 

practical vector for directed evolution of biomolecules in human cells, owing to its genetic 

tractability and broadly infectious nature in many human cell types.18, 19 Further, decades of 

research have shown that adenovirus tolerates an extremely wide range of transgenes, 

ensuring broad applicability of an adenovirus-based platform to diverse directed evolution 

targets. Conceptually, if the replication of a highly mutagenic adenovirus somehow 

depended on the activity of a biomolecule of interest (BOI) encoded in the adenoviral 

genome, then a simple directed evolution scheme for evolving diverse BOI functions in 

human cells could be feasible.

To achieve this concept, we first deleted the essential adenoviral DNA polymerase (AdPol) 

and protease (AdProt) genes from an adenoviral genome that also encoded the BOI for 

evolution (Figure 1a). The resulting adenovirus deletion variant is incapable of replication 

outside engineered human cells. We trans-complemented the missing AdPol by constitutive 

expression, within human cells, of a newly designed, highly mutagenic AdPol variant to 

enable the generation of large mutational libraries during viral replication. AdProt 

expression in the human cells was then engineered to depend conditionally upon BOI 

function (Figure 1b). Directed evolution experiments in this system rely on simply serially 

passaging the BOI-encoding adenovirus while mutagenesis and selection continuously occur 

(Figure 1c).

Here, we present the key features of this new platform, including mutagenesis, selection, and 

enrichment parameters. We further demonstrate the platform’s utility via proof-of-concept 

directed evolution experiments in which we evolved, directly in the human cell environment, 

multiple transcription factor variants that maintained high levels of function while gaining 

resistance to a small molecule inhibitor. Altogether, we believe that this platform holds 

significant potential to not only enable the development of new research tools, but also to 

enhance our understanding of metazoan evolutionary biology and our ability to rapidly 

generate and optimize biomolecular therapeutics.
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RESULTS

Mutagenesis.

Adenovirus type-5 relies on its own DNA polymerase, AdPol, for replication of its double-

stranded DNA genome.20 The high fidelity AdPol has an estimated mutation rate of ~1.3 × 

10–7 mutations per base per viral passage, based on high fidelity deep sequencing 

experiments performed by Sanjúan and co-workers.21 Such a low mutation rate is 

insufficient to generate the large library sizes necessary for laboratory time-scale directed 

evolution. We therefore sought to increase the mutation rate of adenovirus by engineering a 

highly mutagenic variant of AdPol.

Previous studies identified two amino acid substitutions in AdPol, F421Y and D827A, that 

separately increase the mutation rate of AdPol, likely through distinct mechanisms (Figure 

2a).22 In the ϕ29 bacteriophage polymerase,23 an AdPol homolog, the amino acid analogous 

to F421 occurs in the proofreading exonuclease domain, suggesting that the F421Y AdPol 

variant may have weakened proofreading capacity. The amino acid analogous to D827 

occurs in the fingers domain involved in selection of incoming nucleotides, again suggesting 

a possible mechanism for the reduced fidelity of D827A AdPol. We reasoned that combining 

these two substitutions to create the F421Y/D827A AdPol double-mutant, which we termed 

error-prone AdPol (or EP-Pol), would allow us to further increase the mutation rate while 

still supporting robust adenovirus propagation.

To test this hypothesis, we first used recombineering to inactivate the AdPol gene encoded 

by the adenovirus type-5 genome via an internal deletion (see Table S1 for a list of 

adenoviral constructs employed). Next, we stably transduced HEK293A cells with an HA-

tagged version of either wild-type AdPol or EP-Pol (see Table S2 for a list of cell lines 

employed). We observed that ΔAdPol adenoviruses (CFP.ΔAdPol.GFP where CFP and GFP 

correspond to cyan and green fluorescent protein, respectively) propagated only on cells that 

expressed either AdPol (Figure S1) or EP-Pol in trans (Figure 2b). Further, we observed that 

EP-Pol and wild-type AdPol both supported robust ΔAdPol-adenovirus replication.

We next assessed the mutation rate endowed by EP-Pol. After passaging ΔAdPol-adenovirus 

(AdGLΔPol) on EP-Pol trans-complementing human cells for 10 serial passages, we deep 

sequenced a 6.5 kb region of the genome obtained from a pool of about 27 viral clones 

(Figure 2c; see also Table S3). This sequencing revealed a mutation rate of 3.7 × 10–5 

mutations per base per passage. As the adenoviral genome is ~36 kb, this mutation rate 

indicates that EP-Pol introduced ~1.3 mutations into the genome per infected cell per 

passage. Moreover, EP-Pol displayed a broad mutational spectrum, including both 

transitions and transversions (Figure 2d).

Previously, the same sequencing procedure was carried out for wild-type AdPol.22 Because 

only one mutation introduced by wild-type AdPol was detected across two separate trials in 

that experiment, it was not possible to define an actual mutation rate for wild-type AdPol. In 

contrast, 60 mutations and 13 insertions were observed for EP-Pol. Compared to the 

previously reported mutation rate of wild-type AdPol determined by another method,21 

however, the mutation rate of EP-Pol is enhanced ~280-fold. Thus, EP-Pol greatly increases 
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the number of mutations introduced per viral passage. Based on these analyses, the EP-Pol 

mutation rate is similar to highly mutagenic RNA viruses that can readily evolve on 

laboratory timescales.24-26

We next estimated the lower limit of the library size in a given passage (or ‘round’) of 

directed evolution using EP-Pol. A typical round of directed evolution might reasonably 

involve infecting 3.0 × 108 human cells at a low MOI. Each round of directed evolution 

could conclude once 100% of cells (~3.0 × 108 cells) are infected. Because ~1.3 mutations 

are introduced per cell per replication, and because there is at least one replication in each 

round of evolution since the infection occurs at low MOI, we estimate that there are ~4 × 

108 adenoviral variants after one passage. Assuming a typical 1 kb gene encoding the BOI 

comprises ~1/30 of the engineered adenoviral genome, there would be ~1.3 × 107 variants of 

the BOI in the population after one round of evolution. This calculation is a lower limit 

because it does not account for any genetic diversity at the beginning of each round. 

Regardless, even this conservative estimate indicates that we can generate virtually all 

single, many double, and some triple mutants in a typical BOI in a single round of evolution. 

Notably, the mutations are continuously introduced instead of requiring in vitro mutagenesis 

physically separated from selection and propagation steps.

Selection.

Our next objective was to design an appropriate selection scheme capable of coupling BOI 

activity to adenoviral propagation. After extensive testing of assorted adenoviral genes, we 

developed such a scheme based on deleting the gene for adenoviral protease (AdProt) from 

the viral genome and then providing AdProt in trans from the human host cell.27 AdProt has 

vital functions in viral uncoating, DNA replication, viral maturation, and cell entry.28, 29 

Importantly, AdProt is a ‘late gene’ expressed mainly after DNA replication of the 

adenoviral genome.29 Because AdProt is not required in the early stages of infection, BOI 

variants can be generated by mutagenesis before selection pressure is applied during a given 

infection.

We began by testing whether AdProt trans-complementation could be achieved in the 

context of an adenovirus already requiring AdPol trans-complementation. We stably 

expressed AdProt in an AdPol-expressing cell line, termed “producer” cells (see Table S2). 

Next, we monitored the progress of an adenovirus infection of ΔAdProtΔAdPol-adenovirus 

on AdPol-expressing versus AdPol- and AdProt-expressing cells. We observed that only the 

cell line constitutively expressing both AdProt and AdPol supported robust replication of 

ΔAdProtΔAdPol-adenovirus (Figure S2). Thus, host cell expression of AdPol and AdProt 

can successfully support the replication of an AdPol- and AdProt-deleted adenovirus, 

permitting both the facile production of ΔAdProtΔAdPol-adenoviruses and providing a 

potential mechanism to impart selection pressure in a directed evolution experiment.

We next evaluated the capacity of this AdProt-complementation strategy to confer sufficient 

selection pressure to drive a directed evolution workflow. For this purpose, we performed a 

competition experiment on a model BOI, the tetracycline (tet)-transactivator (tTA).30, 31 

Wild-type tTA (tTAwt) binds its endogenous operator, with a consensus sequence of 5′-

CCTATCAGTGATAGA-3′, to induce downstream gene transcription. A tTA variant 
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(tTAmut) that is incapable of binding to the endogenous operators has also been reported.32 

tTAmut instead possesses enhanced affinity for the mutant 5′-CCcgTCAGTGAcgGA-3′ 
operator. We engineered ΔAdProtΔAdPol-adenoviruses that expressed either tTAwt and 

mCherry (tTAwt.mCherry) or tTAmut and GFP (tTAmut.GFP). We then stably transduced 

AdPol-expressing HEK293A cells with a lentiviral vector that provided AdProt under 

control of the endogenous tTA operator (termed “selector” cells, see Table S2). In this cell 

line, tTAwt.mCherry adenovirus should be able to strongly induce AdProt and propagate, 

whereas tTAmut.GFP should not induce AdProt and therefore should not form infectious 

virions. Because these viruses express different fluorescent markers, relative viral 

populations can be assessed using flow cytometry upon infection of human cells that do not 

express AdProt in order to prevent propagation and therefore more accurately quantify the 

resulting viral populations.

To test our hypothesis that AdProt induction could enable enrichment of active over inactive 

BOI variants, we co-infected tTAwt.mCherry and tTAmut.GFP using a total MOI of ~0.25 in 

selector cells (see Table S2) at initial ratios of 1:100 or 1:1,000 (Figure 3a). We then 

performed three serial passages on selector cells, and analyzed the resulting viral 

populations via infection of AdPol-expressing but AdProt-lacking HEK293A cells followed 

by flow cytometry. In the initial passage, the tTAwt.mCherry adenovirus enriched at least 

40–50-fold over the tTAmut.GFP adenovirus (Figure 3b). Furthermore, across three rounds 

of passaging, the tTAwt.mCherry adenoviruses were consistently enriched to > 90% of the 

adenoviral population regardless of the starting ratios. Thus, our AdProt-based selection 

strategy can rapidly enrich active BOIs that are initially present at low frequency in a viral 

population.

We next applied this tTA-based genetic circuit to evaluate the dynamic range of AdProt 

selection. Our approach was to employ an allosteric inhibitor of tTA, doxycycline (dox), to 

tune AdProt expression levels. In the presence of dox, tTA is unable to bind its target 

operator and induce AdProt expression. Using this approach, based on AdProt transcript 

levels we were able to access up to a 14-fold change in AdProt expression (Figure S5a). 

Notably, we observed a strong correlation between dox concentration and viral titer over this 

entire order of magnitude range (Figure S5b).

We note that there is likely to be an upper bound to the number of active AdProt molecules 

required for replication, at which point additional AdProt induction will not result in greater 

viral replication. As a result, selection pressure would be low for any evolved BOIs that are 

able to induce AdProt above the upper bound. A small molecule inhibitor of AdProt could 

provide a way to dynamically tune selection pressure to reduce AdProt activity below the 

upper limit as a given directed evolution experiment proceeds. Indeed, when we challenged 

tTAwt.mCherry-expressing adenoviruses with various concentrations of the vinyl sulfone 

AdProt inhibitor shown in Figure 3c,33 we found that the inhibitor could reduce the 

infectious titer of the tTAwt.mCherry virus up to 650-fold, providing ready access to a 

dynamic range of selection pressure between 2–3 orders of magnitude in size. Moreover, we 

observed that the AdProt inhibitor even further reduced infectious titer in the presence of 

dox (Figure 3c), highlighting the capacity of AdProt inhibition to strengthen selection 
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pressure at a variety of baseline AdProt expression levels. Notably, the vinyl sulfone AdProt 

inhibitor was not toxic at the concentrations used (Figure S6).

Directed evolution of functional, drug-resistant tTA variants in human cells.

We next sought to test the feasibility of actually evolving BOI function in human cells using 

this platform. For proof-of-concept, we aimed to evolve tTA variants that retained 

transcription-inducing activity but gained resistance to their small molecule inhibitor, dox. 

Specifically, we serially passaged our tTAwt.mCherry virus in the presence of dox in a 

“selector” cell line (see Table S2) that inducibly expressed AdProt under control of the 

endogenous tTA operator. We maintained a low initial multiplicity of infection (~0.05) to 

minimize the probability that viruses encoding distinct tTA variants would co-infect the 

same cell, at least at an early stage of each passage. Co-infections could result in 

“hitchhiking,” in which low fitness variants can be temporarily maintained in the population 

by infecting the same cell as high fitness variants. Such hitchhikers could slow the pace of 

selection. We transferred viral supernatant to fresh cell plates upon the appearance of 

spreading infection, with the goal of selecting for viruses that encode functional, but dox-

resistant, tTA variants.

We ran two evolution experiments in parallel (Trials 1 and 2) with different selection 

pressure strategies (Figure 4a). In Trial 1, we tuned the selection pressure over time, 

increasing the dox concentration from 2 nM up to 20 μM. In Trial 2, we kept selection 

pressure constant and high by maintaining the dox concentration at 200 nM. In order to test 

whether dox-resistant tTA variant enriched in the population, we used the viral media from 

each passage in Trial 1 to infect a “phenotyping” cell line (see Table S2) containing GFP 

under control of the endogenous tTA operator in the presence of dox. This phenotyping cell 

line lacked AdProt, allowing the virus to infect the cells and induce GFP expression, but not 

to proliferate. We measured GFP induction by the viral population harvested after each serial 

passage in the presence of 20 μM dox in these phenotyping cells using flow cytometry 

(Figure 4b). Substantial dox-resistant tTA activity emerged by passage 5, suggesting that 

dox-resistant variant(s) of tTA may have arisen and enriched in the viral population.

We next examined whether mutations in the tTA gene contributed to this decreased dox 

sensitivity. We amplified and sequenced a 1.75-kb region of the adenoviral genome 

containing the tTA open reading frame from virus harvested at each passage during both 

Trials. Using this approach, we detected > 200 unique mutations that attained ≥ 1% 

frequency by passage 4 in Trial 1, even though promoter activity at passage 4 was still 

undetectable (Figure 4c). In Trial 2, 43 mutations attained ≥ 1% by passage 4 (Figure S7). 

By passage 5, a single amino acid substitution in tTA attained > 70% frequency in the viral 

population in both trials (E147K in Trial 1 and H100Y in Trial 2), rapidly becoming fully 

fixed in the population thereafter (Figures 4d and 4e). Both mutations observed were 

previously reported to confer dox-resistance in tTA,34 which we further confirmed through 

transient co-transfection of a plasmid encoding GFP under control of the endogenous tTA 

operator along with wild-type, E147K, or H100Y tTA-encoding plasmids into HEK293A 

cells in the presence or absence of dox (Figure 4f). Additional mutations that were also 
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previously reported to confer dox-resistance were also observed at > 10% frequency early in 

the directed evolution experiment (H100Y in Trial 1 and G102D in Trial 2).

In Trial 2, we also analyzed the possible effects of hitchhikers on the enrichment of active 

variants. Our approach was to harvest the adenovirus at two different timepoints: (i) either 

early, when ~75% of cells were infected and co-infection was minimized or (ii) very late, 

after full cytopathic effect was achieved and most cells were likely to be co-infected. We 

found that even under very high co-infection conditions (late harvest), dox-resistant variants 

continued to enrich, possibly even more than under low co-infection conditions (Figure S8). 

Thus, co-infection did not hinder the enrichment of active variants.

These results highlight both the different outcomes that can result from repeated evolution 

experiments and the capacity of our platform to explore sequence space in human cells. 

Additionally, we were able to evolve biomolecules using two different selection pressure 

protocols (gradually increasing pressure or constant, high pressure). In summary, our 

directed evolution protocol can successfully generate and rapidly enrich functional BOI 

variants in human cells, merely by serial passaging of a BOI-encoding adenovirus.

Design of alternative selection circuits.

In the interest of highlighting the utility of our platform beyond the directed evolution of 

transcription factors, we sought to demonstrate how alternative selection circuits could be 

used to evolve different types of functions. We created two new selection circuits for a user-

defined recombinase activity and aminoacyl-tRNA synthetase activity (Figures S9a and b).
3536 We transfected both the Cre-recombinase (Cre, Figure S9a) and leucyl-tRNA synthetase 

(LeuRS, Figure S9b) AdProt selection circuits into HEK293A cells expressing AdPol and 

then monitored the replication of AdProt-deleted adenoviruses expressing Cre, LeuRS, or a 

control, inactive BOI (tTA). For the recombinase circuit, we found that the Cre-containing 

adenovirus replicated > 20-fold better than a control adenovirus (Figure S9c). For the 

aminoacyl-tRNA synthetase circuit, we observed the LeuRS-containing adenovirus was able 

to replicate while the control adenovirus could not replicate to detectable levels (Figure 

S9c). All adenoviruses replicated robustly on a control circuit that constitutively expressed 

protease. These data indicate that our platform can be easily adapted to select for desired 

recombinase and amino-acyl tRNA synthetase activities.

DISCUSSION

We report here the development, characterization, and proof-of-principle application of a 

highly adaptable platform for directed evolution of diverse BOI functions in human cells. In 

this platform, human cells are infected by a BOI-encoding adenovirus lacking the essential 

AdProt and AdPol genes (Figure 1c). A newly engineered, highly error-prone variant of 

AdPol, EP-Pol, constitutively expressed by the human cells, replicates the adenoviral 

genome. The resulting error-prone DNA replication introduces mutations into the BOI gene 

at a high rate, thereby continuously generating mutant libraries for selection. BOI variants 

are then expressed during viral infection of the human cell, and continuously tested for 

activity via a selection couple in which functional BOI variants induce higher levels of 

AdProt activity stemming from an AdProt gene cassette installed in the human cells. 

Berman et al. Page 8

J Am Chem Soc. Author manuscript; available in PMC 2019 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because AdProt activity is linked to the virus’ capacity to propagate, functional BOI variants 

are continuously enriched in the evolving viral population, whereas non-functional BOI 

variants result in non-viable virions that cannot propagate.

Application of the platform is straightforward, such that genes encoding a BOI can be 

integrated into the adenoviral genome using Gateway cloning,37 followed by plasmid 

transfection into a producer cell line that constitutively expresses both AdPol and AdProt to 

generate a starter adenovirus population (Figure 5). Directed evolution then simply involves 

serial passaging of the adenovirus on user-defined ‘selector cells’.

In developing this platform, we chose to use adenovirus rather than a natively mutagenic 

RNA virus owing to adenovirus’ relative safety, broad tropism, ease of manipulation, and 

capacity to propagate even under strong selection pressure. The adenoviruses used for 

directed evolution experiments were E1-, E3-, AdPol- and AdProt-deleted. All of these 

genes are required for adenoviral replication in the wild. Thus, the safety of working with 

these adenovirus deletion variants is maximized as they can only replicate in human cells 

that provide essential genes in trans, and cannot replicate in unmodified human cells.222738 

Moreover, the removal of this large portion of the adenoviral genome means that genes as 

large as ~7 kb can potentially be introduced and evolved in our platform. The broad tropism 

of adenovirus18 is beneficial because it means that directed evolution experiments can, in 

principle, be performed in many different human cell types depending on the objective of a 

particular experiment. Finally, from a genome engineering perspective, our optimized 

recombineering protocols (see Supporting Information) allow the necessary facile 

manipulation of the adenoviral genome.39

Despite the manifold benefits of the choice to use adenovirus, we faced a significant 

challenge because both wild-type and even the previously reported error-prone AdPol 

variants22 are relatively high fidelity, and therefore unlikely to enable the creation of 

mutational libraries at a sufficiently high rate to support continuous directed evolution of 

novel BOIs. To address this issue, we engineered EP-Pol, a highly mutagenic AdPol variant 

that pushes the adenoviral mutation rate into the regime of RNA viruses such as HIV and 

influenza that are well-known to rapidly evolve on laboratory timescales.264041 We used 

trans-complementation of EP-Pol via constitutive expression in the host cell to prevent 

reversion to wild-type AdPol that could occur if we modified an adenovirally encoded 

AdPol gene, thereby ensuring that mutagenic activity remains at a constant, high level 

throughout directed evolution experiments. We note that the optimized EP-Pol mutagenesis 

system may have applications beyond our directed evolution system. For instance, EP-Pol 

could be used to more rapidly assess resistance pathways to treatment of adenovirus 

infections or to improve the properties of adenovirus for therapeutic purposes.2242

This mutagenesis approach does introduce mutations into the adenoviral genome outside the 

gene for the BOI that can potentially be negatively selected and consequently reduce library 

size. The 6.5 kb genomic region we sequenced (Figure 2) was chosen because it contained 

both protein coding regions necessary for adenoviral replication and non-coding regions that 

should not face severe selection pressure. Comparing these domains across the sequenced 

region, we observed only a two-fold difference between the mutation rate in the inactivated 
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AdPol gene, which should not be under any selection pressure in our trans-complementing 

system, and the neighboring pIX, IVa2, and pTP genes, suggesting that such selection only 

impacts our mutation rate at most two-fold.

Because AdPol selectively replicates only adenoviral DNA, EP-Pol can only introduce 

mutations into the adenoviral genome. This mutagenesis technique thus represents an 

improvement over other strategies that evolve genes directly in the human genome. In such 

strategies, off-target mutations can arise through basal or through the enhanced mutagenesis 

rates, which can subvert selection pressure and generate false positives. Furthermore, even 

recent mutagenesis methods that target specific genes within the human genome by using 

somatic hypermutation1112 or Cas9-fusion proteins13-15 still display significant off-target 

genetic modification.43-45 Especially given the large size of the human genome, many 

pathways to cheating selection may be available. Our use of an orthogonal replication 

system means that the human host cells are discarded and replaced with each passage, 

preventing mutation accumulation in the human cell that could potentially cheat selection 

pressure. As a result, false positives are restricted to the ~30 kb viral genome, providing 

much more limited escape options than might be found in the entire human genome. This 

advantage, combined with the more rapid expansion of adenovirus relative to human cells 

allowing a larger number of directed evolution rounds in a given time period, highlights the 

ability of our platform to quickly scan mutational space with minimal risk of selection 

subversion.

We found that AdProt can serve as a robust selectable marker for adenovirus-mediated 

directed evolution in human cells. As an enzyme with catalytic activity, we might not expect 

AdProt to exhibit a dynamic range of selection. However, we observed that AdProt was able 

to modulate viral titers ~10-fold in response to protease levels. Importantly, we discovered 

that a small molecule inhibitor of protease could be easily used to further enhance this 

dynamic range to several orders of magnitude. It is noteworthy that the AdProt inhibitor may 

also be employed to actively fine-tune selection stringency over the course of a directed 

evolution experiment, simply by modulating the compound’s concentration in cell culture 

media.

We note that one theoretical cheating pathway could be recombination of the AdProt gene 

from the human cell genome into the adenovirus genome. However, we designed the 

adenovirus genome to lack any significant homology with the AdProt gene, greatly 

minimizing the risk of AdProt recombination. We did not observe AdProt re-introduction in 

any of our experiments.

We used the AdProt-based selection strategy to evolve transcriptionally active variants of 

tTA that gained dox-resistance. Across two replicates of the experiment, two different tTA 

variants ultimately fixed in the population, both of which were indeed dox-resistant. We also 

observed a large number of lower frequency mutations at various passages above our 1% 

threshold for detection. The observation of these variants suggests that our platform is 

effectively screening sequence space for a selective advantage, particularly as the vast 

majority of mutations are unlikely to ever attain a frequency of 1% in the evolving viral 

population.
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While this proof-of-concept experiment specifically highlights how AdProt-based selection 

could be used to evolve transcription factors, the platform should be readily generalizable to 

evolve a variety of other biological functions. We demonstrated how our system can enable 

directed evolution of DNA recombinases and amino-acyl tRNA synthetases. Beyond just 

these selection circuits, examples of the necessary selection couples already exist for an 

assortment of other protein classes, including TALENs,46 proteases,47 protein-protein 

interactions,48 RNA polymerases,1749 Cas9,50 GPCRs,51 and beyond. Indeed, a context 

where this platform will prove particularly valuable will be the evolution of complex 

activities like these, requiring multiple adaptive mutations not readily accessible via 

traditional transformation of plasmid libraries into human cells.

Looking forward, we envision a number of improvements that would further enhance this 

platform’s practicability and applicability. The current system relies on serial passaging of 

adenovirus on adherent cells. Transitioning to suspension cells would enable variant libraries 

several orders of magnitude larger than we can currently explore. The integration of 

emerging targeted mutagenesis techniques, such as MutaT752 or CRISPR-X,14 could further 

focus mutations only to the BOI gene, increase library size, and ensure sustained high 

mutation rates. Additionally, the present system is only capable of positive selection. 

Implementation of a negative selection strategy would enable our platform to evolve 

biomolecules that are more selective and specific for a given activity. We note that phage-

assisted continuous evolution in bacteria can afford larger library sizes, in addition to 

dynamic selections that occur on the order of hours, not days.17 Critically, while adenovirus-

mediated directed evolution explores mutational space more slowly than phage-assisted 

continuous evolution, it makes possible similar experiments in the metazoan cell 

environment for the first time. Moreover, our system will allow for the continuous evolution 

of complex proteins that require significant time to reach their active state and therefore may 

not be possible to evolve using viruses, such as some RNA viruses, that replicate extremely 

rapidly. Thus, the platform provides a compelling option in any situation where the evolution 

of optimal BOI variants is unlikely to succeed in simpler systems.

CONCLUDING REMARKS

Our platform offers several advantages relative to extant strategies for human cell-based 

directed evolution that rely on time-intensive screens and extensive in vitro manipulations. 

The use of adenovirus allows researchers to continuously mutate, select, and amplify genes 

of interest by simply transferring viral supernatant from one cell plate to the next. Owing to 

this simple viral passaging protocol, library sizes are restricted only by a researcher’s tissue 

culture capacity. Cheating is minimized because mutations are specifically directed to the 

viral genome. Safety is maximized because the adenoviruses used lack multiple genes 

required for replication in the wild. Moreover, the user-defined nature of the selector cell and 

the broad tropism of adenovirus type 5 enable directed evolution to be performed in a 

diverse array of human cell types.

By making it possible for researchers to evolve diverse BOI functions in the same 

environment in which the BOIs are intended to function, we believe this human cell-based 

directed evolution platform holds significant potential to enable researchers to rapidly evolve 
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a wide variety of biomolecules in human cells. Thus, this method should impact not just the 

development of new tools for research, but also our understanding of metazoan evolutionary 

biology and our ability to rapidly generate effective biomolecular therapeutics.

MATERIALS AND METHODS

Cloning methods:

All PCR reactions for cloning and assembling recombineering targeting cassettes were 

performed using Q5 High Fidelity DNA Polymerase (New England BioLabs). Restriction 

cloning was performed using restriction endonucleases and Quick Ligase from New England 

BioLabs (see Supporting Information). Adenoviral constructs were engineered using ccdB 
recombineering, as previously described39 and further optimized by us (see Supporting 

Information). Primers were obtained from Life Technologies and Sigma-Aldrich (Table S4). 

The TPL Gene block was obtained from Integrated DNA Technologies (Table S4). 

Sequences for all plasmids developed here can be obtained from GenBank using the 

accession numbers provided in Table S5.

Cell culture:

Cells were cultured at 37 °C and 5% CO2(g). New cell lines were derived from a parent 

HEK293A cell line (ATCC) and cultured in Dulbecco’s modified Eagle’s medium (DMEM; 

Cellgro) supplemented with 10% fetal bovine serum (FBS; Cellgro), 1% penicillin-

streptomycin (Cellgro), and 1% L-glutamine (Cellgro). For assays involving the tetracycline 

(Tet)-dependent transcriptional activation system (directed evolution of dox insensitivity, 

promoter activity assays, and reverse genetics), Tet-approved FBS (Takara Bio) was used. 

The producer and mutator cell lines (Table S2) were cultured in 50 μg/mL hygromycin 

(Thermo Fisher) to stably maintain transgenes, while the selector and phenotyping cell lines 

(Table S2) were cultured in 1 μg/mL puromycin (Corning) for the same purpose.

Generation of cell lines by lentiviral transduction:

In a typical protocol, ~9 × 106 HEK293FT cells (Thermo Fisher) were plated on a poly-D-

lysine-coated 10 cm plate. The next day, the cells were co-transfected with plasmids from a 

third-generation lentiviral packaging system:53 15 μg RRE, 6 μg REV, 3 μg VSVG, and 15 

μg transfer vector using 60 μL Lipofectamine 2000 (Thermo Fisher). Cultures were 

maintained in 5 mL total volume of OPTI-MEM (Gibco) during the transfection. After 8 h, 

the media was exchanged for fresh DMEM. After 48 h, media was harvested and centrifuged 

for 5 min at 3,200 × g to clear the cell debris. The supernatant was used to transduce 

HEK293A cells supplemented with 4 μg/mL polybrene (Sigma-Aldrich). After 24 h, the 

media was exchanged for fresh DMEM. 48 h later, media was exchanged again for DMEM 

containing appropriate antibiotics to select stable cell lines.

Adenovirus production:

Adenoviruses were produced by transfecting a PacI (New England BioLabs)-linearized 

vector into appropriate trans-complementing HEK293A cells (ΔAdPol adenoviruses on 

wild-type AdPol cells, ΔAdProtΔAdPol adenoviruses on producer cells; see Table S2). 24 μg 

of PacI-linearized adenovirus vectors mixed with 144 μL polyethyleneimine (Sigma-
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Aldrich) in 1 mL OptiMEM (Gibco) was added to a 15 cm plate of producer cells (Table S2; 

~3 × 107 cells). Media was replaced 8 h post-transfection, and then intermittently replaced 

every 2–3 days until plaques were observed (typically ~3 weeks). Once plaques were 

detected, cytopathic effect was observed in all cells within 5 days. Upon complete cytopathic 

effect, the cells and media were harvested and subjected to three freeze/thaw cycles. The cell 

debris was removed by centrifugation at 3,200 × g for 15 min and the supernatant stored at –

80 °C.

Mutagenesis rate determination:

The mutagenic potential of AdPol variants was evaluated following a previously reported 

protocol.22 Briefly, a polymerase-deleted Ad5, AdGLΔPol, was subjected to 10 serial 

passages on cultures of 911 cells54 expressing EP-Pol in order to accumulate mutations. 

After 10 serial passages, 911 cells expressing wild-type AdPol were infected in duplicate 6-

well plates at ~50 plaque-forming units/well in order to amplify pools of 50 viral clones for 

sequencing. Based on a plaque assay of one of the duplicates (which was overlaid with 

agarose), the actual number of plaque-forming viral clones in the pool obtained from the 

other duplicate (which was not overlaid with agarose) was estimated to be ~27. Using pools 

of 50 or fewer clonal viruses ensured that mutations present in only one clone will be present 

at a frequency above the threshold of detection. From the ~27-clone viral pool, a 6.5-kb 

fragment was amplified and prepared for deep sequencing. Libraries were subjected to 32 

cycles of single-read sequencing by an Illumina Genome Analyzer II. Using the short read 

analysis pipeline SHORE,55 these reads were mapped against the reference sequence 

allowing up to two mismatches or gaps, after which low quality base calls within the 

obtained mappings were individually masked. Mutations were subsequently scored using a 

minimal variant frequency requirement of 0.25% and a minimal local sequencing depth 

requirement of 1200 for both the forward and the reverse read mappings. Previous 

experiments showed that these settings were able to account for sequencing errors and 

accurately score mutations.22

AdPol and AdProt trans-complementation assays:

The day before beginning the assay, a 6-well plate was seeded with ~1 × 106 of the indicated 

cells. The next day, individual wells were infected with the indicated adenoviruses at a low 

MOI (< 0.5) in order to permit observation of the presence or absence of a spreading 

infection. AdPol and EP-Pol trans-complementation (see Figure S1 for AdPol and Figure 2b 

for EP-Pol) was tested by monitoring CFP.ΔAdPol.GFP adenovirus infection on either 

AdPol- or EP-Pol-expressing HEK293A cells. Pictures were taken with an Olympus U-

TB190 microscope. AdProt and AdPol double trans-complementation (see Figure S2) was 

tested by monitoring ΔAdProtΔAdPol-adenovirus (Table S1) infection on producer cells. 

Pictures were taken with a Nikon Eclipse TE200 microscope.

Determining adenoviral titer by flow cytometry:

Adenoviral titers were determined through flow cytometry. Known volumes of AdPol- and 

AdProt-deleted viral supernatants were added to AdPol-expressing HEK293A cells. 2–3 

days post-infection, cells were washed once with media, stained with 0.2 μg/mL DAPI, and 

then analyzed on a BD LSR II Analyzer for fluorescent protein expression. Infectious titers 
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were determined by measuring the percentage of cells infected by a known volume of virus. 

To minimize counting cells that were infected by more than one virus and to minimize any 

background fluorescence, data were only considered if they fell within the linear range, 

which typically encompassed samples where 1–10% of cells were infected.

Competition experiments:

A confluent dish of selector cells (Table S2; ~15 million cells) was infected with either a 

1:100 or 1:1,000 mixture of tTAwt:tTAmut adenovirus (MOI ~ 0.25; Table S1). Plates were 

monitored for the appearance of spreading infection, defined by fluorescent “comets” or 

plaques, every 24 h. One day after the observation of spreading infection, 1 mL of media 

was transferred to a new semi-confluent dish (~1 × 107 cells) of selector cells for the next 

passage (see Table S2), and 2 mL of media was stored at –80 °C for later analysis. To 

analyze the relative amounts of each virus present after each passage, we measured the 

relative adenoviral titers by flow cytometry (see above). The ratio of tTAwt and tTAmut 

viruses was determined by taking the ratio of cells expressing only mCherry and only GFP.

AdProt inhibitor experiments:

A confluent 12-well plate of selector cells (Table S2) (~4 × 105 cells/well) was infected with 

tTAwt.mCherry adenovirus (MOI ~ 5). After 4 h, the cells were washed with PBS (Corning), 

and the AdProt inhibitor was added at the indicated concentrations (0 μM, 1 μM, 20 μM) in 

the absence or presence of 2 nM doxycycline (dox; Sigma-Aldrich). After 6 days, media and 

cells were harvested and subjected to three freeze/thaw cycles, and analyzed by flow 

cytometry (see above).

AdProt inhibitor toxicity assay:

A 96-well plate of HEK293A cells were treated with the AdProt inhibitor at concentrations 

up to 20 μM for 5 days (Figure S6). A CellTiter-Glo Luminescent Cell Viability Assay 

(Promega) was performed according to the manufacturer’s instructions. Readings were 

normalized to the 0 μM AdProt inhibitor samples.

RT-qPCR on selector cells:

A confluent 12-well plate of selector cells (Table S2; ~4 × 105 cells/well) was transfected 

with 1.25 μg of pTet-Off Advanced (Takara Bio) using 7.5 μL of polyethyleneimine 

(Polysciences) and 100 μL OPTI-MEM. 2 days later, cells were harvested and the RNA was 

extracted using an E.Z.N.A Total RNA Kit (Omega Bio-Tek). cDNA was prepared from 1 μg 

of purified RNA using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). qPCR analysis for AdProt (primers: AdProt.Forward and AdProt.Reverse) and 

the housekeeping gene RPLP2 (primers: RPLP2.Forward and RPLP2.Reverse; Table S4) on 

a LightCycler 480 II (Roche). AdProt transcript levels were normalized to untransfected 

selector cells (Table S2).

Dox dose-response experiment:

A confluent 24-well plate of selector cells (Table S2; ~1.5 × 105 cells/well) was infected 

with tTAwt.mCherry adenovirus (MOI ~5). After 4 h, the cells were washed with DMEM 
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(Corning), and dox was added at the indicated concentrations (0 nM, 0.02 nM, 0.1 nM, 0.2 

nM, 1 nM, or 2 nM). After 5 days, media and cells were harvested and subjected to three 

freeze/thaw cycles, followed by analysis of titers using flow cytometry.

Continuous evolution workflow:

Before initiating directed evolution, 500 μL of a tTAwt.mCherry adenovirus was amplified 

on mutator cells (see Table S2) to create a diverse viral population. After 5 days, cytopathic 

effect was observed in all cells. This amplified virus was harvested with three freeze/thaw 

cycles. Three 15 cm, semi-confluent dishes of selector cells (Table S2) (~1 × 107 cells/plate) 

were infected with either 250, 500, or 1,000 μL of the amplified virus in the presence of dox. 

Plates were monitored for plaques every day. If more than one plate displayed a plaque on 

the same day, the plate with the lowest volume of virus added was used for the next round of 

evolution. The day after a plaque was observed, typically every 4–8 days, three 15 cm semi-

confluent dishes of selector cells were again infected in the presence of dox. The three 

dishes were infected with 250, 500, or 1,000 μL of adenovirus-containing media from the 

previous round by direct transfer without a freeze/thaw step. 2 mL of media were saved in 

Eppendorf tubes and stored at –80 °C for future analysis. In Trial 2, an additional media 

harvest was performed after full cytopathic effect was observed. In Trial 1, the concentration 

of dox was increased to 200 nM at passage 7 and then to 20 μM in passages 8–12. In Trial 2, 

the concentration of dox was held constant at 200 nM for all seven passages.

Measuring promoter activity of viral populations:

To follow changes in promoter activity developing during Trial 1, phenotyping cells (Table 

S2) were plated in a 96-well plate at ~40,000 cells/well. The next day, 30 μL of media from 

passages 1–12 was used to infect two rows of the 96-well plate. Media was removed 5 h 

post-infection and replaced with media containing 0 μM or 20 μM dox. The cells were then 

analyzed by flow cytometry (see above for sample preparation) for simultaneous expression 

of mCherry, indicating that the cell was infected, and GFP, indicating that the promoter was 

activated by the tTA protein.

Viral genome isolation for next-generation sequencing:

Using a viral DNA isolation kit (NucleoSpin Virus; Macherey-Nagel), DNA was harvested 

from 200 μL of the media that was saved after each round of evolution. A 1.75 kb region of 

DNA encompassing the CMV promoter and the tTA gene was PCR-amplified from 1 μL of 

the harvested DNA for 20 rounds of amplification using 5′-

ctacataagacccccaccttatatattctttcc-3′ and 5′-agcgggaaaactgaataagaggaagtgaaatc-3′ forward 

and reverse primers, respectively. The resulting PCR product was purified and prepared for 

Illumina sequencing via the Nextera DNA Library Prep protocol (Illumina). 250 bp paired-

end sequencing was run on a MiSeq (Illumina). Sequencing reads were aligned to the 

amplicon sequence, which was derived from the tTAwt.mCherry adenovirus sequence using 

bwa mem 0.7.12-r1039 [RRID:SCR_010910]. Allele pileups were generated using samtools 

v1.5 mpileup [RRID:SCR_002105] with flags -d 10000000 --excl-flags 2052, and allele 

counts/frequencies were extracted.5657 Each position within the tTA gene and CMV 

promoter had at least 1,000-fold coverage.
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Reverse genetics of tTA variants:

HEK-293A cells were seeded in a 12-well plate at ~4 × 105 cells/well. The next day, 0.2 μg 

of the pBud.tTA.mCherry vector was co-transfected with 1 μg of the pLVX-TRE3G.eGFP 

vector using 7.2 μL of polyethyleneimine (Polysciences) and 100 μL OPTI-MEM. 8 h post-

transfection, media was exchanged and 20 μM dox was added. 48 h post-transfection, cells 

were analyzed by flow cytometry (see above for sample preparation). Promoter activity was 

calculated based on the mean fluorescence intensity of GFP fluorescence, backgated for only 

mCherry-expressing cells.

Testing of recombinase and synthetase selection circuits:

HEK-293A cells expressing wt-AdPol were plated at 3.5 × 105 cells/well in a 12-well plate. 

The next day, 1 μg of the plasmid for each circuit ((LoxP)2Term.AdProt, AdProt(STOP), or 

AdProt.FLAG as a positive control) was transfected into six wells of a 12-well plate using 6 

μL of polyethyleneimine in 100 μL of OPTI-MEM. For the AdProt(STOP) circuit, 0.5 μg 

was co-transfected with 0.5 μg pLeu-tRNA.GFP(STOP). Media was changed 4 h post-

transfection. The next day, transfected wells were infected with either the relevant BOI virus 

(Table S1; Cre.Ad for (LoxP)2Term.AdProt, and LeuRS.Ad for AdProt(STOP)) or 

TTAwt.mCherry as a negative control at an MOI of 5. Cells were washed 3× with media 3 h 

post-infection. After 4 days, media and cells were harvested and subject to three freeze/thaw 

cycles, followed by analysis of titers using flow cytometry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Human cell-based directed evolution platform overview. (a) Schematic of an engineered 

adenovirus type-5 vector in which genes for adenoviral polymerase (AdPol) and protease 

(AdProt) are removed and a gene encoding the biomolecule of interest (BOI) for directed 

evolution is introduced, as well as a fluorescent protein (FP) for visualization during 

infection. (b) Schematic of engineered human cells constitutively expressing a highly error-

prone AdPol (termed EP-Pol) and conditionally expressing AdProt at levels directly 

dependent on BOI activity. (c) Schematic for adenoviral-based directed evolution of BOIs in 

human cells: (i) The BOI is delivered into the human cell via adenoviral infection. (ii) EP-

Pol introduces mutations into the BOI gene, generating a mutational library. (iii) The desired 

BOI function is coupled to the expression or activity of AdProt such that (iv) only functional 

BOI variants result in viral propagation. (v) If the BOI variant is non-functional, AdProt is 

not expressed or active and the adenovirus encoding that variant is outcompeted.
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Figure 2. 
(a) Crystal structure of the ϕ29 DNA polymerase (PDBID 1XHZ),23 an AdPol homolog, 

with the locations of homologous mutations used to create EP-Pol shown in magenta. (b) 

Either parental HEK293A cells or cells constitutively expressing EP-Pol were infected with 

a GFP-encoding ΔAdPol-adenovirus (CFP.ΔAdPol.GFP). The virus propagated only on EP-

Pol trans-complementing cells. Similar results were obtained for wild-type AdPol (Figure 

S1). (c) ΔAdPol-adenovirus (AdGLΔPol) was serially passaged on EP-Pol expressing cells 

for ten passages, after which a 6.5 kb genomic fragment was amplified from an ~27 clone 

pool. Illumina sequencing identified mutations throughout the amplified region. For 

substitution values, see Table S3. (d) Mutational spectrum of EP-Pol evaluated by next-

generation sequencing.
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Figure 3. 
(a) Schematic of the competition experiment between adenoviruses that carry the gene for 

wild-type tetracycline transactivator (tTAwt.mCherry) versus viruses that carry inactive tTA 

(tTAmut.GFP). HEK293A cells stably encoding the gene for adenoviral protease (AdProt) 

under control of the endogenous tTA operator are infected by an initial ratio of 1:100 or 

1:1,000 tTAwt.mCherry to tTAmut.GFP viruses. Viral media was serially passaged onto a 

new plate of cells for three rounds. The viral populations were then determined via flow 

cytometry. (b) Quantification of flow cytometry data from the competition experiment. The 

proportion of tTAwt.mCherry adenoviruses relative to tTAmut.GFP adenoviruses rapidly 

increased with each passage. The initial ratio of the 1:1,000 sample (labeled N.D.; not 

detectable) was not experimentally quantifiable owing to the low amount of tTAwt.mCherry 

adenovirus present, and was therefore derived by dilution of the 1:100 initial ratio. For raw 

flow cytometry data, see Figures S3 and S4. (c) AdProt-based selection pressure in 

combination with administration of a small molecule AdProt inhibitor (structure shown) 

provides access to an orders of magnitude-wide dynamic range of selection pressure. tTA-

inducible AdProt cells were infected with tTAwt.mCherry adenovirus, and treated with a 

combination of doxycycline (dox) and the AdProt inhibitor. The resulting viral supernatant 

was titered by flow cytometry. Titers were normalized to infections performed in the absence 

of the AdProt inhibitor. The titer of the adenovirus treated with 20 μM AdProt inhibitor and 

2 nM dox was too low to be accurately detected (N.D.; not detectable).
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Figure 4. 
(a) Serial-passaging schemes for evolving functional tTA variants that gain dox resistance in 

human cells. Two approaches to selection pressure were used, either with increasing dox 

concentrations (Trial 1) or a constant, moderate dox concentration (Trial 2). (b) tTA-induced 

GFP expression in the presence of dox after each round of evolution for Trial 1. Phenotyping 

cells were infected with passaged viral populations and analyzed by flow cytometry. The 

percentage of infected GFP-positive cells at each passage in the presence of dox was 

normalized to the percentage of infected GFP-positive cells at each passage in the absence of 

dox. N.D. = not detectable owing to low viral titer. (c) Non-reference allele frequencies for 

all mutations observed at ≥ 1% frequency over the course of the directed evolution 

experiment for Trial 1 (see Figure S7 for Trial 2). A schematic of the sequenced amplicon is 

shown below the x-axis for reference. (d) Mutational trajectories of four mutations identified 

in Trial 1, including two non-coding mutations in the CMV promoter upstream of the tTA 

gene. (e) Mutational trajectories of four abundant mutations identified in Trial 2, including 

two non-coding mutations in the CMV promoter upstream of the tTA gene. (f) Plasmids 

encoding the tTA variants that fixed in Trials 1 and 2 were transfected, along with the pLVX-

TRE3G.eGFP reporter plasmid, into HEK293A cells with or without dox (N = 3). Two days 

later, flow cytometry was performed to examine tTA variant activity in the presence versus 

the absence of 20 μM dox.
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Figure 5. 
The gene encoding a biomolecule of interest (BOI) is first inserted into pAdEvolve. 

“Producer” cells (see cell lines listed in Table S2) are used to generate ΔAdProtΔAdPol-

adenoviruses carrying the BOI gene. If desired, the BOI gene can be mutated prior to 

selection by first passaging the adenovirus on a “mutator” cell line constitutively expressing 

EP-Pol. A “selector” cell line tailored to the activity of interest is generated by the 

researcher, followed by serial passaging of viral supernatants on the selector cells.
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